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Abstract. Terrestrial plants play a key role in regulating the
exchange of energy and materials between the land surface
and the atmosphere. Robust models that simulate both leaf
dynamics and canopy photosynthesis are required to under-
stand vegetation–climate interactions. This study proposes
a simple time-stepping scheme to simulate leaf area index
(LAI), phenology, and gross primary production (GPP) when
forced with climate variables. The method establishes a lin-
ear function between steady-state LAI and the corresponding
GPP. The method applies the established function and the
MOD17 algorithm to form simultaneous equations, which
can be solved together numerically. To account for the time-
lagged responses of plant growth to environmental condi-
tions, a time-stepping scheme is developed to simulate the
LAI time series based on the solved steady-state LAI. The
simulated LAI time series is then used to derive the tim-
ing of key phenophases and simulate canopy GPP with the
MOD17 algorithm. The developed method is applied to de-
ciduous broadleaf forests in the eastern United States and is
found to perform well for simulating canopy LAI and GPP
at the site scale as evaluated using both flux tower and satel-
lite data. The method also captures the spatiotemporal vari-
ation of vegetation LAI and phenology across the eastern
United States compared with satellite observations. The de-
veloped time-stepping scheme provides a simplified and im-
proved version of our previous modeling approach to simu-
late leaf phenology and can potentially be applied at regional
to global scales in future studies.

1 Introduction

Terrestrial plants play a key role in regulating the exchange
of energy and materials (e.g., radiation, heat and moisture,
carbon, and trace gas) between the land surface and the at-
mosphere (Beer et al., 2010; Zhu et al., 2017). The canopy
structure and characteristics govern solar radiation intercep-
tion and absorption (Ni-Meister et al., 2010; Yuan et al.,
2013). Plants control water transpiration and photosynthetic
carbon fixation through processes from transient changes in
leaf stomatal conductance to seasonal variation in foliage
dynamics (Eagleson, 2005). In turn, external environmental
conditions, such as sunlight, temperature, and water and nu-
trient availability, selectively determine plant form and func-
tion (Bonan, 2008). Numerical models that integrate multi-
disciplinary knowledge allow us to understand and predict
the interactions between terrestrial ecosystems and the cli-
mate.

Developments of terrestrial biosphere models essentially
seek accurate solutions to the simulation of energy and ma-
terial exchanging fluxes between ecosystems and the atmo-
sphere. In terrestrial biosphere models, plant canopies are
typically characterized using leaf area index (LAI; leaf area
per unit ground area) because plant leaf is the basic organ
that intercepts solar radiation for photosynthesis and tran-
spiration (Li et al., 2018; Yuan et al., 2013). The exchang-
ing fluxes of energy and materials over a vegetation canopy
can then be modeled as a function of environmental condi-
tions (e.g., sunlight, soil moisture, temperature, and humid-
ity) and vegetation LAI (Ding et al., 2014). The development
of satellite remote sensing technology offers large-scale ob-
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servations for vegetation monitoring and a number of model-
ing approaches have been developed to quantify and simulate
land surface fluxes based on climate variables and satellite-
derived LAI. These methods include both light use effi-
ciency models (e.g., the Carnegie–Ames–Stanford approach
(CASA) model, Potter et al., 1993; the MOD17 algorithm,
Running et al., 2004; the vegetation photosynthesis model
(VPM), Xiao et al., 2004; the eddy covariance light use ef-
ficiency (EC-LUE) model, Yuan et al., 2010; and the two-
leaf light use efficiency (TL-LUE) model, He et al., 2013)
and process-based models (e.g., the boreal ecosystem pro-
ductivity simulator (BEPS; Liu et al., 1997), the Breathing
Earth System Simulator (BESS; Ryu et al., 2011), the grow-
ing production day model (GPD; Xin, 2016), and the revised
Simple Biosphere (SiB2; Sellers et al., 1996b) model). De-
spite being different from each other in the representation of
vegetation processes, these methods have been successfully
used for applications from field to global scales. While re-
motely sensed vegetation data perfectly complement canopy
process models, the ability to dynamically simulate vegeta-
tion LAI is fundamental to enhancing our abilities to predict
terrestrial ecosystem processes.

Modeling vegetation leaf dynamics via climate variables
requires in-depth understanding of plant phenological pro-
cesses. This modeling is still largely empirical to date and
contributes considerable uncertainties to current terrestrial
biosphere models (Richardson et al., 2012). One common
method for simulating vegetation phenology is to predict the
timing of key phenophases such as spring onset and autumn
senescence in a growing season (Hufkens et al., 2018; Liu
et al., 2018). For example, most phenology models originate
from the growing degree day (GDD) model, a method first
proposed by De Réaumur dating back to 1735 (De Réau-
mur, 1735). The GDD model assumes that plant leaf onset
begins when daily mean temperatures accumulated from a
fixed date reach a critical threshold. Studies have identified
the fact that various environmental factors other than temper-
ature could affect plant phenology to certain degrees (Polgar
and Primack, 2011), and therefore efforts have been made
to improve the GDD model by adding different influential
factors, such as photoperiod, soil temperature, humidity, and
soil moisture (Chuine et al., 1999; Hufkens et al., 2018; Liu
et al., 2018; Melaas et al., 2013; Yang et al., 2012). Land sur-
face models like the Community Land Model (Oleson et al.,
2013) and the Biome-BGC model (White et al., 2000) use a
set of complicated and empirical equations to predict the tim-
ing of key phenophases across plant functional types. Arora
and Boer (2005) developed a carbon-gain-based scheme that
initiates leaf onset when environmental conditions are ben-
eficial for the plant in carbon terms to produce new leaves
and initiates leaf offset when environmental conditions are
unfavorable with incurred carbon losses for plants. Another
method for vegetation phenology modeling is to simulate the
entire LAI time series over a growing season. For example,
the DeNitrification DeComposition model uses an optimal

seasonal growth curve of plant LAI and then calculates envi-
ronmental stresses of water and nitrogen to limit daily carbon
and nitrogen allocation to plant leaves (Yu et al., 2014). The
growing season index as proposed by Jolly et al. (2005) is a
widely used method that could simulate seasonal phenology
curves using photoperiod, air temperature, and vapor pres-
sure deficit. While these studies have greatly benefitted the
development of the leaf phenology models, evaluation on 14
land surface models in deciduous forests suggested that al-
most all models predicted the start of the season earlier or
the end of the season later than observations, and the model
biases were typically 14 weeks or more. It is therefore nec-
essary to improve the current phenology models.

The physiological processes of leaf phenology and canopy
photosynthesis are interrelated. Plants absorb carbon dioxide
to accumulate biomass through photosynthesis and then re-
distribute the photosynthetic gain to organs such as leaves,
roots, and stems to optimize carbon gain. Given limited ex-
ternal resources, plants have evolved to effectively allocate
photosynthate to organs in response to environmental con-
ditions to maximize photosynthetic carbon gain, the funda-
mental bioenergy for survival (Givnish, 1986). The strategy
of biomass allocation among growth, maintenance, and re-
production in a continuously changing environment directly
determines whether plants can persist under natural com-
petition pressure both interspecies and intraspecies (Bonan,
2002). In essence, new leaf phenology models may need to
account for the processes of canopy photosynthesis more
closely and explicitly than the current leaf phenology mod-
els.

Xin (2016) proposed a parameterization scheme to simu-
late vegetation productivity and phenology simultaneously.
The method, named as the growing production day (GPD)
model, uses canopy gross primary production (GPP) instead
of air temperature as an indicator that synthesizes various en-
vironmental factors on plant photosynthesis to track how the
environment is suitable for vegetation growth. Analogous to
the method that derives reference evapotranspiration, the de-
veloped method defines a hypothetic canopy with fixed LAI
to model potential GPP under certain environment condi-
tions. Similar to the GDD model, the GPD model predicts
vegetation spring onset to occur when the accumulated refer-
ence GPP reaches a critical threshold. The method has been
successfully applied to the biomes of evergreen needleleaf
forest, deciduous broadleaf forest, and grassland. To allow
for predicting the entire LAI time series over a growing sea-
son, Xin et al. (2018) further improved the GPD model by
proposing a linear function between LAI and GPP at the
steady state. The proposed function and the canopy GPP
model (i.e., modeling GPP as a function of LAI and climate
variables) together form a closed system of equations that
includes both vegetation GPP and LAI. The improved GPD
model uses the numerical approach, a method that gives an
initial value and then iterates to the convergence of the so-
lution, to solve the closed system of equations and derive
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LAI in the steady state. The improved GPD model then ap-
plies the simple moving-average method to the steady-state
LAI to obtain the modeled LAI time series. The improved
method allows for the modeling of LAI time series in addi-
tion to the timing of individual phenophases. There remain
shortcomings to overcome for broad applications of the GPD
model. First, the simple moving-average method, despite be-
ing widely used in many studies, is empirical and cannot be
used within the framework of models that operate at incre-
mental time steps. Second, the developed GPD model that
includes many subtle vegetation processes, such as canopy
radiative transfer, leaf stomatal conductance, leaf transpira-
tion, leaf photosynthesis, and soil evaporation, requires var-
ious climate input data and is computationally intensive for
regional to global applications.

Aiming to solve the abovementioned problems, the objec-
tives of the study are to (1) develop a time-stepping scheme
to simulate both leaf dynamics and vegetation productivity
and (2) simplify the GPD model to allow for long-term ap-
plications at a large scale. Given that the phenology model-
ing in deciduous broadleaf forest, a biome that has distinct
seasonal growing cycles, still has large uncertainties (Melaas
et al., 2016), this study chooses to simulate leaf dynamics
for the deciduous broadleaf forests across the eastern United
States. If successful, such a method can potentially be used
for future applications to other biomes.

2 Methods and materials

2.1 Modeling steady-state leaf area index

One difficulty in vegetation phenology modeling is that the
timescale associated with leaf allocation far exceeds that of
many other vegetation processes. Unlike leaf photosynthe-
sis that approaches equilibrium within 1 min and stomatal
functioning that reaches the steady state in minutes (Sell-
ers et al., 1996a), leaf dynamics take days or even months
in response to weather variation (Zeng et al., 2013). Xin et
al. (2018) first put forward the concept of steady-state leaf
area index, i.e., canopy LAI when time approaches infinity
while the environmental conditions remain unchanging. An
alternative biological explanation to steady-state LAI is the
maximum canopy LAI that an environment can sustain in-
finitely by its own photosynthetic activities. Supposing that
the carrying capacity of canopy LAI is proportional to the
total canopy photosynthetic rate under a given environment,
the steady-state LAI can be modeled as follows:

LAIs =mGPPs, (1)

where LAIs denotes the steady-state leaf area index, and
m denotes the constant ratio of steady-state leaf area index
to environmental capacity denoted by GPPs, which is the
steady-state gross primary production.

The above equation, despite having a simple form, pro-
vides a critical function that complements the canopy pho-
tosynthesis model. Only parameter m is dependent on plant
functional type and can be quantified from field measure-
ments as the average ratio of LAI to GPP at canopy clo-
sure (i.e., the time when both canopy LAI and GPP reach
equilibrium). Studies have developed various canopy pho-
tosynthesis models, such as light use efficiency models and
process-based models. Our previous studies (Xin, 2016; Xin
et al., 2018) implemented a sophisticated canopy model that
assembles the sub-models of canopy radiative transfer, leaf
stomatal conductance, leaf transpiration, soil evaporation,
and leaf photosynthesis. Although the method has been suc-
cessfully applied to different biomes, the model structure is
complicated for studies at the regional to global scales. To
simulate canopy photosynthesis, this study implements the
MOD17 algorithm, a big-leaf light use efficiency model that
uses routine satellite products (Running et al., 2004). The use
of the MOD17 algorithm could greatly simplify the modeling
processes and reduce the required climate variables, thereby
allowing for broad applications. A brief description of the
MOD17 algorithm is provided here and details can be found
from the user guide of the MODIS GPP product (Running
and Zhao, 2015).

Based on the MOD17 algorithm, vegetation GPP corre-
sponding to the steady-state leaf area index can be modeled
as follows:

GPPs = PAR×FPARs× εmax× f (T )× f (VPD), (2)

where GPPs denotes the gross primary production corre-
sponding to the steady-state leaf area index; PAR denotes
photosynthetically active radiation; FPARs denotes the frac-
tion of photosynthetically active radiation corresponding to
the steady-state leaf area index; εmax denotes maximum light
use efficiency; and f (T ) and f (VPD) denote the scalar func-
tions that account for the limitation of temperature and vapor
pressure deficit, respectively, on canopy photosynthesis.

The fraction of photosynthetically active radiation can be
modeled as follows (Turner et al., 2006):

FPARs = 1− exp(−kLAIs) , (3)

where k denotes the canopy light extinction coefficient and
LAIs denotes the steady-state leaf area index.

The environmental scalars can be modeled as follows.

f (T )=max
(

min
(

TMIN−TMINmin

TMINmax−TMINmin
,1
)
,0
)

(4)

f (VPD)=max
(

min
(

1−
VPD−VPDmin

VPDmax−VPDmin
,1
)
,0
)

(5)

TMIN denotes daily minimum air temperature; TMINmin
and TMINmax denote the lower and upper thresholds of
daily minimum air temperature for vegetation photosynthetic
activities, respectively; VPD denotes daily vapor pressure
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deficit; and VPDmin and VPDmax denote the lower and up-
per thresholds of daily vapor pressure deficit for vegetation
photosynthetic activities, respectively.

Given the environmental conditions (i.e., given daily val-
ues of photosynthetically active radiation, minimum air tem-
perature, and vapor pressure deficit), Eqs. (1) and (2) together
form simultaneous equations, meaning that there are two un-
known variables (i.e., LAI and GPP at the steady state) and
two different general equations. One may derive an analytic
solution if both equations have simple forms. But because
the dependence of GPP on LAI is nonlinear, deriving the an-
alytic solution is complicated and we could apply the numer-
ical approach to obtain the solutions. Because LAIs increases
as a linear function of GPPs in Eq. (1) and GPPs increases as
a logarithmic function of LAIs in Eq. (2), the simultaneous
equations have one and only one nonzero solution of LAIs.
To obtain the nonzero solution, the numerical approach starts
with a guess value of LAIs and then iterates to obtain the ap-
proximated solution of LAIs until converging. Note that the
numerical approach is widely used in land surface models.
For example, as the stomatal resistance, CO2 partial pres-
sure at the leaf surface, internal leaf CO2 partial pressure,
and leaf net photosynthesis are dependent on each other, the
Community Land Model 4.5 uses the numerical approach to
solve stomatal resistance and leaf photosynthesis iteratively
until the internal leaf CO2 partial pressure converges. For ev-
ery day, daily photosynthetically active radiation, daily min-
imum air temperature, and daily vapor pressure deficit are
used as forcing data to calculate LAIs for the corresponding
day. Because photosynthetically active radiation, minimum
air temperature, and vapor pressure deficit vary throughout
the year, the calculated LAIs vary from day to day.

2.2 Modeling leaf area index, phenology, and gross
primary production

Because the physiological processes through which plants
allocate photosynthates to leaves do not respond instanta-
neously to climate variation, there is a need to simulate veg-
etation LAI as lagging behind the steady state. One method
to account for the time-lagging effect is to apply the simple
moving-average method to buffer abrupt changes from indi-
vidual events in the time series. Our previous study applied
the simple moving-average method to model LAI as the un-
weighted mean of the previous LAIs as follows (Xin et al.,
2018):

LAI(n+ 1)=
1
n

n∑
i=1

LAIs(i), (6)

where LAI(n+ 1) denotes leaf area index at the n+1 day; n
denotes the number of days; i denotes an index starting from
1 to n; and LAIs denotes the steady-state leaf area index.

The simple moving-average method, while useful in vege-
tation phenology modeling, is suitable for retrospective anal-
ysis rather than prediction, and, importantly, it does not

match most land surface models that operate at incremen-
tal time steps. Analogous to the method used to simulate leaf
stomatal conductance in response to environmental variation,
this study proposes a time-stepping scheme to simulate LAI
realistically as lagging behind the steady state by a simple
restricted growth model (Sellers et al., 1996a) as follows:

dLAI(n)
dt

= kl [LAIs(n)−LAI(n)] , (7)

LAI(n+ 1)= LAI(n)+
dLAI(n)

dt
, (8)

where t denotes the time; kl denotes a time constant that re-
flects the fact that photosynthesis does not instantaneously
lead to new or big leaves; and LAI(n) and LAIs(n) denote
the leaf area index and the steady-state leaf area index at the
n time step, respectively.

In the time-stepping scheme, vegetation LAI does not
change much during winter or summer as the current LAI
is close to LAIs, whereas vegetation LAI increases (or de-
creases) during spring (or autumn) as the current LAI is less
(or greater) than LAIs. For example, when the environment
turns favorable for plant growth in spring, LAIs exceeds LAI
and dLAI/dt is positive such that the modeled canopy LAI
increases. Note that the method developed here essentially
uses the canopy photosynthetic capacity (i.e., the steady-state
gross primary production) instead of air temperature as a syn-
thesized indicator to track the suitability of the environment
for plant growth in a time series, and therefore the developed
method is referred to as the simplified growing production
day (SGPD) model following our previous studies (Xin et
al., 2018).

Given the modeled LAI time series, both vegetation phe-
nology and canopy GPP can be easily modeled (Xin et al.,
2018). Various approaches have already been developed to
derive the timing of key phenophases, such as spring onset
and autumn senescence, from seasonal LAI trajectories. This
study models the phenological transition dates using a simple
method that derives the first spring and last autumn dates at
which LAI reaches 20 %, 50 %, and 80 % of the seasonal am-
plitudes (Richardson et al., 2012). The selected relative am-
plitudes (20 %, 50 %, and 80 %) correspond to different plant
growth stages over a growing season. Because the MOD17
algorithm only requires LAI, daily minimum temperature,
daily vapor pressure deficit, and daily photosynthetically ac-
tive radiation as model inputs, the canopy GPP is simply
modeled by substituting the modeled LAI time series and
the climate variables into the MOD17 algorithm. For the first
day of spring when the modeled LAI is zero, the modeled
fraction of photosynthetically active radiation is zero and the
modeled GPP is zero. As times move forward, the modeled
LAI increases and the modeled GPP increases but is still de-
pendent on other climate variables such as solar radiation,
temperature, and vapor pressure deficit.
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2.3 Comparative studies using the growing season
index

The growing season index (GSI), a widely used method in
vegetation phenology modeling (Jolly et al., 2005), allows
for the modeling of seasonal LAI time series rather than indi-
vidual phenophases and is implemented to make direct com-
parisons with the SGPD model. The GSI model performs
comparably to or even outperforms other terrestrial biosphere
models on predicting the timing of key phenophases for de-
ciduous broadleaf forests (Melaas et al., 2013).

The instantaneous GSI is first derived based on the work
of Jolly et al. (2005) as follows:

iGSI = iTMIN× iVPD× iPhoto, (9)

where iGSI denotes instantaneous growing season index,
and iTMIN, iVPD, and iPhoto denote the instantaneous scalar
functions that account for the constraints of daily minimum
air temperature, vapor pressure deficit, and photoperiod, re-
spectively, on vegetation growth.

The scalar functions for iTMIN, iVPD, and iPhoto have math-
ematic forms similar to Eqs. (4) and (5) and are obtained the
same as defined in Jolly et al. (2005) as follows.

iTMIN =max
(

min
(

TMIN−TMINmin

TMINmax−TMINmin
,1
)
,0
)

(10)

iVPD =max
(

min
(

1−
VPD−VPDmin

VPDmax−VPDmin
,1
)
,0
)

(11)

iPhoto =max
(

min
(

Photo−Photomin

Photomax−Photomin
,1
)
,0
)

(12)

TMIN denotes daily minimum temperature; TMINmin and
TMINmax denote the lower and upper thresholds of daily
minimum air temperature for vegetation photosynthetic ac-
tivities, respectively; VPD denotes daily vapor pressure
deficit; VPDmin and VPDmax denote the lower and upper
thresholds of daily vapor pressure deficit for vegetation pho-
tosynthetic activities, respectively; “Photo” denotes daily
photoperiod; and Photomax and Photomin denote the lower
and upper thresholds of the daily photoperiod for vegetation
photosynthetic activities, respectively.

LAI can be modeled as the simple moving average of the
instantaneous GSI scaled using maximum LAI as follows:

GSI=
1
nday

nday−1∑
i=0

iGSI, (13)

LAI= GSI×LAImax, (14)

where GSI denotes growing season index at the n day; nday
denotes the number of days; i denotes an index starting from
0 to the previous day; iGSI denotes the instantaneous growing
season index; and LAImax denotes the maximum leaf area
index at canopy closure.

It is noteworthy that the instantaneous GSI uses the prod-
uct of the scalars of minimum temperature, vapor pressure
deficit, and photoperiod as an indicator to track the poten-
tial canopy photosynthetic capacities on a daily basis. Both
the GSI model and the SGPD model, despite having different
forms, share the same modeling idea. To understand the dif-
ferences between the simple moving-average method and the
time-stepping method, the GSI model is also implemented
with the simple restricted growth model as follows:

LAIs = iGSI×LAImax, (15)
dLAI

dt
= kl (LAIs−LAI) , (16)

where iGSI denotes the instantaneous growing season index;
LAImax denotes the maximum leaf area index at canopy clo-
sure; kl denotes a time constant that accounts for the lagged
responses of plant leaf allocation to climate variation; and
LAI and LAIs denote the leaf area index and the steady-state
leaf area index, respectively.

With the modeled LAI time series, the phenological transi-
tion dates are then retrieved based on the seasonal amplitude
ratio method, the same way as processing the LAI time series
derived from the SGPD model. Vegetation GPP is modeled
by substituting the modeled LAI time series into the MOD17
algorithm.

2.4 Model comparison and parameterization

This study compares four different modeling approaches, in-
cluding the results simulated using both the SGPD model and
the simple moving-average method (hereinafter referred to
as SGPD-SMA), using both the SGPD model and the time-
stepping scheme (hereafter referred to as SGPD-TS), using
both the GSI model and the simple moving-average method
(hereafter referred to as GSI-SMA), and using both the GSI
model and the time-stepping scheme (hereafter referred to as
GSI-TS). The commonly used metrics, including the Pearson
correlation coefficient (R), the coefficient of determination
(R2), the root mean square error (RMSE), and the mean bias
error (MBE), are derived for model assessment and compar-
ison.

As the MOD17 algorithm is a well-parameterized model,
this study applies model parameters from the literature di-
rectly. Following the user guide of the MODIS GPP product
(Running and Zhao, 2015), key parameters in the MOD17
algorithm are set as εmax = 1.165 g C MJ−1, TMINmin =

−6.0 ◦C, TMINmax = 9.94 ◦C, VPDmin = 0.65 kPa, and
VPDmax = 1.65 kPa. The light extinction coefficient of the
canopy is 0.5. The parameter that defines the ratio of
leaf area index to environmental capacity is set as m=
0.58 m2 (leaf area) g C−1 day−1 as quantified using the aver-
age ratio of LAI to GPP at canopy closure using flux tower
data. The canopy maximum LAI is set as 5.80 based on
the maximum 95th percentile of satellite-derived LAI across
sites and years (Xin et al., 2018). The parameter nday in the
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Table 1. Site information for the studied flux towers of deciduous broadleaf forests.

Site code Site name Lat. (◦ N) Long. (◦W) Elev. (m) Years Reference

US-Bar Bartlett Experimental Forest 44.0646 −71.2881 272 2004–2011 Jenkins et al. (2007)
US-ChR Chestnut Ridge 35.9311 −84.3324 286 2006–2010 Hollinger et al. (2010)
US-Dk2 Duke Forest hardwoods 35.9736 −79.1004 168 2007–2008 Oishi et al. (2008)
US-Ha1 Harvard Forest EMS tower 42.5378 −72.1715 340 2000–2012 Urbanski et al. (2007)
US-MMS Morgan Monroe State Forest 39.3231 −86.4131 275 2000–2014 Dragoni et al. (2011)
US-MOz Missouri Ozarks 38.7441 −92.2000 219 2005–2013 Gu et al. (2006)
US-Oho Oak Openings 41.5545 −83.8438 230 2005–2011 Xie et al. (2014)
US-Slt Silas Little Experimental Forest 39.9138 −74.5960 30 2005–2012 Clark et al. (2012)
US-UMB Univ. of Mich. Biological Station 45.5598 −84.7138 234 2000–2012 Gough et al. (2013)
US-UMd UMBS disturbance 45.5625 −84.6975 239 2008–2012 Gough et al. (2013)
US-WBW Walker Branch 35.9588 −84.2874 343 2000–2006 Miller et al. (2007)
US-WCr Willow Creek 45.8060 −90.0798 515 2000–2013 Desai et al. (2008)

simple moving-average method and the parameter kl in the
time-stepping method control the response of plant leaf allo-
cation to environmental variation. The parameter nday is set
as 21 days and the parameter kl is calibrated as 0.080 day−1.

2.5 Study materials and preprocessing

We evaluate our approach at the site scale using both flux
tower data and remote sensing data and at the regional scale
using both climate data and remote sensing data for de-
ciduous broadleaf forests in the eastern United States. For
the site-scale studies, all the flux tower sites of deciduous
broadleaf forests (Table 1) that are available on the Amer-
iFlux website (http://ameriflux.lbl.gov/, last access: 13 Jan-
uary 2019) were used for analysis. As the developed SGPD
model is a simplified version of our previous modeling ap-
proach, the site-scale modeling studies only require daily
incoming solar radiation, minimum air temperature, vapor
pressure deficit, photoperiod, LAI, and GPP data. Daily in-
coming solar radiation, vapor pressure deficit, and GPP have
already been provided in the level 4 flux tower data, whereas
daily minimum air temperature was processed from the half-
hourly gap-filled level 2 data, and daily photoperiod as re-
quired by the GSI model was computed based on Eq. (17)
as a function of geolocation and the day of the year (Allen
et al., 1998). As the MODIS LAI has been found to match
field measurements well for deciduous broadleaf forests in
the eastern United States (Myneni et al., 2002), the 8-day
500 m MODIS LAI version 6 products (MOD15A2H) that
are downloaded from the Land Processes Distributed Active
Archive Center (https://lpdaac.usgs.gov/, last access: 13 Jan-
uary 2019) were used as the reference data. Canopy LAI at
each site was extracted from MOD15A2H for the pixel that
contains the corresponding site. The extracted 8-day MODIS
LAI, if identified as poor quality in MOD15A2H, was re-
placed using the three-point median-value moving-window
technique. Spikes in the LAI time series were removed using
the Hampel filter and then gap-filled using the autoregres-

sive modeling approach (Akaike, 1969). The obtained 8-day
LAI time series were further smoothed using the Savitzky–
Golay filter and then linearly interpolated to generate daily
time series. The phenological transition dates were retrieved
from daily LAI time series using the method that derives
the first spring and last autumn dates at which LAI reaches
20 %, 50 %, and 80 % of the seasonal amplitudes, respec-
tively (Richardson et al., 2012).

Pho= (17)

24
π

arccos
(
− tan(ϕ) tan

(
0.409sin

(
2π
365

DOY− 1.39
)))

“Pho” denotes daily photoperiod, ϕ denotes latitude, and
DOY denotes the day of the year.

Our regional-scale studies used both climate data and
satellite remote sensing data from 1982 to 2016. The daily
1000 m Daymet version 3 dataset (Thornton et al., 2012)
was downloaded from the Oak Ridge National Laboratory
Distributed Active Archive Center (http://daymet.ornl.gov/,
last access: 13 January 2019). The Daymet dataset provided
daily incoming solar radiation, minimum temperature, vapor
pressure, and photoperiod data, and we derived daily vapor
pressure deficit as the difference between average saturated
vapor pressure and vapor pressure. Two different satellite
LAI products, including the Global Land Surface Satellite
(GLASS) dataset (Xiao et al., 2014) spanning from 1982 to
2014 and the MODIS LAI dataset (Myneni et al., 2002) span-
ning from 2001 to 2016, were used for the regional studies.
The 8-day GLASS LAI product was generated at 0.05◦ res-
olution using AVHRR data for the time period from 1982
to 1999 and at 1000 m resolution using MODIS data for the
time period from 2000 to 2012. The 8-day satellite LAI data
across the eastern United States were processed the same
way as the site-scale data to obtain daily LAI time series.
Because seasonal LAI amplitudes for each individual pixel
could vary from year to year, the 2001–2010 average sea-
sonal LAI amplitudes were used as a baseline to derive the
start of the season (SOS) and the end of the season (EOS)
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for each pixel for each year as the dates when seasonal LAI
reaches 50 % of the multi-year average seasonal LAI ampli-
tude. The growing season length (GSL) was derived as the
difference between EOS and SOS. A 500 m MODIS-based
land cover map was obtained from the USGS Land Cover In-
stitute (https://landcover.usgs.gov/, last access: 1 December
2018). The land cover map was generated by choosing the
land cover classification with the highest overall confidence
for each pixel in 10-year (2001–2010) Collection 5.1 MODIS
land cover type (MCD12Q1) data (Broxton et al., 2014). The
500 m land cover map was resampled to 1000 m resolution
using the majority resampling approach and reprojected to a
Lambert conformal conic projection to mask areas that are
not covered by deciduous broadleaf forests.

3 Results

3.1 Site-scale modeling

Figure 1 shows an example for the simulated time series
of LAI and GPP using data acquired at the US-UMB in
2004. The LAI time series simulated using both the SGPD-
SMA and SGPD-TS methods are consistent with that ob-
tained from MODIS. The LAI simulated using both the GSI-
SMA and GSI-TS methods also captures the observed sea-
sonal variation, but the modeled phenophases obviously have
a leading phase in spring and a lagging phase in autumn
compared with observations. For both the SGPD model and
the GSI model, the results derived using the time-stepping
method are consistent with those derived using the simple
moving-average method, indicating that the time-stepping
method is an effective way to reflect the lagging responses
of plant leaf allocation to environmental conditions. By sub-
stituting the time series of LAI derived from different model-
ing approaches into the MOD17 algorithm, all the simulated
GPP time series could match the flux tower measurements.
Daily fluctuation in the observed GPP time series is largely
due to variation in solar radiation from day to day. The GPP
modeled using both the GSI-SMA and GSI-TS methods have
slight overestimates in the phenological transition periods,
like spring and autumn, and match well with the flux tower
observations in summer and winter.

Figure 2 shows the regression analysis between the mod-
eled and satellite-derived LAI. Overall, the SGPD model out-
performs the GSI model on modeling LAI. When evaluated
against the MODIS LAI data, the SGPD-SMA and SGPD-
TS models achieved R2 of 0.887 and 0.890, respectively,
and RMSE of 0.804 and 0.778 m2 m−2, respectively, whereas
the GSI-SMA and GSI-TS models achieved R2 of 0.746 and
0.759, respectively, and RMSE of 1.356 and 1.303 m2 m−2,
respectively. Both the GSI-SMA and GSI-TS models sim-
ulate LAI reasonably in summer and winter but overesti-
mate LAI in spring and autumn, and therefore the strong
correlations between the GSI-modeled and MODIS-derived

Figure 1. The modeled and measured daily time series of (a) leaf
area index and (b) gross primary production are shown for the flux
tower site of US-UMB in 2004. The reference LAI time series in (a)
are derived from the MODIS data and the reference GPP time series
in (b) are obtained from flux tower measurements.

LAI are largely due to the underlying seasonality of decidu-
ous broadleaf forests. It is noteworthy that the time-stepping
method and the simple moving-average method, despite hav-
ing different mathematical expressions, generate nearly the
same simulation results. The R2 values between the SGPD-
TS model and the SGPD-SMA model and between the GSI-
TS model and the GSI-SMA model are 0.989 and 0.994, re-
spectively, and the regression lines are close to the lines of
equity, indicating that the time-stepping method is an alter-
native representation for the simple moving-average method.

Table 2 lists the statistical metrics that illustrate the
model performance on predicting the timing of different
phenophases. As evaluated against satellite observations, the
SGPD-SMA model retrieves the spring onset dates well
when LAI reaches 50 % seasonal amplitude and the obtained
correlation coefficient is 0.718 with RMSE of 13.04 days.
The SGPD-TS model performs comparably to the SGPD-
SMA model and the resulting correlation coefficients are all
significant except for the dates on which autumn LAI reaches
80 % seasonal amplitudes. The SGPD-based models gener-
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Figure 2. Scatter plots are shown for comparisons (a) between the SGPD-SMA LAI and the MODIS LAI, (b) between the SGPD-TS LAI
and the MODIS LAI, (c) between the SGPD-TS LAI and the SGPD-SMA LAI, (d) between the GSI-SMA LAI and the MODIS LAI,
(e) between the GSI-TS LAI and the MODIS LAI, and (f) between the GSI-TS LAI and the GSI-SMA LAI on a weekly basis. All available
site-year flux tower data were included in the analysis. The solid lines denote the 1 : 1 lines and the dashed lines denote the regression lines.

Table 2. The performance of the modeled timings of phenophases as evaluated against satellite observations. The timings of phenophases
were derived based on the dates at which the leaf area index reaches 20 %, 50 %, and 80 % of seasonal amplitude. Positive mean bias error
(MBE) indicates that the modeled spring onsets are earlier than the observed ones and negative MBE indicates the opposite.

SGPD-SMA SGPD-TS GSI-SMA GSI-TS

Phenophases R RMSE MBE R RMSE MBE R RMSE MBE R RMSE MBE
(days) (days) (days) (days) (days) (days) (days) (days)

Spring LAI 20 % 0.790∗ 16.17 −10.85 0.824∗ 13.37 −8.34 0.763∗ 40.38 −38.30 0.770∗ 39.62 −37.58
Spring LAI 50 % 0.718∗ 13.04 −1.97 0.691∗ 13.68 −2.56 0.653∗ 38.47 −34.92 0.657∗ 38.22 −34.63
Spring LAI 80 % 0.432∗ 20.91 12.63 0.409∗ 21.19 12.41 0.560∗ 32.86 −28.00 0.565∗ 28.54 −23.55
Autumn LAI 80 % 0.220 31.80 −25.56 0.164 27.90 −20.64 0.021 35.38 32.42 −0.004 35.23 32.27
Autumn LAI 50 % 0.686∗ 9.80 −5.42 0.625∗ 9.48 −2.86 0.621∗ 24.20 23.07 0.616∗ 24.63 23.51
Autumn LAI 20 % 0.703∗ 8.87 2.15 0.676∗ 10.91 6.37 0.689∗ 19.64 18.48 0.713∗ 22.93 22.00

∗ Correlation is significant at the 0.001 level.

ally outperform the GSI-based models as the achieved cor-
relation coefficients are higher and the RMSEs are smaller.
Both the GSI-SMA and GSI-TS models predict spring on-
sets earlier than observations by more than 30 days and
predict autumn senescence later than observations by more
than 20 days. By comparison, the SGPD-TS model pre-
dicts the dates on which spring and autumn LAI reaches

50 % seasonal amplitudes well with MBE of only −2.56 and
−2.86 days, respectively.

The modeled and measured GPPs are compared in Fig. 3
to understand the performance of GPP modeling. Compared
with the flux tower measurements, the results modeled us-
ing SGPD-SMA, SGPD-TS, GSI-SMA, and GSI-TS LAI
achieved R2 values of 0.768, 0.773, 0.722, and 0.719, re-
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Figure 3. Scatter plots are shown for comparisons (a) between the GPP modeled using SGPD-SMA LAI and the flux tower GPP, (b) between
the GPP modeled using SGPD-TS LAI and the flux tower GPP, (c) between the GPP modeled using MODIS LAI and the flux tower GPP,
(d) between the GPP modeled using GSI-SMA LAI and the flux tower GPP, and (e) between the GPP modeled using GSI-TS LAI and the
flux tower GPP on a weekly basis. All available site-year flux tower data were included in the analysis. All modeled GPP values were derived
using the MOD17 algorithm. The solid lines denote the 1 : 1 lines and the dashed lines denote the regression lines.

spectively, and RMSE values of 2.273, 2.239, 2.577, and
2.535 g C m−2 day−1, respectively. The modeled results us-
ing the GSI-based LAI have higher errors, in terms of both
RMSE and MBE, than those using SGPD-based LAI. The
accuracies of the modeled GPP using SGPD-based LAI are
only slightly lower than using the MODIS-based LAI di-
rectly. Because GPP is also a function of a range of cli-
mate variables, improvements in modeling LAI do not lead
to the same amount of improvements in the modeled GPP.
The modeling results obtained based on the simple moving-
average method are nearly the same as those obtained based
on the time-stepping method. Given the high degrees of con-
sistency between the simple moving-average method and the
time-stepping method in modeling LAI, phenology, and GPP,
only the results obtained using the time-stepping method are
shown and discussed in the regional studies as presented in
the following section.

3.2 Regional-scale modeling

Figure 4 shows the spatial distributions of the 10-year (2001–
2010) mean LAI and associated errors as derived from re-
mote sensing data and model simulations. The SGPD-TS
method captured the spatial pattern of the satellite-derived
LAI well, including the decreasing gradients from south to
north and the decreases in mountain areas (Fig. 4a and b).
The 10-year mean LAI derived from the GSI-TS method
(Fig. 4c) also shows a decreasing trend from south to north
but the modeled LAI is much larger than the MODIS LAI.
Because the GSI-TS method defines the maximum leaf area
index for the growing season, the overestimation of the mod-
eled 10-year mean LAI is primarily due to model overes-
timates in the spring and autumn phenological transitions.
Compared with MODIS observations, RMSE and MBE ob-
tained by the SGPD-TS method are much smaller and dis-
tributed more evenly than those obtained by the GSI-TS
method. RMSE for the GSI-TS LAI exhibit a decreasing
north–south gradient, implying that the model accuracies are
lower in southern areas than in northern areas. MBEs for the
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Figure 4. The spatial distributions are shown for (a) the 2001–2010 mean MODIS LAI, (b) the 2001–2010 mean SGPD-TS LAI, (c) the
2001–2010 mean GSI-TS LAI, (d) RMSE between SGPD-TS LAI and MODIS LAI, (e) RMSE between GSI-TS LAI and MODIS LAI,
(f) MBE between SGPD-TS LAI and MODIS LAI, and (g) MBE between GSI-TS LAI and MODIS LAI across the eastern United States.
The units for both RMSE and MBE are m2 (leaf area) per m2 (ground area).

GSI-TS model are greater than 0.5 m2 m−2 for most areas.
When comparing SGPD-TS LAI with MODIS LAI, RM-
SEs are less than 0.5 m2 m−2 and MBEs are minor across
the study region. The amplitudes of the error metrics in the
regional-scale studies are consistent with those in the site-
scale studies. Note that some studies applied the multi-year
mean LAI as derived from remote sensing data to simulate
land surface processes. The results obtained here indicate
that the SGPD-TS method can be used alternatively to pro-
vide multi-year mean LAI time series via climate variables
for land surface studies.

The spatial distributions for the 10-year mean phenologi-
cal metrics, including the start of the season (SOS), the end
of the season (EOS), and the growing season length (GSL),
are shown in Fig. 5. The SGPD-TS method predicts lower
SOS (i.e., earlier spring onset), higher EOS (i.e., later au-
tumn senescence), and longer GSL in southern areas than in
northern areas. The spatial distributions of all phenological
metrics derived using SGPD-TS LAI agree well with those
derived using MODIS LAI. From the statistical analysis as
shown in the subplots, the phenological metrics derived from
the SGPD-TS method achieved correlation coefficient values
of 0.879, 0.552, and 0.844, RMSE values of 8.13, 7.54, and
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Figure 5. The spatial distributions are shown for (a) the start of the season (SOS) derived from MODIS LAI, (b) SOS derived from SGPD-TS
LAI, (c) SOS derived from GSI-TS LAI, (d) the end of the season (EOS) derived from MODIS LAI, (e) EOS derived from SGPD-TS LAI,
(f) EOS derived from GSI-TS LAI, (g) the growing season length (GSL) derived from MODIS LAI, (h) GSL derived from SGPD-TS LAI,
and (i) GSL derived from GSI-TS LAI using 10-year (2001–2010) mean data across the eastern United States. The embedded subplots show
comparisons between modeled and MODIS-derived phenological metrics for SOS, EOS, and GSL, respectively.

13.73 days, and MBE values of 0.71,−2.82, and−3.54 days,
for SOS, EOS, and GSL, respectively, compared to those de-
rived from MODIS data. Although the spatial distributions
of the phenological metrics derived from the GSI-TS method
match those derived from the satellite observations, the mod-
eled results have considerable biases, with RMSE values of
38.05, 14.37, and 51.58 days and MBE values of −36.33,
12.91, and 49.23 days for SOS, EOS, and GSL, respectively.
Consistent with the site-scale studies, the GSI-TS method
predicts spring onset much earlier and autumn senescence

later than the satellite-derived data, resulting in a large over-
estimation of the growing season length.

Figure 6 displays the multi-year phenology anomalies that
are spatially averaged for deciduous broadleaf forest across
the eastern United States. The use of phenology anoma-
lies relative to the 2001–2010 average instead of absolute
values makes the results directly comparable. The SGPD-
TS method captured the interannual variation of vegetation
phenology retrieved from the remote sensing data. When
comparing the SGPD-TS method with MODIS (2001–2016)
data, the correlation coefficients are 0.896 (p < 0.001), 0.650
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(p = 0.006), and 0.817 (p < 0.001) for SOS, EOS, and
GSL, respectively. When comparing the SGPD-TS method
with GLASS (1982–2014) data, the correlation coefficients
are 0.554 (p = 0.001), 0.717 (p < 0.001), and 0.637 (p <
0.001) for SOS, EOS, and GSL, respectively. The SGPD-
TS method outperforms the GSI-TS method on capturing the
long-term trends of vegetation phenophases, as the correla-
tion coefficients obtained using the GSI-TS method are lower
and sometimes insignificant. Yearly fluctuations in EOS de-
rived using the GSI-TS method are smaller than those de-
rived from both the SGPD-TS method and the satellite data.
The correlation coefficients between the GLASS data and the
MODIS data for SOS, EOS, and GSL from 2001 to 2014
are 0.892, 0.412, and 0.288, respectively. There are only
14 years of overlap between these two different datasets and
the correlations are insignificant for both the derived EOS
and GSL. The SOS and EOS derived from the GLASS data
have much larger variation in 1982–2000 than in 2001–2010.
Note that the 8-day GLASS LAI product was generated at
0.05◦ resolution using AVHRR data from 1982 to 1999 and
at 1000 m resolution using MODIS from 2000 to 2012. The
significantly reduced interannual variability for SOS, EOS,
and GSL after 2000 in the GLASS data suggests that the use
of AVHRR and MODIS data in the GLASS dataset could
contribute uncertainties to the satellite-derived phenologi-
cal metrics. Both Figs. 5 and 6 indicate that the SGPD-TS
method is reliable in capturing the spatiotemporal patterns of
regional vegetation phenophases.

Figure 7 compares the simulated GPP using the MOD17
algorithm and LAI derived from different approaches.
The 10-year average annual GPP obtained using SGPD-
TS LAI has a similar spatial pattern to that obtained
using MODIS LAI and has lower values than that ob-
tained using GSI-TS LAI. Taking the GPP simulated
using MODIS LAI as a reference, the results simu-
lated using SGPD-TS LAI achieve a correlation coeffi-
cient of 0.898 with RMSE of 78.78 g C m−2 year−1 and
MBE of 12.22 g C m−2 year−1, whereas the results simu-
lated using GSI-TS LAI achieve a correlation coefficient
of 0.898 with RMSE of 173.45 g C m−2 year−1 and MBE
of 153.43 g C m−2 year−1. Although the obtained correla-
tion coefficients are close, the SGPD-TS method results in
regression lines closer to the 1 : 1 line with smaller bias
errors than the GSI-TS method. The zonally average pro-
files of the 2001–2010 average annual GPP as shown in
Fig. 7d suggest that the results obtained from the SGPD-
TS method are close to those obtained using MODIS LAI,
whereas the results obtained from the GSI-TS method have
positive biases of approximately 120–180 g C m−2 year−1

(roughly 10–15 %) across latitudes. Note that the MOD17
algorithm has a positive MBE of 0.247 g C m−2 day−1 and
0.571 g C m−2 day−1 when using SGPD-TS LAI and GSI-TS
LAI, respectively, as model input data in the site-scale study.
The differences in MBE between the two modeling methods
are 0.324 g C m−2 day−1 (or 118.26 g C m−2 year−1 in equiv-

Figure 6. The spatially averaged phenology anomalies relative to
the 2001–2010 average are shown for (a) the start of the season
(SOS), (b) the end of the season (EOS), and (c) the growing sea-
son length (GSL). SOS and EOS are derived as the date on which
LAI first and last reaches 50 % of the seasonal amplitudes and GSL
is derived as the difference between EOS and SOS. The shaded ar-
eas denote the standard deviation of the corresponding phenophases
across spaces.

alence) for the site-scale studies, which are consistent with
the regional-scale studies.
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Figure 7. Comparisons are shown for (a) the spatial distribution of annual GPP modeled using MODIS LAI, (b) the spatial distribution of
annual GPP modeled using SGPD-TS LAI, (c) the spatial distribution of annual GPP modeled using GSI-TS LAI, (d) the zonally averaged
profiles of annual gross primary production modeled using LAI derived from different approaches, (e) the regression between GPP modeled
using SGPD-TS LAI and MODIS LAI, and (f) the regression between GPP modeled using GSI-TS LAI and MODIS LAI. The simulated
daily GPP were first summed for each individual year and were then averaged across years to derive the 2001–2010 average annual GPP as
shown in (a–c). The shaded areas in (d) mark the range of the standard deviation. All pixels of deciduous broadleaf forest across the eastern
United States are included in the analysis in (e) and (f).

4 Discussion

Here we provide a simple time-stepping solution that al-
lows for the simulation of canopy photosynthesis, leaf area
index, and leaf phenology simultaneously. The developed
method first proposes a linear function between canopy pho-
tosynthetic capacity and steady-state LAI to complement the
canopy photosynthesis model and then applies a simple re-
stricted growth model to account for the lagged responses of
plant leaf allocation to the natural environment. In essence,
the developed method, although having a simple form, has
synthesized the impacts of various climate factors on leaf
dynamics because any climate variable that influences veg-
etation photosynthesis would affect the process of plant leaf
allocation in the models as well. Consistent with field ob-
servations, the simulated LAI increases as the environmental
conditions turn favorable for photosynthetic activities such
as increases in photoperiod and temperature.

Figure 8 further illustrates the relationship between mean
LAI and different variables on a monthly basis. All data were
averaged to the monthly timescale such that canopy LAI can
be considered as nearly steady state. On a monthly basis,

mean LAI has a strong near-linear relationship with mean
GPP (R2

= 0.888) and the slope for the regression without
intercept is 0.580, the same as we used in the model simu-
lation. On a monthly basis, mean LAI is strongly correlated
with mean temperature (R2

= 0.799), indicating that temper-
ature is the dominate factor that determines vegetation phe-
nology. Factors like vapor pressure deficit and photoperiod
also have positive relationships with mean LAI on a monthly
basis. Figure 8 suggests that LAI has a stronger correlation
with GPP than with temperature on a monthly basis. Our
modeling approach that links canopy GPP with LAI reflects
the empirically positive relationship found in Figure 8a.

The performance of our developed method is largely
dependent on the canopy photosynthesis model used. In
our previous studies, we developed a process-based canopy
photosynthesis model that synthesizes sub-models such as
canopy radiative transfer, leaf transpiration, leaf stomatal
conductance, leaf photosynthesis, and soil evaporation and
applied it for modeling LAI time series. When applying the
simple moving-average method, implementing the process-
based model in Xin et al. (2018) achieved higher accura-
cies than implementing the MOD17 algorithm in modeling
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Figure 8. Scatter plots are shown for the relationship (a) between mean leaf area index and mean gross primary production, (b) between
mean leaf area index and mean temperature, (c) between mean leaf area index and mean vapor pressure deficit, and (d) mean leaf area index
and mean photoperiod on a monthly basis. All available site-year flux tower data were included in the analysis. All data were averaged to
the monthly timescale for analysis, making the point numbers different from the analysis at the weekly timescale in Fig. 2. The dashed lines
denote the regression lines. Panel (a) uses the regression without intercept.

canopy GPP and LAI as reflected by higher R2 and lower er-
rors. The MOD17 algorithm only assumes a monotonic rela-
tionship between air temperature and photosynthesis and be-
tween vapor pressure deficit and photosynthesis. It also does
not account for the impacts of CO2 on photosynthesis. The
use of the MOD17 algorithm in this study thus has limita-
tions in the model structure. It implies that LAI modeling in
our developed method will likely benefit from improvements
to the canopy photosynthesis model. This study chooses the
MOD17 algorithm instead of the sophisticated process-based
model because the MOD17 algorithm is well parameterized
across biomes and requires quite limited model inputs of cli-
mate variables. Successful implementation with the MOD17
algorithm allows for the extension of the developed method
to applications across biomes at regional to global scales.

Land surface models that predict vegetation GPP require
either satellite-derived LAI input data or the phenology sub-
model. The main idea for this study is to improve phenol-

ogy modeling by providing time series of LAI simulated us-
ing climate variables, hence enabling the simulation of GPP
forced only by climate variables. Because we implement the
MOD17 algorithm instead of the sophisticated process-based
model for the purpose of simplicity, one should not expect the
GPP simulated based on model-simulated LAI to be more ac-
curate than GPP simulated based on satellite-derived LAI.

The time-stepping scheme developed here is also an im-
provement over the simple moving-average method as used
in our previous studies. The results obtained using the time-
stepping method are consistent with the simple moving-
average method at the site scale and are shown to be reason-
able at the regional scale. Compared to the simple moving-
average method, the time-stepping method could be used in
models that operate at incremental time steps. For land sur-
face models that include canopy photosynthesis sub-models,
the developed method can be embedded into these models
as an alternative phenology model if replacing the MOD17
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approach with the canopy photosynthesis sub-model. Com-
pared to simple light use efficiency models like the MOD17
algorithm, implementation of the developed time-stepping
scheme in land surface models relies on supercomputing for
global applications. To better understand the performance of
the developed method, one study is now being undertaken
to implement the developed method with the Common Land
Model for simulating multi-decadal LAI and GPP for global
biomes forced only by climate variables.

Applying the developed method to other biomes and other
regions still has issues to be solved appropriately. The time-
stepping method uses the parameter kl to account for the
time lags of leaf allocation in response to environmen-
tal changes. For deciduous broadleaf forests, a biome with
strong seasonality, the developed scheme achieved reason-
able results with appropriate parameterization. Short vegeta-
tion like grasslands tends to respond quickly to abrupt envi-
ronment changes like precipitation, and tropical ecosystems
have strong resilience to short-term environmental variation
(Levine et al., 2016; Shen et al., 2011). Another issue is to
find the appropriate values of m for different biomes. One
way to determine the values of m is to find the regression
slope between leaf area index and gross primary production
on a monthly basis. Model parameterization, however, re-
quires broad tests. These understandings from observational
studies imply that biomes have varied response speeds to
the environment, and proper model calibration and assess-
ment are required for the developed method. Using observa-
tion data from remote sensing alone is inadequate for model
development as satellite-derived LAI could have large un-
certainties for some specific biomes other than deciduous
broadleaf forests. Fortunately, global flux tower networks
and regional phenology observation networks are now estab-
lished and offer abundant data for comprehensive model as-
sessment.

5 Conclusions

Numerical models provide a basic tool for understanding the
interactions between the land surface and the atmosphere. To
provide a complete solution to the simulation of plant leaf
dynamics and canopy photosynthesis, this study establishes
a linear relationship between the steady-state leaf area index
and the corresponding canopy photosynthetic capacity. The
proposed leaf allocation function complements the canopy
photosynthesis model of the MOD17 algorithm to form si-
multaneous equations that can be solved using the numeri-
cal approach. To account for the time lagging of plant leaf
allocation in response to climate variation, a time-stepping
scheme based on a simple restricted growth model is ap-
plied to the solved steady-state leaf area index to obtain time
series of leaf area index. The developed method could per-
form reasonably well on simulating leaf area index, phenol-
ogy, and gross primary production for deciduous broadleaf

forests across the eastern United States over years, as found
in both the site-scale and regional-scale modeling studies.
Compared to the simple moving-average method, the time-
stepping scheme developed here is consistent with and can
potentially be embedded into models that operate at incre-
mental time steps. The developed method allows for the sim-
ulation of leaf area index and gross primary production si-
multaneously and provides a simplified and improved ver-
sion of our previous model as a basis for global applications
in future studies.

Data availability. The flux tower dataset can be accessed from the
AmeriFlux website (http://ameriflux.lbl.gov/data/download-data,
last access: 13 January 2019) (AmeriFlux, 2019). The MODIS
data can be accessed from the Land Processes Distributed Active
Archive Center (https://e4ftl01.cr.usgs.gov/MOLT/,last access: 13
January 2019) (USGS LPDAAC, 2019). The Daymet dataset can
be accessed from the Oak Ridge National Laboratory Distributed
Active Archive Center (https://daac.ornl.gov/cgi-bin/dsviewer.pl?
ds_id=132, last access: 13 January 2019) (ORNL DAAC, 2019).
The 500 m land cover map used here was accessed from the
USGS Land Cover Institute (https://archive.usgs.gov/archive/sites/
landcover.usgs.gov/global_climatology.html, last access: 1 Decem-
ber 2018) (USGS LCI, 2018).

Author contributions. QX designed the experiments and performed
the simulations. All authors interpreted the results. QX wrote the
paper with contributions from all coauthors.

Competing interests. The authors declare that they have no conflict
of interest.

Acknowledgements. We thank the researchers and investigators
involved in collecting and sharing the AmeriFlux dataset. This
research is supported by the National Key R&D Program of
China (grant nos. 2017YFA0604302 and 2017YFA0604402)
and the National Natural Science Foundation of China (grant
no. 41875122). We also thank anonymous reviewers for their
constructive comments.

Edited by: Alexey V. Eliseev
Reviewed by: two anonymous referees

References

Akaike, H.: Fitting autoregressive models for prediction, Ann. I.
Stat. Math., 21, 243–247, 1969.

Allen, R. G., Pereira, L. S., Raes, D., and Smith, M.:
Crop evapotranspiration-Guidelines for computing crop water
requirements-FAO Irrigation and drainage paper 56, FAO, Rome,
300, 6541, 1998.

AmeriFlux: flux tower data, available at: http://ameriflux.lbl.gov/
data/download-data, last access: 13 January 2019.

www.biogeosciences.net/16/467/2019/ Biogeosciences, 16, 467–484, 2019

http://ameriflux.lbl.gov/data/download-data
https://e4ftl01.cr.usgs.gov/MOLT/
https://daac.ornl.gov/cgi-bin/dsviewer.pl?ds_id=132
https://daac.ornl.gov/cgi-bin/dsviewer.pl?ds_id=132
https://archive.usgs.gov/archive/sites/landcover.usgs.gov/global_climatology.html
https://archive.usgs.gov/archive/sites/landcover.usgs.gov/global_climatology.html
http://ameriflux.lbl.gov/data/download-data
http://ameriflux.lbl.gov/data/download-data


482 Q. Xin et al.: A simple scheme to simulate leaf dynamics

Arora, V. K. and Boer, G. J.: A parameterization of leaf phenology
for the terrestrial ecosystem component of climate models, Glob.
Change Biol., 11, 39–59, 2005.

Beer, C., Reichstein, M., Tomelleri, E., Ciais, P., Jung, M., Carval-
hais, N., Roedenbeck, C., Arain, M. A., Baldocchi, D., Bonan, G.
B., Bondeau, A., Cescatti, A., Lasslop, G., Lindroth, A., Lomas,
M., Luyssaert, S., Margolis, H., Oleson, K. W., Roupsard, O.,
Veenendaal, E., Viovy, N., Williams, C., Woodward, F. I., and Pa-
pale, D.: Terrestrial Gross Carbon Dioxide Uptake: Global Dis-
tribution and Covariation with Climate, Science, 329, 834–838,
2010.

Bonan, G. B.: Ecological climatology: concepts and applications,
Cambridge University Press, 2002.

Bonan, G. B.: Forests and climate change: forcings, feedbacks, and
the climate benefits of forests, Science, 320, 1444–1449, 2008.

Broxton, P. D., Zeng, X., Sulla-Menashe, D., and Troch, P. A.: A
global land cover climatology using MODIS data, J. Appl. Me-
teorol. Climatol., 53, 1593–1605, 2014.

Chuine, I., Cour, P., and Rousseau, D. D.: Selecting models to pre-
dict the timing of flowering of temperate trees: implications for
tree phenology modelling, Plant Cell Environ., 22, 1–13, 1999.

Clark, K. L., Skowronski, N., Gallagher, M., Renninger, H., and
Schäfer, K.: Effects of invasive insects and fire on forest energy
exchange and evapotranspiration in the New Jersey pinelands,
Agr. Forest Meteorol., 166, 50–61, 2012.

De Réaumur, R. A. F.: Observations du thermometer, faites à Paris
pendant l’année 1735, comparées avec celles qui ont été faites
sous la ligne, à l’Isle de France, à Alger et en quelques-unes de
nos isles de l’Amérique, Mémoires de l’Académie des Sciences,
545–584, 1735.

Desai, A. R., Noormets, A., Bolstad, P. V., Chen, J., Cook, B. D.,
Davis, K. J., Euskirchen, E. S., Gough, C., Martin, J. G., and
Ricciuto, D. M.: Influence of vegetation and seasonal forcing on
carbon dioxide fluxes across the Upper Midwest, USA: Implica-
tions for regional scaling, Agr. Forest Meteorol., 148, 288–308,
2008.

Ding, R., Kang, S., Du, T., Hao, X., and Zhang, Y.: Scaling Up
Stomatal Conductance from Leaf to Canopy Using a Dual-Leaf
Model for Estimating Crop Evapotranspiration, PloS one, 9,
e95584, https://doi.org/10.1371/journal.pone.0095584, 2014.

Dragoni, D., Schmid, H. P., Wayson, C. A., Potter, H., Grimmond,
C. S. B., and Randolph, J. C.: Evidence of increased net ecosys-
tem productivity associated with a longer vegetated season in a
deciduous forest in south-central Indiana, USA, Glob. Change
Biol., 17, 886–897, 2011.

Eagleson, P. S.: Ecohydrology: Darwinian expression of vegetation
form and function, Cambridge University Press, 2005.

Givnish, T. J.: On the Economy of Plant Form and Function: Pro-
ceedings of the Sixth Maria Moors Cabot Symposium, Evolu-
tionary Constraints on Primary Productivity, Adaptive Patterns
of Energy Capture in Plants, Harvard Forest, August 1983, Cam-
bridge University Press, 1986.

Gough, C. M., Hardiman, B. S., Nave, L. E., Bohrer, G., Maurer, K.
D., Vogel, C. S., Nadelhoffer, K. J., and Curtis, P. S.: Sustained
carbon uptake and storage following moderate disturbance in a
Great Lakes forest, Ecol. Appl., 23, 1202–1215, 2013.

Gu, L., Meyers, T., Pallardy, S. G., Hanson, P. J., Yang, B., Heuer,
M., Hosman, K. P., Riggs, J. S., Sluss, D., and Wullschleger, S.
D.: Direct and indirect effects of atmospheric conditions and soil

moisture on surface energy partitioning revealed by a prolonged
drought at a temperate forest site, J. Geophys. Res.-Atmos., 111,
D16102, https://doi.org/10.1029/2006JD007161, 2006.

He, M., Ju, W., Zhou, Y., Chen, J., He, H., Wang, S., Wang, H.,
Guan, D., Yan, J., Li, Y., Hao, Y., and Zhao, F.: Development of a
two-leaf light use efficiency model for improving the calculation
of terrestrial gross primary productivity, Agr. Forest Meteorol.,
173, 28–39, 2013.

Hollinger, D. Y., Ollinger, S., Richardson, A., Meyers, T., Dail, D.,
Martin, M., Scott, N., Arkebauer, T., Baldocchi, D., and Clark,
K.: Albedo estimates for land surface models and support for
a new paradigm based on foliage nitrogen concentration, Glob.
Change Biol., 16, 696–710, 2010.

Hufkens, K., Basler, D., Milliman, T., Melaas, E. K., and Richard-
son, A. D.: An integrated phenology modelling framework in R,
Methods Ecol. Evol., 9, 1276–1285, 2018.

Jenkins, J., Richardson, A. D., Braswell, B., Ollinger, S. V.,
Hollinger, D. Y., and Smith, M.-L.: Refining light-use efficiency
calculations for a deciduous forest canopy using simultaneous
tower-based carbon flux and radiometric measurements, Agr.
Forest Meteorol., 143, 64–79, 2007.

Jolly, W. M., Nemani, R., and Running, S. W.: A generalized, bio-
climatic index to predict foliar phenology in response to climate,
Glob. Change Biol., 11, 619–632, 2005.

Levine, N. M., Zhang, K., Longo, M., Baccini, A., Phillips, O. L.,
Lewis, S. L., Alvarez-Dávila, E., de Andrade, A. C. S., Brienen,
R. J., and Erwin, T. L.: Ecosystem heterogeneity determines the
ecological resilience of the Amazon to climate change, P. Natl.
Acad. Sci. USA, 113, 793–797, 2016.

Li, W., Guo, Q., Tao, S., and Su, Y.: VBRT: A novel voxel-based ra-
diative transfer model for heterogeneous three-dimensional for-
est scenes, Remote Sens. Environ., 206, 318–335, 2018.

Liu, J., Chen, J., Cihlar, J., and Park, W.: A process-based boreal
ecosystem productivity simulator using remote sensing inputs,
Remote Sens. Environ., 62, 158–175, 1997.

Liu, Q., Fu, Y. H., Liu, Y., Janssens, I. A., and Piao, S.: Simulating
the onset of spring vegetation growth across the Northern Hemi-
sphere, Glob. Change Biol., 24, 1342–1356, 2018.

Melaas, E. K., Richardson, A. D., Friedl, M. A., Dragoni, D.,
Gough, C. M., Herbst, M., Montagnani, L., and Moors, E.: Us-
ing FLUXNET data to improve models of springtime vegetation
activity onset in forest ecosystems, Agr. Forest Meteorol., 171,
46–56, 2013.

Melaas, E. K., Friedl, M. A., and Richardson, A. D.: Multiscale
modeling of spring phenology across Deciduous Forests in the
Eastern United States, Glob. Change Biol., 22, 792–805, 2016.

Miller, G. R., Baldocchi, D. D., Law, B. E., and Meyers, T.: An
analysis of soil moisture dynamics using multi-year data from
a network of micrometeorological observation sites, Adv. Water
Resour., 30, 1065–1081, 2007.

Myneni, R. B., Hoffman, S., Knyazikhin, Y., Privette, J. L., Glassy,
J., Tian, Y., Wang, Y., Song, X., Zhang, Y., Smith, G. R., Lotsch,
A., Friedl, M., Morisette, J. T., Votava, P., Nemani, R. R., and
Running, S. W.: Global products of vegetation leaf area and frac-
tion absorbed PAR from year one of MODIS data, Remote Sens.
Environ., 83, 214–231, 2002.

Ni-Meister, W., Yang, W., and Kiang, N. Y.: A clumped-foliage
canopy radiative transfer model for a global dynamic terrestrial

Biogeosciences, 16, 467–484, 2019 www.biogeosciences.net/16/467/2019/

https://doi.org/10.1371/journal.pone.0095584
https://doi.org/10.1029/2006JD007161


Q. Xin et al.: A simple scheme to simulate leaf dynamics 483

ecosystem model. I: Theory, Agr. Forest Meteorol., 150, 881–
894, 2010.

Oishi, A. C., Oren, R., and Stoy, P. C.: Estimating components
of forest evapotranspiration: a footprint approach for scaling
sap flux measurements, Agr. Forest Meteorol., 148, 1719–1732,
2008.

Oleson, K., Lawrence, D., Bonan, G., Drewniak, B., Huang, M.,
Koven, C., Levis, S., Li, F., Riley, W., and Subin, Z.: Techni-
cal Description of version 4.5 of the Community Land Model
(CLM), NCAR, National Center for Atmospheric Research
(NCAR) Boulder, Colorado, 2013.

ORNL DAAC: Daymet data, available at: https://daac.ornl.gov/
cgi-bin/dsviewer.pl?ds_id=1328, last access: 13 January 2019.

Polgar, C. A. and Primack, R. B.: Leaf-out phenology of temperate
woody plants: from trees to ecosystems, New Phytol., 191, 926–
941, 2011.

Potter, C. S., Randerson, J. T., Field, C. B., Matson, P. A., Vitousek,
P. M., Mooney, H. A., and Klooster, S. A.: Terrestrial ecosystem
production: a process model based on global satellite and surface
data, Global Biogeochem. Cy., 7, 811–841, 1993.

Richardson, A. D., Anderson, R. S., Arain, M. A., Barr, A. G.,
Bohrer, G., Chen, G. S., Chen, J. M., Ciais, P., Davis, K. J., De-
sai, A. R., Dietze, M. C., Dragoni, D., Garrity, S. R., Gough, C.
M., Grant, R., Hollinger, D. Y., Margolis, H. A., McCaughey,
H., Migliavacca, M., Monson, R. K., Munger, J. W., Poulter, B.,
Raczka, B. M., Ricciuto, D. M., Sahoo, A. K., Schaefer, K., Tian,
H. Q., Vargas, R., Verbeeck, H., Xiao, J. F., and Xue, Y. K.: Ter-
restrial biosphere models need better representation of vegetation
phenology: results from the North American Carbon Program
Site Synthesis, Glob. Change Biol., 18, 566–584, 2012.

Running, S. W. and Zhao, M.: Daily GPP and annual NPP
(MOD17A2/A3) products NASA Earth Observing System
MODIS land algorithm, MOD17 User’s Guide, 2015. 2015.

Running, S. W., Nemani, R. R., Heinsch, F. A., Zhao, M. S., Reeves,
M., and Hashimoto, H.: A continuous satellite-derived measure
of global terrestrial primary production, Bioscience, 54, 547–
560, 2004.

Ryu, Y., Baldocchi, D. D., Kobayashi, H., Ingen, C., Li, J., Black, T.
A., Beringer, J., Gorsel, E., Knohl, A., and Law, B. E.: Integration
of MODIS land and atmosphere products with a coupled-process
model to estimate gross primary productivity and evapotranspi-
ration from 1 km to global scales, Global Biogeochem. Cy., 25,
GB4017, https://doi.org/10.1029/2011GB004053, 2011.

Sellers, P., Randall, D., Collatz, G., Berry, J., Field, C., Dazlich, D.,
Zhang, C., Collelo, G., and Bounoua, L.: A revised land surface
parameterization (SiB2) for atmospheric GCMs – Part I: Model
formulation, J. Climate, 9, 676–705, 1996a.

Sellers, P. J., Tucker, C. J., Collatz, G. J., Los, S. O., Justice, C. O.,
Dazlich, D. A., and Randall, D. A.: A revised land surface pa-
rameterization (SiB2) for atmospheric GCMs. Part II: The gen-
eration of global fields of terrestrial biophysical parameters from
satellite data, J. Climate, 9, 706–737, 1996b.

Shen, M., Tang, Y., Chen, J., Zhu, X., and Zheng, Y.: Influ-
ences of temperature and precipitation before the growing sea-
son on spring phenology in grasslands of the central and east-
ern Qinghai-Tibetan Plateau, Agr. Forest Meteorol., 151, 1711–
1722, 2011.

Thornton, P., Thornton, M., Mayer, B., Wilhelmi, N., Wei, Y.,
and Cook, R.: Daymet: Daily surface weather on a 1 km grid

for North America, 1980–2008, Oak Ridge National Laboratory
Distributed Active Archive Center, Oak Ridge, Tennessee, USA,
2012.

Turner, D. P., Ritts, W. D., Cohen, W. B., Gower, S. T., Running, S.
W., Zhao, M., Costa, M. H., Kirschbaum, A. A., Ham, J. M., and
Saleska, S. R.: Evaluation of MODIS NPP and GPP products
across multiple biomes, Remote Sens. Environ., 102, 282–292,
2006.

Urbanski, S., Barford, C., Wofsy, S., Kucharik, C., Pyle, E., Bud-
ney, J., McKain, K., Fitzjarrald, D., Czikowsky, M., and Munger,
J.: Factors controlling CO2 exchange on timescales from hourly
to decadal at Harvard Forest, J. Geophys. Res.-Biogeo., 112,
G02020, https://doi.org/10.1029/2006JG000293, 2007.

USGS LCI: land cover data, available at: https://archive.usgs.gov/
archive/sites/landcover.usgs.gov/global_climatology.html, last
access: 1 December 2018.

USGS LPDAAC: MODIS data, available at: https://e4ftl01.cr.usgs.
gov/MOLT/,last access: 13 January 2019.

White, M. A., Thornton, P. E., Running, S. W., and Nemani, R. R.:
Parameterization and sensitivity analysis of the BIOME–BGC
terrestrial ecosystem model: net primary production controls,
Earth Interact., 4, 1–85, 2000.

Xiao, X., Zhang, Q., Braswell, B., Urbanski, S., Boles, S., Wofsy,
S., Moore, B., and Ojima, D.: Modeling gross primary produc-
tion of temperate deciduous broadleaf forest using satellite im-
ages and climate data, Remote Sens. Environ., 91, 256–270,
2004.

Xiao, Z., Liang, S., Wang, J., Chen, P., Yin, X., Zhang, L., and
Song, J.: Use of General Regression Neural Networks for Gen-
erating the GLASS Leaf Area Index Product From Time-Series
MODIS Surface Reflectance, IEEE T. Geoscience Remote Sens.,
52, 209–223, 2014.

Xie, J., Chen, J., Sun, G., Chu, H., Noormets, A., Ouyang, Z., John,
R., Wan, S., and Guan, W.: Long-term variability and environ-
mental control of the carbon cycle in an oak-dominated temper-
ate forest, Forest Ecol. Manage., 313, 319–328, 2014.

Xin, Q.: A risk-benefit model to simulate vegetation spring onset in
response to multi-decadal climate variability: Theoretical basis
and applications from the field to the Northern Hemisphere, Agr.
Forest Meteorol., 228–229, 139–163, 2016.

Xin, Q., Dai, Y., Li, X., Liu, X., Gong, P., and Richardson, A. D.:
A steady-state approximation approach to simulate seasonal leaf
dynamics of deciduous broadleaf forests via climate variables,
Agr. Forest Meteorol., 249, 44–56, 2018.

Yang, X., Mustard, J. F., Tang, J., and Xu, H.: Regional-scale phe-
nology modeling based on meteorological records and remote
sensing observations, J. Geophys. Res.-Biogeo., 117, G03029,
https://doi.org/10.1029/2012JG001977, 2012.

Yu, C., Li, C., Xin, Q., Chen, H., Zhang, J., Zhang, F., Li, X., Clin-
ton, N., Huang, X., Yue, Y., and Gong, P.: Dynamic assessment of
the impact of drought on agricultural yield and scale-dependent
return periods over large geographic regions, Environ. Model.
Softw., 62, 454–464, 2014.

Yuan, H., Dickinson, R. E., Dai, Y., Shaikh, M. J., Zhou, L., Shang-
guan, W., and Ji, D.: A 3D Canopy Radiative Transfer Model for
Global Climate Modeling: Description, Validation, and Applica-
tion, J. Climate, 27, 1168–1192, 2013.

Yuan, W., Liu, S., Yu, G., Bonnefond, J.-M., Chen, J., Davis, K., De-
sai, A. R., Goldstein, A. H., Gianelle, D., and Rossi, F.: Global

www.biogeosciences.net/16/467/2019/ Biogeosciences, 16, 467–484, 2019

https://daac.ornl.gov/cgi-bin/dsviewer.pl?ds_id=1328
https://daac.ornl.gov/cgi-bin/dsviewer.pl?ds_id=1328
https://doi.org/10.1029/2011GB004053
https://doi.org/10.1029/2006JG000293
https://archive.usgs.gov/archive/sites/landcover.usgs.gov/global_climatology.html
https://archive.usgs.gov/archive/sites/landcover.usgs.gov/global_climatology.html
https://e4ftl01.cr.usgs.gov/MOLT/
https://e4ftl01.cr.usgs.gov/MOLT/
https://doi.org/10.1029/2012JG001977


484 Q. Xin et al.: A simple scheme to simulate leaf dynamics

estimates of evapotranspiration and gross primary production
based on MODIS and global meteorology data, Remote Sens.
Environ., 114, 1416–1431, 2010.

Zeng, F., Collatz, G. J., Pinzon, J. E., and Ivanoff, A.: Evaluat-
ing and quantifying the climate-driven interannual variability in
Global Inventory Modeling and Mapping Studies (GIMMS) Nor-
malized Difference Vegetation Index (NDVI3g) at global scales,
Remote Sens., 5, 3918–3950, 2013.

Zhu, P., Zhuang, Q., Ciais, P., Welp, L., Li, W., and Xin, Q.:
Elevated atmospheric CO2 negatively impacts photosynthesis
through radiative forcing and physiology-mediated climate feed-
back, Geophys. Res. Lett., 44, 1956–1963, 2017.

Biogeosciences, 16, 467–484, 2019 www.biogeosciences.net/16/467/2019/


	Abstract
	Introduction
	Methods and materials
	Modeling steady-state leaf area index
	Modeling leaf area index, phenology, and gross primary production
	Comparative studies using the growing season index
	Model comparison and parameterization
	Study materials and preprocessing

	Results
	Site-scale modeling
	Regional-scale modeling

	Discussion
	Conclusions
	Data availability
	Author contributions
	Competing interests
	Acknowledgements
	References

