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Abstract. The dynamics of biochemical processes in terres-
trial ecosystems are tightly coupled to local meteorological
conditions. Understanding these interactions is an essential
prerequisite for predicting, e.g. the response of the terres-
trial carbon cycle to climate change. However, many em-
pirical studies in this field rely on correlative approaches
and only very few studies apply causal discovery methods.
Here we explore the potential for a recently proposed causal
graph discovery algorithm to reconstruct the causal depen-
dency structure underlying biosphere–atmosphere interac-
tions. Using artificial time series with known dependencies
that mimic real-world biosphere–atmosphere interactions we
address the influence of non-stationarities, i.e. periodicity
and heteroscedasticity, on the estimation of causal networks.
We then investigate the interpretability of the method in
two case studies. Firstly, we analyse three replicated eddy
covariance datasets from a Mediterranean ecosystem. Sec-
ondly, we explore global Normalised Difference Vegeta-
tion Index time series (GIMMS 3g), along with gridded cli-
mate data to study large-scale climatic drivers of vegetation
greenness. We compare the retrieved causal graphs to sim-
ple cross-correlation-based approaches to test whether causal
graphs are considerably more informative. Overall, the re-
sults confirm the capacity of the causal discovery method
to extract time-lagged linear dependencies under realistic
settings. For example, we find a complete decoupling of
the net ecosystem exchange from meteorological variability
during summer in the Mediterranean ecosystem. However,

cautious interpretations are needed, as the violation of the
method’s assumptions due to non-stationarities increases the
likelihood to detect false links. Overall, estimating directed
biosphere–atmosphere networks helps unravel complex mul-
tidirectional process interactions. Other than classical correl-
ative approaches, our findings are constrained to a few mean-
ingful sets of relations, which can be powerful insights for the
evaluation of terrestrial ecosystem models.

1 Introduction

The terrestrial biosphere responds to atmospheric drivers
such as radiation intensity, temperature, vapour pressure
deficit, and composition of trace gases. On the other hand,
the biosphere influences the atmosphere via partitioning in-
coming net radiation into sensible, latent, and ground heat
fluxes, as well as via controlling the exchange of trace
gases and volatile organic compounds. Over the past few
decades, many of these processes have been identified and
their physical, chemical, and biological effects have been in-
vestigated (see, e.g. Monson and Baldocchi, 2014; McPher-
son, 2007, for overviews). However, there are still substantial
unknowns regarding the exact causal dependencies among
the different processes (Baldocchi et al., 2016; Miralles et al.,
2018), which leads to large uncertainties when predicting,
e.g. ecosystem responses to drought conditions (von Buttlar
et al., 2018; Sippel et al., 2017).
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Multiple ecological monitoring systems have been set up
to monitor ecosystem dynamics. Networks of eddy covari-
ance towers continuously monitor carbon, water, and energy
fluxes in high temporal resolution (Baldocchi, 2014). Satel-
lite remote sensing data complement this picture and can be
used in tandem (Papale et al., 2015; Mahecha et al., 2017).
They typically only monitor vegetation states at multi-day
resolutions and some products offer nearly complete global
coverage (Justice et al., 2002; Woodcock et al., 2008). The
actual and future satellite missions are leading to rapid de-
velopment in the field with ever higher spatial, temporal,
and spectral measurements (Malenovský et al., 2012; Guan-
ter et al., 2015; Qi and Dubayah, 2016).

The study of biosphere–atmosphere interactions using ob-
servations typically relies on correlative approaches, or is
based on model data, i.e. requires a priori knowledge. In
recent years, a new branch in statistics aiming for causal
inference from empirical data has experienced substantial
progress. The idea of causal inference had already emerged
in the early 20th century (Wright, 1921). Later, Granger
(1969) suggested one of the first applicable formalisms; since
then, several efforts in ecology and climate science have con-
centrated on the bivariate form of Granger causality (Elsner,
2006, 2007; Kodra et al., 2011; Attanasio, 2012; Attanasio
et al., 2012). From an information theory perspective, trans-
fer entropy (Schreiber, 2000) evolved as a frequently used
measure to infer directionality and amount of information
flow (Kumar and Ruddell, 2010; Ruddell et al., 2015; Gerken
et al., 2018; Yu et al., 2019). For instance, Ruddell and Ku-
mar (2009) used transfer entropy to estimate networks of in-
formation flow. These networks constructed for an agricul-
tural site under drought and non-drought conditions showed
substantial differences in connectivity, especially between
subsystems comprised of variables of land and atmospheric
conditions. Those changes in connectivity are attributed to
changes in the feedback patterns between the subsystems for
drought and normal conditions. The original forms of both
Granger causality and transfer entropy are bivariate and con-
verge for the case of vector auto-regressive models. While
Granger causality is typically limited to linear relationships,
transfer entropy also captures non-linear interactions but re-
quires very large data quantities for the estimation of the
probability density function.

Aiming to mitigate some of the limitations of the tra-
ditional Granger causality, Detto et al. (2012) used a con-
ditional spectral Granger causality framework that allowed
them to disentangle system inherent periodic couplings from
external forcing. The disentanglement is enabled via decom-
position into the frequency domain using wavelet theory.
This method led them to the finding that soil respiration in
a pine and hardwood forested ecosystem in winter is not in-
fluenced by canopy assimilation but only by temperature,
a result that would not be detectable via lagged correlation
or bivariate Granger causality. A time frequency representa-
tion of Granger causality was presented by Shadaydeh et al.

(2019), which allowed them to identify anomalous events
in marine and ecological time series. Green et al. (2017)
used a similar approach to Detto et al. (2012) to investi-
gate biosphere–atmosphere feedback loops. It was found that
they can explain up to 30 % of variance in radiation and
precipitation in certain regions. Recently, Papagiannopoulou
et al. (2017a) applied a non-linear multivariate conditional
Granger causality framework to study climatic drivers of
vegetation at the global scale. This approach revealed that
water availability dominates plant productivity, as 61 % of
the vegetated surface appeared water-limited rather than con-
trolled by radiation or temperature (Papagiannopoulou et al.,
2017b). In cases of transfer entropy, Goodwell and Kumar
(2017a, b) developed a redundancy measure, which allows
them to distinguish unique, synergistic, and redundant in-
formation transfer of a bivariate or (potentially) multivari-
ate system to a target variable. This modification enables a
stronger multivariate interpretation of process networks con-
structed with transfer entropy. Changes in connectivity then
potentially point to different ecosystem response strategies to
disturbances (Goodwell et al., 2018). These examples high-
light that unexpected interaction patterns can in principle be
identified from data only and may challenge theoretical as-
sumptions. In fact, in the last few years the science of causal
inference has developed a strong theoretical foundation and
several algorithms have been proposed (Spirtes et al., 2001;
Pearl, 2009; Peters et al., 2017; Pearl and Mackenzie, 2018;
Runge et al., 2019a). However, only a few studies test the
suitability of this latest generation of methods for under-
standing ecosystem dynamics (see, e.g. Shadaydeh et al.,
2018, 2019; Christiansen and Peters, 2020).

Ecological and climate data are often time-ordered. This
property can be exploited to construct time series graphs
(Ebert-Uphoff and Deng, 2012). Recently, Runge et al.
(2019b) introduced an algorithm to estimate such graphs,
called PCMCI, a combination of the PC algorithm (named af-
ter its inventors Peter and Clark; Spirtes and Glymour, 1991)
and the Momentary Conditional Independence (MCI) test.
PCMCI has been successfully applied to artificial (Runge
et al., 2018) and climatological case studies (Runge et al.,
2014; Kretschmer et al., 2016). Hence, this method could
be potentially of high relevance for learning the causal de-
pendency structure underlying biosphere–atmosphere inter-
actions.

In this study, we explore the potential of PCMCI for disen-
tangling and quantifying interactions and feedbacks between
terrestrial biosphere state and fluxes and meteorological vari-
ables. The study is structured as follows. In Sect. 2, we jus-
tify and introduce the method from an ecological perspec-
tive, and we also describe artificial and real-world datasets
explored in this study. The results in Sect. 3 describe the per-
formance of the method on artificial time series data with
known dependencies that mimic some basic properties of
observed land surface fluxes such as heteroscedasticity. We
then report on the exploration of three replicated eddy covari-
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ance measurement towers in a Mediterranean ecosystem and
explore how the identified interdependencies of carbon and
energy fluxes and micro-meteorological observations vary
over time. Further, we present the analysis of global satellite
data of vegetation greenness to understand the lagged depen-
dency of ecosystems with respect to climatic drivers. Based
on these results, Sect. 4 discusses the potentials and limita-
tions of PCMCI for other applications in land–atmosphere
studies and give recommendations for further methodologi-
cal developments.

2 Method and data

2.1 From bivariate to multivariate measures of
causality

Monitoring an ecosystem with continuous observations of
net ecosystem exchange (NEE), the underlying gross primary
production (GPP), and ecosystem respiration (Reco) together
with the relevant drivers, i.e. global radiation (Rg), surface
air temperature (T ), and soil moisture (SM), allows us to
study the dynamics of the carbon cycle in terrestrial ecosys-
tems. To foster its understanding, a fundamental question
is how these variables causally depend on each other. This
requires the identification of directional dependencies such
as the well-known effects of SM→GPP and GPP→Reco
and their differentiation from physically implausible links
such as Reco→GPP. Graphical causal models (Spirtes et al.,
2001) provide a framework to represent and identify causal
relations based on conditional independence relations in data
streams of this kind. In the case of an ecological monitoring
site as described here, we can exploit the temporal informa-
tion of the observations for identifying a time series graph as
a type of graphical model (Runge, 2018). Formally this can
be stated as follows. The variable Xit is part of a multivariate
stochastic process X (where i is the variable index, in the ex-
ample i ∈ {Rg,T ,GPP,Reco,SM}, and t is the time index).
A time series graph G visualises how the individual variables
Xi ∈ X depend on each other at specific time lags τ , i.e.Xit−τ
with τ ∈ {1, . . ., τmax} (see Runge, 2018, for definitions). In
the following, we refer to a variable Xit−τ that is causally af-
fecting a variable Xjt as “parent” or “driver” and the latter as
“receiver” or “target”. To come to a causal interpretation, it
is important to exclude dependencies between two variables
that are due to common drivers (Xit−τ1

←Xst−τ2
→X

j
t ) or

indirect paths (Xit−τ2
→Xst−τ1

→X
j
t ). For instance, when

estimating the effects of GPP on Reco and Rg on Reco using a
bivariate measure, one likely obtains implausible results like
links that are too strong or even unexpected links because
T , respectively, as the common driver and mediator (indirect
path), is not accounted for. To exclude dependencies due to
common drivers or indirect paths, conditional independence
tests are used, denoted as CI(Xit−τ ,X

j
t |S), with some con-

ditioning set S. If any variable (or their combination) in S

explains the dependence between Xit−τ and Xjt , then the CI
statistic is 0.

Two prominent methods that aim for directional depen-
dencies are Granger causality and transfer entropy (Granger,
1969; Schreiber, 2000). Granger causality is typically esti-
mated as a vector auto-regressive model and thus captures
only linear links. Transfer entropy, based on information the-
ory, also captures non-linear dependencies. It can be shown
that for multivariate Gaussians, transfer entropy is equiva-
lent to Granger causality (Barnett et al., 2009). Both can be
phrased as testing for conditional independence (Runge et al.,
2019a). In their original bivariate form, neither of these two
methods accounts for third variables, but both can also be ex-
tended to deal with multivariate time series as required here
(Runge et al., 2012; Granger, 1969). There are even non-
linear and spectral modifications of Granger causality which
have been applied to study biosphere–atmosphere interac-
tions (Papagiannopoulou et al., 2017a; Detto et al., 2012;
Claessen et al., 2019). However, the estimation of multivari-
ate transfer entropy is challenging due to the “curse of di-
mensionality” (Runge et al., 2012), and multivariate Granger
causality also exhibits low link detection power for larger
number of variables (higher dimensions) and limited sample
size, as is the case in our application (Runge et al., 2019b).
The strong decrease in detection power happens when us-
ing the whole past X−t = (Xt−1,Xt−2, . . .) of Xjt , truncated
at a maximum lag τmax, as a conditioning set S . The problem
is that this set can contain a high number of conditions that
are irrelevant. For example, when assessing the effect of Rg
at a specific time lag τ on GPP using multivariate Granger
causality one would create a vector auto-regressive model
comprised of all variables, i.e. Rg, T , SM, GPP, and Reco, at
each available lag, but Reco, dominated by heterotrophic res-
piration, is not expected to affect gross primary productivity
and could be removed to decrease the dimensionality. How-
ever, manually selecting conditions is not desirable when the
underlying dependence structure is unknown, which is why
ideally the conditioning set is identified automatically.

PCMCI addresses this issue by reducing the set of con-
ditions S prior to quantifying the dependence between two
variables. The two-step approach utilises a variant of the
PC algorithm (Spirtes and Glymour, 1991) and the momen-
tary conditional independence measure (MCI) (Runge et al.,
2019b). More detailed descriptions are given in Sect. 2.4
and 2.5, respectively (a full description of PCMCI including
proofs and quantitative comparisons with other methods are
provided in Runge et al., 2019b). A schematic of the PCMCI
approach is given in Scheme A1 in Appendix A. PCMCI
belongs to the family of causal graphical models (Spirtes
et al., 2001; Pearl, 2009) and follows the assumptions listed
in Sect. 2.2. In the limit of infinite time series length, PCMCI
converges to the true graph of dependencies, which is why we
use the term “causal”. As we deal with finite sample length
and partially unfulfilled assumptions, spurious links can still
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appear (beyond the expected false positive rate) and therefore
each detected link has to be interpreted with caution.

2.2 Assumptions

PCMCI assesses the causal structure of a multivariate dataset
or process X by estimating its time series graph. To draw
causal conclusions from observational data, any causal
method must adopt a number of assumptions (Pearl, 2009;
Spirtes et al., 2001). For the time series case, here we as-
sume time order, the causal Markov condition, faithfulness,
causal sufficiency, causal stationarity, and no contemporane-
ous causal effects (Runge et al., 2018). PCMCI is applied
in combination with the ParCorr linear independence test
based on partial correlations (see Sect. 2.3). This applica-
tion additionally requires stationarity in the mean and vari-
ance and linear dependencies. In the following, we briefly
discuss these assumptions (further details in Runge, 2018;
Runge et al., 2019b).

The time order within the time series allows us to ori-
ent directed links which are only pointing forward in time.
This accounts for causal information propagating forward in
time only, i.e. the cause shall precede the effect. Therefore,
a directed causal link Xit1 →X

j
t2

can only exist between two

nodes Xit1 ,X
j
t2

if t1 < t2. When a contemporaneous link is
found, i.e. t1 = t2, it is considered to be undirected. In eco-
logical language it means that in order to claim that Rg is
driving GPP, any change in Rg that is affecting GPP must
be measured at a time step before the change in GPP oc-
curs. The causal Markov and faithfulness assumptions relate
the underlying physical causal mechanisms to statistical re-
lationships manifest in the data. The causal Markov condi-
tion states that if two processes are not directly connected
by some physical mechanism, then they should be statisti-
cally independent conditional on their direct drivers, like Rg
and Reco conditional on T . The faithfulness assumption con-
cerns the other direction: if two processes are statistically
independent, then there cannot be a direct physical mecha-
nism. The causal sufficiency assumption implies that every
common cause of two or more variables Xi ∈ X is included
in X. If this is not the case, detected links may be indirect or
due to an unobserved common driver. However, the absence
of a link in the detected graph still implies that no direct link
is present (as this only requires the assumption of faithful-
ness). For example, Rg is expected to influence Reco via T ,
the indirect path. However, a link betweenRg andReco might
be detected if T is not included in the analysis. However, a
missing link between T and Reco might indicate conditions
inhibiting respiratory processes, i.e. very cold temperatures
with frozen surfaces or very dry conditions with dead veg-
etation coverage. Causal stationarity refers to the existence
of links over time. In a deciduous forest, for example, the
ecosystem’s CO2 exchange is not causally stationary as the
link Rg→GPP is given in summer but not in winter. For-
mally, a process X with graph G is called causally stationary

over a time index T if and only if for all links Xit−τ →X
j
t

in the graph the conditionXit−τ X
j
t | X

−
t \{X

i
t−τ } holds for

all t ∈ T .

2.3 Independence test

At the core of PCMCI there are conditional independence
tests CI(Xit−τ ,X

j
t ,S) to evaluate whether Xit−τ X

j
t | S

given a conditioning set S. Within the PCMCI software pack-
age TIGRAMITE (Runge, 2017), several independence tests
are implemented. Here, we focus on the linear independence
test called ParCorr. The ParCorr conditional independence
test is based on partial correlations and a t test. This assumes
the following model:

Xi = SβXi + εXi , Xj = SβXj + εXj , (1)

with coefficients β and Gaussian noise ε. This leads to the
following residuals:

rX
i

=Xi −Sβ̂Xi , rX
j

=Xj −Sβ̂Xj , (2)

with estimated β̂. ParCorr removes the influence of S on Xi

and Xj via ordinary least-squares regression and tests for
independence of the residuals using the Pearson correlation
with a t test. The independence test returns a p value and
test statistic value I , i.e. the correlation coefficient in case
of ParCorr. Thus, to identify the effect of GPP on Reco that
does account for their common driver T ∈ S, ParCorr will
perform a linear regression of T on both GPP and Reco ac-
counting for time lags. The p value of the residuals’ partial
correlation test can be used to assess whether the two vari-
ables are dependent.

2.4 PC algorithm

To efficiently estimate CI(Xit−τ ,X
j
t |S) the conditioning set

S should be as small as possible, which means that it should
only contain relevant conditions, which allows us to iso-
late the unique influence of Xit−τ on X

j
t . For an estima-

tion of CI(Rgt−τ ,GPPt |S), for example, S should contain
T and SM (at certain lags), as they influence the ability of
an ecosystem to perform photosynthesis. Likewise, when es-
timating CI(Tt−τ ,GPPt |S), S should include Rg and SM for
the same reasons. A sufficient set of relevant conditions in-
cludes the drivers and parents of the variable Xjt . Conse-
quently, the aim of the PC step is to identify an as small
as possible superset of the parents of each variable included
in the process. The algorithm uses a variant of the PC al-
gorithm (Spirtes et al., 2001); a comprehensive pseudo-code
of this procedure is given in the Supplement of Runge et al.
(2019b). In the limit of infinite sample size, the relevant con-
ditions indeed converge to the true causal parents, although,
practically, an estimate that contains a few irrelevant condi-
tions, like Reco, is sufficient as well.

The PC step starts by initialising the whole past of a pro-
cess: P̃(Xjt )= X−t = {Xit−τ : i = 1, . . .,N,τ = 1, . . ., τmax}.
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Next, by evaluating CI(Xit−τ ,X
j
t ,S), conditionsXit−τ are re-

moved from P̃(Xjt ) that are independent ofXjt conditionally
on a subset S ∈ P̃(Xjt )\

{
Xit−τ

}
. S starts as the empty set ∅

and is iteratively increased. For instance, letXit−τ be Reco (at
a specific lag) andXjt be GPP. The conditional independence
between GPP and Reco will be estimated first by using no
conditions. If GPP and Reco appear related, one variable will
be included in the conditioning set. If the residuals are still
dependent, a second variable is included and so on. When
T is part of the conditioning set, the residuals of GPP and
Reco might not be dependent anymore and Reco is removed
from the estimated set of parents of GPP. The PC algorithm
adopted in PCMCI efficiently selects those conditioning sets
to limit the number of tests conducted.

Every conditional independence test is evaluated at a sig-
nificance threshold αpc, which is usually set to a liberal value
between 0.1 and 0.4. Alternatively, in TIGRAMITE one can
let αpc be unspecified. PCMCI then evaluates the best choice
of αpc ∈ {0.1,0.2,0.3,0.4} based on the Akaike information
criterion (AIC), which is further explained in Runge et al.
(2018).

2.5 MCI tests

MCI is the actual causal discovery step that ascribes a
p value and strength to each possible link. MCI iterates
through all pairs (Xit−τ ,X

j
t ), i = 1, . . .,N, τ = 0, . . ., τmax,

and calculates CI(Xit−τ ,X
j
t ,S), where S consists of the two

(super-)sets of parents P̃(Xjt ) and P̃(Xit−τ ) obtained in the
PC step. P̃(Xit−τ ) is constructed by shifting the time series
of P̃(Xit ) by τ . In cases where Xit−τ ∈ P̃(X

j
t ), X

i
t−τ has to

be removed from P̃(Xjt ). If τ = 0, conditional dependence
is estimated for contemporaneous nodes Xjt and Xit . Due to
missing time order, a dependence would be left undirected.
Further, as the parents P̃(Xit ) and P̃(Xjt ) used in each condi-
tional dependence test are defined to lie in the past of Xit and
X
j
t , links, both contemporaneous and lagged, can be spuri-

ous due to contemporaneous common drivers or contempo-
raneous indirect paths. The absence of a link, though, means
that a physical (contemporaneous) link is unlikely (assum-
ing faithfulness; see Runge et al., 2018). For simplicity, the
previously given examples were omitting the time lag. Thus,
if Reco responds instantaneously (considering the sampling
temporal resolution) to changes in T but T responds with a
time lag to Rg, both variables will likely appear contempora-
neously coupled to Rg.

The link strength in the PCMCI framework can be given
by the effect size of the conditional independence test statis-
tic measure CI used in combination with MCI. In case of
ParCorr, the effect size is given by the partial correlation
value, which is between −1 and 1. Assuming a linear Gaus-
sian model the partial correlation value is shown to directly
depend on the receiver’s and driver’s variance as well as the

coupling coefficient (Runge et al., 2019a):

ρMCI
Xit−τ→X

j
t

=

cσXit−τ√
σ 2
X
j
t

+ c2σ 2
Xit−τ

, (3)

where σ
Xit−τ ,X

j
t

are the variances of the noise terms driving

Xit−τ andXjt , respectively, and c is their coupling coefficient.
In practice, non-linear links can often also be well detected
with ParCorr in so far as they are linearly approximated. In
case the linear part is even “stronger” than the non-linear
part, ParCorr might also have a better detection power than a
non-linear independence test (Runge et al., 2018).

2.6 Data

2.6.1 Artificial dataset – test model

We tested the algorithm on artificial datasets prior to its ap-
plication to real-world data. The artificial dataset was created
using a test model that takes time series of measured global
radiation (Rg) and creates three artificial time series that con-
ceptually represent temperature (T ), gross primary produc-
tion (GPP), and ecosystem respiration (Reco). Note that this
test model is not intended to accurately represent observed
land–atmosphere fluxes but only serves to test the procedure.
The model incorporates one linear auto-dependence Tt−τ1 →

Tt , one linear additive cross-dependence Rgt−τ2
→ Tt , and

two non-linear dependencies, multiplicative Rgt−τ3
·Tt−τ4 →

GPPt and multiplicative exponential GPPt−τ5 · c
Tt−τ6 →

Recot (see Fig. 1), according to the following equations:

Rgmo =Rgobs , (4)
Tmo(t)= c1 Tmo(t − τ1) + c2 Rgmo(t − τ2) + ξT , (5)

GPPmo(t)= c3 Rgmo(t − τ3) · Tmo(t − τ4) + ξGPP, (6)

Recomo(t) = c4 GPPmo(t − τ5) · c
Tmo(t−τ6)−Tref

10
5 + ξReco . (7)

The parameters c1, c2, . . . , c5 are referred to as coupling
coefficients, and the time lags are noted as τ1, τ2, . . . , τ5. The
subscripts mo and obs abbreviate model and observation, re-
spectively. Tref is set to 15 ◦C. The term ξ , termed “intrin-
sic” or “dynamical noise”, here represents values from un-
correlated, normally distributed noise. Having dynamic noise
is essential for a method utilising conditional independence
tests. It is based on the assumption that a process or state is
never fully described by its deterministic part because there
are unresolved intrinsic processes, summarised as ξ .

The model was fitted to real observational data (using ra-
diation, temperature, and land–atmosphere fluxes) of daily
time resolution, measured by the eddy-covariance method
(Baldocchi et al., 1988; Baldocchi, 2003) from FLUXNET,
by minimising the sum of squared residuals using the gra-
dient descent implemented in the Optim.jl package (Mo-
gensen and Riseth, 2018). We fitted the model to 72 sites
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listed in Table A2 given in Appendix A. The value range for
the coupling coefficients c1 to c4 and c5 were set to [0.2,1]
and [1,2.5], respectively. The lags were limited to integer val-
ues in the range [0,25]. The distributions of obtained lags
and coupling coefficients are given in Figs. A1 to A4 in
Appendix A. The fitting process thus generated 72 sets of
parameters, containing coupling coefficients and lag values,
which were used for the time series generation.

From each of the 72 sets of parameters we generated four
sets of time series, each having a length of 500 years. The
time series generation was initiated using two types of data:
first, uncorrelated, normally distributed noise, and second,
unprocessed radiation data as used during the fitting (the
available radiation data were repeated to 500 years). The
resulting datasets are called baseline dataset and seasonal-
ity dataset, respectively. In both cases, the model was run
twice, once with homoscedastic (constant variance of ξ ),
once with heteroscedastic dynamical noise ξ . To induce het-
eroscedasticity, ξ was multiplied with a mean daily variance
that was extracted for each variable at each FLUXNET site.
In Fig. A5, a 5-year time series excerpt from the Hainich site
(Knohl et al., 2003b) is shown. A third dataset is generated
by anomalisation (subtraction of smoothed seasonal mean)
of the seasonality dataset.

2.6.2 Eddy covariance data – Majadas de Tiètar
experimental site

Data from three towers located in Majadas de Tiètar, (ES-
LMa, ES-LM1, ES-LM2), a Mediterranean Savanna in cen-
tral Spain, are used (coordinates of the central tower:
39◦56′25′′ N, 5◦46′29′′W). Measurements include the ex-
change of CO2 between the land surface and atmosphere
at half-hourly resolution using the eddy covariance method.
The three tower footprints received different fertilisation
treatments in spring 2015 (El-Madany et al., 2018). We con-
sider data from before the fertilisation from April 2014 to
March 2015 of shortwave downward radiation (Rg), air tem-
perature (T ), net ecosystem exchange (NEE), vapour pres-
sure deficit (VPD), sensible heat (H ) and latent heat (LE).
The average temperature within this period was 17.3◦ C, with
a total precipitation of 765 mm. Most precipitation fell be-
tween October and April.

We expect the causal imprints in the data to vary between
seasons and during the course of the day. To satisfy causal
stationarity, we estimate networks separately for each month
and consider only samples for which the potential radiation
was above four-fifths of the potential daily maximum, which
corresponds to midday samples. We used a mask type that
limits only the receiver variable to the respective month and
day time values (see Table A1 for PCMCI parameter set-
tings). This setting causes time series lengths ranging from
239 datapoints in December to 372 datapoints in July. Min-
imal and maximal lags were set to 0 and 8, respectively. We
left the data unprocessed, i.e. we did not subtract a seasonal

mean for anomalisation. Constraining the samples to sepa-
rate month and midday values reduces the effect of season-
ality as a common driver that would lead to spurious links.
Furthermore, to correct for multiple testing we applied the
Benjamini–Hochberg false discovery rate correction (Ben-
jamini and Hochberg, 1995). Thereby, the p values for the
whole graph obtained from the MCI step are adjusted to con-
trol the number of false discoveries (Runge et al., 2018). We
chose a two-sided significance level of 0.01.

2.6.3 Gridded global dataset

The second observational case study was performed on a
global dataset. We used data with 0.5◦ spatial and monthly
temporal resolution from 1982 to 2008. The dataset is com-
posed of three climatic variables, global radiation (Rg), tem-
perature (T ) and precipitation (P ), and one vegetation state
index, the Normalised Difference Vegetation Index (NDVI).
Both temperature and precipitation datasets were taken from
the Climate Research Unit (CRU), version TS3.10 (Harris
et al., 2014). The radiation data stems from the Climate Re-
search Unit and National Centers for Environmental Predic-
tion dataset (CRUNCEP, Viovy, 2016). The used NDVI data
stems from the Global Inventory Monitoring and Modeling
Systems (GIMMS) in version 3g_v1 (Pinzon and Tucker,
2014).

To examine the influence of radiation, temperature, and
precipitation on NDVI by means of PCMCI, we used the fol-
lowing settings. We compute the anomalies by subtracting a
smoothed seasonal mean. A maximal time lag of 3 months
was chosen based on the largest lag with significant par-
tial correlation among all pairs of variables, partialling out
only the autocorrelation of each variable. The receiver vari-
able was limited to the growing season defined by T > 0
and NDVI> 0.2, which allows good comparison to Wu et al.
(2015). The significance level (αpc) in the condition selection
phase (see Sect. 2.4) was chosen based on the AIC selection
criterion. A concise list of PCMCI parameters that were al-
tered from default settings is given in Table A1.

3 Results

3.1 Test model

As an example, in Fig. 1 we show PCMCI and lagged cor-
relation networks in the form of process graphs. It is clearly
visible that many more spurious links pass the significance
threshold of 0.01 using lagged correlation as compared to
using PCMCI. Those spurious links can complicate the anal-
ysis or lead to false conclusions and misleading hypotheses.
We examined four cases of different time series lengths: 91
[183≤ doy≤ 274] and 120 [153≤ doy≤ 274] d and 1 and
5 years for daily data (doy: day of the year). For each time se-
ries length and each parameter set, the causal network struc-
ture was estimated for 100 realisations of the model (each
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based on a realisation of intrinsic noise), which allowed the
estimation of false positive (FPR) and true positive (TPR)
detection rates. The detection rates are calculated for each
tower, FPR in general and TPR link-wise. The TPR for each
link is its sum of detections among 100 realisations divided
by 100. The FPR is the number of falsely detected links di-
vided by the number of all possible false links and 100. The
summary of the experiments, i.e. the overall false positive
rate (FPR) and the distributions of the link’s true positive
rate (TPR) across sites are given in Figs. 2 and 3, respec-
tively. The blue violin plots always report the case of nor-
mal distributed (non-heteroscedastic) intrinsic noise and the
corresponding orange violin plots summarise the case of het-
eroscedastic noise. The effect of heteroscedasticity and sea-
sonality is then assessed by comparing the distributions ob-
tained from the baseline dataset to the results of the season-
ality dataset.

The FPR of homoscedastic time series in the baseline
dataset is in the expected range of 0.01, the chosen signifi-
cance level, indicating a well-calibrated test due to fulfilled
assumptions. The assumption of stationarity is violated as
soon as heteroscedasticity or seasonality is present. The ef-
fect on the FPR is an increase above 0.01 for time series
length of 1 and 5 years, with a much stronger increase due
to seasonality (factors of 4 and 8, respectively) than for het-
eroscedasticity (factor of 2).

The effect of non-stationarities on the TPR differs among
the links. The detection of linear links (Rg→ T and T →
T ) is not affected by seasonality and slightly improves for
heteroscedastic dynamical noise. The detection of non-linear
links is improved by seasonality, with the strongest effects in
the link T → GPP . The link T →Reco has a stronger non-
linearity, and therefore the detection rate shows a weaker ef-
fect on seasonality. Furthermore, the coupling coefficient c5,
the base of T , can be close to or be exactly 1 (see Fig. A2).
This would actually cause, on the one hand, T →Reco to
vanish, rendering a detection impossible and, on the other
hand, result in a linear dependence of GPP on Reco, which
improves its detection. Heteroscedasticity seems to have a
slight negative effect on non-linear links. In general, the
TPRs in the seasonality dataset are quite high, even for non-
linear links, and predominantly above 80 % and often reach-
ing 100 %.

Comparing the TPRs of the non-linear links shows some
disparity. The links T → GPP and T →Reco experience
zero detection in the baseline dataset but partially consider-
able rates in the seasonality dataset with a strong dependence
on the time series length. On the contrary, the median of the
TPR of the links Rg→ GPP and GPP→Reco is above
95 % in the seasonality dataset, even for time series length as
short as 91 d, but remains high in the baseline dataset. The
removal of the seasonal cycle keeps the TPRs largely un-
affected but reduces the FPR. Nevertheless, it still remains
above the significance level by factors of 4 and 2 for 5-year
and 1-year time series lengths, respectively.

In summary, the seasonality dataset exhibits high TPR
even for non-linear links. Compared to stationary time se-
ries, the detection of non-linear links actually benefits from
seasonality. The high detection, though, comes at the cost of
a high false positive rate for time series length of and above
1 year. To a certain degree, the increase in FPR can be coun-
teracted by anomalisation.

3.2 Majadas de Tiètar dataset

First, we look at the link consistency by comparing networks
that were obtained for each tower within a month. The com-
parison is done for 2 months with strongly differing climate
conditions: April and August. In Fig. 4 we compare the es-
timated link strengths (effect size estimated via partial cor-
relation) as long as the corresponding links are significant
in at least one network. The confidence intervals are over-
lapping for the majority of links, suggesting that the uncer-
tainty of the fluxes is much smaller than the observed ef-
fects (El-Madany et al., 2018). Exceptions are found for only

a few links (Rg
0
−→ T , Rg

1
−→ LE, VPD

1
−→ VPD, H

2
−→H ,

NEE
0
−→ LE, H

2
−→ NEE, NEE

4
−→ NEE; the number above

the arrow indicates the lag) where the detection rates do not
or barely overlap. Cross-links (a link from one variable to
another) with two or more significant appearances are pre-
dominantly at zero lag. Approximately half of the links with
lag 1 are auto-dependent links (a link from the past of a
variable to its present). Comparing the links between the
months of April and August, distinct differences can be no-
ticed. First, August has slightly fewer significant links com-
pared to April. Second, the only links remaining that are sig-
nificant in two or three towers are between atmospheric vari-
ables. Third, the remaining link strengths tend to be weaker
in August than in April.

The difference among the seasons is further investigated
in Fig. 5, which shows process graphs for each month of
the year. We combine the networks of the three towers to
one process graph by plotting every link that is significant
in at least one tower. The process graphs in Fig. 5 visualise
clearly gradual changes within the interaction structure of the
biosphere–atmosphere system during the course of a year.
During the main growing season from February to May, NEE
is coupled strongly to the energy fluxes latent (LE) and sen-
sible heat (H ). These connections weaken, disappear, or even
switch sign during the dry season. Less regularly, NEE also
shows connections to radiation (Rg) and temperature (T ).
Between the atmospheric variables, a basic network between
VPD, T , Rg, and H remains intact and relatively constant in
strength. The dominance of contemporaneous links is found
as well, as already seen in Fig. 4. Aside from the decoupling
of NEE from any variable in the dry period, there are ad-
ditional interesting patterns. For example, the positive reap-
pearance of the link between NEE and LE in September.
Here, the onset of precipitation events (see Fig. A9) occurred,
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Figure 1. The artificial datasets are generated with a prescribed interaction structure (true network), which is obtained by fitting the test model
to the FLUXNET sites. Here we show for four time series lengths the process graphs estimated via both lagged correlation and PCMCI. The
data used stems from the homoscedastic realisation of the seasonality dataset of the Hainich site. The significance level was set to 0.01. The
number of time lag labels were limited to five in the correlation networks. However, for the longest time series typically the whole range of
lags (0–25) was significant.

Figure 2. The distribution of false positive detection rates estimated
for the baseline dataset, the seasonality dataset and the anomalised
seasonality dataset (mean seasonal cycle subtracted). The distribu-
tions are given for different time series length (number of data-
points). Additionally, the distributions are split to show the impact
of heteroscedastic noise (orange) compared to normal distributed
noise (blue). The significance level of 0.01 is given by a blue hori-
zontal line.

which led to strong respiration peaks (Ma et al., 2012). Cre-
ating such a network via lagged correlation would result in
much more significant links (causing the network to be not
interpretable as opposed to PCMCI) and NEE does not de-
couple from the atmosphere in August (see Fig. A6).

The above results demonstrate that PCMCI is sensitive
enough to capture seasonal differences and certain physio-
logical reasonable biosphere behaviour. Moreover, PCMCI
yields a better interpretable network structure than pure cor-
relation approaches.

3.3 Gridded global dataset

The significant lags and MCI values of each climatic vari-
able on NDVI were subject to inspection. In Fig. 6 the max-
imal MCI value and the corresponding lag are plotted for
the links Xt−τ → NDVI : τ ∈ {0,1,2,3}, with X being one
of the climatic drivers: radiation, temperature, or precipi-
tation. The chosen significance threshold was set to 0.05.
Figure 7 shows the climatic driver with the largest MCI
per grid point. PCMCI detects a regionally varying influ-
ence of climatic drivers. As expected, the boreal regions are
strongly driven by temperature instantaneously, while (semi-
)arid regions, which correspond predominantly to grass- or
prairie-dominated areas, respond strongest to precipitation at
a time lag of 1 month. Radiation is found to have a compara-
tively low spatial effect, with hotspots in southern and eastern
China, central Russia, and eastern Canada.

The dominant lags are found to be 0 and 1. Only a very
small fraction of the total area shows a maximal MCI value
at a higher lag of two or three months. The lags are also
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Figure 3. The distribution of the true positive detection rates for each link in the test model estimated for the baseline dataset, the season-
ality dataset, and the anomalised seasonality dataset. The distributions are given for different time series lengths (number of datapoints).
Additionally, the distributions are split to show the impact of heteroscedastic noise (orange) compared to normally distributed noise (blue).

not equally distributed among the climatic drivers. Radiation
and temperature are predominantly strongest at lag 0, while
precipitation has a much larger fraction of area showing the
strongest response at lag 1. Regions where the impact of Rg
on NDVI is strongest at lag 1 tend to respond negatively to
Rg but positively to precipitation at lag 1. On the other hand,
a large part of the regions with the strongest impact of pre-
cipitation at lag 0 respond negatively to it but positively to
radiation.

In summary, PCMCI estimates coherent interaction pat-
terns that match well with anticipated behaviour based on
vegetation type and prevailing climatic conditions.

4 Discussion

Causal discovery methods promise an improved understand-
ing and can help to come up with new hypotheses about
the interaction between biosphere and atmosphere (Chris-
tiansen and Peters, 2020; Runge et al., 2019a). However, the
underlying assumptions need to be properly taken into ac-
count. The coupled biosphere–atmosphere system possesses

several challenges that potentially violate the underlying as-
sumptions of causal discovery in general and the employed
method’s assumptions in particular. Here, we investigate the
effect of a violation of assumptions on PCMCI network esti-
mates.

With regard to expected non-linearities in biosphere–
atmosphere interactions, using a linear independence test
within the PCMCI framework may not be adequate. We
justify our choice with the following arguments: first, non-
linearities are often approximated linearly. Second, a linear
regression based test has a much higher power for detect-
ing linear links than a non-parametric test (Runge, 2018)
and can hence already detect links at smaller sample sizes.
Third, linear partial correlation is easily interpretable, for ex-
ample, positive and negative MCI values. This motivation is
supported on the one hand by the results of the test model
and on the other hand by additionally performed analyses on
the observational datasets using Gaussian regression and dis-
tance correlation as an independence test. These results (see
Figs. A7, A8, A10) show similar patterns, but due to the low
sample sizes exhibit lower statistical significance. In general,
the derived results show a high detection power with a strong
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Figure 4. Comparison of the networks of three eddy covariance measurement stations (LMa, LM1, LM2) located in Majadas de Tiètar
(Spain). Links that are found to be significant in one of the three networks are included. For each link, the calculated strength of all three
networks is plotted with its 90 % confidence interval. The colours blue, orange, and green correspond to the towers LMa, LM1, and LM2,
respectively. The significance threshold is 0.01. If a link does not pass the significance, it is marked by a black dot. The links are grouped
into lag 0 (top), lag 1 (middle), and all lags greater than 1 (bottom). Negative NEE is associated with carbon uptake by the ecosystem. Links
at lag 0 are left undirected (–), yet as Rg is set as main driver, links incorporating Rg at lag 0 are directed (→).

consistency in calculated effect strengths on eddy covariance
data and global, regularly gridded reanalysis data that leads
to easily interpretable patterns. Observed drawbacks are a
high FPR in cases of violated assumptions, especially strong
periodicity, as well as the appearance of contemporaneous
lags in measurement datasets.

4.1 Lessons learned from the test model

The probability of detecting a link with PCMCI depends
strongly on a link’s MCI effect size, which is larger for strong
variance in the driver and a low variance in the receiver (see
Sect. 2.5). Several results can be explained by this observa-
tion. First, the variance of three out of five drivers of cross de-
pendencies in the test model are either directly or indirectly
(via GPP) influenced by Rg, which has the highest variance

of all variables. Consequently, the detection power of the
three links is large, almost 100 %. In comparison, the other
variables’ variances are weaker, since they are influenced by
T , which results in a lower detection power. This is the origin
of the disparity in detection rates of the non-linear links. Sec-
ond, the partially strong increase in TPR of non-linear links
(influenced in a multiplicative way by T ) from the baseline
dataset to the seasonality dataset can also be explained by this
increase in variance. A multiplicative link is actually not gen-
erally expected to be found by ParCorr (Runge, 2018), but
the value of the multiplicative factor is dominated by the sea-
sonal value, and not the dynamical noise, which might cause
a scaling of the dynamical noise terms rather than a ran-
dom distortion. Third, the dependence on the variance ratio
can also explain the difference in TPR between homoscedas-
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Figure 5. To visualise the gradual changes in interaction structure the networks of the three towers are combined for each month. The number
of significant occurrences of a link is given by its width. The link strength, given by the link colour, is calculated by averaging the significant
links of the towers. The link’s lag is shown in the centre of each arrow, sorted in descending order of link strength. The resulting graphs
are shown for April 2014 until March 2015. The significance threshold is 0.01. The networks of April and August, illustrated in Fig. 4, are
highlighted by a box.

tic (equal error variance) and heteroscedastic (error variance
changing over time) time series, i.e. the variance of Rg and
GPP exhibits a strong seasonality, with its peak in summer,
while the variance of T is rather constant. This explains, for
example, the strong decrease in TPR for the link T → GPP
at 91 d time series length when comparing homoscedasticity
to heteroscedasticity. The decrease in TPR is less pronounced
when another season, implying a different variance, is chosen

for this comparison. As links with weak driver variance and
strong response variance are more likely to be missed, one
may ask what effect this will have on the detection of feed-
back loops where one variable has low and the other high
variance. Here lies a limitation of the test model where no
feedback loops were implemented.

Seasonality and heteroscedasticity constitute violations of
the stationarity assumption underlying the independence test
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Figure 6. Influence of climatic drivers on NDVI as calculated by PCMCI. The first column shows the estimated causal influence given as
maximal absolute MCI value of climatic drivers on NDVI. The second column gives the time lag at which the maximal absolute MCI value
occurs (in months).

Figure 7. Map of the strongest climatic driver (largest absolute MCI
value) per grid point.

ParCorr. Seasonality constitutes a common driver in this
model. In general, such common drivers increase the depen-
dence among the variables and hence lead to a higher de-
tection rate for true links (TPR) as well as a higher false
positive rate (FPR) for absent links if this driver is not con-
ditioned out properly. This additionally causes the TPR and
the FPR rate to increase in the seasonality model. As shown
in Runge (2018), including the cause of the non-stationarity
as an exogenous driver in the analysis allows PCMCI to

regress out its influence on the other variables. However,
for ParCorr this is only valid if the dependence on the non-
stationary driver is linear. Therefore, the regression on Rg
fails for GPP and Reco in the test model. With this ill-posed
setting, the probability to detect false links increases with
increasing time series length or when more periods are in-
cluded. Stationarity in the mean is obviously also not fully
guaranteed when subtracting the seasonal mean. Here we
observe that the FPR stays above the significance level for
the anomalised seasonality dataset. One can ask whether the
FPR stays above the significance threshold because subtract-
ing the seasonal mean does not remove the heteroscedastic-
ity. However, we attribute this high FPR to a not fully re-
moved seasonality since the FPR of both homoscedastic and
heteroscedastic time series decreases by roughly the same
amount in the anomalised seasonality dataset and the effect
of heteroscedasticity is rather weak in the baseline dataset.
The increasing FPR with increasing time series length can
further raise doubts regarding the analysis of long time se-
ries. For such an analysis, though, the assumption of causal
stationarity should first be assessed. For example, the link
from radiation to GPP vanishes in winter as there is mostly
no active plant material left. To account for causal station-
arity, the analysis should be limited to time series sections
where the causal structure is expected to be similar. This is
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typically done by limiting the analysis to a specific time pe-
riod (i.e. “masking”), e.g. a specific season, month, or time
of the day. Such masking additionally further reduces influ-
ences of remaining seasonality or heteroscedasticity. One can
argue, as in Peters et al. (2017), that the causality of a sys-
tem is invariant even between seasons because the physical
mechanism is the same in all seasons. Yet, while the physi-
cal, i.e. functional relationship might be constant over time,
its imprint in the time series might vary. For example, a func-
tional dependence f (x) might be “flat” for small values of x
and linearly increasing for larger values. If only small val-
ues occur in the winter season, then the link is absent, while
it “appears” only in the summer season. Across all seasons,
this can be considered a non-linear functional dependence
f (x). In practice, restricting an analysis to different seasons
can help in interpreting the mechanism and is performed here
using a linear framework.

Summarising the results of the test model, the different
detection rates, disparity among non-linear links, and the de-
tection of multiplicative links are largely explainable via the
effect of the variance on the link detection. Yet, the discus-
sion revealed the need for further research in several aspects.
On the one hand, feedback loops are not included in the test
model yet are an important aspect in natural systems. On the
other hand, removing non-stationarities is essential to keep
the false positive rate in the expected range, but standard pro-
cedures of subtracting the mean seasonal cycle are not suf-
ficient. Further, the effect of non-stationarity on the causal
network structure needs to be investigated.

4.2 Causal interpretation of estimated networks from
observational data

In both the half-hourly time-resolved eddy covariance data
and the monthly global dataset, the predominant type of de-
pendence found is contemporaneous. PCMCI leaves these
undirected since no time order indicating the flow of causal
information is available. Further, as discussed in Sect. 2.2,
contemporaneous common drivers or mediators are not ac-
counted for. The consequence is that both spurious con-
temporaneous and spurious lagged links can appear if they
are due to contemporaneous variables. For interactions that
are contemporaneous in nature, since they occur on consid-
erably shorter timescales than the time resolution, PCMCI
is not the optimal choice regarding a causal interpretation
and other methods should be applied in conjunction (Runge
et al., 2019a). Further, we faced a trade-off between fulfill-
ing causal assumptions and detection power. In practice, ac-
counting for causal stationarity (by limiting the analysis to
certain periods of the dataset) means decreasing the num-
ber of available data points but accounting for causal suffi-
ciency leads to an increase in dimensionality by adding vari-
ables and increasing the maximal lag. Both will lead to a
decrease in detection power, which can affect the network
structure. PCMCI alleviates the curse of dimensionality by

applying a condition selection step, but one still cannot in-
definitely add more variables. Another important factor that
affects detection power and dimensionality is the time reso-
lution. There are several points in favour and against increas-
ing time resolution. On the one hand, increasing time reso-
lution can resolve contemporaneous links and potentially in-
creases the detection power due to an increased number of
datapoints. On the other hand, the dimensionality increases
if the maximal lag is adapted. Further, causal information
might be split apart and distributed over more lags, render-
ing the links at each individual lag less detectable. This can
cause links to disappear, but links can also appear if new pro-
cesses are resolved at a higher timescale. Finally, observa-
tional noise (measurement errors) might be larger in higher-
resolution data than in aggregated data, as it is averaged out
in the latter and thus affects link detection less. Consequently,
when comparing network structures based on different set-
tings, i.e. maximal lag, included variables, time resolution,
and considered time period, the (dis)appearance of single
links among specific variables can stem from several factors,
i.e. a change in detection power, a changed (conditional) de-
pendency, or due to a common driver. These factors together
with a non-zero false positive detection rate are challenging
for a causal interpretation. Therefore, detected links should
be interpreted with care and can give rise to new hypotheses
and analyses involving further variables. Generally, a causal
interpretation is more robust regarding the absence of links
(see Sect. 2.2). Specifically, it does not require that all com-
mon drivers are observed.

Nevertheless, robust patterns were identified in our stud-
ies that are also consistent with other studies. Furthermore,
a causal analysis has the advantage of an enhanced inter-
pretability compared to correlative approaches. First of all,
we could show that the networks’ estimated link strengths
are consistent for observational data, even though measure-
ment error affects the data. The dataset used was suitable for
this analysis, as the measurement stations are located in a rea-
sonably homogeneous ecosystem that shows only little spa-
tial variation (El-Madany et al., 2018). Thus, also the interac-
tion between biosphere and atmosphere is expected to change
only marginally across space within this ecosystem. Second,
the gradual changes in plant activity that are taking place in
the ecosystem of Majadas de Tiètar throughout the year do
emerge very well in the coupling strength of daytime NEE
to the atmospheric variables. The observed decoupling dur-
ing the dry season is in accordance with the one of a soybean
field during drought conditions observed by Ruddell and Ku-
mar (2009). The gradual changes in ecosystem activity are
not visible in a pure (lagged) correlation analysis or are only
visible in colour or density changes but the large number of
significant links prevents any detailed interpretation on the
physical mechanisms and changes thereof. The large number
of significant links compared to the PCMCI networks stems
solely from the absence of conditioning in common drivers
or mediating variables, which often leads to an overestima-
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tion of the link strength in correlation networks. As a result,
processes, such as the decoupling of NEE during the dry pe-
riod, stay hidden. To reduce the effect of confounding, analy-
ses often utilise partial correlation (see, e.g. Buermann et al.,
2018). However, a partial correlation can introduce new de-
pendencies (as opposed to removing them) if one conditions
on causal effects of the variables under consideration (the
“marrying parents” effect). This issue is avoided in PCMCI
by only conditioning on past variables. Additionally, PCMCI
chooses only relevant variables as conditions by applying the
PC condition selection step, which is especially valuable in
high-dimensional study cases and improves detection power
and computation time (Runge, 2018).

The global study of climatic drivers of vegetation shows
a general pattern of lags and dependence strengths of vege-
tation on climatic variables that is easily interpretable. The
boreal regions appear energy limited and especially driven
by temperature (see Fig. 6c), while the strongest dependence
of (semi-)arid regions on precipitation reflects their limita-
tion in water supply. Two recent studies performed a similar
analysis. Both Wu et al. (2015) and Papagiannopoulou et al.
(2017b) investigated lagged effects and dependence strengths
of NDVI on precipitation, temperature, and radiation. Wu
et al. (2015) estimated the lags of the strongest effects via
an univariate regression of the climatic drivers on NDVI and
subsequently used those lags to fit a multivariate regression
model of the climatic drivers on NDVI and determined their
relative effects. Papagiannopoulou et al. (2017b) applied a
non-linear Granger causality framework utilising a random
forest predictive model; the method was presented by Papa-
giannopoulou et al. (2017a). We recognise that similar pat-
terns are observed in Wu et al. (2015), but the lags at the max-
imal MCI value are usually lower than the one found in Wu
et al. (2015), which stems from the methodical differences.
Besides having used anomaly values, PCMCI regresses both
NDVI and the climatic drivers on their parents before calcu-
lating the MCI value (see Sect. 2.5). This especially removes
the influence of autocorrelation. Runge et al. (2014) shows
how autocorrelation affects the correlative lag causing it to
be larger for stronger autocorrelation; thereby, the correlative
lag may become larger than the causal lag. Therefore, accord-
ing to Fig. 6b, the causal information embedded in monthly
resolution is predominantly received within 1 month. Find-
ing the strongest causal links at a time lag up to 1 month
appear in agreement with Papagiannopoulou et al. (2017b).
Additionally, the spatial distribution of the strongest climatic
influences compares well, but there are certain noteworthy
differences that do not necessarily stem from masking differ-
ences, i.e. that we took only values belonging to the grow-
ing season while Papagiannopoulou et al. (2017b) took the
whole time series. First, there is little significant Granger
causality of water availability found in boreal regions while
there are significant negative causal dependencies detected
via PCMCI. Second, NDVI in arid regions is not (or is only
partially) Granger caused by radiation and temperature but

in part shows a negative PCMCI value for those variables.
There might be physiological reasons that can explain the
PCMCI patterns, i.e. waterlogging or temperatures that are
too high. To explain the differences though, we could identify
two possible reasons. First, Papagiannopoulou et al. (2017b)
masked out negative influences of radiation, arguing that ra-
diation is not negatively affecting NDVI. They found that
negative influences of Rg are usually a consequence of poor
conditioning on other variables. Second, a precipitation event
in boreal regions coincides with a reduction in radiation and
temperature. Boreal regions usually do not suffer from water
shortages. Thus, they respond more strongly to the reduction
of radiation and temperature than precipitation. As precipi-
tation is coupled negatively to radiation and temperature at
lag 0, the effect of precipitation on NDVI is found to be neg-
ative. Thus, the link P

−
→ NDVI might be an effect of the

contemporaneous common driver scheme P
−
→ Rg

+
→ NDVI

and therefore would not be causal. In fact, a similar argumen-
tation can be given for the negative impact of temperature and
radiation on NDVI in arid regions.

In summary, we pointed out the need for careful interpre-
tations in applying causal discovery methods and especially
highlighted the challenges linked to the study of biosphere–
atmosphere interaction via PCMCI. We demonstrated that
the network structures estimated from observational data
are explainable with respect to plant physiology and cli-
matic effects. Finally, our study shows that causal methods
can deliver better interpretability and a much improved pro-
cess understanding in comparison to correlation and bivariate
Granger causality analyses that are ambiguous to interpret
since they do not account for common drivers.

4.3 Outlook

The preceding discussion has shed light on the merits of
PCMCI, as well as the challenges of applying causal discov-
ery methods. Runge et al. (2019a) discuss further challenges
and methods and give an outlook of how multiple methods
can be combined to alleviate limitations.

5 Conclusions

Here we tested PCMCI, an algorithm that estimates causal
graphs from empirical time series. We specifically explored
two types of datasets that are highly relevant in biogeo-
sciences: eddy covariance measurements of land–atmosphere
fluxes and global satellite remote sensing of vegetation
greenness. The causal graphs estimated from the eddy co-
variance data collected in a Mediterranean site confirm pat-
terns we would expect in these ecosystems: during the dry
season’s plants senescence, for instance, the ecosystem’s car-
bon cycle (NEE) decouples from meteorological variability.
On the contrary, during the main growing season, with warm
and humid conditions, strong links between NEE, LE andH
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characterise the graph. Using the causal framework, not only
the strongly contrasting states emerge in the graph structure
but also the gradual transitions that relate to minor changes
like the connectivity of sensible heat to temperature with pro-
gressing dryness. A purely correlative analysis, instead, is not
able to resolve these patterns. PCMCI allows us to identify
and focus on fewer (only those that are highly relevant) de-
pendencies. Applying the approach to three replicated eddy
covariance systems shows the robustness of the method to
random errors in the fluxes measurements and confirms one
of the assumptions of eddy covariance: above a relatively ho-
mogeneous terrain the fluxes measured should be spatially
invariant as should the underlying causal relationship be-
tween climate and fluxes. The global analysis of NDVI in
relation to climatic drivers confirms the known patterns of
dependence strengths of vegetation on climatic variables: bo-
real regions are energy limited and especially driven by tem-
perature and secondarily by radiation, while in semi-arid re-
gions vegetation dynamics are strongly dependent on water
supply. However, obtained response times of vegetation to
climatic variations are lower using PCMCI than correlation
which can be attributed to a better treatment of the autocor-
relation in the time series and cross-relations among climate
variables. Compared to merely correlative approaches, this
leads to a interpretable pattern of driver–response relation-
ships. In short, the new developments achieved in causal in-
ference allow us to gain well-constrained insights on pro-
cesses that would otherwise be drowning in the correlation
chaos. Therefore, we hope that this study fosters usage of
causal inference in analysing interactions and feedbacks of
the biosphere–atmosphere system and furthermore exhibits
our demand of further developments.
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Appendix A

Table A1. PCMCI parameters that were used differently from default settings.

Dataset significance αpc τmin τmax selected_variables mask_type fdr_method

Test model 0.01 0.4 0 25 [1,2,3] “none” “none”
Majadas de Tiètar dataset 0.01 None 0 8 [1,2,3,4,5] “y” “fdr_bh”
Gridded global dataset 0.05 None 0 3 [1,2,3] “y” “fdr_bh”

Table A2. List of FLUXNET sites used for the generation of artificial datasets and the time period used.

FLUXNET-ID Start year End year Data Reference FLUXNET-ID Start year End year Data Reference

AT-Neu 2002 2012 Wohlfahrt et al. (2008) DK-ZaH 2000 2014 Lund et al. (2012)
AU-Cpr 2010 2014 Meyer et al. (2015) FI-Hyy 1996 2014 Suni et al. (2003)
AU-DaP 2007 2013 Beringer et al. (2011a) FI-Sod 2001 2014 Thum et al. (2007)
AU-DaS 2008 2014 Hutley et al. (2011) FR-Fon 2005 2014 Delpierre et al. (2016)
AU-Dry 2008 2014 Cernusak et al. (2011) FR-LBr 1996 2008 Berbigier et al. (2001)
AU-How 2001 2014 Beringer et al. (2007) FR-Pue 2000 2014 Rambal et al. (2004)
AU-Stp 2008 2014 Beringer et al. (2011b) GF-Guy 2004 2014 Bonal et al. (2008)
AU-Tum 2001 2014 Leuning et al. (2005) IT-BCi 2004 2014 Vitale et al. (2016)
BE-Lon 2004 2014 Moureaux et al. (2006) IT-Col 1996 2014 Valentini et al. (1996)
BE-Vie 1996 2014 Aubinet et al. (2001) IT-Lav 2003 2014 Marcolla et al. (2003)
BR-Sa3 2000 2004 Saleska et al. (2003) IT-MBo 2003 2013 Marcolla et al. (2011)
CA-Man 1994 2008 Brooks et al. (1997) IT-Noe 2004 2014 Spano et al. (2004–2014)
CA-NS2 2001 2005 Bond-Lamberty et al. (2004) IT-Ro1 2000 2008 Rey et al. (2002)
CA-NS3 2001 2005 Wang et al. (2002a) IT-SRo 1999 2012 Chiesi et al. (2005)
CA-NS5 2001 2005 Wang et al. (2002b) IT-Tor 2008 2014 Galvagno et al. (2013)
CA-NS6 2001 2005 Wang et al. (2002c) JP-SMF 2002 2006 Matsumoto et al. (2008)
CA-Qfo 2003 2010 Chen et al. (2006) NL-Hor 2004 2011 Jacobs et al. (2007)
CA-SF2 2001 2005 Rayment and Jarvis (1999a) RU-Fyo 1998 2014 Kurbatova et al. (2008)
CA-SF3 2001 2006 Rayment and Jarvis (1999b) US-ARM 2003 2012 Fischer et al. (2007)
CH-Cha 2005 2014 Merbold et al. (2014) US-Blo 1997 2007 Schade et al. (1999)
CH-Dav 1997 2014 Zielis et al. (2014) US-Ha1 1991 2012 Wofsy et al. (1993)
CH-Fru 2005 2014 Imer et al. (2013) US-Me2 2002 2014 McDowell et al. (2004)
CH-Lae 2004 2014 Etzold et al. (2011) US-Me6 2010 2014 Ruehr et al. (2012a)
CH-Oe1 2002 2008 Ammann et al. (2009) US-MMS 1999 2014 Pryor et al. (1999)
CH-Oe2 2004 2014 Dietiker et al. (2010) US-Ne1 2001 2013 Gitelson et al. (2003)
CZ-wet 2006 2014 Dušek et al. (2012) US-Ne2 2001 2013 Cassman et al. (2003a)
DE-Akm 2009 2014 Bernhofer et al. (2009–2014) US-Ne3 2001 2013 Cassman et al. (2003b)
DE-Geb 2001 2014 Anthoni et al. (2004) US-SRG 2008 2014 Ruehr et al. (2012b)
DE-Gri 2004 2014 Prescher et al. (2010a) US-SRM 2004 2014 Scott et al. (2008)
DE-Hai 2000 2012 Knohl et al. (2003a) US-Ton 2001 2014 Tang et al. (2003)
DE-Kli 2004 2014 Prescher et al. (2010b) US-Twt 2009 2014 Hatala et al. (2012)
DE-Lkb 2009 2013 Lindauer et al. (2014) US-UMB 2000 2014 Rothstein et al. (2000)
DE-Obe 2008 2014 Bernhofer et al. (2008–2014) US-UMd 2007 2014 Nave et al. (2011)
DE-Spw 2010 2014 Bernhofer et al. (2010–2014) US-Var 2000 2014 Xu et al. (2004)
DE-Tha 1996 2014 Grünwald and Bernhofer (2007) US-Whs 2007 2014 Scott et al. (2006)
DK-NuF 2008 2014 Westergaard-Nielsen et al. (2013) US-Wkg 2004 2014 Emmerich (2003)
DK-Sor 1996 2014 Pilegaard et al. (2011)
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Scheme A1. Schematic overview of the aim and approach of PCMCI using time series graphs as a visualisation tool.
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Figure A1. Distribution of coupling coefficients obtained after fit-
ting the test model to the Fluxnet sites. Shown here are the distribu-
tions used for generation of heteroscedastic time series.

Figure A2. Distribution of coupling coefficients obtained after fit-
ting the test model to the Fluxnet sites. Shown here are the distribu-
tions used for generation of homoscedastic time series.

Figure A3. Distribution of time lags obtained after fitting the test
model to the Fluxnet sites. Shown here are the distributions used
for generation of heteroscedastic time series.

Figure A4. Distribution of time lags obtained after fitting the test
model to the Fluxnet sites. Shown here are the distributions used
for generation of homoscedastic time series.
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Figure A5. Observed (blue) and test model (orange) time series for the Hainich Fluxnet site. The model data were produced with het-
eroscedastic noise.
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Figure A6. The same as Fig. 5 but using simple correlation analysis to estimate the graph structures. The number of significant occurrences
of a link is given by its width. The link strength, given by the link colour, is calculated by averaging the significant links of the towers. Link
labels indicating the lag were removed to improve link visibility. They typically ranged from 1 to 8 (full range of possible lags). The resulting
graphs are shown for April 2014 until March 2015. The significance threshold is 0.01.
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Figure A7. The same as Fig. 4, but the analysis was performed using a non-linear independence test. Comparison of the networks of three
eddy covariance measurement stations (LMa, LM1, LM2) located in Majadas de Tiètar (Spain). Links that are found to be significant in one
of the three networks are included. For each link, the calculated strength of all three networks is plotted with its 90 % confidence interval.
The colours blue, orange, and green correspond to the towers LMa, LM1, and LM2, respectively. The significance threshold is 0.01. If a link
does not pass the significance, it is marked by a black dot. The links are grouped into lag 0 (a, b), lag 1 (c, d) and all lags greater than 1 (e,
f). Links at lag 0 are left undirected (−), yet as Rg is set as main driver, links incorporating Rg at lag 0 are directed (→). Note that Gaussian
process regression and distance correlation (GPDC) only yields positive link strengths. Further, the strength values estimated with GPDC are
rather weak due to the low number of datapoints and the larger sensitivity of that method to the sample size.
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Figure A8. The same as Fig. 5, but the analysis was performed using a non-linear independence test. The number of significant occurrences
of a link is given by its width. The link strength, given by the link colour, is calculated by averaging the significant links of the towers. The
link’s lag is shown in the centre of each arrow, sorted in descending order of link strength. The resulting graphs are shown for April 2014 till
March 2015. The significance threshold is 0.01. Note that GPDC only yields positive link strengths. Further, the strength values estimated
with GPDC are rather weak due to the low number of datapoints and the larger sensitivity of that method to the sample size
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Figure A9. Daily aggregated precipitation in Majadas de Tiètar measured at the three tower sites from April 2014 to March 2015. Missing
values are plotted as gaps.

Figure A10. Influence of climatic drivers on NDVI as calculated by PCMCI in conjunction with the non-linear independence test GPDC
(similar to Fig. 6). The first and second columns show the estimated causal influences of climatic drivers on NDVI at lag 0 and 1, respectively.
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Code and data availability. The eddy covariance data of the
FLUXNET sites can be downloaded from the official web page
(https://fluxnet.fluxdata.org/, last access: 14 June 2018). For further
information, please see Table A2.

CRU temperature and precipitation data are available at http:
//catalogue.ceda.ac.uk/uuid/3f8944800cc48e1cbc29a5ee12d8542d
(University of East Anglia Climatic Research Unit et al., 2008).

CRUNCEP radiation data can be downloaded via
ftp://nacp.ornl.gov/synthesis/2009/frescati/temp/land_use_change/
original/readme.htm (Viovy, 2016).

The NDVI dataset is available at https://ecocast.arc.nasa.gov/
data/pub/gimms/3g.v1/ (Pinzon and Tucker, 2014).

The TIGRAMITE software package that includes PCMCI can be
found on github https://github.com/jakobrunge/tigramite/ (Runge,
2017). All other code will be made available upon request.
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