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Abstract. Canopy structural and leaf photosynthesis pa-
rameterizations such as maximum carboxylation capacity
(Vcmax), slope of the Ball–Berry stomatal conductance model
(BBslope) and leaf area index (LAI) are crucial for modeling
plant physiological processes and canopy radiative transfer.
These parameters are large sources of uncertainty in pre-
dictions of carbon and water fluxes. In this study, we de-
velop an optimal moving window nonlinear Bayesian inver-
sion framework to use the Soil Canopy Observation Photo-
chemistry and Energy fluxes (SCOPE) model for constrain-
ing Vcmax, BBslope and LAI with observations of coupled car-
bon and energy fluxes and spectral reflectance from satellites.
We adapted SCOPE to follow the biochemical implementa-
tion of the Community Land Model and applied the inversion
framework for parameter retrievals of plant species that have
both the C3 and C4 photosynthetic pathways across three
ecosystems. We present comparative analysis of parameter
retrievals using observations of (i) gross primary productivity
(GPP) and latent energy (LE) fluxes and (ii) improvement in
results when using flux observations along with reflectance.
Our results demonstrate the applicability of the approach in
terms of capturing the seasonal variability and posterior er-
ror reduction (40 %–90 %) of key ecosystem parameters. The
optimized parameters capture the diurnal and seasonal vari-
ability in the GPP and LE fluxes well when compared to
flux tower observations (0.95>R2 > 0.79). This study thus
demonstrates the feasibility of parameter inversions using
SCOPE, which can be easily adapted to incorporate addi-
tional data sources such as spectrally resolved reflectance and
fluorescence and thermal emissions.

1 Introduction

Terrestrial ecosystems play a very important role in regulat-
ing the carbon exchange over land surfaces (Schimel, 1995;
Falkowski et al., 2000). Although they are known to be im-
portant sinks in buffering the increasing anthropogenic CO2
emissions (Friedlingstein et al., 2006; Sitch et al., 2015),
there is a large variability and heterogeneity in the carbon ex-
change mechanisms, which are tightly correlated with inter-
annual climatic variations (Cox et al., 2013; Liu et al., 2017).
Moreover, terrestrial ecosystems also control the exchange
of energy, water and momentum between the atmosphere
and the land surface, thus regulating climate–ecosystem (car-
bon) feedbacks leading to amplification or dampening of re-
gional and global climate change (Heimann and Reichstein,
2008). Measurements and modeling of carbon and water va-
por fluxes over terrestrial ecosystems are therefore impor-
tant to better understand these issues and account for the re-
gional and global carbon and water budgets (Baldocchi et al.,
1996, 2001; Sitch et al., 2003, 2008). Terrestrial ecosystem
models have been used to study the carbon and water fluxes
(McGuire et al., 2001; Sitch et al., 2003; Cramer et al., 2001;
Kucharik et al., 2000); however, there are large uncertainties
in fluxes associated with poorly quantified model parame-
ters (Wramneby et al., 2008; Pappas et al., 2013; Knorr and
Heimann, 2001; Zaehle et al., 2005; Rogers et al., 2017).
Some of these parameters have temporal and spatial variabil-
ity and are hard to measure directly over large scales (Simioni
et al., 2004; Wilson et al., 2000; Dutta et al., 2017). For
the majority of model implementations these parameters and
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their temperature dependence are represented as a single con-
stant value according to plant functional types with little or
no seasonal variability. In this study, we present an inversion
approach which can be implemented with ecosystem models
involving canopy physiological processes to better estimate
the seasonal variability in photosynthesis and canopy struc-
tural parameters, which in turn can reduce the uncertainty in
estimation of carbon and water fluxes over ecosystems.

The micrometeorological data from flux towers are ex-
tremely useful in understanding the biogeochemistry and
thermodynamics of ecosystems (Baldocchi et al., 2000;
McGuire et al., 2002). A number of approaches have been
developed to model and estimate photosynthesis, respiration,
energy balance, stomatal behavior, radiation transfer and tur-
bulent gas exchange across the plant canopy on the basis of
data from flux tower experiments (van der Tol et al., 2009;
Running and Coughlan, 1988; Oleson et al., 2010). Detailed
canopy models are often resolved into multiple layers, thus
providing a better treatment of radiation regime and energy
balance across the canopy (van der Tol et al., 2009; Wang
and Leuning, 1998; Dai et al., 2004). At the heart of these
models lies the leaf-level biochemical model of photosynthe-
sis and carbon fixation (Farquhar et al., 1980) together with
a stomatal conductance (most often the widely used Ball–
Berry) model (Collatz et al., 1991b). The fluxes of carbon
and water are tightly coupled through stomatal regulation
and photosynthesis (Baldocchi, 1994; Collatz et al., 1992).
Further, the process-based canopy models require some envi-
ronmental drivers such as incoming shortwave and longwave
radiation, air temperature, relative humidity, wind speed, and
ambient CO2 concentration, along with a number of leaf and
canopy parameters to simulate the fluxes of carbon in terms
of gross primary production (GPP), flux of water or latent
energy (LE), sensible heat (H), net radiation and others.

One of the most important ecosystem descriptors is the
maximum rate of carboxylation (Vcmax), which is directly
related to the concentration of the enzyme rubisco. Vcmax
is a key parameter in the Michaelis–Menten kinetics for
an enzyme-catalyzed reaction of the substrates CO2 or O2
with ribulose-1,5-bisphosphate, representing the enzyme-
limited photosynthesis rate (Farquhar et al., 1980). Other
rate-limiting photosynthesis parameters such as maximum
electron transport rate (Jmax) are generally parameterized
with respect to Vcmax. The Ball–Berry equation calculates
the stomatal conductance (gs) for water vapor as a func-
tion of net assimilation, relative humidity, leaf surface CO2
concentration, minimum conductance and a proportionality
constant called the Ball–Berry slope (BBslope) (Ball et al.,
1987; Wullschleger, 1993; Beerling and Quick, 1995; Tanaka
et al., 2002). The BBslope plays a crucial role in regulating the
stomatal conductance and water use efficiency, and thus the
surface energy fluxes in terms of partitioning the turbulent
energy into LE and H fluxes. Thus, it is a crucial param-
eter regulating the tradeoff between carbon gain and water
loss, e.g. during drought conditions (Monteith and Unsworth,

2007). The leaf area index (LAI) is a canopy structural and
key ecosystem variable in most terrestrial biosphere models,
which determines interception of radiation as well as pho-
tosynthesis and energy exchange across the canopy (Chen
et al., 1997). The parameters Vcmax and BBslope can be de-
termined experimentally from leaf-level gas exchange mea-
surements and generated A−Ci curves (Wullschleger, 1993;
Tanaka et al., 2002; Xu and Baldocchi, 2003). LAI can be es-
timated from destructive and nondestructive optical methods
(Myneni et al., 1997; Dutta et al., 2017; Chen et al., 1997),
as well as inversion approaches on spectrally resolved re-
flectance data from satellite and airborne platforms (Houborg
et al., 2007; Jacquemoud et al., 1995). However, these mea-
surements are much more complex and labor intensive, being
measured less frequently than flux tower observations.

Inversion of detailed process-based models using obser-
vations of carbon and energy fluxes could thus yield these
key ecosystem parameters. Process-based models such as the
Soil Canopy Observation, Photochemistry and Energy fluxes
(SCOPE) model (van der Tol et al., 2009) can simulate the
radiative transfer and the fluxes of carbon and energy ver-
tically resolved within the canopy. Our hypothesis is that
the inversion of a detailed vertically resolved canopy model
such as SCOPE with multiple layers consisting of sunlit and
shaded fractions together with fully spectrally resolved radi-
ation regime and energy balance computations (van der Tol
et al., 2009) is able to retrieve the ecosystem parameters ac-
curately using observations of carbon and energy fluxes, and
in the future remote sensing data, as SCOPE can model the
spectrally resolved shortwave reflectance, thermal emission
and solar-induced chlorophyll fluorescence.

A few studies have used inversion approaches to extract
ecosystem parameters from flux (Reichstein et al., 2003;
Schulze et al., 1994) and reflectance (Quaife et al., 2008)
measurements but not yet to constrain all three key parame-
ters (Vcmax, BBslope and LAI) simultaneously using the fluxes
of water and carbon. A previous study by Wolf et al. (2006)
used a deterministic linear least-squares inversion method
to estimate the key ecosystem parameters (Vcmax, BBslope,
LAI and respiration rate) using the net ecosystem exchange
(NEE) and sensible and latent heat fluxes. The approach as-
sumed a simple model of radiation-driven photosynthesis,
respiration and energy balance using a two-component (sun-
lit and shaded) canopy. The optimization used total energy
(H+LE) to fit LAI values, the NEE to fit Vcmax and res-
piration rate and energy difference (H−LE) to fit BBslope.
In comparison to a deterministic approach, stochastic Monte
Carlo approaches (Knorr and Kattge, 2005; Xu et al., 2006;
Ricciuto et al., 2008; Mackay et al., 2012) constrain a num-
ber of parameters (including the photosynthetic parameters)
using eddy covariance observations but assuming them to
be time invariant. These studies consider multiple temporal
resolutions such as seasonal or half-yearly resolutions and
present a range of parameters without providing a definite er-
ror characterization as Bayesian methods (Wu et al., 2009).
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Moreover, since the stochastic methods sample the probabil-
ity distribution in parameter space, they are better suited to
nonlinear models, but the associated computational costs can
often be prohibitive.

In this study, we develop an inversion framework for es-
timating the temporal dynamics of key ecosystem param-
eters using the SCOPE model, which represents detailed
plant physiological processes including sun-induced chloro-
phyll fluorescence (SIF). SIF is chlorophyll re-emission dur-
ing photosynthesis, acts as a direct probe into photosynthe-
sis measurable from space and is strongly correlated with
flux-based GPP estimates at canopy to ecosystem scales
(Frankenberg et al., 2011; Flexas et al., 2002). Thus, the
SCOPE-based inversion approach has the flexibility and ad-
vantage of incorporating tower-based observations of fluxes
including SIF as well as spectrally resolved reflectance and
thermal emissions for optimal estimation of a wide range of
ecosystem parameters. In this paper, we first focus on the
conceptual framework of parameter inversion using SCOPE
followed by parameter retrieval examples, with specific ob-
jectives as follows:

1. implementation of photosynthesis model and its tem-
perature dependencies consistent with a well-accepted
major Earth system model (Community Land Model
CLM4.5) in SCOPE;

2. development of a Bayesian nonlinear inversion frame-
work using SCOPE to estimate ecosystem parameters
using eddy covariance flux observations;

3. demonstrating the retrieval and posterior error reduction
of key ecosystem parameters using (i) observations of
carbon and water fluxes and (ii) combining flux obser-
vations together with satellite reflectance across differ-
ent ecosystems.

The rest of the paper is organized as follows. Section 2
provides a brief overview of the SCOPE model and the new
implementation of photosynthesis and its temperature depen-
dencies. Section 2.2 provides a comparison of the old and
new photosynthesis implementations in SCOPE. Sections 3,
4 and 5 describes the formulation of the inverse problem fol-
lowed by linearization of the forward model and mechanisms
of the retrieval algorithm. Section 6 describes the results of
the inversion framework across three different ecosystems
and finally Sect. 7 provides a discussion summary and con-
clusions.

2 SCOPE model

The SCOPE model (van der Tol et al., 2009) is an integrated
1-D vertical radiative transfer and energy balance model.
The model utilizes the spectrally resolved visible to ther-
mal (0.4 to 50 µm) infrared irradiation at the canopy top to

derive the fluxes of water, energy, carbon dioxide and ver-
tical profiles of temperature as a function of canopy struc-
ture and weather variables. The four most important SCOPE
modules represent (i) radiative transfer of incident solar radi-
ation and generated fluorescence within the leaf (Fluspect),
(ii) radiative transfer of incident direct and indirect solar radi-
ation (0.4–50 µm), (iii) radiative transfer of internally gener-
ated thermal radiation by vegetation and soil (Verhoef et al.,
2007), (iv) an energy balance module and (v) a radiative
transfer module for computing the top-of-canopy radiance
spectrum of fluorescence from leaf-level chlorophyll fluores-
cence. SCOPE resolves top-of-canopy incoming and outgo-
ing shortwave radiation and reflectance in the spectral range
of 400 to 2500 nm at 1 nm wavelength bands. Further, it also
computes the spectrally resolved fluorescence emission in
the range of 650 to 850 nm at 1 nm wavelength bands.

One important aspect is that SCOPE relaxes the assump-
tion of constant temperatures for the sunlit and shaded frac-
tions of the leaves across the different canopy layers. This is
true when we consider different orientations and their verti-
cal positions in the canopy. Therefore, an iterative solution
scheme is implemented in SCOPE as stomatal conductance
affects leaf temperature, which in turn affects photosynthesis
(and thus again stomatal conductance). Thus, the fully inte-
grated thermal radiative transfer and energy balance modules
allow feedback between leaf temperatures, photosynthesis,
chlorophyll fluorescence and radiative fluxes.

2.1 The SCOPE biochemical module

The SCOPE biochemical module is a submodule of the en-
ergy balance routine, which provides an iterative solution of
the photosynthesis, energy balance, net radiation and hetero-
geneous skin temperatures for a particular net external forc-
ing. The main functions of the biochemical module include
leaf temperature dependent computation of photosynthesis
and fluorescence. Some of the photosynthesis parameteriza-
tions in the current version of the SCOPE model (V1.70)
are outdated and more in line with previous versions of the
Community Land Model (CLM version 4) or based on a
mix of other model implementations. CLM is a community-
developed land model which focuses on the modeling of
land surface processes including biogeophysics, carbon cy-
cle, vegetation dynamics and river routing. Specifically, the
main modifications in the more recent CLM (version 4.5,
CLM4.5) (Lawrence et al., 2011; Oleson et al., 2013) include
updates to the canopy radiation scheme and canopy scaling
of leaf processes, colimitations on photosynthesis, revisions
to photosynthetic parameters (Bonan et al., 2011), temper-
ature acclimation of photosynthesis, and improved stability
of the iterative solution in the photosynthesis and stomatal
conductance model (Sun et al., 2012). CLM4.5 implements
a multi-layer canopy modeling framework with coupled pho-
tosynthesis (Farquhar et al., 1980) and Ball–Berry stomatal
conductance models similar to the SCOPE framework.
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Figure 1. Temperature response functions of Vcmax for C3 (a) and C4 (b) plants. For the C3 species the mean and ±1σ variability (shown
as broken black lines) in the net temperature response are computed using data presented in Leuning (2002), shown in the left panel. The
temperature range corresponding to maximum Vcmax response for both the C3 and C4 pathways is between 30 and 40 ◦C. The overall
temperature response from the previous version (V1.70) is shown as dashed brown line.

The main inconsistencies of SCOPE (V1.70) with the
CLM4.5 parameterizations are as follows:

1. Similar, generic temperature response functions are im-
plemented for both C3 and C4 species, excepting Vcmax,
and further it uses a Q10-based exponential function
with the same functional parameters for computing the
temperature response of the various photosynthetic pa-
rameters.

2. There is no Jmax (maximum potential electron transport
rate, ETR) or its temperature dependence in the compu-
tation of light limited C3 photosynthesis rate.

3. The net assimilation, internal CO2 concentration
and stomatal conductance (A-Ci-gs) iterative solution
method is not quite robust or was lacking in the previous
versions, with the V1.70 implementation being compli-
cated and unpublished.

We therefore attempt to improve the SCOPE biochemical
module by implementing the photosynthesis and temperature
dependence of the photosynthetic parameters according to
the well established and widely used CLM4.5. All the de-
tailed implementation steps and equations for modeling the
photosynthesis and temperature dependence primarily as per
Bonan et al. (2011) is presented in detail in the Appendix A
and B. Within the inverse framework described later, we only
invert Vcmax at the reference temperature of 25◦ and apply the
given temperature dependencies. Any systematic difference
in the temperature function could thus alias into the derived
Vcmax. Overall, the major new updates made to the model
(biochemical module) are as follows:

1. The electron limited photosynthesis rate Aj is com-
puted using the potential ETR J , which is obtained by

solving the smaller root of Eq. (A5), comprising the
light utilized in photosystem II (IPSII) and the maximum
potential ETR (Jmax).

2. The light limited photosynthesis rate for C4 is given by
Eq. (A3).

3. The temperature dependence of photosynthetic param-
eters (Bonan et al., 2011) now uses the activation, de-
activation energies and entropy terms in the temper-
ature response and high temperature inhibition func-
tions (Leuning, 2002) (see Appendix B for details). The
temperature response of C3 (Leuning, 2002; Bernacchi
et al., 2001) and C4 photosynthesis is represented by
Eqs. (B1)–(B5).

4. Finally we also incorporate a new simplified imple-
mentation of A-Ci-gs iterations (Sun et al., 2012)
and include the computation of oxidative photosynthe-
sis (Bernacchi et al., 2001) within the photosynthesis
model. See Appendix B1 for details.

In the following section, we demonstrate the photosynthe-
sis results with the newer photosynthesis and temperature de-
pendence implementation as well as its comparison with the
previous version (V1.70) in SCOPE for different ecosystems.

2.2 Comparison of current and previous
photosynthesis implementations in SCOPE

Figure 1 shows the temperature response functions for Vcmax
for both C3 (left) and C4 (right) photosynthetic pathways.
The functions of mean temperature response, high tem-
perature inhibition and the 1σ variance as per the dif-
ferent photosynthesis-pathway-dependent parameterization
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(e.g. activation energy, deactivation energy, entropy) are
shown according to Leuning (2002). The new temperature
dependency parameterizations follow the temperature func-
tions and high temperature inhibition for C3 and the Q10
functions for the C4 pathways. We have also shown the tem-
perature dependence of Vcmax from the previous (old) im-
plementation of the SCOPE model (V1.70). The differences
in the net response at both lower and higher than optimal
temperature can be clearly identified in the figure for both
C3 and C4 species. It can be observed that the difference in
temperature response is more for C4, and clearly the maxi-
mum is in the leaf temperature range 30–40◦C; however, it
continues into the higher temperatures as well. Moreover, it
can be noted that the overall shapes of the response functions
are nearly identical (with some lag) for the different parame-
ters for the previous SCOPE implementation compared to the
newer implementation as per CLM4.5 (Bonan et al., 2011).

A number of analyses were performed to study the dif-
ferences in net response of canopy-level carbon and energy
fluxes for both C3 and C4 species from the SCOPE model
due to modification in photosynthesis implementation (old
and new) and its temperature dependence (see Supplement
Sect. S1).

Figure 2 shows the comparison between the old and new
SCOPE versions as the ratio of overall canopy GPP, which
is defined as fGPP =

GPPnew
GPPold

. This ratio is further represented
as a function of the three most important forcing variables:
PAR (photosynthetically active radiation), canopy tempera-
ture and VPD (vapor pressure deficit). The results for the
Missouri Ozark site (see Sect. 6.4.1 for site details) with C3
plant species for the year 2009 are presented in Fig. 2. For
this analysis, the SCOPE model simulations are computed
for the entire growing season and the fGPP values are binned
according to the PAR temperature (for specific VPD ranges)
and PAR VPD (for specific temperature ranges) as 2-D his-
tograms, of which only the mean (fGPPmean ) is represented in
Fig. 2.

We find that over the larger parts of the domain of ran-
dom variables, fGPP is around 1 and the maximum change in
overall GPP is around 25 %. From Fig. 2, it can be observed
that in the case of C3 species, for the combinations of higher
canopy temperature and low VPD values (panel a), the new
GPP values remain the same or are reduced by about 5 %, al-
though from Fig. 1 we find an increase in the Vcmax response
at > 25 ◦C temperature, which may indicate photosynthesis
being limited by light instead of the enzyme rubisco. For the
combination of low canopy temperature and lower VPD val-
ues (panel c), fGPP values are close to 1 (except for very low
PAR/VPD values and with a maximum of about 4 %–6 % in-
crease), which can be explained by an almost identical Vcmax
response at lower temperatures in Fig. 1. At high PAR val-
ues with higher temperatures (25–30 ◦C) and low VPD val-
ues (panel d) we find that GPP increases by about 6 %–14 %,
which can be directly explained by the new increased Vcmax
response in that temperature range as indicated in Fig. 1. The

results for a similar comparative study with C4 species is pre-
sented in the Sect. S1. Overall, we find that the new model
implementation of photosynthesis and its temperature depen-
dence as well as A−Ci iterations works well and only result
in moderate, yet noticeable changes. It also underlines that
tabulated model parameters can only be optimized for a spe-
cific model implementation, which is not necessarily univer-
sally transferable to other carbon cycle models.

3 Formulation of inverse problem

The problem of ecosystem flux computation (e.g. GPP, latent
energy) from meteorological variables (e.g. VPD, air temper-
ature, relative humidity) and other ecosystem parameters can
be represented as follows:

Y = F(X′)+ ε, (1)

where F() :X′
−→ Y is a functional representation of the

model, which maps the model input and parameter space
(X′) quantitatively to the space of ecosystem fluxes (Y ), and
ε represents the residual error which includes the precision
error, the model error and random errors. In our case, SCOPE
represents the forward model F(), which is complex and
moderately nonlinear, representing a range of physics and
canopy physiological processes. We can further represent our
forward problem as follows:

Y = F(X;p)+ ε, (2)

where X represents the state vector of parameters to be re-
trieved, p (X,p ⊂X′ and X′

=X∪p) is a vector of pa-
rameters which represents those quantities that influence the
measurement and are known with some accuracy but are not
meant to be retrieved. We call these parameters the forward
functional parameters. In our example p represents the set
of all fixed model (SCOPE) parameters not involved in the
retrieval. The error term ε represents the measurement noise
(e.g. noise or errors in the flux measurements). Given a set of
measurements Y , the optimal state vector X̂ can be obtained
by a generalized inverse methodR represented as follows:

X̂ =R(Y , p̂,Xa,c), (3)

where p̂ represents the best estimate of the forward function
parameters. The parameters Xa and c represent the param-
eters that do not appear in the forward function but they do
affect the retrieval and are associated with uncertainties. Xa
represents the prior estimate of X and c represents any other
parameters in the retrieval scheme as a catch-all for anything
else that is used in the retrieval method, which also includes
the convergence criteria.

www.biogeosciences.net/16/77/2019/ Biogeosciences, 16, 77–103, 2019
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Figure 2. Figure showing the ratio of old and new SCOPE GPP (fGPP =
GPPnew
GPPold

) simulations as a function of PAR, canopy temperature
and VPD for the C3 species. The Missouri Ozark fluxnet site comprising of deciduous broadleaf forests for the year 2009 is used and the
SCOPE simulations are driven with identical forcings and parameters for both the new and old simulations, the only difference being the
implementation of photosynthesis and its temperature dependence (see text). The left column shows fGPP as a function of PAR and canopy
temperature with data points in the low VPD range of 10–15 hPa (a) and high VPD range of 25–30 hPa (b). The right column shows fGPP as
a function of PAR and VPD with data points in the low temperature range of 10–15 ◦C (c) and moderate temperature range of 25–30 ◦C (d).

4 Linearization of the forward model

A basic prerequisite for inverting the forward model is to
compute its sensitivity with respect to input parameters, i.e.
the partial derivatives with respect to all the state vector el-
ements (Jacobi matrix). For linear models, the Jacobians are
independent of the actual state. In our case, the SCOPE for-
ward model is moderately nonlinear and its Jacobians need to
be computed numerically as analytical methods are currently
lacking and hard to implement given some peculiarities in
the FvCB equations.

With the Jacobian matrix and a simple forward model call,
we can thus write a first-order Taylor expansion for the for-
ward model

F(X;p)= F(X;p)X=Xl +
δF

δX

∣∣∣∣
X=Xl

(X−Xl), (4)

where Xl is an arbitrary linearization point, and δF
δX

is the
partial derivative or Jacobian at the point X =Xl.

5 Iterative retrieval algorithm setup

In the remainder of the paper, we will omit the vector of for-
ward model parameters p which are not a part of the retrieval
framework. For the nonlinear problem we use the maximum
a posteriori approach. The Bayesian solution for the nonlin-
ear inverse problem where the forward model is a general
function of the state, the measurement error is Gaussian (Sε)
and with a prior estimate of the state (Xa) with a Gaussian
uncertainty in the prior state (Sa) (Rodgers, 2000) can be rep-
resented as follows:

−2lnP(X|Y )= [Y −F(X)]T S−1
ε [Y −F(X)]

+ [X−Xa]
T S−1

a [X−Xa] + c
′, (5)

where c′ is a constant. Our aim is to find the best estimate
of the state vector X̂ (denoted as X henceforth) and an er-
ror characterization that describes the posterior PDF. The
Gauss–Newton iteration steps for determining the state vec-
tor is given by the following:

Xi+1 =Xi + (S−1
a +KT

i S−1
ε Ki)

−1
[KT

i S−1
ε [Y −F(Xi)]
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Figure 3. Diurnal variability of GPP, LE, H and SIF from SCOPE model simulations (top row) for a typical day in the growing season
(3 August 2010) for C4 corn using data from the Nebraska Mead-1 flux tower site with parameter values Vcmax = 50 µmols m−2 s−1,
BBslope = 7 and LAI= 4. Second, third and fourth rows from the top shows the diurnal variability in the gradient of GPP, LE, H and SIF
with respect to the parameters using SCOPE with positive perturbations δVcmax = 5 µmols m−2 s−1, δBBslope = 1 and δLAI= 0.5 which
constitutes the Jacobian matrix for the inversions. It can be observed that the Jacobian matrix is nonlinear with maximum values near the
midday period. Our retrieval framework uses concatenated 3-day GPP and LE fluxes (modeled and observed) and their gradients successively
within a 3-day window.

−S−1
a [Xi −Xa]], (6)

where Ki is the Jacobi matrix. A brief derivation of Eq. (6) is
presented in Appendix C; for a more in-depth treatment the
reader is referred to Rodgers (2000).

5.1 Levenberg–Marquardt method

In general, the Gauss–Newton iterations discussed previ-
ously finds the minimum in one step if the cost function is
quadratic with respect to X. However, in our case the cost
function is not perfectly quadratic and the initial guess po-
tentially far away from the solution, thus requiring multiple
iterations. In addition, the nonlinearity of the problem some-
times results in steps that would actually increase rather than
decrease the fit quality. In order to overcome this issue Lev-
enberg (1944) and Marquardt (1963) proposed the following
iteration for nonlinear least-squares problem:

Xi+1 =Xi + (KKT
+ γiD)−1KT

[Y −F(Xi)], (7)

where γi is chosen at each step to minimize the cost function
and D is a diagonal scaling matrix to scale the elements of
the state vector. It can be noted that for γi→ 0, Eq. (7) leads
to a Gauss–Newton iteration step and for γi→∞ Eq. (7)
tends to steepest descent and further the step size tends to 0.
It is also expected that the cost function will decrease corre-
sponding to the decrease in γi from infinity to zero. The value

of γi is sequentially updated at each iteration by evaluating
the change in cost function. Here, we follow the general rec-
ommendations as outlined in Marquardt (1963) and Rodgers
(2000).

The guidance for choosing the scaling matrix D is that it
must be positive definite. For the current problem we choose
it to be S−1

a (as in Rodgers, 2000) and apply the Levenberg–
Marquardt (LM) modification to the Gauss–Newton method
(iteration Eq. C8), resulting in the following iterative inver-
sion scheme:

Xi+1 =Xi + [(1+ γ )S−1
a +KT

i S−1
ε Ki]

−1

{KT
i S−1

ε [Y −F(Xi)] −S−1
a [Xi −Xa]}. (8)

5.2 A moving window setup of the inversion problem
using flux tower observations

The top row of Fig. 3 shows the SCOPE model simula-
tions of GPP, LE, H and SIF for one day (3 August 2010)
in the growing season for C4 corn using data from the Ne-
braska Mead-1 flux tower site with parameter values Vcmax =

50 µmols m−2 s−1, BBslope = 7 and LAI= 4. The second,
third and fourth rows from the top show the numerically
computed partial derivatives of GPP, LE, H and SIF with re-
spect to the parameters using SCOPE with positive perturba-
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Figure 4. Illustration of moving window inversion retrieval setup. The bottom left part illustrates the annual ecosystem time series flux
variables used for driving the SCOPE model. A 3-day time window is selected for each retrieval in the yearly growing season and a time
filter is implemented for concatenating the measurement vector (flux tower observations, with each color representing a different observation
variable) of length m in the retrieval windows. The top right shows the vector and matrix setup and the linearization of the forward model.
1Y represents the difference between concatenated observation and modeled vector and 1X represents the corresponding change in the
state vector comprising of n variables (parameters). The bottom right shows the retrieved model parameters after implementing the moving
window approach.

tions δVcmax = 5 µmols m−2 s−1, δBBslope = 1 and δLAI=
0.5. Each column of Fig. 3 represents a row of Jacobian ma-
trices used for the inversions. The figure clearly demonstrates
the influence of each of the parameter variables in the state
vector (X) on the modeled fluxes (F(X)). We can observe
the counteracting nature of variables and the fluxes from the
Jacobian. For example, for LE flux, BBslope has a positive
gradient but LAI has a negative gradient. The decrease in
LE is attributed to less radiation reaching the soil and a cor-
responding increase in soil aerodynamic resistance. In this
case the canopy resistance goes up but does not compensate
for the decreased soil evaporation and results in low sensitiv-
ities. Similarly we find Vcmax has a positive gradient for GPP
but a negative one for LE, which may again be attributed to
the soil evaporation responding to soil temperature. It can be
noted that the nature of these sensitivities at the canopy level
are sometimes counterintuitive from their leaf-level mecha-
nisms and may vary depending on environmental conditions,
such as incoming PAR as well as air temperature and vapor
pressure deficit. This also creates diversity in the Jacobians
over the diurnal cycle, which allows us to derive more than
two parameters from two sets of measurements (GPP and
LE). In Fig. 3, we have not only shown derivatives of GPP
and LE but also H and SIF (not used here). In this paper, we
outline the general framework of parameter inversion, which
can easily be modified to make use of more measurements
such as H, SIF, reflectance or thermal emissions, all of which
can be modeled with SCOPE.

For setting up the observation vector Ym×1 (see Eq. 8),
we use observations of carbon and latent energy fluxes from
eddy covariance tower time series records. The observational
error matrix (Sε[m×m]) is assumed to be a diagonal matrix
and computed using noise standard deviation as 10 % of the
half-hourly to hourly observations (Leuning et al., 2012). We
use an initial prior state value of the state vector (Xa[n×1]) as
well as the prior error covariance matrix (Sa[n×n]). As men-
tioned previously, the Jacobian matrix Km×n is computed nu-
merically by a small perturbation to the value of the state
vector Xi + δ (see Fig. 3) at a particular iteration step. The
observed (Y ) and modeled (F(X)) fluxes in the inversion
framework are set up as a long concatenated vector as shown
in Fig. 4. The concatenation of different flux variables is done
using a time filter to represent the part of the day we wish
to include in the retrieval framework as illustrated in Fig. 4.
This is logical as we have already demonstrated in Fig. 3
that the gradients are variable throughout the day. Ideally, the
time filter applied for concatenating the data should capture
the maxima and a range of variations in the gradients, but at
the same time reduce the data points to make the retrieval
computationally efficient and further tend towards providing
stable solutions (retrievals) of the parameter values. Further,
the time filter helps to eliminate the nighttime anomalies in
the observations for accurate parameter estimation. For other
observations such as spectral reflectance a daily noontime av-
erage is suitable for concatenation in the observations Y . The
assumptions behind the long-term (seasonal) retrieval of im-

Biogeosciences, 16, 77–103, 2019 www.biogeosciences.net/16/77/2019/



D. Dutta et al.: Optimal inverse estimation of ecosystem parameters 85

portant ecosystem and plant physiological parameters is that
these parameters change significantly over the growing sea-
son but at a slower rate compared to and in response to the
environmental and meteorological forcing. Thus, the ecosys-
tem parameters can be assumed to be constant over some fi-
nite time window. We implement this assumption to set up
our inverse parameter retrieval framework for finite N -day
contiguous moving windows over the entire growing season
(Fig. 4). We extend the 1-day diurnal setup of Y , F(X) and
K as shown in Fig. 3 to multiple days for setting up the N -
day windows as illustrated by color coding in Fig. 4. After
computing the necessary vectors and matrices for the N -day
window, iterations are performed by applying the LM algo-
rithm until convergence to obtain the posterior estimation of
the state vector. The retrieval window is moved over to the
contiguous next N days and the process is repeated. The re-
trieval proceeds thus for the entire length of the growing sea-
son (Fig. 4). For our retrieval example, we choose a 3-day
moving window which seems optimal for the plant response
in terms of the photosynthesis parameters (Vcmax, BBslope
and LAI) towards the change in environmental drivers.

5.3 Error characterization and convergence criteria for
the retrievals

As mentioned in Sect. 5.1, we have selected a convergence
criteria for the parameter retrievals in each of the moving
windows based on the ratio of the true error to the expected
error for each of the iteration steps. The total error mini-
mized for the retrieval is given by [Y −F(Xi)]

T S−1
ε [Y −

F(Xi)] + [X−Xa]
T S−1

a [X−Xa]. However, for testing the
convergence within each iteration step, we use the method
suggested by Rodgers (2000), which adapts the Levenberg–
Marquardt parameter depending on the nonlinearity of the
forward model.

After convergence, the posterior error covariance matrix
for the retrieved state vector X̂ can be computed as follows:

S= [S−1
a +KT

i S−1
ε Ki]

−1. (9)

The reduction in error is defined as follows:

ζi = 1−

(
Sjj
Sajj

)0.5

, (10)

where Sjj and Sajj represent the diagonal elements in the
posterior and prior error covariance matrices respectively. In
our LM retrieval process, we use the retrieved state vector
X̂ of the previous window as the first guess (but not prior)
for the current window. This saves computational cost and is
based on the assumption that our state vector varies smoothly
in time.

6 Results for implementing the inversion framework in
SCOPE

In this section, we discuss the results of optimal parameter
estimation by applying the Bayesian inversion framework to
three different ecosystems. The aim is to demonstrate the ap-
plicability for the retrieval (as well as capturing the seasonal
variability) of canopy structural and photosynthesis param-
eters using carbon and water fluxes, and to further compare
and contrast the results across the different ecosystems. In or-
der to demonstrate the greater potential of SCOPE in model-
ing spectrally resolved reflectance (not found in other general
carbon cycle models) and versatility of the inversion frame-
work we have also incorporated Moderate Resolution Imag-
ing Spectrometer (MODIS) satellite reflectance bands in the
retrievals. We further demonstrate how reflectance and fluxes
are able to better constrain parameters such as Vcmax, BBslope
and LAI compared to just using flux tower observations.

6.1 Data filtering criteria in the moving window
retrievals

Apart from the overall algorithmic steps as described previ-
ously, we apply the following filter criteria on the results and
the data for a computationally efficient retrieval.

1. In constructing the observation vector Y we apply
a time-of-the-day filter (e.g. data between 09:00 and
16:00 LT and so on) for the initial forward SCOPE
model.

2. For computing the Jacobians, a PAR-based threshold
(PAR> 100 µmols m−2 s−1) is applied to ensure sensi-
tivity of the measurement vector with respect to state
vector variations and to minimize the occurrence of un-
reasonable flux tower data (high fractional errors).

3. A filter is implemented to check and ensure that the state
vector remains positive at every iteration. If somehow
due to a small enough γ the state vector is negative,
the γ value is adjusted in an iterative manner to keep it
within bounds.

6.2 MODIS satellite reflectance data

We use the daily MODIS MCD43A reflectance product in
this study (Schaaf and Wang, 2015). The spatial resolution
of the dataset is 500 m and bands 1 and 2 (red and NIR)
centered at 620 and 841 nm respectively were used in the
inversion. These data are adjusted using a bidirectional re-
flectance distribution function to model the values as if they
were collected from a nadir view. Figure 5 shows the distinct
seasonality in greenness which is represented by NDVI over
the two sites. SCOPE models the full Nadir VSWIR spec-
tral reflectance (400 to 2500 nm) from which values corre-
sponding to the two MODIS reflectance bands are extracted
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Figure 5. Figure showing the seasonal variability of red, NIR MODIS nadir reflectance and NDVI for the Nebraska Mead-1 and Missouri
Ozark Site. This dataset is used in SCOPE model inversions in conjunction with fluxes of carbon and water for retrieval of ecosystem
parameters.

and used concurrently with the observations in the inversion
framework.

6.3 Retrieval results for the Nebraska Mead-1 site

6.3.1 Site description

The Nebraska Mead-1 site is a part of the AmeriFlux net-
work, located in Lincoln, Nebraska, and is one of the three
cropland sites at the University of Nebraska Agricultural
Research and Development Center, with continuous data
records from 2001 until the present (Suyker et al., 2005).
This site is a continuously irrigated corn (C4, species) crop
site, with mean annual precipitation of 790 mm and mean an-
nual temperature of 10.07 ◦C. We choose the year 2010 and
an hourly time resolution for the analysis. The site meteorol-
ogy and forcing variables relevant to the SCOPE inversion
retrievals are shown in Fig. 6. The top two panels show the
environmental forcing variables which are used as input (ex-
cept precipitation) in the SCOPE simulations. The bottom
panel represents carbon (GPP) and energy (LE, H) fluxes,
which are used to construct the observation vector Y . The
figure indicates that the growing season extends from around
June through September, coinciding with high temperature,
VPD and net radiation. We focus on the retrieval of the pa-
rameters Vcmax, BBslope and LAI during this entire growing
season.

6.3.2 Inversion parameters and results

For each of the retrieval windows, the prior value of the state
vector along with prior errors and daytime duration, which
is used for filtering the GPP and LE observations, are shown

in Table 1. Here, we use a purely diagonal prior error co-
variance matrix, with zero off-diagonal elements. Figure 7
shows the retrievals of parameters Vcmax, BBslope and LAI.
The grey time series of GPP and LE values in the back-
ground are the actual filtered values used for constructing
the observation (Y ) vector corresponding to each retrieval
window. The dashed lines indicate the retrieved parameters
using only GPP and LE fluxes. The solid lines indicate the
retrieved parameters using the fluxes together with MODIS
reflectance. The orange (with fluxes only) and brown (with
fluxes and MODIS red and NIR reflectance) lines show the
result of posterior simulations of fluxes with the optimized
parameters. These lines represent the absolute daily average
posterior simulation errors (1= |Observed−Posterior|) in
the fluxes without and with the use of MODIS reflectance
along with the flux observations in the inversions.

We find a seasonal variability in the retrieved parameters,
which follow a similar pattern in GPP or LE. In particular,
the retrieved LAI as well as Vcmax shows a similar seasonal-
ity to GPP. There is also some variability in retrieved BBslope,
which is correlated with LE observations. We found that in-
cluding MODIS reflectance places better constraints on the
parameters during the peak of the growing season, with much
less variability in retrieved LAI and Vcmax.

As expected, the optimized parameters using just flux ob-
servations (dashed lines) are quite sensitive to the variation
in GPP and LE, for example around DOY 190 and 210,
where there is sudden dip in the retrieved Vcmax. Including
the MODIS reflectance (solid lines) in the inversions allevi-
ates most of these large variabilities due to fluctuations in the
observed fluxes or meteorology. Moreover, with this addi-
tional MODIS reflectance constraint the range of variability
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Figure 6. Figure showing the diurnal and seasonal variability of important environmental and meteorological forcings together with the tower
observed fluxes of carbon and energy used in SCOPE model inversions for the Nebraska Mead flux tower site. The variables in (a) and (b) are
used as inputs to the SCOPE model and the variables in (c) are used as a target in a moving window retrieval approach.

Table 1. Prior values for LM inversion (units: Vcmax, µmols m−2 s−1; BBslope, no unit; LAI, no unit).

Prior state vector Prior error (σ )

Site Vcmax BBslope LAI Vcmax BBslope LAI Duration (h)

Mead-1 (C4) 50 7 4 30 5 3 9–16
Missouri Ozark (C3) 50 4 2 20 5 1 10–14
Niwot Ridge (C3) 80 4 3.8 20 5 10−5 9–16

for all the three parameters Vcmax, BBslope and LAI is more
realistic. The comparison of posterior simulations (brown
and orange lines) indicates the net errors in the prediction
of fluxes are quite similar in both cases (with and without
MODIS reflectance) with the difference between the two be-
ing δ1 ≤ 15% during the middle of the growing season. This
may indicate that in this example there is an equifinality in
the posterior simulation of fluxes with the retrieved parame-
ters, which gets alleviated with the reflectance data. We find
that the MODIS reflectance better constrains LAI during the
beginning of the growing season between DOY 160 and 180.
The unexpectedly large increases in BBslope and LAI around
DOY 250–260 may be partially attributed to the largest rain-
fall events (see Fig. 6). Part of this variability and correlation
between BBslope and LAI may also be due to the diminish-
ing role of soil evaporation (parameterized by a single resis-
tance in SCOPE) with increasing LAI. Another part may be
due to evaporation from the wet canopies, which is not cur-
rently represented in SCOPE. This may cause the inversion
to overestimate BBslope, even though it would not represent
the gas exchange through the stomata. From the inversion re-
sults it is clear that all three parameters Vcmax, BBslope and
LAI are much better constrained (with more realistic values

and better seasonal variability) with the assimilation of re-
flectance data together with fluxes in the optimal estimation
framework.

Figure 8a shows the final posterior error reduction (ζi-
Eq. 10) of the retrieval iterations for each moving window.
The dashed lines indicate retrieval results using GPP and LE
observations only and the solid lines show retrievals that use
reflectance observations in addition. The value of ζi is com-
puted from the diagonal elements of the posterior error co-
variance matrix. We find a significant reduction in the pos-
terior errors of the variables in the state vector. There is a
strong seasonality in ζVcmax and ζLAI values and moderate
to no seasonality for the ζBBslope . It can be clearly seen that
the posterior error reduction is significantly greater (∼ 50%)
when combining the reflectance data with the flux observa-
tions. The error reduction provides more confidence in the
retrieved parameters, which are also more realistic. The pos-
terior error covariance matrix also indicates whether the re-
trieved parameters are truly independent (as in the case of a
diagonal matrix) or whether they covary (indicated by signifi-
cant off-diagonal elements). The error correlation is given by
ρx,y =

COV(x,y)
σxσy

and should be considered when interpreting
covariations of retrieved parameters as the nature and mag-
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Figure 7. Figure showing the seasonal variability in retrieved parameter values of Vcmax, BBslope and LAI for the Nebraska Mead-1 site
using a 3-day moving window inversion approach for the year 2010. The actual points in the time series (grey lines) of the GPP and LE
fluxes used as the target observations (Y ) for the moving window inversion approach are shown in the background. The figure shows the
comparison of the retrieved parameters using only GPP and LE fluxes (shown as dashed lines) as well as using a combination of fluxes and
MODIS reflectance (shown as solid lines). The results show reasonable trends in the retrieved parameters along with their sensitivity to GPP
and LE fluxes across the growing season.

Figure 8. Figure showing the seasonal variability of the posterior error reduction (ζ ) and correlation coefficient of the retrieved parameter
values of Vcmax, BBslope and LAI for the Nebraska Mead-1 site using a 3-day moving window inversion approach for the year 2010.
Panel (a) shows the ζVcmax , ζBBslope and ζLAI for the entire growing season and (b) shows the correlation coefficients (normalized off-
diagonal elements of posterior error covariance matrix) among these variables. The results of retrievals using only GPP and LE fluxes
are shown as dashed lines and the results using a combination of fluxes and MODIS reflectance are shown as solid lines. Both the ζ and
correlation coefficients are computed using the final Jacobian matrix at the end of each retrieval window.

nitude of the associations between the variable pairs are true
for the retrievals only and may or may not represent the be-
havior of the variable pairs in nature due to different envi-
ronmental conditions. Figure 8b shows the growing season
error correlation patterns between the three parameters from
the retrievals. From the results which include reflectance data
with flux observations, it can be seen that during the peak

growing season ρBBslope,LAI and ρVcmax,LAI have opposite signs,
indicating slightly positive and negative association between
the variable pairs in the retrievals. These trends are also true
when only flux data are used for the retrievals. However,
in comparison ρVcmax,BBslope is mostly zero but has opposite
signs with and without reflectance data and thus indicates
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both favorable and competing effects during the middle of
the growing season.

Finally, Fig. 9 demonstrates the net improvement in
canopy GPP and LE fluxes due to the optimized state vector
using flux observations only over their prior values. The first
column represents the diurnal and seasonal variability in the
time series of GPP and LE fluxes with optimized and unopti-
mized parameters and further its comparisons with flux tower
values. The right column represents the one-to-one compar-
isons of the same. We find a significant improvement in the
estimation of GPP (R2

= 0.94) and the optimized parameters
are able to capture the growing seasonal variability well as
measured by flux tower observations (slope= 1.04). The im-
provement in modeling the fluxes with the posterior over the
prior value of the state vector is also captured by the χ2 error
statistic (χ2

=
∑k
i=0((yi−F(xi))/σi)

2) for the prior (unop-
timized) and posterior (optimized) simulations. The corre-
sponding values are χ2

GPP−opt = 9382, χ2
GPP−unopt = 10728,

χ2
LE−opt = 19235 and χ2

LE−unopt = 20554.

6.4 Retrieval results for the Missouri Ozark site

6.4.1 Site description

The Missouri Ozark site is also a part of the AmeriFlux net-
work and is located in the University of Missouri Baskett
Wildlife Research area, situated in the Ozark region of cen-
tral Missouri. It is uniquely located in the ecologically im-
portant transitional zone between the central hardwood re-
gion and the central grassland region of the US (Gu et al.,
2006). This site has a mean annual precipitation of 986 mm
and a mean annual temperature of 12.11 ◦C and has contin-
uous data records from 2004 until the present. It is a de-
ciduous broadleaf forest site comprised of C3 plant species.
We use half-hourly datasets from the year 2007 and 2009 in
the present analysis. The site meteorology and forcing vari-
ables relevant to the SCOPE inversion retrievals are shown
in Figs. S4 and S5 in the Supplement. From the meteoro-
logical data it can be seen that the year 2009 was a normal
wet year and the year 2007 was a year with a midsummer
drought around DOY 250. This is also reflected in observed
GPP and LE fluxes with two distinct peaks in the growing
season, caused by a late-summer drought and associated low
productivity around DOY 250. This decrease in productiv-
ity is not distinguishable from the MODIS reflectance data
in Fig. 5, which indicates that plants maintain greenness dur-
ing this time, making this a unique test case for our inversion
setup as the Vcmax fits reflect the stress factor as well, which
is usually applied to downscale the physiological Vcmax dur-
ing environmental stress. We focus on the retrieval of the pa-
rameters Vcmax, BBslope and LAI during this entire (longer)
growing season. For both years we demonstrate the parame-
ter retrievals using GPP and LE fluxes only as well as com-
pare our retrievals using additional constraints of MODIS red
and NIR reflectances (Fig. 5).

6.4.2 Inversion parameters and results for the year
2009

The assumed prior values of the state vector, prior errors and
daytime duration which are used for filtering the GPP and
LE observations for the retrieval windows are shown in Ta-
ble 1. Compared to Mead, the retrieval for this site is car-
ried out over a much longer duration, covering almost the
entire year. Figure 10 (like Mead-1, Fig. 7) shows the com-
parison of parameter retrievals Vcmax, BBslope and LAI us-
ing (i) only flux observations and (ii) flux observations com-
bined with two MODIS reflectance bands. We find an overall
strong seasonality with realistic values of Vcmax, BBslope and
LAI, following the patterns in GPP and LE. The beginning
(and end) of the growing season shows increasing (decreas-
ing) trends in Vcmax and LAI retrievals, which coincide well
with the increase (decrease) in MODIS NDVI observations
(Fig. 5). The retrieved LAI variability helps to explain the
rapid appearance of new leaves in the spring (March–April)
and their disappearance around fall (October–November).
The MODIS reflectance data help to better constrain LAI and
Vcmax, which is specifically evident around DOYs 140–150
and 200–250. The sharp increase in retrieved Vcmax when us-
ing just the flux observations around DOY 148 may be at-
tributed to the sharp peaks in GPP; however, the reflectance
observations clearly help to better constrain the state vector.
There are some issues with the retrieval for windows around
DOY 175 and 275 (BBslope); this may again correspond to the
large precipitation (see Fig. 4) events (e.g. overestimation of
BBslope) around these windows as well as sharp fluctuations
in GPP and LE, respectively. This error in prediction of fluxes
(1= |Observed−Posterior|) is also revealed by posterior
simulations represented by brown and orange lines. Compar-
ing the posterior simulations with and without the MODIS
reflectance constraints with the prior reveals the net error to
be of similar magnitude in both cases with δ1 ≤ 15% during
the growing season and indicates equifinality in the predicted
fluxes with the parameter combinations.

Figure 11 shows the final posterior error reduction of
the retrieval iterations for each moving window. It is found
that there is significant reduction in the posterior errors for
BBslope. We find that ζVcmax and ζLAI have the same trend and
seasonality as that of retrieved Vcmax and LAI respectively.
The evolution of the retrieval error correlations is again in-
teresting and comparison with the Mead Corn-C4 site using
flux observations only shows it is similar for ρVcmax,LAI and
ρBBslope,LAI (negative and positive respectively) and different
for ρVcmax,BBslope .

The correlations ρVcmax,BBslope and ρVcmax,LAI are both neg-
ative, indicating counteracting effects of these variables in
the retrieval. In comparison, ρBBslope,LAI is positive for the re-
trievals, indicating in-sync behavior. The error correlations
ρVcmax,LAI are highest among the three in the middle of the
growing season.
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Figure 9. Figure showing the improvement in diurnal and seasonal variability in modeling the GPP and LE fluxes with optimized parameters
over prior values using SCOPE for the Nebraska Mead-1 site for the year 2010. The figure also shows the one-to-one comparison (indicated
by the black line) with the observed flux tower values. The optimization of the photosynthetic parameters improves the accuracy of computing
the carbon and water fluxes as indicated by the R2 value and the equation of the regression line.

Figure 10. Figure showing the seasonal variability in retrieved parameter values of Vcmax, BBslope and LAI for the Missouri Ozark site using
a 3-day moving window inversion approach for the year 2009. The actual points in the time series (grey lines) of the GPP and LE fluxes used
as the target observations (Y ) for the moving window inversion approach are shown in the background. The figure shows the comparison
of the retrieved parameters using only GPP and LE fluxes (shown as dashed lines) as well as using a combination of fluxes and MODIS
reflectance (shown as solid lines). The results show reasonable trends in the retrieved parameters along with their sensitivity to GPP and LE
fluxes across the growing season.

Finally, there is a significant improvement in the estima-
tion of both GPP and LE fluxes (see Fig. S6) (R2

= 0.7)
with the optimized state vector over the prior values. The
optimized state vector is able to capture the growing sea-
sonal variability well (slope of regression lines: GPP= 0.97
and LE= 1.02). The unoptimized prior values severely un-
derpredict both fluxes. The corresponding error measures
χ2

GPP−opt = 12975, χ2
GPP−unopt = 30070, χ2

LE−opt = 17260

and χ2
LE−unopt = 32283 indicate that the inversion frame-

work is able to retrieve the seasonal dynamics in the photo-
synthetic and canopy structural parameters for accurate pre-
diction of the fluxes.
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Figure 11. Figure showing the seasonal variability of the posterior error reduction (ζ ) and correlation coefficient of the retrieved param-
eter values of Vcmax, BBslope and LAI for the Missouri Ozark site using a 3-day moving window inversion approach for the year 2009.
Panel (a) shows the ζVcmax , ζBBslope and ζLAI for the entire growing season and (b) shows the correlation coefficients (normalized off-
diagonal elements of posterior error covariance matrix) among these variables. The results of retrievals using only GPP and LE fluxes
are shown as dashed lines and the results using a combination of fluxes and MODIS reflectance are shown as solid lines. Both the ζ and
correlation coefficients are computed using the final Jacobian matrix at the end of each retrieval window.

Figure 12. Figure showing the seasonal variability in retrieved parameter values of Vcmax, BBslope and LAI for the Missouri Ozark site using
a 3-day moving window inversion approach for the year 2007. The actual points in the time series (grey lines) of the GPP and LE fluxes used
as the target observations (Y ) for the moving window inversion approach are shown in the background. The figure shows the comparison
of the retrieved parameters using only GPP and LE fluxes (shown as dashed lines) as well as using a combination of fluxes and MODIS
reflectance (shown as solid lines). The results show reasonable trends in the retrieved parameters along with their sensitivity to GPP and LE
fluxes across the growing season.

6.4.3 Inversion results for the year 2007

The year 2007 for the Missouri Ozark site is an interest-
ing example because the forest experiences a late summer
drought and decrease in productivity, which is captured by
the flux observations but not with phenology or greenness
(see Fig. S5, Figs. 12 and 5). The inversion setup, meteo-
rological data resolution, initial guess and prior errors for

the year 2007 are similar to that of 2009. Figure 12 shows
the results for the retrieval of parameters Vcmax, BBslope and
LAI from the inversion framework using (i) observations of
GPP and LE fluxes (dashed line) and (ii) flux observations
with MODIS reflectance bands (solid lines). The overall sea-
sonality of the retrieved parameters reveals that the inversion
framework is able to capture the late-summer drought. The

www.biogeosciences.net/16/77/2019/ Biogeosciences, 16, 77–103, 2019



92 D. Dutta et al.: Optimal inverse estimation of ecosystem parameters

midseason drought around DOY 230–250 is well captured
by decreases in photosynthesis (Vcmax) and stomatal con-
ductance (BBslope). These parameters again increase from
around DOY 260 after the drought recovery and also corre-
late well with the flux observations. However, the Vcmax vari-
ations should not be confused with actual changes in rubisco
concentrations. Like many other carbon cycle models, the
only way to impose environmental stress (apart from VPD
and temperature) in SCOPE is to scale Vcmax with a stress
factor between 0 and 1. Our retrieved effective Vcmax is the
product of a stress factor and the physiological Vcmax, which
explains the large variations during drought here.

In contrast, the change in retrieved LAI during the pe-
riod from DOY 240 to 300 is fairly gradual and reflects the
phenology only. The addition of MODIS reflectance data
constrains LAI (and in conjunction Vcmax) much better than
just the flux observations, which is clearly evident from the
Vcmax retrievals around DOY 200. This large change in Vcmax
(when using just constraining flux observations) also corre-
sponds to the single largest rainfall event of the season (see
Fig. S5) as well as a corresponding concurrent spike in pro-
ductivity. The MODIS red and NIR reflectances, unlike GPP
and LE fluxes, were insensitive to this short drought and pro-
vide better constraints on the LAI and Vcmax retrievals dur-
ing this period. A comparison of modeled red and NIR re-
flectance from the SCOPE model with optimized parame-
ters shows that it matches well with the observations (see
Fig. S8). There is excellent match in the red reflectance
throughout the season, and the NIR reflectance also matches
well with the observations during the early–middle part of the
growing season (DOYs 130–250); during the post-drought
recovery phase the increase may be attributed to the increase
in retrieved LAI. Apart from the drought period, the range
and variability of all three parameters correspond well with
the retrievals for the same site for the year 2009 presented
earlier.

The posterior simulations excluding and including the
MODIS observations (represented as orange and brown lines
respectively in Fig. 12) indicate similar improvement in
prediction of fluxes over their priors with R2

GPP−opt = 0.7,
R2

GPP−unopt = 0.2, R2
LE−opt = 0.5 and R2

LE−unopt = 0.1. For
the year 2007 it is also found that the posterior error reduc-
tion ζVcmax and ζLAI is similar or slightly better compared to
the year 2009 (see Fig. S7). This again provides more confi-
dence in the retrieved parameters and their temporal dynam-
ics. As expected, the posterior error reduction is slightly bet-
ter for all three parameters with the reflectance constraints
during the middle of the growing season. The error correla-
tions ρVcmax,BBslope and ρVcmax,LAI for 2007 are both negative
and similar in magnitude to that of year 2009. The error cor-
relation structure for the year 2007 is different compared to
the wet year 2009, especially during the middle of the grow-
ing season, and may be attributed to the change in interaction
between the state vector elements due to imposed drought

stresses. We note that our moving window inversion setup
using different observational streams is able to capture the
ecosystem dynamics over the entire growing season as well
as capture in-season drought dynamics, which are not pos-
sible using traditional one-step seasonal or annual inversion
approaches. Inversions like this will also help guide model
parameterizations of stress impacts on the dynamic down-
regulation of photosynthesis as a response to, for example,
changes in the soil matric potential.

Finally, we performed sensitivity analyses of the newer
temperature dependence implementation in SCOPE on
the inversion retrieval results for the Ozark site (see
Sect. S1.1.2). It is found that with the newer temperature de-
pendence implementation and optimized parameters SCOPE
is able to capture Vcmax variations due to changes in the av-
erage canopy temperatures well. There is a clear difference
between the retrieved Vcmax with and without temperature
dependence, and the changes correlate with the implemented
temperature response functions (see Sect. S1.1.2). The re-
sults of the posterior simulation on GPP and LE fluxes also
indicate improvement with δχ2 error reduction of 3415 and
2104 for GPP and LE respectively.

6.5 Retrieval results for the Niwot Ridge site

6.5.1 Site description

The Niwot Ridge site is also a part of the AmeriFlux net-
work located in a subalpine forest ecosystem just below the
continental divide near Nederland, Colorado. The average el-
evation of this site is 3050 m and it is one of the high alpine
evergreen needleleaf forests with C3 plant species (Burns
et al., 2016). This ecosystem is nearly 100 years old, and
thus very different from the Mead and the Ozark sites (Mon-
son et al., 2002). This site has a mean annual precipitation
of 800 mm and a mean annual temperature of 1.5 ◦C and has
a continuous data record from 1998 until the present. This
site is thus the coldest and driest among the three. We choose
the year 2010 for the current analysis, using half-hourly flux
data. The site meteorology and forcing variables relevant to
the SCOPE inversion retrievals for the year 2010 are pre-
sented in the Fig. S11. The snow cover at this site affects the
energy exchanges and GPP for a large fraction of the year.
The trees are evergreen and there is no well defined grow-
ing season but we find that most photosynthetic activity oc-
curs in the period between May and October, with a smaller
flux magnitude compared to either the Mead or Ozark sites.
The sensible heat at the site is also larger during this period
compared to the latent heat fluxes. Since the LAI for the site
does not really change over the year, we focus on the retrieval
of the parameters Vcmax and BBslope only from constraining
GPP and LE fluxes, fixing the LAI.
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Figure 13. Figure showing the seasonal variability in retrieved parameter values of Vcmax, BBslope and LAI for the Niwot Ridge site using a
3-day moving window inversion approach for the year 2010. The actual points in the time series (grey lines) of the GPP and LE fluxes used
as the target observations (Y ) for the moving window inversion approach are shown in the background. The results show reasonable trends
in the retrieved parameters along with their sensitivity to GPP and LE fluxes across the growing season.

Figure 14. Figure showing the seasonal variability of the posterior error reduction (ζ ) and correlation coefficient of the retrieved param-
eter values of Vcmax, BBslope and LAI for the Niwot Ridge site using a 3-day moving window inversion approach for the year 2010.
Panel (a) shows the ζVcmax , ζBBslope and ζLAI for the entire growing season and (b) shows the correlation coefficients (normalized off-
diagonal elements of posterior error covariance matrix) among these variables. Both the ζ and correlation coefficients are computed using
the final Jacobian matrix at the end of each retrieval window.

6.5.2 Inversion parameters and results

For the retrievals the prior value of the state vector along
with prior errors and daytime duration used in the retrieval
windows are shown in Table 1. For this evergreen site, we as-
sumed a prior value of LAI equal to 3.8 (Monson et al., 2009)
with very low variance, effectively fixing the LAI, which im-
proves the retrieval of the other state vector parameters as it
reduces error covariations.

Figure 13 shows the results for the retrieval of parame-
ters Vcmax, BBslope and LAI. The grey time series of GPP
and LE in the background are the actual values used for
constructing the observation vector Y corresponding to each
retrieval window for parameter retrieval. The Vcmax values
again follow similar trends to the GPP fluxes across the en-
tire active season and the inversion captures the rise and fall
in the GPP trends extremely well. The slight dip and rise in
the DOY 190–210 period follows the GPP observational data
and may be attributed to temperature and precipitation fluctu-
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ations. The BBslope seems to closely follow variations in LE
fluxes and captures the seasonality well. However, we should
note that changes in soil evaporation might alias into the re-
trieval of the BBslope, especially at Niwot Ridge.

Figure 14 shows the final posterior error reduction of the
retrieval iterations for each moving window. The posterior
error reductions for BBslope and Vcmax are high through-
out the year, likely attributable to a constant LAI used
for this example (e.g. at vanishing LAI in winter for de-
ciduous ecosystems, the Jacobians of fluxes with respect
to physiological parameters will be meaningless and van-
ish as well, thereby reducing error reductions). The evo-
lution of the error correlations follows similar trends to
those in the Missouri Ozark C3 site. We find ρVcmax,BBslope

and ρVcmax,LAI are both negative and ρBBslope,LAI is posi-
tive. There is a sharp discontinuity around DOY 250–
260 in terms of ζBBslope and ρVcmax,LAI , ρVcmax,BBslope , prob-
ably due to quality and/or discontinuity in the observa-
tional fluxes and environmental forcings. The prior and
posterior simulations (with unoptimized and optimized pa-
rameters respectively) show overall net improvement of
the flux predictions when compared to tower observations
with R2

GPP−opt = 0.85, R2
GPP−unopt = 0.79, R2

LE−opt = 0.52
and R2

LE−unopt = 0.49. The corresponding error measures are
χ2

GPP−opt = 38971, χ2
GPP−unopt = 22085, χ2

LE−opt = 63865
and χ2

LE−unopt = 68 463. The high χ2 values for posterior
GPP over the prior may indicate that the posterior simulation
may not capture some periods in the simulation where the ob-
served fluxes are higher than average (which were probably
captured with a high prior value of Vcmax). This may also be
due to model structural issues caused by stress induced due to
snow processes not being accurately represented in SCOPE
(with a stress factor in Vcmax). Further, we have an additional
constraint of near-constant LAI, while we have found that
GPP is very sensitive to LAI. In this case the inversion has
to fit GPP by mainly varying the Vcmax, which gives it fewer
degrees of freedom and may not yield the most optimal solu-
tion. For instance, changes in the fraction of direct vs. diffuse
light is not fully represented in our model (apart from chang-
ing PAR) but could affect the overall PAR value incident at
the top of the canopy as well as the overall light interception,
as there are considerable gaps between canopies.

7 Discussion and conclusion

Our results demonstrate the feasibility of a moving window
inversion approach for the retrieval of key ecosystem param-
eters using eddy covariance flux tower observations. In ad-
dition, we also demonstrated that red and NIR spectral re-
flectance observation from satellites adds better constraints
on LAI, and thereby also improves the retrievals of Vcmax
and BBslope by reducing interferences in retrieved parame-
ters. The moving window retrieval approach is specifically

useful for dynamic changes in ecosystem parameters, such
as the response to environmental stress due to water stress,
which we observed during a summer drought at the Ozark
flux tower site.

There is strong evidence from measurements that un-
der normal conditions both LAI and photosynthetic param-
eters have seasonal variability (Wang et al., 2008; Wilson
and Baldocchi, 2000; Wilson et al., 2000), which corre-
late with energy fluxes. Our model inversion results are in
alignment and agree well with these findings. From our re-
sults, we find considerable seasonal variability in Vcmax and
BBslope (to some extent). Previously, many studies have re-
ported measured Vcmax values of similar ranges, such as 0–
70 µmols m−2 s−1 (Wilson et al., 2000) for deciduous trees
and 0–80 µmols m−2 s−1 annual variability in tall Japanese
red pine forests (Han et al., 2004). In addition, most of the
Vcmax variability is found in systems which have season-
ally variable or constant nitrogen (N) content (Wilson et al.,
2000). These changes may be mostly attributed to substantial
in-season changes in the fraction of total N allocated to ru-
bisco as well as changes in leaf mass per area (Wilson et al.,
2000). In addition, most models, including SCOPE, have no
other method of imposing environmental stress than reduc-
ing Vcmax by a stress factor [0, 1]. The effect of reductions in
Vcmax are a reduction in assimilation, which also suppresses
transpiration. Thus, we are fitting an effective Vcmax param-
eter, which factors in effects from true changes in rubisco
content as well as the impact of environmental stress. It has
been shown that there is also a possibility to have large sea-
sonality variability in BBslope (15 to 25) values (Wolf et al.,
2006). The SCOPE model handles both the C3 and C4 photo-
synthetic pathways and could thus be applied to study a wide
variety of ecosystems. We demonstrate the approach here for
climate and productivity gradients across agricultural, decid-
uous broadleaf forest and sub-alpine evergreen forest ecosys-
tems.

The framework demonstrates the feasibility of the ap-
proach in parameter retrievals using suitable a priori uncer-
tainty in state vector and observation noise. The uncertainty
in surface energy balance closure has been generally reported
to be around 10 %–30 % (Wilson et al., 2002; von Randow
et al., 2004; Sánchez et al., 2010) and is found to be depen-
dent on timescales due to differences in energy storage terms
in ecosystems (Reed et al., 2018). Apart from observations,
it should also be noted that filtering and quality control may
be necessary for the meteorological and/or forcing fluxes, as
artifacts in the data can influence the inversion and optimiza-
tion and greatly affect the results.

In the current implementation, the inversion approach may
not properly retrieve the key parameters for ecosystems for
which the underlying forward model (SCOPE) may have de-
ficiencies in process representation. For example, there are
competing optimality theories between whether the BBslope
(Van der Tol et al., 2008b, a; Mäkelä et al., 1996) or Vcmax
(Xu and Baldocchi, 2003) is most affected by drought during
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the growing season. An improvement in the current frame-
work in the form of better process representation (and param-
eterization) of the soil moisture status in the stomatal con-
ductance model within SCOPE may improve the results and
could serve as a test bed for improvements in process repre-
sentations. In this case, it could be through the implementa-
tion of leaf water potential (Tuzet et al., 2003) or an optimal-
ity approach between water loss and carbon gain (Medlyn
et al., 2011; Katul et al., 2009).

While this paper focuses on the conceptual inversion
framework, demonstrating a novel approach for estimating
important ecosystem parameters in short time windows for
modeling the dynamics of coupled carbon and water fluxes
across ecosystems, there are opportunities for improving the
overall inversion approach to better estimate the parameters.
SCOPE allows us to ingest a variety of other observables to
constrain the parameter space, including spectrally resolved
reflectance (which can constrain LAI and chlorophyll con-
tent) as well as thermal emissions (which constrain LE) and
SIF (which constrains APAR and Vcmax). Global time series
of SIF observations, which provide a direct probe into pho-
tosynthetic machinery, are now available from space-based
(Frankenberg et al., 2011, 2014; Guanter et al., 2014) and
ground-based observations (Frankenberg et al., 2016). It will
also be important to quantify the respective information con-
tent for the observables within the framework, which can
vary depending on the state vector itself as the Jacobians
from our inversion results indicate that the inverse system
is nonlinear.

Our Bayesian inversion framework is highly flexible in
terms of allowing an arbitrary number of prior and retrieval
parameters, which could be tuned for better estimation of
the key ecosystem parameters with accurate posterior uncer-
tainty estimates. The stepwise LM optimization framework
with the SCOPE model also automatically weighs the car-
bon and water fluxes towards optimal state vector estimation
without any predefined constraints (Wolf et al., 2006) for par-
ticular parameters. Further, the Bayesian retrieval framework
could also be used to retrieve the photosynthetic temperature
dependency parameters such as entropies and activation ener-
gies, which are even harder to measure directly but might be
crucial, especially as the modeling of the ecosystem response
to a warming climate mostly neglects potential changes in
temperature dependencies of Vcmax. Our ongoing and future
research efforts aim to utilize the developed framework to
address these questions by incorporating newer observations
and making use of the full potential of SCOPE.

Code and data availability. The authors thank the AmeriFlux team
for making the eddy-covariance flux data available for this
study. The FLUXNET2015 datasets used in this study have been
downloaded from the FLUXNET community data portal (http://
fluxnet.fluxdata.org/data/fluxnet2015-dataset/, FLUXNET commu-
nity, 2015). The version of SCOPE model used in this study can be
obtained from https://github.com/Christiaanvandertol/SCOPE (van
der Tol, 2017).
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Appendix A: Modeling photosynthesis in SCOPE

The biochemical module is at the center of energy balance
computations within SCOPE. This module computes the net
assimilation (photosynthesis), stomatal conductance and the
chlorophyll fluorescence of a leaf. This module is thus ex-
tremely important because the coupled photosynthesis and
stomatal conductance regulates the latent heat flux which
in turn affects the net energy balance and the leaf temper-
ature, which in turn again affects the leaf photosynthesis and
subsequently the energy balance. SCOPE computes the leaf
temperature and the overall energy balance iteratively such
that they there is closure in energy balance. As such the leaf
temperature and its regulation of photosynthesis forms an
extremely important component of the overall energy bal-
ance of the canopy. We have adapted a photosynthetic model
together with coupled temperature dependence of the pho-
tosynthetic parameters according to the implementation in
CLM4.5. This includes both the temperature dependence
functions and the high temperature inhibition of the parame-
ters. The model includes exclusive pathways both for the C3
and C4 plant species and is represented as follows:

The net photosynthesis (assimilation) after accounting for
respiration (Rd) is given as follows:

An =min(Ac,Aj ,Ap)−Rd. (A1)

Further, the rate limiting steps are represented as follows.
The RuBP carboxylase (rubisco) limited rate of carboxyla-
tion Ac is given by they following:

Ac =

{
Vcmax(Ci−0

∗)
Ci+Kc(1+Oi/Ko)

, for C3 species,

Vcmax, for C4 species.
(A2)

The light-limited rate of carboxylation (governed by the
capacity to regenerate RuBP) Aj is given by the following:

Aj =

{
J (Ci−0

∗)
4(Ci+20∗) , for C3 species,

α(4.6φ), for C4 species.
(A3)

Finally the product-limited carboxylation rate for C3
plants and the PEP-carboxylase-limited rate of carboxylation
for the C4 plants Ap is given by the following:

Ap =

{
3Tp, for C3 species,

kpCi, for C4 species.
(A4)

For the above Eqs. A2, A3 and A4, we have the assimila-
tion rates Ac,j,p (in the units of µmols m−2 s−1), Ci is the in-
ternal CO2 concentration of the leaf (units of ppm) and Vcmax
is the maximum rate of carboxylation. For the C3 species,Kc
and Ko are the Michaelis–Menten constants for CO2 and O2
respectively (units of µmols m−2 s−1), 0∗ is the CO2 com-
pensation point (units are ppm), J is the potential electron
transport rate (units of µmols m−2 s−1) and Tp is the triose

Table A1. Functional forms of photosynthesis equation parameters.

Parameter C3 C4

R
opt
d 0.015V opt

cmax 0.025Vcmax25
J

opt
max 1.97V opt

cmax –
K

opt
c 404.9 –

K
opt
o 278.4 –

0∗opt
0.5OVoKc
VcKc

–

T
opt
p 0.1182V opt

cmax –
2PSII 0.7 –
8PSII 0.85 –
k

opt
p – 20000V opt

cmax
2cj 0.98 0.80
2ip 0.95 0.95

phosphate utilization rate. For the C4 plants, φ is the ab-
sorbed PAR (in the units of Wm−2) and the factor 4.6 con-
verts it to PPFD (photosynthetic photon flux density, in units
of µmol m−2 s−1) (for SCOPE biochem module the PAR is
already in PPFD units), α is the quantum efficiency (0.05 mol
CO2 mol−1 photon), and kp is the initial slope of the C4 CO2
response curve.

For the C3 plants, the potential electron transport rate J
depends on the PAR absorbed by a leaf, which is obtained as
the smaller root of the two roots of the following equation:

2PSIIJ
2
− (IPSII+ Jmax)J + IPSIIJmax = 0, (A5)

where Jmax is the maximum electron transport rate
(µmols m−2 s−1), IPSII is the light used in photosystem II
(µmols m−2 s−1) which is given by Eq. (A6) and 2PSII is a
curvature parameter.

IPSII = 0.58PSII(4.6φ) (A6)

The term 8PSII in Eq. (A6) is the quantum yield of photo-
system II and 0.5 represents half-electron transfer to each of
the photosystems I and II. The overall gross photosynthesis
rate is computed as a colimitation (Collatz et al., 1991a; Col-
latz et al., 1992) and is computed as the smaller root of the
following equations:

2cjA
2
i − (Ac+Aj )Ai+AcAj = 0,

2ipA
2
− (Ai+Ap)A+AiAp = 0. (A7)

The parameters 2cj and 2ip control the smoothness of
the light response curve between light-limited and enzyme-
or product-limiting rates. The values of the different parame-
ters at optimum temperature (mostly as a function of Vcmax25,
here the optimum temperature is assumed to be 25 ◦C) used
in the photosynthesis model are presented in Table A1.
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Appendix B: Temperature dependence of
photosynthetic parameters

The photosynthesis model parameters for both the C3 and C4
pathways described in the previous section and shown in Ta-
ble A1 have temperature-dependent variations and need to be
adjusted for specific leaf temperature before implementing
them in the photosynthesis model. The temperature depen-
dence of photosynthetic parameters for the C3 species can
be broadly decomposed into two parts: (i) the temperature
response and (ii) the high temperature inhibition. The func-
tional form of these are as follows:

f (Tv)= exp
[
Ha

RT0
(1−

T0

Tv
)

]
,

fH (Tv)=
1+ exp

(
SvT0−Hd
RT0

)
1+ exp

(
SvTv−Hd
RTv

) , (B1)

where Ha is the activation energy, Hd is the deactivation en-
ergy, Sv is the entropy term, T0 is the optimum temperature
and Tv is the leaf temperature. The functional relationship
of the different photosynthetic parameters in the C3 pathway
are as follows:

Vcmax = V
opt
cmaxf (Tv)fH (Tv),

Jmax = J
opt
maxf (Tv)fH (Tv),

Tp = T
opt

p f (Tv)fH (Tv),

Rd = R
opt
d f (Tv)fH (Tv),

Kc =K
opt
c f (Tv),

Ko =K
opt
o f (Tv),

0∗ = 0∗optf (Tv). (B2)

The temperature dependence of photosynthetic parameters
for the C4 species are given by the following relationships:

Vcmax = V
opt
cmax

[
f (Q10)

fU (Tv)fL(Tv)

]
,

f (Q10)=Q
(Tv−T0)/10
10 ,

fU (Tv)= 1+ exp(s1(Tv − s2)),
fL(Tv)= 1+ exp(s3(s4− Tv)), (B3)

Rd = R
opt
d

[
f (Q10)

fU (Tv)

]
, (B4)

kp = k
opt
p f (Q10). (B5)

TheQ10 temperature coefficient is a measure of the rate of
change of a biological or chemical system as a consequence
of increasing the temperature by 10 ◦C. The values of the

temperature dependence functional parameters for both C3
and C4 species used in the present study are provided in Ta-
bles B1 and B2 respectively.

The temperature dependence parameters (activation, de-
activation and entropy) are variable between different plant
species (Leuning, 2002) as such its formulation in the newer
implementation of the SCOPE model allows us to use appro-
priate values depending on the ecosystem we study.

B1 A-gs-Ci iterations

The final solution for photosynthesis requires an iterative so-
lution of the coupled equations representing (i) the Farquhar,
von Caemmerer and Berry (FvCB) model (Farquhar et al.,
1980) for the photosynthesis rate (A); (ii) Fick’s law of diffu-
sion (Eq. B6) for internal (Ci) and leaf surface (Cs) CO2 con-
centration; and (iii) Ball–Berry stomatal conductance model
(Ball et al., 1987) (Eq. B7) for stomatal conductance (gs) to
obtain stable converging solutions.

Ci = Cs− 1.6
A

gs
(from Fick’s law), (B6)

gs = g0+BBslope
Arh

Cs
(Ball–Berry model). (B7)

In Eq. (B7), BBslope represents the Ball–Berry slope, rh
the relative humidity and g0 the Ball–Berry intercept. In the
absence of an initial specification ofCi, we make the assump-
tion that g0 = 0 in Eq. (B7); then, combining Eqs. (B6), (B7),
the initial estimate of Ci is given as follows:

Ci =max
(
fmin
Ci Cs,Cs− 1.6

Csrh

BBslope

)
, (B8)

where fmin
Ci is the assumed minimum fractional leaf bound-

ary layer CO2 (assumed to be 0.3 for C3 and 0.1 for C4
species). This initial estimate of Ci is used to again esti-
mate the photosynthesis based on the FvCB model (Farquhar
et al., 1980), followed by estimation of stomatal conductance
using the Ball–Berry model Eq. (B7). Finally, the Newton–
Raphson method is used to obtain a forward estimation of the
new value of internal CO2 concentration (Sun et al., 2012;
Ivanov et al., 2008). The updated Ci is further used in the
A-gs-Ci until convergence.
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Table B1. C3 temperature dependence functional parameters.

Parameter Ha (J mol−1) Hd (J mol−1) Sv (J mol−1 K−1) T0 (K)

Vcmax 65 330 14 920 485 298
Jmax 43 540 152 040 495 298
Tp 65 330 14 920 485 298
Rd 46 390 150 650 490 298
Kc 79 430 – – 298
Ko 36 380 – – 298
0∗ 37 830 – – 298

Table B2. C4 temperature dependence functional parameters.

Parameter Q10 (–) s1 (K−1) s2 (K) s3 (K−1) s4 (K)

Vcmax 2 0.3 313.15 0.2 288.15
Rd 2 1.3 328.15 – –
kp 2 – – – –
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Appendix C: Derivation of iterative retrieval algorithm

For deriving the maximum probability state X (X̂) we equate
the derivative of the Eq. (5) to zero to obtain the following:

∇X{−2lnP(X|Y )} = −[∇XF(X)]
T S−1

ε [Y −F(X)]

+S−1
a [X−Xa] = 0. (C1)

It can be noted here that the gradient ∇X of the above
vector-valued function is a matrix-valued function and the
Jacobian matrix is represented as K(X)=∇XF(X), which
results in the following implicit equation for X̂:

−KT (X)S−1
ε [Y −F(X)] +S−1

a [X−Xa] = 0. (C2)

We have to now use any general root-finding method for
finding the solutions of Eq. (C2). If the problem is not too
nonlinear we can use the Newton and Gauss–Newton itera-
tive methods (Hartley, 1961). In general for any vector equa-
tionG(X)= 0, we can write the Newton iteration as follows:

Xi+1 =Xi − [∇XG(Xi)]
−1G(Xi). (C3)

For our problem we can assume the derivative of the cost-
function G(X) to be the left-hand side of Eq. (C1); there-
fore the gradient of G(X) (∇G) also known as the Hessian
is given by the following:

∇XG(X)=

S−1
a +KT S−1

ε K− [∇XKT
]S−1

ε [Y −F(X)]. (C4)

The Hessian in Eq. (C4) involves the Jacobian K and both
the first and second derivatives of the forward model. The
second derivative is complicated because it is a vector whose
elements are matrices and further this term is post-multiplied
by the factor S−1

ε [Y −F(X)]. The third term in the right-
hand side of Eq. (C4) is thus computationally expensive and
further for moderately linear problems this term is small;
as such this term can be ignored (also called small-residual
problems in numerical methods). When we ignore this term,
we get the Gauss–Newton iteration scheme by substituting
Eqs. (C2) and (C4) in Eq. (C3):

Xi+1 =Xi + (S−1
a +KT

i S−1
ε Ki)

−1
[KT

i S−1
ε [Y −F(Xi)]

−S−1
a [Xi −Xa]], (C5)

where Ki =K(Xi). We can substitute F(X) from Eq. (4) in
Eq. (C2) to get the following:

−KT (X̂)S−1
ε [Y −F(X)X=Xl +∇XF(X)X=Xl(X−Xl)]

+S−1
a [X̂−Xa] = 0. (C6)

Again, representing Kl =∇XF(X)X=Xl , F l =

F(X)X=Xl we can further simplify and rearrange Eq. (C6)
as follows:

S−1
a [X̂−Xa] +KT

l SεKl(X̂−Xa)=

KlS−1
ε [Y −F l+Kl(Xl−Xa)],

X̂ =Xa+ (S−1
a +KT

l S−1
ε Kl)

−1KlS−1
ε [Y −F l

+Kl(Xl−Xa)]. (C7)

In the above equations, if we change the interpretation of
the subscript l from “linearization” to “iteration counter”, we
obtain the following equation:

Xi+1 =Xa+ (S−1
a +KT

i S−1
ε Ki)

−1KiS−1
ε [Y −F(Xi)

+Ki(Xi −Xa)]. (C8)

If we express Xi+1 as a departure from Xi rather than
Xa we obtain the same expression for the iteration steps as
Eqs. (C5) or (6).
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