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Supplementary Information I: BiomeE model description

A. Light harvest, photosynthesis, stomatal conductance and respiration
Light harvest

In BiomeE, same as LM3-PPA, individual trees are represented as sets of cohorts of similar
size trees and are arranged in different vertical canopy layers according to their height and crown
area following the rules of the Perfect Plasticity Approximation (PPA) (Strigul et al., 2008) (Fig.
Al). The PPA model allows for flexibility in the shapes of individual tree crowns (Purves et al.,
2008; Strigul et al., 2008), but for simplicity, we assume that trees have flat-topped crowns,
which allows for accurate predictions of observed succession and canopy structure in broad-
leaved temperate forests (Purves et al., 2008) and canopy structure in a Neotropical forest

(Bohlman and Pacala, 2012).

Cohort \Solar radiation

\

IOART

[

Figure A1 Community structure and light partitioning

Soil

Individual tree height is defined as the height at the top of the crown, and all foliage of a

given cohort is assumed to belong to a single canopy layer. The height of canopy closure for
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layer & (k =1 is the top layer, k = 2 is the second layer, etc.) is referred to as Zj, the height of the
shortest tree in the layer, and is defined implicitly by the following equation:

k(1 =) = 3 [, Ni(Z, ) Acr i (Zi;, 2)dZ (A1)

where N;(Z, t) is the density of PFT i trees of height Z per unit ground area; Acy ;(Zy, Z) is the
crown area of an individual PFT i tree of height Z; and 7 is the proportion of each canopy layer
that remains open on average due to spacing between individual tree crowns.

The top layer includes the tallest cohorts of trees whose collective crown area sums to 1—n
times the ground area, and lower layers are similarly defined. Trees within the same layer do not
shade each other, but there is self-shading among the leaves within individual crowns. Cohorts in
a sub-canopy layer are shaded by the leaves of all taller canopy layers using a mean field
approximation; i.e., in a given canopy layer, all cohorts are assumed to have the same incident
radiation on the top of their crowns (Fig. Al). The gap fraction 7 increases light penetration
through each canopy layer and allows for the persistence of understory trees in monoculture
forests in which the upper canopy builds a physiologically-optimal number of leaf layers, i.e. one

in which its lowest leaves are at zero carbon balance (Farrior et al., 2013).

Photosynthesis and stomatal conductance

We use the photosynthesis model of LM3-PPA to calculate photosynthesis rate and
transpiration of vegetation. This model first calculates the net carbon assimilation rate
(photosynthesis) and stomatal conductance of the leaves of each tree (cohort), integrated through
the leaf area within a cohort’s canopy, in the absence of soil water limitation. These values of
assimilation and stomatal conductance require a certain water demand. Then, it calculates

available water supply, and reduce the demand-based assimilation and stomatal conductance
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accordingly if water supply is less than water demand. The water-demand-based photosynthesis
and stomatal conductance equations for a well-watered plant are modified from Farquhar et al.
(1980), Collatz et al. (1992, 1991), and Leuning et al. (1995). We present equations for both Cs3
and C4 plants, although only the former are included in the examples presented in this paper. The
model assumes that the entire canopy of a given cohort is isothermal with temperature 7, and
the air in the intercellular spaces is water-saturated with specific humidity equal to saturated
specific humidity ¢*(7v). The link between stomatal conductance (gs, mol m s!), the rate of net
photosynthesis (4n, mol CO> m s7!), intercellular concentration of CO> (Ci, mol CO, mol™! air),
and the difference in specific humidity between the intercellular spaces and the canopy air (ga, kg
H>O kg 'air) can be expressed as a simplification of Leuning’s (1995) empirical relationship

assuming negligible cuticular conductance:

g, = ma, A2
CT(C T+ (g (T)-q.)/d,) (A2)

where m is the slope of the stomatal conductance relationship, do is a reference value of canopy
air water vapor deficit (kg H,O kg™! air), and I (mol CO2 mol™! air) is the CO> compensation

point:
K
r =ac[OZ]K—C (A3)

where ac = 0.21 is the maximum ratio of oxygenation to carboxylation, [Oz] is the concentration
of oxygen in canopy air (0.209 mol O» mol! air), and K¢ (mol CO> mol™! air) and Ko (mol O
mol! air) are the Michaelis-Menten constants for CO, and O, respectively. Kc and Ko depend

on temperature according to an Arrhenius function:

falEo T) = ePmmr) (Ad)
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where K. =D f,(E,.,T,) and K, =D, f,(E,,,T,), with respective constants: Dc = 1.5x10*

mol CO; mol™! air , Eoc= 6000 K, Do = 0.25 mol O, mol'! air, and Eo,0 = 1400 K.
Net photosynthesis 4, can be expressed as a CO» diffusive flux between canopy air and

the stomata (Leuning et al., 1995):

g
A4,=2~-(C,-C, A5
n 1'6 ( a [) ( )

where C; is the concentration of CO» in the canopy air, and the factor 1.6 is the ratio of
diffusivities for water vapor and CO. We assume that the diffusion of CO> is mostly limited by
stomatal conductance and not by the leaf boundary layer conductance, which we ignore for
simplicity, following the formulation of the ED model (Medvigy et al., 2009; Moorcroft et al.,

2001). Combining Eqgs. A2 and A5 yields the intercellular concentration of COx:

o G +T e (4 Sy A6
i 1+18(1+ Q*(Tv)fqa) ) (A6)
m d,

Following the mechanistic photosynthesis model of Farquhar et al.(1980), with extensions
introduced by Collatz et al. (1992, 1991), we can also express net photosynthesis (4,) as the
difference between gross photosynthesis and leaf respiration, and assume gross photosynthesis is
the minimum of several physiological process rates:

Ay = fr(T)[min(Jg. Je.J;) = VWi ()] (A7)

where fr(7y) is a thermal inhibition factor (see below); Jg, Jc, and J; are light limited, Rubisco
(CO2) limited, and export limited rates of carboxylation, respectively; Vm(Ty) is the maximum
carboxylation velocity (mol CO> m™ s7); and y is a constant relating leaf respiration to V. The

thermal inhibition factor, assumed to affect carbon acquisition and respiration equally, is
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T (045 C- T )+ exp(O AT, 45 O] -

The maximum carboxylation velocity, V'm, depends on the temperature of the leaf:
VAT,) =V S4(Ey.T,) (A9)

where Vmax (the reference value of Vi, at 25° C) is a species-specific constant, fa(7y) is given by
Eq. B3.3, and E is the activation energy (see Appendix C).

For Cs plants, Collatz et al. (1991):

C -T

J,=aa e
p we@ C 4o, (A10 a)
c=

C[+KC(T;)pref . 1+ p [02] (AIOb)

p pref Ko(]-})

V (T

J, = mgv) (A10 c)

where a is the leaf absorptance of photosynthetically-active radiation (PAR), Q is incident PAR
per unit leaf area (E m? s), a5 is the intrinsic quantum efficiency of photosynthesis (mol CO,
E), p is atmospheric pressure, and Py is the reference atmospheric pressure (1.01x10° Pa).

For C4 plants, 4 is calculated by a similar equation as Eq. A7 according to Collatz et al.
(1992) . The rate of carboxylation is calculated by the minimum of the rates limited by light,

maximum carboxylation velocity, and CO; as shown in the following:

Jy=aa,,;0 (All a)

Je=V,(T) (A1l D)
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J oo = 18000V, (T,)C, (All ¢)

The solution of the Eqs A7~A11 yields net (4,) and gross photosynthesis rates for a thin
canopy layer with incident PAR flux Q per unit leaf area. We now solve for the photosynthesis
integrated through the depth of a cohort’s canopy, given incident PAR flux Q calculated
according to the two-stream approximation described in Weng et al. (2015). Q is assumed to
decrease exponentially, according to Beer’s law, through the depth of a cohort’s canopy: Q(1) =
Q, exp(—«l), where Qy is incident PAR at the top of the cohort’s canopy, and / is the overlying
leaf area per crown area at a given depth within the cohort’s canopy, with L = 0 at the top of
the cohort’s crown, and [ = LAI at the bottom (here, “LAI” is the total leaf area per crown area
of a cohort’s canopy). The Beer’s law extinction coefficient k is calculated as a function of the
zenith angle of solar radiation (which varies by latitude, time of day, and day of year) and leaf
angle distribution in the canopy (assumed spherical) to approximate the attenuation of
photosynthetically-active radiation within a single cohort’s canopy according to the two-stream
approximation. We can define a depth [, where the light-limited rate /g is equal to the minimum
of other limiting rates. Gross photosynthesis below depth [, (the integral in Eq. A12 below) is a
function of light availability, while above this depth it is equal to the minimum of other limiting
rates. The net photosynthesis averaged over the entire canopy depth can be expressed as

n:fT(Tv) Jmmle
LAI e

+ [Tyl |- f(T)7,(T,) (A12)

where

min(J.,J;) forC, plants
* " |min(J,,J,,,) forC, plants

If incident light Qo is so low that no part of canopy is light-saturated, then [, = 0.
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Using the Beer’s law approximation of the light profile within a cohort’s canopy, we can

obtain the following expressions for the integral in Eq. A12:

exp(—kl,, ) —exp(—kl)

LAI
[7:(0dl = ae’Q, p (A13)
Loy
and for /oq:
1 aa'Q
l,, =—logl — Al4
eq k g( Jmin J ( )
C -T.
where, o'=«a Cl— for C; plants and a'= « for Cy4 plants.
Average stomatal conductance is calculated from Eqs. A2 and A12:
§'—nwx( mA, g (ALS)
S (C=L)-(+(q'(T)=q,)/dy ™

where gsmin = 0.01 mol H,O m s! is the minimum stomatal conductance allowed in the model.
The model applies some further corrections to the net photosynthesis and stomatal

conductance calculations above for a well-watered plant, in order to take into account limitations

imposed by water availability and other factors:

Ay = buwbibmAn (A16)

9s = PwdiPnIs (AL7)

where ¢,, is the reduction due to water limitations, ¢; is reduction due to presence of intercepted

water and snow on leaves, and ¢,, is the imposed maximum conductance limitation. If there is

water or snow on the canopy, the photosynthesis is reduced proportionally to the covered

fraction of leaves:

b =1—-(fi + f)awer (A18)
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where f; and f; are the fractions of canopy covered by liquid water and snow, respectively; a,, ¢
is the down-regulation coefficient, assumed to be 0.3; i.e., photosynthesis of leaves fully covered

by water or snow is reduced by 30% compared to dry leaves.

The model also imposes an upper limit on stomatal conductance. If the calculatedg_s is
higher than the limit g™*= 0.25 mol m~ s™', then stomatal conductance and net photosynthesis

are adjusted:

g lg, A>0
b, = — (A19)
1, A =<0

Finally, stomatal conductance and photosynthesis are adjusted down if available water
demand is greater than water supply. Given mean stomatal conductance g_s (Eq. A15), the water

demand per individual (kg/s) is:
Ud = g_sMair (q * (Tv) -4, )Aleaf (A20)

where Mair is the mass of air per mol (g mol!), used to convert stomatal conductance to mass
units, and A, is the total area of leaves in the individual’s canopy.

Given the water supply (i.e., the maximum plant water uptake rate, Umax), which is
defined as the uptake rate when root water potential is at the plant permanent wilting point, net
photosynthesis and stomatal conductance are adjusted for water limitation according to Eqs. A16

and A 17 using the factor:
¢, =minlU_, /U,1). (A21)

See section F for the details of root water uptake and soil water dynamics.

Autotrophic respiration
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The total autotrophic respiration rate of an individual is the sum of maintenance respiration of

living tissues and the growth respiration for building new tissues.
Ra :RL+RSW+RFR +rg(Gw+ GL+GFR +GF) (A22)
where R;, Rsw, and Rrr are the maintenance respirations of leaves, sapwood, and fine roots, and

rg is a growth respiration constant (v, = 0.33 g C g'! C). Maintenance respiration terms are

calculated as:

RL = ]/LeafVmaxALg (A231)
Rsw = BswAcsfre' (A23.2)
Rpr = PrrFRf7e’ (A23.3)

where yLeat, 1S a respiration coefficient of leaves; ¢ is a factor converting the unit of carboxylation
rate Vemax (mol m2 s7!) to kg C m? yr'!'; Bsw, and Brr are respiration coefficients of sapwood and
fine roots, respectively (kg C m? yr'! for sapwood and kg C kg'! C yr! for fine roots); ¢ is a
factor converting the unit of kg C m? yr'! to kg C m? day™!); Acg is cambium surface area (m?),
which we assume scales with diameter with an exponent 1.5 (4cg oc D'-°), consistent with the
height allometry exponent 87z = 0.5; and fr is a temperature-dependent function adapted from

Collatz et al. (1991; 1992) that scales respiration rate with temperature:

1 1
exp [3000(288.16_T+273.16)]

fr= (1+exp[0.4(5—T)]}{1+exp[0.4(T—45.0)]}

(A24)

where T'is °C.

10
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B. Nitrogen uptake
The rate of nitrogen uptake (U, g N m2 hour™) from the soil mineral nitrogen pool is an
asymptotically increasing function of fine root biomass density (Crr total, kgC m2), following

McMurtrie et al. (2012)

CFR,total

U= fU,maX * Nmineral * (B1)

where, Nmineral is the mineral N in soil (g N m2), fi,max is the maximum rate of nitrogen
absorption per hour when Crr a1 approaches infinity, Ker is a shape parameter (kg C m™2) at
which the nitrogen uptake rate is half of the parameter fu,max. The nitrogen uptake rate of an

individual tree (Usee, g N hour! tree!) is calculated as follows:

C ree
Utree =U- —TRee (B2)

b
CFR,total

where, Crr ree 1s the fine root biomass of a tree (kgC tree!). The nitrogen absorbed by roots
enters into the NSN pool and then is allocated to plant tissues through plant growth.
For limiting N uptake in an N-rich soil, we define a target NSN (NSN), which is a function

of leaf’s target biomass, C:N ratio, and lifespan and root’s target biomass and C:N ratio:

/’l'CNleaf CNFpR

where, gn is a constant; A is leaf lifespan; L*(D) and FR"(D) are the target leaf and fine root
biomass at diameter D, respectively; CNiear and CNer are the C:N ratios of leaves and fine roots,
respectively. L*(D) and FR*(D) are defined in Weng et al. (2015). If NSN exceeds the target,
then the excess NSN is returned to the mineralized N pool in the soil (i.e. as if it was never taken

up to begin with because the plant did not need it).

11
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C. Plant growth and carbon allocation
Allometry
In this model, the partitioning of carbon and nitrogen among these pools are limited by a set of
allometric equations and different C:N ratios of these pools. Empirical allometric equations
relate woody biomass (including coarse roots, bole, and branches), crown area, and stem
diameter. Each individual is composed of six tissues: leaf, fine root, sapwood, heartwood,
fecundity, and labile carbon stores (nonstructural carbohydrates, NSC). The individual-level
dimensions of a tree, i.e., height (Z), biomass (), and crown area (Acr) are given by empirical
allometries (Farrior et al., 2013):

Z(D) = a, Db

S(D) = 0.25wApy,a,D?+9z (C1)

Acg(D) = aD%
where Z is tree height, S is total woody biomass carbon (including bole, coarse roots, and
branches) of a tree, a. and a7z are PFT-specific constants, c=1.5 and 87=0.5 (Farrior et al. 2013;
although they could be made PFT-specific if necessary), « is the circular constant (=3.1415926),
/A is a PFT-specific constant, and pw is PFT-specific wood density (kg C m™) .

Following the pipe model (Shinozaki, Kichiro et al., 1964), the fargets of leaf, fine root,
and sapwood cross-sectional area are related by the following equations:
Li(D,p) = Iy - Acr(D) - 0 - p(t)

Acr(D)

FRy(D) = @py, - li - (C2)

Asw (D) = acsa - Ui - Acr(D)
where L (D, p) is the target leaf mass of canopy-level & at given stem diameter (D), /" is the

target leaf area per unit crown area of a given PFT at canopy-level k, Acr(D) is the crown area of

12
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a tree with diameter D, o is leaf mass per unit area (LMA), p(t) is a PFT-specific function
ranging from zero to one that governs leaf phenology. The phenology function p(t) takes values 0
(non-growing season) and 1 (growing season) (Milly et al., 2014; Shevliakova et al., 2009). The
onset of a growing season is controlled by two variables, growing degree days (GDD), and a
weighted mean daily temperature (7preno), While the end of a growing season is controlled by
Tpheno. FRi"(D) is the target fine root biomass at diameter D and canopy-level &, gre is the ratio of

total root surface area to the total leaf area, yis specific root area, Agy, (D) is the target cross

sectional area of sapwood at canopy-level &, and acsa is an empirical constant (the ratio of
sapwood cross-sectional area to target leaf area). All plant tissues are assumed to be 50% carbon

by mass.

Plant Growth
Plant growth is co-limited by the availability of carbon and nitrogen. Photosynthate and re-
translocated carbon enter the non-structural carbohydrate (NSC) pool, and carbon for respiration,

growth, and reproduction are removed from it.

LI = P(t) + Sc(t) — Ra(t) — G (), (C3)

at

where G¢(¢) is the amount of carbon available for producing new plant tissues, including leaves,
fine roots, stems, and seeds; S(t) is the carbon retranslocated from senescing leaves and fine
roots; Ra(t) is the carbon used for autotrophic respiration; Ps(¢) is carbon input from
photosynthesis. The carbon fluxes from photosynthesis provide daily total carbon gain from
photosynthesis (P(t)) and loss from respiration (R.(t)) for each cohort.

The N absorbed by roots enters the non-structural N (NSN) pool first and then is

allocated to the remaining plant pools through plant growth.

13
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T = Uy () + Sy (8) — Gy (1), (C4)

where, Gn(?) is the amount of nitrogen available for producing new plant tissues from the NSN
pool, Sx(t) is the N retranslocated back to NSN from dead leaves and fine roots, Un(t) is the

nitrogen absorbed by roots.

Carbon and nitrogen fetching from their non-structural pools
The available carbon from NSC at time ¢, G¢(¢), is calculated as two components: demand by
plant tissues (Gc,p) and growth tendency driven by NSC (Gc,p)

Gep + GC,P') (C5)

Ge(e) = in (17 VS¢
The computations of Gc,p and G p are based on the “target” amount of leaf mass, L*(D, p), fine
root mass, FR*(D) and nonstructural carbohydrate, NSC for each cohort. These quantities change
with the trunk diameter (D) and its phenological state (p).

We assume plants keep their leaves and fine roots tracking their targets if they have

enough carbon in NSC:

Gep = p(8) - [Li (D) + FRi(D) — Ly (t) — FR, (D], (Co)

where the subscript & denotes the canopy layer (below, we use the values k&=C and k=U for
canopy and understory layers, respectively, but this can be generalized to an arbitrary number of
layers, k). This component drives leaf flush. The parameter f,,, ¢ also defines the rate of leaf

flush at the beginning of a growing season (Polgar and Primack, 2011; Wesotowski and

Rowinski, 2006). The NSC driven growth during a growing season is defined as:
Gep = D) " fusc - NSC(0), (C7)

where, the parameter fnsc sets the rate of NSC turning to plant tissues (mainly stems).

14
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The nitrogen available for tissue building is:

fusn - NSN(©) + (Ly, — L (©))/CN, + (FRy — FR"(tD/CNFR') ’ (C8)

Gy(t =Min<
N() fmax,NNSN

where, fnsn is the rate of NSN turning to plant tissues. The parameters define the strategy of plant
growth. If they are great, the plants tend to have a low NSN and NSC pools and grow fast, but
are susceptible to bad environment conditions. If they are small, they grow slowly but are safe in

bad years because of the high NSN and NSC storage.

Allocation

The carbon and nitrogen allocation rules track PFT-specific targets for leaf area per unit
crown area (I*), fine root area per unit leaf area, a fixed fraction of NPP for reproduction, and the
NSC pool size.

Leaves and fine roots have fixed C:N ratios, and so the N removed from NSN to construct
new leaves is simply the carbon allocated from NSC to leaves, as calculated in Weng et al.
(2015), divided by leaf C:N. In cases where there is insufficient NSN to meet the carbon demand
for new leaves and roots, the excess carbon is allocated to produce new sapwood. We

numerically solve the following equations for the allocation of carbon and nitrogen:

GC 2 GW + GL + GFR + GF (C9'1)
GL GFR GF Gy
Gy =
N = CNL'() + CNFR,O + CNF,O + CNW,O (C9.2)
(FR+GFR))/ _ C9 3
@w+G/o | PRL (C9.3)
L* + FR* — L — FR,
G, + Gpr = Min( ; ) Top (C9.4)
fLFR,max C

15



269

270

271

272

273

274

275

276

277

278

279

. (L*+ FR* — L — FR,
Gp = [GC — Mm( Firrmax Ge )rS/D] "V Ts/p s (C9.5)
L*+ FR* — L — FR,
Gy = [GC _ Min( )rS/D] : (1 _p- rs), C9.6)
fLFR,max GC D

where, CNL 0, CNrr,0, CNr,0, and CNw o are the target C:N ratios of leaves, fine roots, seeds, and
sapwood, respectively; yis specific root area (m? kgC!); o is leaf mass per unit area (kgC m2);
fLFR,max 18 the maximum fraction of G¢ for leaves and fine roots (0.85 as default value); v is the
fraction of left carbon for seeds (0.1); rs/p is a nitrogen-limiting factor ranging from 0 (no
nitrogen for leaves, fine roots, and seeds) to 1 (nitrogen available for full growth of leaves, fine
roots, and seeds).

The parameter rs/p controls the allocation of Gc and Gy to the four plant pools. When
there is no nitrogen limitation, 7s/p equals to 1 and the allocation follows the rules of the carbon

only model. In this case, we can solve the potential growth of leaves, fine roots, seed, and stems

as:
. (L*+FR*—L—FR,

G = YG[FR+Mln( fLFRmax Gc )]_(’ORLL (C10.1)
L YO+PRrL

o o | SE (C10.2)
FR ™ YO+@PRL
' . (L"+FR*—L —FR,

GF -V [GC B Mln( fLFR,max GC )] (C103)
' . (L"+FR*—L —FR,

Gw =1 =) [GC B Mm( frrrmax Ge )] (€104)

Thus, we have the potential nitrogen demand when there is no nitrogen limitation (N’):
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' 6L GFR GF Gw'
N = + + + . (C11)
CNpo CNpro CNpo CNyp

With the solution of nitrogen demand (N’), the analytical solution of can be expressed as:

rg/p = Min [1,Max (o%)} , (C12)

where, NV’is the potential N demand for plant growth at 7s;p=1 (i.e., no nitrogen limitation). When
Gn> N, all the Ge will be used for plant growth and the excessive nitrogen (Gn— N) will be
returned to the NSN pool. When Gn<Gc/CNw,o, sp equals to 0 and all the Gy will be allocated
to sapwood and the excessive carbon (Gc—GnCNw o) will be returned to NSC pool. This is a very
rare case since a low Gy leads to low leaf growth, reducing Gc before the case GN<Gc/CNw o

happens. Therefore, in most cases, Eq. C9.1 is: G; = Gy, + G, + Gpg + Gp.

Tree structure update

The diameter growth and sizes of individual trees are calculated from individual-level
allometry and allocation of assimilated carbon. To scale up to a cohort from individual trees,
individual pools and fluxes are multiplied by the spatial density of individuals in a cohort. By
differentiating the stem biomass allometry in Eq. C1 with respect to time, using the fact that
dS/dt equals new sapwood biomass, and rearranging, we have:

dp Gw
dt  0.25mApyaz(2+6,)D10z

(C13)

The numerator tends to be proportional to D! because carbon gain is proportional to crown area,
NSC surpluses tend to be a fraction of carbon gain, and crown area is usually roughly
proportional to D' (Zhang et al., 2014). The denominator tends to be proportional to D'

because 0z tends to be about 0.5 (Zhang et al., 2014). The approximate diameter-independence of
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298 Eq C13 allows many aspects of the behavior of the BiomeE model to be understood by referring
299  to analytically tractable versions of the PPA model where dD/dt is assumed to be independent of
300 D.

301 Equations for tree height and crown area growth rates are obtained by differentiating the

302  allometries for Z and Acr in Eq C1 using the chain rule:

% _ HZaZDGZ_ld—D (C14)
dA _1dD
ng — QCaCDGC 1E (CIS)
303  The dynamics of leaf biomass of an individual is:
dL
2 = @) — A =p@®) y.L®) (Cl6)

304  where x is the PFT-specific rate of leaf senescence triggered by the ending of a growing season.
305 The new leaf biomass is converted into the change in leaf area by dividing by LMA (o).

306 Similarly, fine root biomass is governed by:

d
E2 = Grr(t) — VrrFR(D). (C17)

307  The total leaf area of a tree is converted to the tree’s crown LAI, /i, by dividing by crown area.

_ Lg/LMA
Acr

l (C18)

308

309 Conversion from sapwood to heartwood

310  As trees grow, sapwood (SW) is transformed to heartwood (HW). This unidirectional process
311  does not affect the size of the woody biomass C pool. We assume that if the actual sapwood
312 cross-sectional area Asw is larger than its target value, Agy,, (D), the excess portion of sapwood

313  biomass is converted to heartwood. Thus, to determine the amount of sapwood converted to
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324
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326

327

heartwood in a given time step (dHW), we simply calculate the difference between SW and the

target sapwood C (SW") needed to balance L" and FR":

dHW = max (0,SW — SW™) (C19)

Using the equation for total tree biomass (main text Eq. 4), the target biomass of sapwood is:
SW* = 0.25nApya;(D?+0z — D, 2197) (C20)

where D is the diameter of the trunk and Dnw is the heartwood diameter, which is given by:
Dyw = 2/Apw /7 (C21)

where Anw is the cross-sectional area of heartwood. Assuming Asw is at its target value,
Apw = Ap — Ay (C22)

The cross-sectional area of a trunk (A4;) is:

A =1 (D)2 (C23)

2
And, according to Eq A2.1 and Eq A2.3, the target cross sectional area of sapwood is defined as:

Asy = acsal’ Acg(D) = acsal*acDb (C24)

D. Population dynamics

Same as the LM3-PPA model (Weng et al. 2015), the BiomeE model predicts population
dynamics by simply simulating the birth, mortality, and growth of each cohort. Firstly, the
cumulative biomass of seeds produced by a canopy cohort over a growing season of length 7' is
converted to seedlings by dividing by the initial plant biomass (So) and multiplying by

germination and establishment probabilities (p, and p., respectively):
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347

N(So, ) = % [y N(@©Gg(D)dr (D1)

where N(So, ?) is the spatial density of newly generated seedlings, and N(7) is the spatial density
of the parent cohort at time 7.

After being born, the individuals grow and expand their occupied spaces with resources obtained
from leaves (photosynthesis) and roots (water and nitrogen uptake). Let Gi(s,f) denote the multi-
dimensional growths of individuals of species i and size s at time ¢ as described in Eqs. C9~C18,
then we have:

0 = 6.0 (D2)

During growth, the cohorts with organize into canopy layers according to their height and crown
area following the rules of PPA (Eq. Al).

The density of individuals in each cohort also decreases as results of mortality due to many
reasons (e.g., shading, starvation, disturbances, drought, etc.). Let’s assume an overall rate of
u(s,0):
WED = (s, ON(s, B). (D3)

In BiomeE, mortality is assumed to occur due to carbon starvation if a cohort’s NSC pool is
close to zero. Because the target size of the NSC pool is assumed to be several times the size of
the combined target leaf and fine-root masses, trees rarely die of carbon starvation unless they
experience prolonged drought (which was not simulated in the current study) or have chronic
negative carbon balance due to shading. In addition to carbon starvation, each species/PFT has a
canopy-layer-specific background mortality rate that is assigned from the literature. These
background rates are assumed to be size-independent for upper-canopy trees, but size-dependent

for understory trees according to:
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1+ae~bD

1+e~bD

(D4)

tu(D) = po

where, n0 is species-specific background mortality rate; parameters a and b define the mortality
rate changes with tree diameter D. We let a=9 and =60 in this study. This functional form
reduces mortality by a factor of 5 between germination and adulthood. It accounts for the
additional sources of non-starvation mortality facing small individuals, such as herbivory by

large mammals and branch-fall.

E. Soil organic matter decomposition and nitrogen mineralization

Each tree consists of seven pools: leaves, fine roots, sapwood, heartwood, fecundity
(seeds), and non-structural carbohydrates and nitrogen (NSC and NSN, respectively) (Fig. E1).
The carbon and nitrogen in plant pools enter the soil pools with the mortality of individual trees
and the turnover of leaves and fine roots. There are three soil organic matter (SOM) pools for
carbon and nitrogen: fast-turnover, slow-turnover, and microbial pools, along with a mineral
nitrogen pool for mineralized nitrogen in soil. The simulation of SOM decomposition and
nitrogen mineralization is based on the models of Gerber ef al. (2010) and Manzoni et al. (2010)
and described in detail in Weng et al. (2017). The decomposition rate of a SOM pool is
determined by the basal turnover rate together with soil temperature and moisture. The nitrogen
mineralization rate is a function of decomposition rate and the C:N ratio of the SOM. Microbes
must consume more carbon in the high C:N ratio SOM pool to get enough nitrogen and must

release excessive nitrogen in the low C:N ratio SOM pool to get enough carbon for energy.
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368
369 Figure E1 Biogeochemical structure of BiomeE.

370  The green, brown, and black lines are the flows of carbon, nitrogen, and coupled carbon and

371  nitrogen, respectively. The green box is for carbon only. The brown boxes are nitrogen pools.
372 The black boxes are for both carbon and nitrogen pools, where X can be C (carbon) and N

373  (nitrogen). The C:N ratios of leaves, fine roots, seeds, and microbes are fixed. The C:N ratios of
374  woody tissues, fast soil organic matter (SOM), and slow SOM are flexible. Only one tree’s C and
375 N pools are shown in this figure. The blue box and arrows are for water storage in soil and fluxes
376  of rainfall, evaporation, and transpiration. The model can have multiple cohorts of trees, which
377  share the same pool structure. The dashed line separates the aboveground and belowground

378  processes.

379

380 As SOM decomposes, nitrogen in SOM is mineralized and enters into the mineral N pool

381  when the nitrogen requirement of microbes is met. N mineralization does not simply piggyback
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on the SOM decomposition because soil microbes may be limited by either C or N. The

dynamics of the mineral N pool is represented by the following equation:

dNmineral _
dt - Ndeposition + Nm —-U - Nloss: (El)

where, Naeposition 1S N deposition rate, assumed to be constant over the period of simulation; N is
the N mineralization rate of the litter pools (fast and slow SOM and microbes); U is the N uptake
rate (gN m2 hour™!) of plant roots; and Niess includes the loss of mineralized N by denitrification
and runoff. The N deposition (Ndeposition) 18 the only N input to the ecosystem.

Total N mineralization rate (Nm) is computed from the decomposition from fast and slow
SOMs and turnover of microbes. The decomposition processes of SOMs are represented by a
model modified from (Manzoni et al., 2010). In this model, the out-flux of C from the i pool
(Ciou) 1s calculated by:

Ciou = (T, M)PiQC; (E2)

where, ¢ is the response function of decomposition to soil temperature (T) and moisture (M),
taken as the average of the values in the top 0.2 meters of the soil in the soil hydrology and
energy model in Weng ez al. (2105), p; is the basal turnover rate of the i litter pool at reference

temperature and moisture, QC; is the C content in i pool.

Then, the out-flux of N from the i pool (N;out) is:
Ni,out = E(T' M)piQNi B (E3)
where, ON; is the N content in the i pool.

The mineralized N (NV;mineralizedN) at this step is the difference between the out-flux of N from the

i" pool and the N used to build microbes:
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£0°Ciout )
b

Amicrobe

Ni,mineralizedN = max (0' Ni,out - (E4)

where, g is default carbon-use efficiency of litter decomposition, Amicrobe 1S microbe’s C:N ratio.

And, the N flux from the i litter pool to the microbial pool (N;microbe) iS:
Ni,microbe = Ni,out - Ni,mineralizedN- (ES)
Thus, the actual carbon use efficiency of the i litter pool (&;) is:

C:Nmicrobe'Ni,microbe
& = : (E6)

Ci,out

The carbon change in microbial pool (4Cumicrobe) is then calculated as:

ACmicrobe = Zl(l - ki)AmicrobeNi,microbe - fpmicrobeQCmicrobea (E7)
where, k; is the mixing ratio of the microbes with the i litter pool, pmicrobe is the basal turnover
rate of the microbe pool at reference temperature and moisture, QCnicrobe is the C content in the

microbe pool. The N change in microbial pool (4Nmicrobe) is:

ANmicrobe = Zl(l - ki)Ni,microbe - EpmicrobeQNmicrobea (E8)
where, QONmicrobe 18 the N content in the microbe pool.

The C changes in the i litter pool (4C)) is:

AC; = LitterC; + ki X Amicrobe Nimicrobe — §0:Ci (E9)

where, LitterC; is litter C input from litterfall to the i” litter pool. And, the N changes in the i”
litter pool (4N;) is:

AN; = LitterN; + k; X; Nimicrobe — $PiN; (E10)

where, LitterN; is litter N input from litterfall to the i litter pool. Then, the total N

mineralization (Nmineralized) rate is calculated as follows:
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Nmineralized = Zi Ni,mineralizedN + {:pmicrobeNmicrobe . (El 1)

And, the heterotrophic respiration (Rp) is:

Rh = Zl(l - Si)Ci,out + Epmicrobecmicrobe (E12)

In our model, the N loss (NViess) from the mineral N pool is calculated by:

Ea'den(T—Z 5)

Nypss = N - [(1 — e MWrunoff) + J o - 3[298R(T+27_3) (E13)

where Wrunofr is the rate of water runoff (kg m2 hour™!) predicted by the soil water dynamics
module, 7 is a parameter for mineral N taken out by runoff, kx> is the denitrification rate at
25 °C, Eaden is active energy of denitrification (49860 J mol!), R is gas constant (8.31 J mol! K-

1. We turned off Mss in our simulations of this study by setting 7 and ku 25 as zero.
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Table E1 Parameters

Symbol  Definition Unit Default value

fU,max Maximum mineral N absorption rate hour! 0.5

Krr Root biomass at which the N-uptake rate is half of Kg C m™ 0.3
the maximum

CNrr Target C:N ratio of fine roots Kg C kgN'! 60

qn Multiple of target leaf and root nitrogen to target - 5.0
NSN

€0 Default carbon-use efficiency of litter - 0.4
decomposition

C:Nmicrobe Microbial C:N ratio Kg C kgN'! 10

Pmicrobe Turnover rate of the microbe pool at reference yr! 2.5
temperature and moisture

p1 Turnover rate of fast SOM pool at reference yr! 1.25
temperature and moisture

p2 Turnover rate of sow SOM pool at reference yr! 0.1
temperature and moisture

ki Mixing ratio of the microbes with fast SOM pool - 0.8

k2 Mixing ratio of the microbes with slow SOM pool - 0.8

H Parameter for N taken out by runoff hour! kg H,O! 0.05

kw25 Denitrification rate at 25 °C yr! 2.0

Eaden Active energy of denitrification J mol! 49860
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F. Root Water Uptake and Soil Water Dynamics

Calculations of water uptake by roots closely follow the model described in Weng et al., (2015).
We define maximum water uptake rate (i.e., “water supply,” Umax) as the amount of water an
individual plant can potentially uptake from soil. Water demand (Ua, Eq. A20) is the amount of
water needed for non-water-limited photosynthesis, and uptake is the amount of water the plant
actually gets. If supply (Umax) is greater than demand (Uy), then the plant is not water-limited,
and the uptake will equal the demand. If supply is less than demand, then the plant is water-
limited, and uptake will be equal to supply. Umax is calculated following Darcy’s law in the
approximation of quasi-steady flow in a small vicinity of fine roots. We use this model to derive
an expression for water uptake as a function of xylem water potential. Setting xylem water
potential equal to the plant permanent wilting point yields the value of Unax needed for Eq. A21.
In the following, u is the water uptake rate per unit length of fine root (kg m™! s!) at a given soil
depth, R is the characteristic radial half-distance between fine roots (m), ; is the root radius (m),
and r the distance from the root axis (m).

For steady flow toward the root,
u=2mK )Y (F1)
dr

where K(y) is unsaturated hydraulic conductivity (kg m2 s!),

K, ()70 y <y,
Ky)=4 " (F2)
K., v >y,

where Kj is the conductivity of saturated soil, b is an empirical coefficient, y is the soil water
potential (m), and = is the air entry water potential. Note that since the flow is assumed to be in

steady-state, u doesn’t depend on 7; i.e., v, and thus K(y), are functions of r such that u(r) (Eq.
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F1) is constant (Gardner, 1960). Integrating from the root-soil interface (i.e., the root surface) to
the half-distance R between fine roots (with potential ys at that distance from the root axis, and

wr at the root surface):
R Vs
u
[ 5 —dr=[K@)dy (F3)
Ty 2mr Vr

where 1, is water potential at the root surface, and g — at the distance R from the root. The
macro-scale water movement in the soil, and, consequently, water potential 1 is calculated as in
the LM3 model (see Milly et al., 2014 for detail). Equation (F3) can be rewritten in a more

convenient form:

1(R/ )I y)dy (F4)

This relationship is assumed to hold in a soil layer at a given vertical depth in our case.

The integral on the right-hand side of Eq. F4 is called matric flux potential (Raats, 2007).
The water flux through the root surface (i.e., membrane of surface cells) per unit length of root
is:
uzzmrKr(l//r_Wx) (FS)

where K; is permeability of root membrane per unit membrane area (kg m area m™! water
potential gradient per second, kg m™ s!), and wx is root xylem water potential (m).

To calculate the characteristic half-distance between roots R (m), we suppose cohort i has
specific root length A; (length of fine roots per unit mass of fine root carbon; m kg'! C) and fine
root biomass per individual plant per unit soil depth b:; (kg C m'!; where b;; depends on total

plant fine-root mass and soil depth according to Eq. F9). The total length of fine roots of all
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cohorts per unit volume of soil (m m™) at a given soil depth is Zn./l.b

i7iri

(where n; is the density

of individuals per unit ground area in cohort i), and its reciprocal is the mean area (m?) of soil

cross-section surrounding each root. Solving for the radius of a circle with this area yields

-1/2
R= (ﬁZniﬂib,,jj . (F6)

Combining Eqgs F2, F4, and F5, we get:

27K . min(y . " ( min W '
Ky, ~y)= — Woye) || mint,.p.)
In(R/r,) | 1+3/b,, W W (F7)

—max(0,y, —y.)+max(0,y, —y.)}
where v = —(1 + 3/b), and b is defined in Eq. F2. Given xylem water potential yx (see
following paragraph) and soil water potential ys, we can get the water potential at the root-soil
interface y; and, consequently, the water uptake per unit root length u = u(y,, ;) at a given
soil depth from Eq. F5.

In this model, we assume no resistance to water flow in the xylem. Root xylem water
potential (m) increases linearly with depth so that yx = wxo + z, where o is the root xylem
potential at the ground surface and z is depth. The total uptake by an individual plant then is the
vertical integral over soil depth (discretized as a sum across soil layers j, properly weighted):

N
Upg) = Do+, LS, (F8)

Jj=1
where z; is the depth midpoint of layer j, 1 ; is the soil water potential in the layer, and Z; is the

total length of the individual plant’s roots in soil layer j. The factor S; turns off uptake (S; = 0)

when certain conditions are met, e.g., if there is ice in the layer or the uptake is negative. The
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maximum plant water uptake rate (“supply”) Umax is calculated from Eq. F8 with the xylem
water potential at the ground surface (xo) set equal to the permanent wilting point wwitt: Umax =
U(ywir). Again, if this supply (Umax) is smaller than non-water-limited demand (Uy; Eq. A20),
then photosynthesis and stomatal conductance are modified according to the reduction factor
(Eq. A21). Alternatively, if U,,4, = Uy, then yxo is determined by setting whole-plant uptake
equal to Us.

The vertical distribution of fine roots determines root biomass in each soil layer and
therefore the length of roots in a soil layer. It is assumed to be distributed exponentially in soil

(Jackson et al., 1997):
— br _z
b(7) = *exp ( c) (F9)

where b(z) is fine root biomass per unit depth (kg C m™') as a function of soil depth z (m), B, is
the individual plant’s total biomass of fine roots, and {'is a species-specific (or PFT-specific) e-
folding depth of vertical distribution of fine roots. { is set as 0.29 m for the temperate deciduous
trees in this study. The vertical integral of b(z) is equal to the total biomass of fine roots, B,. The
biomass of fine roots in each soil layer is calculated as a vertical integral of Eq. F9 over the depth
of the layer. The total soil depth in this study is set to 2 m, subdivided in 3 layers with thickness

0f 0.05, 0.45, and 1.5 m, respectively.

Soil water dynamics is simulated following a soil water bucket model as described in Weng and
Luo (2008), which includes the processes of soil water refilling by precipitation, soil surface
evaporation, and runoff. Soil water content in each layer is updated hourly according to the

budget of precipitation, transpiration, surface evaporation, and runoff.

awi() _

Frante Precip;(t) — Transp;(t) — Evap;(t) — Runoff;(t) (F10)
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where, W; is soil water content in layer i (kg m™), Precip; is the water supply at layer i from
precipitation (kg m? s), Transp is water absorbed by plant root in layer i (kg m s™"), Evap; is
the water evaporated in layer i (kg m™ s™!) (it happens only in the first layer). Water from
precipitation flows to each soil layer sequentially when the upper layer is filled. The layers that a
rainfall event can fill depends on precipitation amount, soil water holding capacity, and current
soil water content. The excessive water after all the three layer are filled to their water holding
capacity becomes runoff.

Soil surface evaporation only happens in the first layer of soil. It is calculated with the Penman-

Monteith equation (Monteith, 1965):

AR§+PanD?ir(lTaero /A (F11)
A+y(1+59L)
Taero

Evap =
where, 4 is the rate of change of saturation specific humidity with air temperature (Pa K1), R}, is
net radiation received at soil surface (W m2), ¢, is specific heat capacity of air (J kg ™! K™!)

pa is dry air density (kg m™3), Dair is vapor pressure deficit (Pa), 7aero is atmospheric resistance (s

m!), rsil is soil resistance (s m!), y is psychrometric constant (= 66 Pa K-!), A is latent heat of

vaporization (J g!).

G. Plant Phenology

The phenology for cold-deciduous plants used in the examples presented in this paper is
described. The onset of a growing season is controlled by two variables, growing degree days
(GDD), and a weighted mean daily temperature (7pheno). The two variables are computed by the

following equations:

GDD(t) = Y.._ max [T,(t) — 5°C,0] (G1)
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T,;(t) whent =1

Toneno(t) = {0.8Tphen0 (t—1) +02T,(t) whent>1 (G2)

where 7 is the number of days from the end date of the last growing season and 74(¢) is the daily
mean temperature at day ¢. There are two thresholds for these two variables, GDD.it (320
day-°C) and Te:it (10 °C), respectively. When the criteria GDD(t) > GDDerit and Tpheno(?) > Terit
are met, a growing season is initiated by setting p(¢#) = 1. The ending of a growing season is
controlled by Tpheno. When Tpheno(?) falls below Terit, the growing season is turned off (p(2)=0),
leaves begin to senesce at an assumed rate (yr). A fraction of carbon (0.25) of senesced leaves is

retranslocated to the NSC pool at leaf falling.
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