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Abstract. Rivers are an important source of dissolved in-
organic carbon (DIC) to the adjacent coastal waters. In or-
der to examine the spatial variability in the distribution and
major sources of DIC in the Indian monsoonal rivers and
to quantify their export flux to the northern Indian Ocean,
27 major and medium-sized rivers were sampled during the
discharge period. Significant spatial variability in concentra-
tions of DIC (3.4–73.6 mg L−1) was observed, and it is at-
tributed to spatial variations in the precipitation pattern, the
size of rivers, pollution and lithology of the catchments. The
stable isotopic composition of DIC (δ13CDIC) also showed
strong spatial variability (−13.0 ‰ to −1.4 ‰) in the In-
dian monsoonal rivers with relatively depleted δ13CDIC val-
ues in rivers of the northwest of India (−11.1± 2.3 ‰) and
enriched values in the southeast of India (−3.5±2.3 ‰). Re-
sults of the linear least-squares regression models of Keeling
and Miller–Tan’s plots indicated that the chemical weath-
ering of carbonate and silicate minerals by soil CO2 is the
major source of DIC in the Indian monsoonal rivers. Spa-
tial variability in the deviation of δ13CDIC from the approx-
imated δ13C of the source may probably be due to domi-
nant autotrophic production in rivers of the southeastern re-
gion, whereas heterotrophic decomposition of organic mat-
ter largely influences the other Indian monsoonal rivers. It is
estimated that the Indian monsoonal rivers annually export
∼ 10.3 Tg of DIC to the northern Indian Ocean, of which
the major fraction (75 %) enters into the Bay of Bengal, and
the remaining fraction reaches to the Arabian Sea. This is
consistent with the freshwater flux, which is 3 times higher
for the Bay of Bengal (∼ 378 km3 yr−1) than for the Arabian
Sea (122 km3 yr−1). Despite discharge from the Indian mon-
soonal rivers accounting for only 1.3 % of the global fresh-

water discharge, they disproportionately export 2.5 % of the
total DIC exported by the world’s major rivers. Despite rivers
from the region in the southwest (SW) of India exporting
DIC that is an order of magnitude lower (0.3 Tg yr−1) than
the rivers from other regions of India, the highest yield of
DIC was found in the rivers of the SW region of India. It is at-
tributed to intense precipitation (∼ 3000 mm), favorable nat-
ural vegetation of tropical moist deciduous and tropical wet
evergreen and semi-evergreen forests, tropical wet climate,
high soil organic carbon, and the dominance of red loamy
soils in catchments of the rivers of the SW region.

1 Introduction

Dissolved inorganic carbon (DIC) is one of the major con-
stituent of carbon species in rivers. DIC in rivers mainly orig-
inates from the geogenic (weathering of carbonate and sili-
cate rocks) and biogenic (decomposition of organic matter in
soils) sources (Meybeck, 1987; Mook and Tan, 1991; Gail-
lardet et al., 1999, Dessert et al., 2001; Viers et al., 2007;
Raymond et al., 2008; Tamooh et al., 2013). The former con-
sumes atmospheric carbon dioxide (CO2), while the latter re-
leases CO2 fixed by the terrestrial plants. In addition to these
major sources in the catchment, DIC is also contributed by
various physical and biological processes within the rivers.
For instance, heterotrophic decomposition of organic mat-
ter, photo-oxidation of dissolved organic carbon (DOC), au-
totrophic respiration and dissolution of atmospheric CO2
contribute DIC to rivers. On the other hand, autotrophic pro-
duction by aquatic plants (photosynthesis) and evasion of
CO2 to atmosphere withdraw DIC from rivers. All these pro-
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cesses in the catchments and within the rivers are strongly
coupled to atmospheric CO2, because they act as either sinks
or sources of atmospheric CO2 (e.g. Berner et al., 1983;
Mook and Tan, 1991; Gaillardet et al., 1999; Richey et al.,
2002). The DIC in rivers and its export to the coastal oceans
is thus intimately linked to the global carbon cycle (Campeau
et al., 2017).

Riverine export fluxes of DIC to coastal regions of the
world’s oceans have been estimated on the global (Gaillardet
et al., 1999) and regional scales (Richey et al., 2002; Wallin
et al., 2013; Crawford et al., 2014; Campeau et al., 2014; Ko-
kic et al., 2015) to understand the component of DIC in the
global carbon budget. Annual export flux of DIC from the
world’s major river systems to the global ocean has been esti-
mated as ∼ 327–385 Tg (1 Tg= 1012 g; Ludwig et al., 1998;
Meybeck and Vorosmarty, 1999). However, many of the re-
gional studies on DIC export fluxes were limited only to the
major river systems (e.g. Gaillardet et al., 1999; Joesoef et
al., 2017), for example, the Mississippi River (Raymond and
Cole, 2003; Raymond et al., 2008; Cai et al., 2008), Yangtze
and Pearl rivers (Cai et al., 2008), Congo (Wang et al., 2013)
River, etc. Regional studies on the riverine export fluxes of
DIC are very important for the global carbon cycle and bud-
get, as the export fluxes are largely dependent on the hydro-
logical, lithological and environmental conditions, which are
highly variable on the regional scales. However, DIC mea-
surements are still lacking in several medium-sized rivers
from different regions of the world in general, in particular
from Asia.

Studies on the sources and export fluxes of DIC from the
Indian rivers are very limited. Though DIC measurements
were conducted in some Indian estuaries, for example, Man-
dovi and Zuari (Sarma et al., 2001), Godavari (Sarma et
al., 2011), Cochin (Gupta et al., 2009; Bhavya et al., 2018),
Hooghly (Mukhopadhyay et al., 2002; Samanta et al., 2015),
Mahanadi (Pattanaik et al., 2017) and Chilka (Gupta et al.,
2008; Muduli et al., 2013), they were confined only to the
internal cycling of DIC and exchange of CO2 at the air–
water interface but were not focused on the sources and ex-
port fluxes of DIC. The major sources of DIC in the Indian
rivers remain unclear, except only a couple of rivers, Krishna
(Das et al., 2005; Laskar et al., 2014) and Ganges (Samanta
et al., 2015). Further, the quantity of annual DIC export by
the Indian rivers to the coastal regions is unknown. Here, we
made an attempt to understand the major sources of DIC in
the Indian monsoonal rivers (Fig. 1), using δ13CDIC as a po-
tential tracer, and to estimate the riverine export flux of DIC
to the northern Indian Ocean from the Indian subcontinent.

The stable isotopic composition of DIC (δ13CDIC) is
widely used to identify the major sources of DIC in the
aquatic systems (e.g. Singh et al., 2005; Tamooh et al., 2013;
Samanta et al., 2015; Zou, 2016). The isotopic composi-
tion of DIC originated by dissolution of atmospheric CO2 is
about 0 ‰ (Coplen et al., 2002), whereas it is about −27 ‰
to −26 ‰ if the DIC is derived from the oxidation of or-

Figure 1. Map showing the study region. Rivers sampled in this
study were indicated by solid black line. Distribution of soils in
catchments of the Indian monsoonal rivers sampled was also shown.
Rivers draining the four regions, i.e., northwest (NW), southwest
(SW), southeast (SE) and northeast (NE), were shown by solid black
arrows. The source is found at https://www.clearias.com/up/Major_
soil_types_in_India.jpg (last access: 12 December 2018).

ganic matter produced by C3 plants (O’Leary, 1988). The
δ13C of DIC generated by the carbonic-acid (formed by soil
CO2 dissolution) weathering of silicates is about −21 ‰ to
−17 ‰ (Solomon and Cerling, 1987), while it is in the range
of −10 ‰ to −9 ‰ for carbonate rocks, because half of
the carbon comes from carbonate rocks (0 ‰, Land, 1980)
during weathering. The weathering of silicate and carbon-
ate minerals yield δ13CDIC in the range of −8 ‰ to −7 ‰
and −4 ‰ to −3 ‰, respectively, if the carbonic acid is
formed by the dissolution of atmospheric CO2. Though the
δ13C of DIC derived from different sources is well separa-
ble (Deines et al., 1974), the isotopic fractionation by in-
stream physical and biological processes alters the δ13C of
the DIC source (Fig. 2). For example, photosynthesis and de-
gassing enriches (O’Leary, 1988; Finlay, 2004; Parker et al.,
2005, 2010; Polsenaere and Abril, 2012; Venkiteswaran et
al., 2014), while the heterotrophic decomposition of organic
matter and photo-oxidation of dissolved organic carbon de-
pletes the δ13C of DIC (Opsahl and Zepp, 2001; Finlay, 2003;
Waldron et al., 2007; Vähätalo and Wetzel, 2008; Fig. 2).
Though rivers are generally in disequilibrium with atmo-
spheric CO2 (Raymond et al., 2013) and emit CO2 to atmo-
sphere due to oversaturation (Oquist et al., 2009; Campeau
et al., 2017), the isotopic equilibration between the DIC and
CO2 in the atmosphere significantly influences the δ13CDIC
in rivers (Abongwa and Atekwana, 2014; Deirmendjian and
Abril, 2018) due to selective fluxes of 12CO2 and 13CO2 at
the air–water interface. Hence, the influence of biogeochem-
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Figure 2. Schematic diagram showing the typical range of δ13C of different sources of dissolved inorganic carbon (DIC) in rivers. Various
major processes influencing the δ13C of DIC (δ13CDIC) within the rivers were also shown. Black arrows indicate the direction of change in
δ13CDIC due to the influences of different in-stream process, mentioned next to the arrows.

ical processes within the rivers must be considered while
interpreting the δ13CDIC results for identification of DIC
sources. The main objectives of this study are to (i) iden-
tify the major sources of DIC in the Indian monsoonal rivers,
(ii) estimate the export flux and yield of DIC to the north-
ern Indian Ocean, and (iii) examine the major processes in
the catchments and within the rivers controlling DIC in the
Indian monsoonal rivers.

2 Study region, sampling and methods

2.1 Study area

The Indian peninsula bifurcates the northern Indian Ocean
into the Bay of Bengal and the Arabian Sea. Although these
two basins occupy the same latitudinal belt, their oceano-
graphic processes were reported to be remarkably different
due to higher freshwater flux into the Bay of Bengal (1.63×
1012 m3 yr−1) than into the Arabian Sea (0.3×1012 m3 yr−1;
Subramanian, 1993; Gauns et al., 2005). The large freshwa-
ter influx leads to the formation of a strong vertical salin-
ity stratification in the Bay of Bengal (Varkey et al., 1996)
that prevents vertical mixing of nutrient rich subsurface water
with the surface (Prasanna Kumar et al., 2004). As a result,
the Bay of Bengal is considered to be relatively less produc-
tive (Prasanna Kumar et al., 2002) than the adjacent Arabian
Sea, which is one of the highly productive zones in the world
(Madhupratap et al., 1996; Barber et al., 2001; Smith, 2001)
due to injection of nutrients into the surface through the sea-
sonal upwelling and convective mixing (Shetye et al., 1994;
Madhupratap et al., 1996; Muraleedharan and Prasanna Ku-
mar, 1996).

Discharge from the Indian monsoonal rivers is largely fed
by the monsoon-induced precipitation over the Indian sub-
continent, which receives > 80 % of its annual rainfall during
the southwest (SW) monsoon period (June–September; So-
man and Kumar, 1990). Though some amount of rainfall oc-
curs during the northeast (NE) monsoon (December–March),
it does not generate discharge, as it will be stored within the
dam reservoirs for domestic, industrial and irrigation pur-
poses. Discharge from the Indian monsoonal rivers mainly
occurs during the SW monsoon season (Vijith et al., 2009;
Sridevi et al., 2015); hence, these rivers are called monsoonal
rivers. Since the major portion of the annual freshwater dis-
charge occurs only during the SW monsoon, the entire es-
tuary is filled with freshwater (Vijith et al., 2009; Sridevi
et al., 2015) during this period. As discharge is small dur-
ing the rest of the year, the discharge during the SW mon-
soon (wet period) is considered to be equivalent to the an-
nual discharge of the monsoonal rivers. Based on rainfall in-
tensity, forest cover, vegetation and soil type in the catch-
ment, rivers sampled in the present study were categorized
into four groups, namely the northwest (NW), SW, south-
east (SE) and NE rivers of India (Fig. 1). The SW region
of India is characterized by the intense rainfall during SW
monsoon (∼ 3000 mm) following the NE (1000–2500 mm),
SE (300–500 mm) and NW (200–500 mm) regions of India
(Soman and Kumar, 1990). The SW rivers drain red loamy
soils, while the NW rivers drain black soils. Except the major
rivers Godavari and Krishna, all the rivers reaching the Bay
of Bengal (NE and SE rivers) drain red loamy and alluvial
soils in their upper and lower catchments, respectively. The
Godavari and Krishna rivers drain black soils in their upper
catchment, whereas they drain red loamy and alluvial soils
in their middle and lower catchments, respectively (Geolog-
ical Survey of India; https://www.gsi.gov.in/, last access: 5
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November 2018). Based on discharge, the monsoonal rivers
in this study were divided into two types, namely the major
(> 150 m3 s−1) and medium-sized (< 150 m3 s−1) rivers.

2.2 Sample collection

Water samples were collected from the freshwater regions of
the estuaries to obtain reliable export fluxes of DIC to the
coastal ocean. Samples were collected at two to three loca-
tions to minimize the spatial variability within the freshwa-
ter zone of the estuary. Further, to minimize the interannual
variability in DIC concentrations, sampling was conducted
in 2 different years, and the mean was used for export flux
estimations. Further, samples were collected in midstream in
the river, using a local mechanized boat to avoid the contam-
ination from river banks.

In situ measurements and sample collection were con-
ducted in 27 rivers of the Indian subcontinent (Fig. 1) during
the SW monsoon season of the years 2011 and 2014. Sur-
face water samples at each location were collected for phyto-
plankton biomass (Chl a), DIC and dissolved oxygen (DO).
Samples for DIC were collected in airtight crimp-top glass
bottles, and poison (mercuric chloride) was added to arrest
the biological activity. DO analysis was carried out at a tem-
porary shore laboratory setup for sample processing after the
completion of sampling on each day. Water samples were
filtered through GF/F (nominal pore size of 0.7 µm) un-
der moderate vacuum and were stored in liquid nitrogen for
Chl a analysis.

2.3 Methods

Temperature and salinity at the sampling locations were mea-
sured using a conductivity–temperature–density (CTD) pro-
filing system (Sea Bird Electronics, SBE 19plus, United
States of America). Concentration of DO was determined
by Winkler’s method (Carritt and Carpenter, 1966) using
an auto titrator (Metrohm, Switzerland) with potentiometric
endpoint detection. The analytical precision of the method
was ±0.07 % (RSD). Dissolved oxygen saturation is com-
puted following formulations given by Garcia and Gordon
(1992). DIC concentrations in water samples were measured
at our institute’s laboratory using a coulometer (UIC Inc.,
USA) connected to an automatic subsampling system. Based
on the repeated analysis of samples and standards, the pre-
cision of the method was ±0.02 mg L−1. The certified ref-
erence materials (CRMs) supplied by Andrew G. Dickson
from Scripps Institute of Oceanography, USA, and internal
standards were used to test the accuracy of our DIC measure-
ments; they were found to be within ±0.2 % to 0.3 %. The
potentiometric Gran titration method (Metrohm, Switzer-
land) was used for determination of pH and total alkalinity
and followed the standard operating procedures given by the
Department of Energy (DOE; 1998).

The stable carbon isotopic composition of DIC in the wa-
ter was measured on a gas-bench–isotope-ratio mass spec-
trometer (EA-IRMS-Delta V, Finnigan, Germany). 50 mL
airtight bottles with rubble septa were filled with 0.5 mL
of high-purity orthophosphoric acid and purged with high-
purity helium. About 1 mL of a water sample is injected into
the bottle and incubated at constant temperature of 50 ◦C for
12 h. The CO2 extracted into the head space is injected into
the IRMS through gas bench. The results are expressed rela-
tive to conventional standards, that is, with Pee Dee Belem-
nite (PDB) limestone for carbon (Coplen, 1996) as δ values,
defined as

δR =
[
(Xsample−Xstandard)/(Xstandard)× 103

]
‰,

where R refers to 13C, and X stands for 13C / 12C. The high-
purity tank of CO2 was used as a working standard for car-
bon. These gases were calibrated with standards of the In-
ternational Atomic Energy Agency (IAEA). Standard devi-
ation on 20 aliquots of the same sample was lower than
0.05 ‰ for δ13C. Chlorophyll a (Chl a) on the filter was ex-
tracted into dimethylformamide (DMF) and measured the ex-
tract fluorometrically using a spectrofluorophotometer (Var-
ian Eclipse, Varian Electronics, UK) following Suzuki and
Ishimaru (1990). Annual mean discharge data of the rivers
were taken from Meybeck and Ragu (1995, 1996), the Cen-
tral Water Commission of New Delhi (2006, 2012), and Ku-
mar et al. (2005). Catchment area of the rivers was obtained
from Water Resources Information System of India (WRIS,
http://www.india-wris.nrsc.gov.in/, last access: 10 October
2018). Soil organic carbon data were taken from Kishwan
et al. (2009) and Sreenivas et al. (2016), and the rainfall data
were obtained from Soman and Kumar (1990). Dissolved or-
ganic carbon (DOC) data for the Indian rivers were taken
from Krishna et al. (2015)

Total export flux of DIC from each river was estimated
by multiplying the mean concentrations of DIC at near-zero
salinity (river endmember) with the annual discharge. Spatial
variability of DIC concentrations within the river was mini-
mized to a large extent by collecting samples from two to
three locations in each river, while the interannual variability
was minimized by collecting samples during discharge pe-
riods of 2 years. However, variability in DIC concentrations
within the discharge period results in some uncertainties in
our estimations of DIC export fluxes. Time series measure-
ments in the Godavari estuary (our unpublished results) re-
vealed that the variability in DIC concentrations within the
discharge period is up to 10 %. Therefore, the error associ-
ated with our DIC flux estimates may be about 10 %. The
DIC flux normalized by catchment area (yield) was calcu-
lated by dividing the total DIC export flux of the river by its
catchment area.
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Figure 3. Spatial variability in the concentration (mg L−1; a), ex-
port flux (Tg yr−1; b) and yield (g m−2 yr−1; c) of dissolved in-
organic carbon (DIC) and its stable isotopes (δ13CDIC; d) in the
Indian monsoonal rivers studied. Rivers geographically located in
the northwest (NW), southwest (SW), southeast (SE) and north-
east (NE) regions of India were also shown. Rivers draining into
the Bay of Bengal (east-flowing rivers) were shown with gray shad-
ing, while rivers draining into the Arabian Sea (west-flowing) were
shown with no shading.

3 Results

3.1 Hydrographic characteristics

Surface water temperatures were higher in rivers from the
NE and SE regions (mean 30.9±1.2 ◦C) than the rivers from
the SW and NW regions (27.3± 1.5 ◦C) of India. Dissolved
oxygen saturation varied, from as low as 63 % to as high
as 105 %, with a mean saturation of 90± 11 %. The rivers
from the SW region of India recorded more undersatura-
tion of DO (82± 7 %) than the rivers located in the NE

(89± 15 %), NW (93± 3 %) and SE (96± 11 %) regions of
India. Chlorophyll a (Chl a) concentrations varied broadly,
from 0.8 to 7.5 mg m−3, with relatively higher mean concen-
trations in rivers of the SE region (4.7± 2.5 mg m−3) fol-
lowed by the SW (2.8±0.7 mg m−3) regions of India. On the
other hand, relatively low Chl a was observed in the medium-
sized (2.6± 1.3 mg m−3) when compared to the major estu-
aries (3.2± 2.1 mg m−3).

3.2 DIC concentrations and δ13CDIC

DIC concentrations in the Indian monsoonal rivers widely
varied, from 3.4 (Bharathapuzha) to 73.6 mg L−1 (Vellar),
with a significant spatial variability (Fig. 3a; Table 1). The
highest mean DIC concentration was observed in rivers of
the SE region (37.4± 6.3 mg L−1), while the lowest DIC
was found in the SW region (5.2± 2.1 mg L−1) of India. In-
termediate values were found in rivers of the NW (28.4±
8.9 mg L−1) and NE (17.1± 6.2 mg L−1) regions of India.
DIC concentrations were found to be similar in the ma-
jor (22.7± 13.6 mg L−1) and medium (21.1± 13.2 mg L−1)
rivers (homoscedastic Student’s t test; p = 0.76). The mean
DIC concentration found in this study (21.4± 16.3 mg L−1)
is similar to those observed earlier in the major river sys-
tems of India (Brahmaputra; Singh et al., 2005) and else-
where in the world, for example, in British rivers (Jarvie et
al., 2017) and Swedish rivers (Campeau et al., 2017). How-
ever, DIC concentrations in the present study are higher than
the global mean DIC (10.3 mg L−1, Meybeck and Voros-
marty, 1999; Table 1) but are lower than those reported in
the rivers draining into the Gulf of Trieste (northern Adriatic;
37–66 mg L−1; Tamse et al., 2014).

The δ13CDIC varied from −13.0 to −1.4 ‰, with a signif-
icant spatial variability (Fig. 3d; Table 1) in the rivers sam-
pled. Relatively depleted δ13CDIC values were observed in
rivers of the NW region (−11.1± 2.3 ‰), while enriched
δ13CDIC was found in rivers of the SE region (−3.5±2.3 ‰)
of India (Fig. 3d). The δ13CDIC values found in this study are
well within the range of values reported earlier in rivers of
India (Das et al., 2005) and elsewhere in the world, for ex-
ample, in Swedish streams (−27.6 ‰ to −0.6 ‰; Campeau
et al., 2017) and rivers from Italy and Slovenia (−12.8 ‰ to
−7.7 ‰, Tamse et al., 2014).

3.3 Export fluxes and yield of DIC

Annual export flux of DIC to the coastal ocean from the
individual rivers varied broadly from 0.01 Tg (Chalakundi)
to as high as 2.33 Tg (Krishna; Fig. 3b; Table 1). Among
the rivers sampled, rivers of the NE region of India export
higher DIC (6.52 Tg yr−1) while the lowest was found from
rivers of the SW region (0.24 Tg yr−1; Table 1). The Indian
monsoonal rivers together export about 10.32 Tg yr−1 of DIC
to the northern Indian Ocean, of which 7.81 Tg (75 %) en-
ters into the Bay of Bengal, and the remaining enters into
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the Arabian Sea (2.51 Tg). The yield of DIC ranged from
2.8 (Bharathapuzha) to 20.7 g m−2 yr−1 (Baitarani; 3c; Ta-
ble 1), excluding the exceptionally high yield of 119 g m−2

yr−1 from the Haldia River. The mean yield was found to be
more or less similar in rivers from all the four regions of In-
dia, i.e, the NW (8.4 g m−2 yr−1), SW (8.8 g m−2 yr−1), SE
(6.6 g m−2 yr−1) and NE (7.7 g m−2 yr−1) regions. Despite
the export flux of DIC being lowest from rivers of the SW
region (0.24 Tg yr−1), interestingly, the yield from rivers of
this region is on par with (even slightly higher than) the other
Indian monsoonal rivers (Table 1; Fig. 3b, c). Yields of DIC
found in this study are similar to those found earlier in rivers
elsewhere in the world (Huang et al., 2012).

4 Discussion

4.1 Distribution of DIC in the Indian monsoonal rivers

Distribution of DIC in the Indian monsoonal rivers showed
large spatial variability, with the lowest values in rivers from
the SW region of India (Fig. 3a). DIC concentrations in
rivers are known to be influenced by the intensity of pre-
cipitation over the catchment, basin lithology (Giesler et al.,
2013; Löfgren et al., 2014), length of the fluvial network
(Hotchkiss et al., 2015), and in-stream physical and biologi-
cal processes (Mook and Tan, 1991; Raymond et al., 2008).
The spatial distribution of rainfall over the Indian subcon-
tinent (http://www.imd.gov.in, last access: 8 October 2018)
shows that the SW region receives the highest annual rainfall
(∼ 3000 mm) when compared to the rest of India (Soman and
Kumar, 1990).

The intense precipitation over the SW region is expected
to cause higher weathering rates and thus higher DIC in
rivers (e.g., Gupta et al., 2011), but lower DIC concentra-
tions were found in rivers of this region. It could be due
to the influence of dilution, because the dense precipitation
over the small catchment area (Table 1) might have diluted
DIC concentrations in rivers of this region. In order to un-
derstand the influence of the density of rainfall on DIC in
rivers, we normalized the volume of discharge from the river
with its catchment area. The catchment area-normalized vol-
ume of discharge was found to be much higher in rivers from
the SW region (1.71 m3 m−2) than the rivers from the SE
(0.17 m3 m−2), NE (0.6 m3 m−2) and NW (0.32 m3 m−2) re-
gions of India. Higher catchment area-normalized discharge
(about 3 times) might have diluted DIC concentrations in the
rivers of the former region. A strong exponential decrease in
DIC concentrations with increasing rainfall over the catch-
ment (r2

= 0.72, p<0.001; Fig. 4a) also suggests that DIC
concentration in the Indian rivers is strongly influenced by
density of precipitation over the catchment. Rivers of the SW
region are relatively small in size, both in terms of catchment
area (total catchment area: 20 km×103 km) and the length
of the river (mean length: 126 km), when compared to the

rivers from other regions (SE, NE and NW) of India (Ta-
ble 1). Since the contribution of DIC from in-stream pro-
cesses, such as decomposition of organic matter, has been
demonstrated to increase along the course of the fluvial net-
work (Hotchkiss et al., 2015), possibly due to an increase in
the residence time of water (Catalan et al., 2016), the lowest
DIC concentrations found in rivers from the SW region may
also, at least partly, be due to their small size. Fairly good
positive correlation between DIC concentrations and length
of the rivers (r2

= 0.38, p<0.01; Fig. 4b) also supports this
argument.

The major physical and biological processes controlling
DIC concentrations in rivers are the exchange of CO2 with
the atmosphere, autotrophic removal and heterotrophic addi-
tion of DIC. Since the Indian monsoonal estuaries have been
reported to be a source of CO2 to the atmosphere during the
discharge period due to heterotrophic decomposition of or-
ganic matter (Sarma et al., 2001, 2011, 2012; Gupta et al.,
2008, 2009; Bhavya et al., 2018), the DIC input from the dis-
solution of atmospheric CO2 may be unlikely. On the other
hand, organic matter decomposition is expected to add a sig-
nificant amount of DIC, as enhanced bacterial respiration
rates were reported during this period (Sarma et al., 2011,
2012). In contrast, significant negative correlation between
chlorophyll a and DIC (r2

=−0.44, p<0.01; Fig. 4c), ex-
cept few SE rivers where elevated phytoplankton biomass
(Chl a > 5 mg m−3) was recorded, suggests that autotrophic
removal of DIC is also significant in the Indian monsoonal
rivers during the study period. A significant positive rela-
tionship was observed between the δ13CDIC and Chl a (r2

=

0.49; p<0.01; Fig. 4d), supporting this argument, because
preferential uptake of 12C over 13C during photosynthesis
leaves the residual DIC enriched in 13C. On the other hand,
δ13CDIC showed significant positive correlation with DO sat-
uration (r2

= 0.50, p<0.01; Fig. 4e; depleted δ13CDIC values
with more undersaturation of DO) and DOC concentrations
(r2
= 0.43, p<0.01; Fig. 4f), as was observed in the Xi river

(Zou et al., 2016). Altogether, enriched δ13CDIC values are
associated with higher DOC, less undersaturation of DO and
higher phytoplankton biomass (Chl a), while the depleted
δ13CDIC values are associated with more undersaturation of
DO and less DOC. This suggests that both autotrophic re-
moval and heterotrophic addition control DIC in the Indian
rivers during the discharge period, with a considerable spatial
variability. However, the influence of these processes on DIC
concentrations is difficult to separate with this bulk δ13CDIC
data set, as the δ13CDIC in rivers is also influenced by pollu-
tion, catchment lithology and outgassing of CO2 (Brunet et
al., 2005; Bouillon et al., 2009; Shin et al., 2011; Zeng et al.,
2011; Tamooh et al., 2013). Excluding Sabarmati and Mahis-
agar rivers, DIC concentrations showed a fairly good linear
relationship with population density over the catchment of
the river (r2

= 0.41, p<0.01; Fig. 4g), suggesting a consid-
erable influence of pollution from the megacities and indus-
tries on DIC in the Indian rivers.
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Figure 4. (a) Exponential decrease and (b) linear increase of dissolved inorganic carbon (DIC) concentrations with increasing rainfall over
the catchment and the length of the river, respectively. (c) Inverse and (d) linear relationships of chlorophyll a (Chl a) with concentrations
and δ13C of DIC, respectively. Significant linear relationships of δ13C of DIC with (e) dissolved oxygen (DO) saturation and (f) dissolved
organic carbon (DOC) concentration. Linear relationships observed between (g) DIC concentrations and population density in the catchment,
and (h) total alkalinity and δ13C of DIC in the Indian monsoonal rivers during the study period. Ovals with dashed lines indicate the outliers
which were not included in the regression equations. Rivers of the northwestern region of India showed linear relationships, as shown by the
other Indian rivers but with a different slope (f–h).

Spatial distribution of soils shows that rivers of the NW
region of India and upper reaches of Krishna and Godavari
rivers drain the lime-rich black soils (Fig. 1), while rivers
from the SW region drain red loamy soils, whereas the east-
flowing rivers drain the lime-poor red sandy soils in the up-
per but lime-rich alluvial soils in the lower reaches (Fig. 1).

Lateritic soils, which are poor in lime and silicate, occupied
the catchment of the rivers in the SW region of India. Rel-
atively lower chemical weathering rates of the lateritic than
the non-lateritic soils could be one of the reasons for the ob-
served lower DIC concentration in the rivers from the SW re-
gion of India. A significant positive correlation was found be-
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Figure 5. Linear least-squares regression models of (a) δ13CDIC as a function of 1/DIC (Keeling plot) and (b) δ13CDICxDIC as a function
of DIC concentrations (Miller–Tans plot) in the Indian monsoonal rivers. (c) Linear relationship between calculated δ13C of CO2 and the
measured δ13CDIC values, and (d) Miller–Tans linear regression model of δ13C-CO2×CO2 as a function of CO2 concentration in the Indian
monsoonal rivers.

tween total alkalinity (TA) and δ13CDIC (r2
= 0.52; p<0.01;

Fig. 4h), suggesting that a significant contribution of DIC
is from weathering of carbonate minerals in the catchment.
Though the higher chemical weathering rates were reported
for the Deccan Trap basalts (Das et al., 2005; Singh et al.,
2005), which occupied the catchments of rivers of the NW
region of India and upper reaches of Godavari and Krishna,
higher DIC concentrations were also observed in rivers drain-
ing over the metamorphic rocks. This suggests that the influ-
ences of factors other than bedrock are also significant in the
concentrations of DIC in the Indian rivers.

4.2 Major sources of DIC in the Indian monsoonal
rivers

Though the δ13CDIC is a promising tool for deciphering the
sources of DIC, its interpretation for source material identifi-
cation in rivers is still challenging, because multiple physical
and biological processes within the rivers significantly alter
the δ13C of DIC source. The influence of major in-stream
processes on the δ13CDIC must be separated before inter-
preting the results for major sources of DIC, and failing to
do this leads to erroneous conclusions. In order to identify
and separate DIC sources, here we used two different graph-
ical mixing model techniques, the Keeling (Keeling, 1958;
Pataki et al., 2003) and Miller–Tans plots (Miller and Tans,
2003). These models approximate the hypothetical δ13C of

source material as an intercept (in Keeling plot) and slope
(in Miller–Tans plot) of the linear least-squares regression
equations (Pataki et al., 2003; Campeau et al., 2017). The
deviations from the approximated δ13C of the source can be
interpreted as the influence of the in-stream processes. Fur-
ther, we approximated the δ13C of CO2 using a set of enrich-
ment factors of isotopic fractionation across the carbonate
species (Zhang et al., 1995) in order to filter the impact of
DIC speciation and pH on the bulk δ13CDIC values. This ap-
proach has already been used by Quay et al. (1992), Mayorga
et al. (2005) and recently by Campeau et al. (2017).

Significant negative relationships were observed in both
the Keeling plot (δ13CDIC as a function of 1/DIC; Fig. 5a) and
the Miller–Tans plot (δ13CDIC×DIC as a function of DIC;
Fig. 5b; r2

= 0.61, p<0.01, and r2
= 0.72, p<0.01, respec-

tively) of DIC in the Indian rivers, except in the rivers drain-
ing the Deccan Trap basalts. Both graphical mixing models,
the Keeling and Miller–Tan’s plot, approximated the similar
δ13C of source material (−3.0 ‰ and −2.0 ‰, respectively;
Fig. 5a, b), suggesting that weathering of carbonate minerals
is the predominant source of DIC in the Indian monsoonal
rivers rather than biogenic soil CO2. Calculated δ13C of CO2
ranged from −21.5 ‰ to −9.6 ‰ in the Indian rivers, with
a mean value of −13.0± 2.7 ‰. Calculated δ13C of CO2 is
linearly correlated with the measured δ13CDIC, but correla-
tion coefficient (r2) is only 0.51 (Fig. 5c), suggesting sig-
nificant spatial variability in the influence of in-stream pro-
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cesses on the δ13CDIC. The Miller–Tans plot of CO2 (δ13C-
CO2×CO2 as a function of CO2) showed a highly signifi-
cant linear regression model with a slope of −10.7 ‰ (r2

=

0.97; p<0.001; Fig. 5d). These results indicated that chem-
ical weathering of carbonate and silicate minerals by soil
CO2 (−10 ‰ to −9 ‰) is the major source of DIC in the In-
dian rivers. Deviations of the measured δ13CDIC (−13.0 ‰ to
−1.4 ‰) from that of the approximated δ13C of DIC source
(−3.0 ‰ to −2.0 ‰) and δ13C of CO2 (−10.7 ‰) could be
due to the influence of in-stream process. In more than 75 %
of the Indian rivers sampled, the deviation from the δ13C
of the DIC source is towards the negative side (depletion;
δ13CDIC<−3.0 ‰), suggesting that heterotrophic decompo-
sition of organic matter is the dominant process controlling
DIC in these rivers. While a lack of (or very little) devia-
tion was observed only in rivers from the SE region of In-
dia (mean δ13CDIC: −3.1 ‰), this could be due to the com-
petition between autotrophy, degassing and heterotrophy, as
these processes influence the δ13CDIC in opposite directions
(Fig. 2); the former two processes cause enrichment, while
the latter depletes δ13CDIC. Relatively higher phytoplankton
biomass (mean Chl a: 4.6 mg m−3) and less undersaturation
of DO (98.7 %) was observed in these rivers compared to
the mean of the rest of the Indian rivers (2.4 mg m−3 and
87.5 %, respectively), suggesting that autotrophy is one of
the dominant processes controlling DIC in rivers from the
SE region of India. The total number of dams on the rivers
from this (SE) region (mean 155, Table 1) is not significantly
higher from that of the mean of total number of dams on the
Indian rivers sampled (mean 135), suggesting that degassing
due to storage of water may not be the dominant process re-
sponsible for enrichment in δ13CDIC values of these rivers.

4.3 Total DIC export by the Indian monsoonal rivers to
the northern Indian Ocean

Indian monsoonal rivers annually export ∼ 10.3 Tg of DIC
to the northern Indian Ocean. Nearly three-fourths of this
amount (7.8 Tg) reaches to the Bay of Bengal, while the Ara-
bian Sea receives only one-fourth (2.5 Tg). This is consis-
tent with the higher magnitude of freshwater discharge to the
Bay of Bengal (378 km3 yr−1) from the catchment area of
about 970 km×103 km than the Arabian Sea (122 km3 yr−1

from the catchment area of 244 km×103 km). The total DIC
exported by the Indian monsoonal rivers (10.3 Tg yr−1) is
lower than the DIC exported by the American (61.4 Tg yr−1)
and African (17.7 Tg yr−1) rivers and major rivers drain-
ing to the tropical Atlantic from South America and Africa
(53 Tg yr−1; Araujo et al., 2014). It is mainly due to the fact
that freshwater discharge from the Indian monsoonal rivers
is very low (∼ 500 km3 yr−1) compared to the American
(11 799 km3 yr−1) and African (3786 km3 yr−1) rivers. How-
ever, the Indian monsoonal rivers are exporting dispropor-
tionately higher DIC, because they account for only 1.3 % of
the global river discharge but export 2.5 % of the global river-

ine DIC to the oceans (400 Tg yr−1). Though American and
African rivers account for 30 % and 10 % of the global river
discharge, they export only 15 % and 4.4 % of global riverine
DIC to oceans, respectively. A disproportionately higher DIC
flux from the Indian rivers could be due to relatively higher
weathering rates of silicate and carbonate minerals in their
drainage basins (Das et al., 2005; Gurumurty et al., 2012;
Pattanaik et al., 2013). Higher DIC fluxes from the tropical
regions are mainly attributed to the favorable climatic condi-
tions, lithology and land use change (Huang et al., 2012) of
this region for higher dissolution.

Krishna et al. (2015) reported that Indian monsoonal rivers
export 2.32 Tg yr−1 of dissolved organic carbon (DOC) to
the northern Indian Ocean. The total fluvial dissolved car-
bon flux (DIC+DOC) would be 12.6 Tg yr−1, to which DIC
flux contributed up to∼ 81 %. The predominance of DIC has
also been found in rivers elsewhere in the world, for exam-
ple, in British rivers (Jarvie et al., 2017) and high-altitude
Swedish rivers (Campeau et al., 2017). Since the catchment
area of the Indian monsoonal rivers ranged widely, from as
low as 1 km×103 km to as high as 313 km×103 km, the ex-
port fluxes of DIC were normalized with the catchment area
of the river (yield) in order to examine various factors con-
trolling the DIC export to the northern Indian Ocean.

4.4 Yield of DIC from the Indian monsoonal rivers

The yield of DIC found in this study (mean 8.7±
5.2 g m−2 yr−1) is close to those found in rivers from the
tropical region of Asia but is significantly higher than those
reported from tropical region of the American and African
continents (Huang et al., 2012). The yield was highest (8.8±
5.6 g m−2 yr−1) in rivers from the SW region of India, despite
the fact that they export relatively lower DIC (0.3 Tg yr−1)
due to their low volume of discharge (46 km3 yr−1) and rel-
atively smaller catchment (20 km×103 km) than the rivers
from SE, NE and NW regions of India (Table 1). DIC yield
showed a significant positive correlation with the volume of
discharge (r2

= 0.67, p<0.001; Fig. 6a) in medium-sized
rivers, and no such relationship was found in the major rivers.
Significant negative relationship was observed between DIC
yield and catchment area of river (r2

=−0.49, p<0.001 –
Fig. 6b; r2

=−0.43, p<0.001 – Fig. 6c; for medium-sized
and major rivers, respectively), suggesting that the smaller
rivers export more DIC per unit area of catchment compared
to the major river systems, and thus inclusion of DIC data
from medium-sized rivers in the world significantly alters
the global estimations of DIC. A fairly good linear relation-
ship between the yield of DIC and the intensity of precipi-
tation (r2

= 0.43, p<0.01 – Fig. 6d) was observed only in
the rivers which receives > 2000 mm of annual mean precipi-
tation. Higher precipitation over the catchment increases the
yield of DIC, because the dense precipitation enhances the
extraction of DIC from soils and rocks in their catchment.
Therefore, high precipitation (∼ 3000 mm) over the small
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Figure 6. Significant relationships of dissolved inorganic carbon (DIC) yield with (a) river discharge in medium estuaries, (b) catchment
areas of the medium-sized rivers, (c) catchment areas of the major rivers, (d) rainfall over the catchment of all the rivers sampled and (e) soil
organic carbon (OC) content in catchments of the Indian monsoonal rivers studied. Since the data on soil OC are not available for each
watershed, (e) was plotted using the available soil OC data on regional scale (NW, SW, SE and NE regions of India). Hence, it contains only
four points.

catchment (20 km×103 km) could have increased DIC yield
from the rivers of the SW region of India.

Sreenivas et al. (2016) and Krishwan et al. (2009) found
that the soil organic and inorganic carbon contents in the
surface (100 cm) soils in the catchment of rivers in the SW
region were higher and lower, respectively, than the catch-
ments of the rivers from the SE, SW and NE regions of In-
dia. Decomposition of soil organic matter releases excess
CO2 that increases CO2 in soils, leading to the formation
of acidic conditions in soils. This would increase the DIC
yield by more dissolution of soil carbonates and chemical
weathering of carbonate and silicate rocks (Zou et al., 2016).
A significant linear correlation was found between soil or-
ganic carbon content and DIC yield in this study (r2

= 0.65,
p<0.001; Fig. 6e), suggesting that higher soil organic car-
bon in the catchment of the rivers from the SW region could
have elevated the yield of DIC from rivers of this region. The
basin-scale studies are, however, required for a comprehen-
sive understanding of the influence of environmental and an-
thropogenic factors on export fluxes and yield of DIC from
the Indian monsoonal rivers.

5 Summary

In order to examine the spatial variability in the sources and
distribution of dissolved inorganic carbon (DIC) in the In-
dian monsoonal rivers, and to estimate their export fluxes of
DIC to the northern Indian Ocean, we sampled a total of 27
major and medium-sized rivers during the wet period. An or-
der of magnitude variability was found in DIC concentrations
among the rivers sampled (3.4–73.6 mg L−1), with a lower
mean concentration of 6.6± 2.1 mg L−1 in rivers located in
the SW region of India. It is attributed to significant spa-
tial variability in the size of rivers, precipitation pattern, pol-
lution and lithology in their catchments. The approximated
δ13C of DIC source from the Keeling and Miller–Tans plots
(−2.0 ‰ and −3.0 ‰, respectively), and the calculated δ13C
of CO2 suggested that DIC in the Indian rivers mainly orig-
inates from chemical weathering of carbonate minerals but
is largely affected by autotrophic production in rivers from
the southeastern region of India and heterotrophic decompo-
sition of organic matter in rivers from other regions of India.
Indian monsoonal rivers together export ∼ 10.3 Tg yr−1 of
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DIC to the northern Indian Ocean, of which 7.8 Tg yr−1 en-
ters into to the Bay of Bengal, while the Arabian Sea receives
only 2.5 Tg yr−1. It is mainly attributed to the volume of river
discharge, as the former receives ∼ 378 km3 yr−1 while the
latter receives only 122 km3 yr−1 from the Indian monsoonal
rivers. Dense rainfall and higher soil organic carbon content
in the catchment of rivers from the SW region than in the
catchment of the other Indian rivers resulted in the highest
yield of DIC from the former than the latter.
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