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Abstract. The observed warming in the Arctic is more than
double the global average, and this enhanced Arctic warm-
ing is projected to continue throughout the 21st century. This
rapid warming has a wide range of impacts on polar and sub-
polar marine ecosystems. One of the examples of such an im-
pact on ecosystems is that of coccolithophores, particularly
Emiliania huxleyi, which have expanded their range pole-
ward during recent decades. The coccolithophore E. huxleyi
plays an essential role in the global carbon cycle. Therefore,
the assessment of future changes in coccolithophore blooms
is very important.

Currently, there are a large number of climate models that
give projections for various oceanographic, meteorological,
and biochemical variables in the Arctic. However, individual
climate models can have large biases when compared to his-
torical observations. The main goal of this research was to
select an ensemble of climate models that most accurately
reproduces the state of environmental variables that influ-
ence the coccolithophore E. huxleyi bloom over the histor-
ical period when compared to reanalysis data. We developed
a novel approach for model selection to include a diverse set
of measures of model skill including the spatial pattern of
some variables, which had not previously been included in a
model selection procedure. We applied this method to each
of the Arctic and sub-Arctic seas in which E. huxleyi blooms
have been observed. Once we have selected an optimal com-
bination of climate models that most skilfully reproduce the
factors which affect E. huxleyi, the projections of the future
conditions in the Arctic from these models can be used to
predict how E. huxleyi blooms will change in the future.

Here, we present the validation of 34 CMIPS (fifth phase
of the Coupled Model Intercomparison Project) atmosphere—
ocean general circulation models (GCMs) over the historical
period 1979-2005. Furthermore, we propose a procedure of
ranking and selecting these models based on the model’s skill
in reproducing 10 important oceanographic, meteorological,
and biochemical variables in the Arctic and sub-Arctic seas.
These factors include the concentration of nutrients (NO3,
POy, and SI), dissolved CO; partial pressure (pCO,), pH,
sea surface temperature (SST), salinity averaged over the top
30m (SS30m), 10 m wind speed (WS), ocean surface current
speed (OCS), and surface downwelling shortwave radiation
(SDSR). The validation of the GCMs’ outputs against reanal-
ysis data includes analysis of the interannual variability, sea-
sonal cycle, spatial biases, and temporal trends of the simu-
lated variables. In total, 60 combinations of models were se-
lected for 10 variables over six study regions using the selec-
tion procedure we present here. The results show that there
is neither a combination of models nor one model that has
high skill in reproducing the regional climatic-relevant fea-
tures of all combinations of the considered variables in target
seas. Thereby, an individual subset of models was selected
according to our model selection procedure for each com-
bination of variable and Arctic or sub-Arctic sea. Following
our selection procedure, the number of selected models in the
individual subsets varied from 3 to 11.

The paper presents a comparison of the selected model
subsets and the full-model ensemble of all available CMIP5
models to reanalysis data. The selected subsets of models
generally show a better performance than the full-model
ensemble. Therefore, we conclude that within the task ad-
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dressed in this study it is preferable to employ the model
subsets determined through application of our procedure than
the full-model ensemble.

1 Introduction

In the last 3 decades, the Arctic has been warming at more
than twice the rate of the global average (Davy et al., 2018;
Overland and Wang, 2010). This rapid warming has led to
large changes in the physical environment, for example with
the loss of sea ice extent and volume (Dai et al., 2019; Kwok,
2018), but it has also had a large impact on the Arctic ecosys-
tem (Hoegh-Guldberg and Bruno, 2010; Johannessen and
Miles, 2011). One group of species that has been affected by
Arctic warming is coccolithophores such as Emiliania hux-
leyi (hereafter E. huxleyi). Reportedly, coccolithophores can
affect the carbon and sulfur cycles in the surface ocean, at
least within their bloom areas (Balch et al., 2016; Kondrik et
al., 2018; Malin et al., 1993; Rivero-Calle et al., 2015; Win-
ter et al., 2013). The effect of these algae on aquatic carbon
chemistry results in changes to the carbon fluxes between the
atmosphere and ocean (Balch et al., 2016; Morozov et al.,
2019; Pozdnyakov et al., 2019; Shutler et al., 2013). Addi-
tionally, they contribute to the generation of sulfate aerosols,
which scatter solar radiation in the atmosphere and act as
cloud condensation nuclei, enabling cloud formation (Malin
and Steinke, 2004). Therefore, the coccolithophores are re-
sponsible for both warming and cooling effects on the global
climate (Charlson et al., 1987; Wang et al., 2018a, b).

Of all the coccolithophores, E. huxleyi is the most abun-
dant and productive calcifying organism in the world ocean
(Mclntyre and Bé, 1967). It is a planktonic species growing
at practically all latitudes (Brown and Yoder, 1994; Iglesias-
Rodriguez et al., 2002; Moore et al., 2012) and in the eu-
trophic to oligotrophic marine waters (Paasche, 2001). The
property of this photosynthesizing aquatic organism to pro-
duce not only organic carbon but also calcite, i.e. particu-
late inorganic carbon (PIC), imparts to E. huxleyi a special
importance for the global ocean carbon cycle and, through
intricate interactions, for CO, exchange fluxes between the
ocean and atmosphere (Kondrik et al., 2019; Morozov et al.,
2019; Shutler et al., 2013). Moreover, E. huxleyi blooms are
known to (i) affect not only the carbon but also sulfur cy-
cles in the surface ocean, at least within bloom zones, and
arguably (ii) contribute to the generation of sulfate aerosols,
which eventually enable cloud formation (Malin and Steinke,
2004). This gives E. huxleyi blooms a definite climatic di-
mension in the overall environmental impact of this phe-
nomenon. The scale of the impact should indeed be very sig-
nificant: such blooms not only release into the water huge
amounts of PIC, in some cases reaching nearly 1 x 106¢
(Balch et al., 2016; Kondrik et al., 2018; Rivero-Calle et al.,
2015), but they are very extensive, typically covering ma-
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rine areas in excess of many hundreds of thousands, some-
times up to 1 million, of square kilometres. Besides this, they
occur annually across the world ocean (Brown and Yoder,
1994; Iglesias-Rodriguez et al., 2002; Moore et al., 2012).
Since changes of the regional climate have influenced the
ecosystems of the Arctic seas, coccolithophores, particularly
E. huxleyi, have increasingly expanded their range into polar
waters (Henson et al., 2018; Rivero-Calle et al., 2015; Winter
et al., 2013), which is thought to be due to climate warming
(Fernandes, 2012; Flores et al., 2010; Kondrik et al., 2017;
Okada and Mclntyre, 1979; Winter et al., 1994).

Although E. huxleyi cells can adapt to diverse environ-
mental conditions, the blooms of this alga exhibit remark-
able interannual variations in extent, intensity, and localiza-
tion (Balch et al., 2012; Iida et al., 2002; Kondrik et al.,
2017; Morozov et al., 2013; Smyth et al., 2004). Impor-
tantly, the aforementioned spatio-temporal variations inher-
entin E. huxleyi blooms prove to be specific to individual ma-
rine environments, which indicates that E. huxleyi growth is
generally conditioned by multiple forcing factors (FFs) act-
ing through feedback mechanisms. Reportedly, the observed
spatio-temporal variations are primarily driven by changes in
sea surface temperature (SST); salinity; levels of photosyn-
thetically active radiation (PAR); and nutrient and micronu-
trient availability, such as that of nitrate (NO3), silicate (SI),
ammonium (NHy), phosphate (PO4), and iron (Fe; Iglesias-
Rodriguez et al., 2002; Krumbhardt et al., 2017; Lavender et
al., 2008; Zondervan, 2007). However, it has been found that,
in addition to the above FFs, the water column stratification
and wind speed (WS) at 10 m above the surface also con-
dition the growth of E. huxleyi: a decrease in wind stress
leads to formation of a shallow mixed layer and retention
of algal cells within the zone of high levels of PAR (Raitsos
et al., 2006). The intensity of water movements in general,
and specifically water advection driven by ocean surface cur-
rents, was also highly consequential in this regard (Balch et
al., 2016; Pozdnyakov et al., 2019). Among the other fac-
tors affecting E. huxleyi blooms are carbonate chemistry vari-
ables such as dissolved CO, partial pressure (pCO;) and
pH, which are considered to be very important (Tyrrell and
Merico, 2004). There has been speculation that the ongoing
increase in atmospheric CO; should damp and/or inhibit the
growth of coccolithophores (Rivero-Calle et al., 2015); how-
ever, this is not supported by multiple observations (Kondrik
et al., 2017; Morozov et al., 2013).

As the above FFs are susceptible to climate change, these
factors are expected to exert their combined influence on the
intensity, spatial extent, and possibly the seasonal duration of
E. huxleyi blooms in the future. Given that the environmen-
tal influence of this phenomenon has both climatological and
biogeochemical dimensions at least on a synoptic scale, it ap-
pears important to envisage how it will evolve in the midterm
future. This can be done using either biological (e.g. Gregg et
al., 2005) or statistical (e.g. Pozdnyakov et al., 2019) E. hux-
leyi bloom models, for which the prospective tendencies in
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FFs are employed. In turn, the tendencies in the FFs can be
obtained from climate model output.

Today atmosphere—ocean coupled climate models are
state-of-the-art tools for the projection of the future cli-
mate on decadal and centennial timescales (Otero et al.,
2018; Taylor et al., 2012). In particular, the modern cou-
pled atmosphere—ocean general circulation models (GCMs)
include processes that govern the interactions between the
ocean, atmosphere, land, sea ice, and carbon cycle. The
fifth phase of the Coupled Model Intercomparison Project
(CMIPS) provides the opportunity to use the model output
from more than 30 GCMs (Taylor et al., 2012). The GCMs
provide a large number of meteorological, oceanographic,
and biochemical variables and so facilitate the comprehen-
sive assessment of possible climate change impacts on ma-
rine ecosystems in the future. However, the studies which
have evaluated the CMIP model’s historical simulations have
shown that the model outputs have a large spread compared
to natural variability (Almazroui et al., 2017; Fu et al., 2013;
Gleckler et al., 2008). The full CMIP5 model ensemble has
been found to be skilful at simulating continent-wide surface
air temperature and therefore useful for making robust as-
sessments at these scales (IPCC, 2013). However, model skill
at smaller spatial scales, such as for the Arctic, or even for
specific Arctic seas, varies considerably from region to re-
gion and for different model variables (Overland et al., 2011).
Therefore, it is important to find an approach for both model
evaluation (comparison with historical climate) and selection
of optimal models for each specific scientific task and region
that gives a skill score to each model which encompasses all
the relevant model variables and properties that are important
for the scientific question to be addressed.

The main goal of the paper is to quantify how well
CMIP5 models reproduce the main FFs that influence coccol-
ithophore blooms in the Arctic and sub-Arctic seas. We pro-
pose a new approach for ranking and selecting CMIP5 mod-
els for their skill in capturing the historical environmental
conditions in the Arctic and sub-Arctic seas (viz. the Barents,
Bering, Greenland, Labrador, North, and Norwegian seas).
We have chosen such a specific task as a case study in order
to select model output to drive a model of coccolithophore
blooms to predict how these will change in the future. We
assume that a climate model that successfully represents the
present-day conditions will also be skilful in future projec-
tions. Therefore, we select models based upon the validation
of the models within the historical period.

2 Materials and method
2.1 Data
34 CMIP5 GCMs’ outputs for the historical period 1979—

2005 were used in this study. The data are freely avail-
able in the ESGF portal (https://esgf-node.lInl.gov, last ac-
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cess: 10 December 2019). The list of climate models used
is presented in Table 1. We analysed five oceanographic
and meteorological variables, namely the SST; salinity aver-
aged over 0-30m (SS30m); surface WS at a height of 10 m;
ocean surface current speed (OCS); surface shortwave down-
welling solar radiation (SDSR); and five biochemical vari-
ables, namely concentration of nutrients (NO3, POy, and SI),
pCO,, and pH. These FFs are known to affect the phyto-
plankton life cycle in sub-polar and polar latitudes (Iglesias-
Rodriguez et al., 2002; Raitsos et al., 2006; Winter et al.,
2013). The analysed CMIP5 GCMs are listed in Table 1: in
total, we used outputs of 25 models for OCS; 28 for SS30m,
SST, and SDSR; 30 for WS; 11 for POy; 13 for SI and pH; 15
for pCO3; and 16 for NO3. The number of models employed
is different and was dictated by their availability in the ESGF
portal. For validation of the climate models outputs, we
used atmospheric and oceanic reanalyses: (i) ERA-Interim
from the European Centre for Medium-Range Weather Fore-
casts (https://apps.ecmwf.int, last access: 29 March 2019;
Dee et al., 2011) for SST, WS, and SDSR for the period
from 1979 to 2005; (ii) GLORYS2V4 for the SS3om,m and
OCS; and (iii) GLOBAL_REANALYSIS_BIO_001_029
(Perruche, 2018) for five biochemical variables — with both
reanalyses from the European Copernicus Marine Environ-
ment Monitoring Service (http://marine.copernicus.eu, last
access: 12 December 2019) for the period 1993-2005. The
period for verification of the employed climate models was
chosen based on the length of the reanalysis data and the lim-
itations inherent in the “historical” runs of the GCMs, which
usually terminate in 2005. The selected reanalyses are widely
used in the literature and have been shown to be consistent
with independent observational data (Agosta et al., 2015;
Dee et al., 2011; Garric et al., 2017; Geil et al., 2013).

2.2 Methods for model selection

It is well established that the method of ensemble averaging
can be used to reduce systematic model biases in the individ-
ual climate models (Flato et al., 2013; Gleckler et al., 2008;
Knutti et al., 2010; Pierce et al., 2009; Reichler and Kim,
2008). There are two main approaches to employing climate
model ensembles: (i) use of the full-ensemble average data
for future trend analysis (Flato et al., 2013; Gleckler et al.,
2008; Knutti et al., 2010; Reichler and Kim, 2008) and (ii) se-
lection of an ensemble of the models from the entire set of
available climate models yielding the best fit to the observa-
tional data for a historical period (Herger et al., 2018; Knutti
et al., 2010; Taylor et al., 2012). We chose the second ap-
proach for analysing the ability of GCMs to reproduce main
FFs that influence E. huxleyi bloom: nutrient concentrations
(nitrate, phosphate, silicate), SS3pm, SST, WS at a height of
10 m, SDSR, pH, pCO,, and OCS.

There are many different approaches to ranking and se-
lection climate models following validation with historical
observations. For example, Agosta et al. (2015) ranked the
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Table 1. CMIP5 models used for simulation of selected variables: SST — sea surface temperature (in °C), WS — 10 m wind speed (in m mlJ, SDSR - surface downwelling shortwave
solar radiation (in Wm™2), SS3gm — sea salinity (averaged over top 30 m; in PSU), OCS - surface ocean current speed (in ms~ 1), concentration of nutrients (NOg3, POy, and SI; in

Bo_Blwy dissolved CO; partial pressure (pCO,; in Pa), and pH (models available for respective variable are marked as “+).

Model ID  Modelling centre (acronym, full name, and country or region) Resolution SST WS SDSR  SS3p,, OCS NO3 PO4 SI pCO, pH
(° long x ° lat)
ACCESS1-0 1 CSIRO-BOM, Commonwealth Scientific and Industrial Research Organisation, Aus- 125 % 1.875 + + + + +
ACCESS1-3 2 tralia, and Bureau of Meteorology, Australia : ’ + + + + +
CanESM2 3 CCCma, Canadian Centre for Climate Modelling and Analysis, Canada 2.7906 x 2.8125 + + + + + + +
CMCC-CM 4 . . . e 0.7484 x 0.75 + + + + +
CMCC-CMS 5 CMCC, Centro euro-Mediterraneo sui Cambiamenti Climatici, Italy 37111 % 375 H + N 4 H n n 4 n
CNRM-CM5 6 CNRM-CERFACS, Centre National de Recherches Météorologiques, France, and Cen-  1.4008 x 1.40625 + + + + + + + +
tre Européen de Recherche et de Formation Avancée en Calcul Scientifique, France
CSIRO-MK3.6.0 7  CSIRO-QCCCE, Commonwealth Scientific and Industrial Research Organization, Aus- 1.8653 x 1.875 + + + +
tralia, and Queensland Climate Change Centre of Excellence, Australia
EC-Earth 8  EC-Earth, EC-Earth consortium, Europe 1.1215 x 1.125 +
GFDL-CM3 9 . . . .. . . . + + + + +
GFDL-ESM2G 10 WOM/W mmwmw_m, w_w:onﬂw %Mnm:_o and Atmospheric Administration, Geophysical Fluid 2%25 " + : : H n n n 4 n
GFDL-ESM2M 11 Oynamics Laboratory, + o+ 1 + L4+ 4
GISS-E2-H 12 + + + + +
GISS-E2-H-CC 13 NASA GISS, National Aeronautics and Space Administration, Goddard Institute for 2%25 + + + + + + + +
GISS-E2-R 14 Space Studies, USA . + + + + +
GISS-E2-R-CC 15 + + + + + + + 4
HadCM3 16 2.5%3.75 +
HadGEM2-AO 17 MOHC INPE, Met Office Hadley Centre, UK, and Instituto Nacional de Pesquisas Es- + —+ + + +
HadGEM2-CC 18  paciais, Brasil 1.25 x 1.875 + + + + + + + + +
HadGEM2-ES 19 + + + + + + + + +
IPSL-CM5A-LR 20 + + + + + + + + +
IPSL-CM5A-MR 21 IPSL, Institut Pierre-Simon Laplace, France 1.8947 x 3.75 + + + + + + + + +
IPSL-CM5B-LR 22 + + + + + + + + +
MIROCS 23 MIROC, Atmosphere and Ocean Research Institute, the University of Tokyo, National ~ 1.4008 x 1.40625 + + + +
Institute for Environmental Studies, and Japan Agency for Marine-Earth Science and
MIROC4h 24 Technology, Japan 0.5616 x 0.5625 +
MIROC-ESM 25 MIROC, Japan Agency for Marine-Earth Science and Technology, Atmosphere and + + + + +
. L . . . . 2.7906 x 2.8125
Ocean Research Institute, the University of Tokyo, and National Institute for Environ-
MIROC-ESM-CHEM 26 epgal Studies, Japan + + + + +
MPI-ESM-LR 27 . + + + + + + + + + +
MPLESM-MR 28 MPI-M, Max Planck Institute for Meteorology, Germany 1.8653 x 1.875 T T + : : + N + + 4
MRI-CGCM3 29 . . + + + + +
MRI-ESM1 30 MRI, Meteorological Research Institute, Japan 1.12148 x 1.125 " " " " n
NorESM1-M 31 . . + + +
NorESMI-ME 3 NCC, Norwegian Climate Centre, Norway 1.8947 x 2.5 . + ¥ 4 n n n N N
INM-CM4 33 INM, Russian Academy of Sciences, Marchuk Institute of Numerical Mathematics, 1.5x2 + + +
Russia
FGOALS-g2 34  LASG-CESS, Institute of Atmospheric Physics, Chinese Academy of Sciences, and 2.7906 x 2.8125 +
Tsinghua University, China
Total number of available CMIP5 models 28 30 28 28 25 16 11 13 15 13
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CMIP5 models using only one statistical metric, namely a
climate prediction index (CPI), “which is widely used in cli-
matology studies for model evaluation and weighted projec-
tions” (Connolley and Bracegirdle, 2007; Franco et al., 2011;
Murphy et al., 2004). Gleckler et al. (2008) evaluated the
CMIP models and ranked them by analysing the climatology
of the annual cycle, interannual variability, and relative er-
rors. They found that the performance of the analysed models
varied for different variables. Das et al. (2018) assessed 34
CMIP5 models using the following three criteria: the mean
seasonal cycle, temporal trends, and spatial correlation. On
this basis, the models were selected using a cumulative rank-
ing approach. Fu et al. (2013) and Ruan et al. (2019) applied
a score-based method using multiple criteria for the assess-
ment of CMIP3 model performance: mean value, standard
deviation, normalized root-mean-square error, linear correla-
tion coefficient, Mann—Kendall test statistic Z, Sen’s slope,
and significance score. Further, Ruan et al. (2019) selected
the top 25 % ranked CMIP5 models by applying a weight
criterion from 0.5 to 1.0 to the different measures. Ruan et
al. (2019) reported that the introduction of multiple criteria
results in fewer uncertainties in the models’ performance in
comparison with the respective observation data.

Having tested the approaches cited above, we developed
our own methodology which combines elements from some
of these. We employ the multiple-criteria ranking method fol-
lowing Fu et al. (2013) and Ruan et al. (2019), but with the
following modifications: (i) we took into consideration the
Agosta et al. (2015) climate prediction index, (ii) analysed
the features of spatial distribution of target variables (spa-
tial biases and trends), (iii) ranked the models with the per-
centile method (25th, 50th, 75th) that is widely used in statis-
tical analysis, and, finally, (iv) selected the top 25 % ranked
CMIP5 models following Ruan et al. (2019).

2.2.1 Study regions

The target regions are six Arctic and sub-Arctic seas: the
Barents, Bering, Greenland, Labrador, North, and Norwegian
seas, where E. huxleyi blooms regularly occur (Kondrik et al.,
2017). As mentioned above, the reason we chose the listed
seas was that, in the context of global climate change, the
Arctic and sub-Arctic seas have experienced the most pro-
nounced changes in environmental variables due to the Arc-
tic amplification. In addition, the target seas differ in physi-
cal and geographical conditions, which strongly affect their
climate. While they are linked by common circulation pat-
terns, e.g. with the warm-air advection coming into the Arc-
tic from the Atlantic Ocean, the way in which this circula-
tion affects the climate in a given sea is strongly affected
by the local conditions. Therefore, we performed the valida-
tion and selection model procedure for each sea individually.
Only specific areas within which intense growth and blooms
of E. huxleyi frequently occur were selected in each sea, ac-
cording to the results obtained by Kazakov et al. (2018) based
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Figure 1. Spatial distribution of E. huxleyi blooms occurrence based
on the Ocean Colour Climate Change Initiative dataset version 3.0
(Kazakov et al., 2018) for the Barents, Bering, Labrador, Greenland,
North, and Norwegian seas. Black lines confine the territories where
blooms occurred more than one 8 d period and show target sea areas.

on the Ocean Colour Climate Change Initiative dataset ver-
sion 3.0 (https://esa-oceancolour-cci.org/, last access: 17 De-
cember 2019) for the period from 1998 to 2016. A com-
parison of the area-averaged values for the entire sea and
only for the region of the regular occurrence of E. huxleyi
blooms showed a significant difference. For example, it is
about 2°C among all models for SST in the Barents Sea,
where the E. huxleyi blooms cover the largest area of the sea
compared to other seas. To identify the relevant study areas
from a raster image that contained all blooming events over
the period 1998-2016, we selected the areas where blooms
occurred for more than one 8 d period (Fig. 1). For model val-
idation we focused on sea-specific blooming periods: June—
September for the Barents and Labrador seas, June—August
for the Greenland Sea, May-July for the North Sea, May—
August for the Norwegian Sea, and January—December for
the Bering Sea (Kazakov et al., 2018). Thus, the results
of the model validation can be used not only in terms of
marine ecology-related issues (i.e. carbon cycle chemistry,
water acidity, nutrients availability, etc.) but also for the
purposes of forecasting region-specific climate-driven feed-
backs between the environmental factors governing E. hux-
leyi growth.

2.2.2 Model evaluation measures

The CMIPS climate models were validated against reanal-
ysis data in order to assess how well they reproduce the
regional features of the selected variables. The validation
methodology for the GCMs’ outputs included the analysis of
the climatological-mean seasonal cycle, interannual variabil-

Biogeosciences, 17, 1199-1212, 2020


https://esa-oceancolour-cci.org/

1204 N. Gnatiuk et al.: Simulation of factors affecting E. huxleyi blooms in Arctic and sub-Arctic seas

ity, and analysis of the spatial distribution of climatological-
mean biases and trends for selected variables averaged over
the blooming period in each sea.

The seasonal cycle was analysed using the multi-year av-
eraged monthly variables for all months of the year (i.e. a
sample size of 12). Basic statistical measures were calcu-
lated, such as the root-mean-square deviation (RMSD), the
correlation coefficient (r), and the standard deviation (SD; Fu
et al., 2013; Gleckler et al., 2008; Kumar et al., 2015; Ruan
et al., 2019). In addition, following Agosta et al. (2015), we
calculated the CPI, which is a ratio of the model root-mean-
square error to the standard deviation of observation data.
This model evaluation statistic weighs the simulated data
against the observations and is often used to validate model
output (Agosta et al., 2015; Golmohammadi et al., 2014; Mo-
riasi et al., 2007; Murphy et al., 2004; Stocker, 2004).

The interannual variability of the variables was anal-
ysed based on monthly variables solely for blooming periods
(the sample size varied according to sub-region and variables
combination; e.g. a sample size for SST in the Barents Sea
was 108 monthly variables from June to September during
1979-2005). The same statistical measures for analysis of
the seasonal cycle were used, viz. RMSD, r, SD, and CPIL.

The spatial distribution of biases and trends between the
model outputs and the reanalysis data was calculated for tem-
porally averaged data in each grid point of the marine zone
considered in this study.

2.2.3 Percentile ranking approach

For ranking models and selection of the model subset, we
employed the percentile ranking approach, which is a compi-
lation of the previously applied model ranking and the selec-
tion approaches with some modifications (see also Sect. 2.2).
Following Fu et al. (2013) and Ruan et al. (2019), we used
multiple criteria for model selection (RMSD, r, SD). Fol-
lowing Agosta et al. (2015) we analysed the CPI. In addi-
tion, we considered the differences in spatial distributions of
biases and trends between the model outputs and the respec-
tive reanalysis data. Further, we ranked the models based on
the percentile method (25th, 50th, 75th) for each statistical
measure based on the amplitude of its values. Finally, we se-
lected the top 25 % ranked CMIP5 models following Ruan et
al. (2019) for each considered oceanographic, meteorologi-
cal, and biochemical variables and the target region. Thus,
for example, for a sample of 28 models, the top 25 % is a
subset of seven models that showed the best total score, de-
fined as the sum of scores of all statistical measures (marked
bold in Table 2). However, if two or more models show the
same score, they are all included in the selected model sub-
set. Thus, the number of selected models varies from 3 to 11.

Figure 2 illustrates an example of the percentile ranking
approach applied to the RMSD of SST in the Barents Sea.
We divided the statistical measures into four groups based
on the amplitude of the values and assigned a score to each
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Figure 2. A schematic representation of the percentile ranking ap-
proach: division of RMSD values distribution of 28 models (see
model names in Fig. 3) into four groups that are limited by 25th,
50th, and 75th percentiles and the relative assignment of scores
from 3 to 0 to each group accordingly — very good, good, satis-
factory, and unsatisfactory.

model according to its group: (i) very good models (top 25th
percentile of the distribution of the statistical measures) were
given a score of 3, (ii) good models (between 50th and 25th
percentile) were given a score of 2, (iii) satisfactory mod-
els (between 75th and 50th percentile) were given a score
of 1, and (iv) unsatisfactory models (bottom 75th percentile)
were given a score of 0. In the case of the correlation coef-
ficient, the opposite applies; very good models with correla-
tions scores above 0.75 were ranked with a score of 3, and
this pattern continues.

For ranking models based on the differences in the spa-
tial distribution of biases and trends between model outputs
and reanalysis, we used the absolute values of the mean
and the spread of the spatial variation in model biases. For
example, Fig. 3 displays the box plots of spatial variabil-
ity in SST biases relevant to the studied area in the Bar-
ents Sea for the blooming season (June—September) and the
study period 1979-2005. The mean bias varies from —6.6
(model no. 20) to 1.5°C (model no. 24) among the mod-
els, whereas the spread yielded by the model and that from
observations has a wide range of values, from 7.3 (model
no. 21) to 16.5°C (model no. 3). Thus it can be concluded
from Fig. 3 that the analysis of spatial distribution of biases is
very important; e.g. if we compare model no. 2 (ACCESS1-
3) with model no. 3 (CanESM?2), we can see that the means
of these two models have a small difference (0.28 °C), while
the spread of spatial values for model no. 3 is much higher
(by ~ 6 °C) than that for model no. 2. Application of the per-
centile ranking approach to model no. 2 (ACCESS1-3) and
no. 3 (CanESM2) resulted in the inclusion of only the former
in the model subset (see Table 3).

www.biogeosciences.net/17/1199/2020/
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Figure 3. Box plots of the spatial variability of SST biases (°C), which are calculated as the difference between the model and reanalysis
data in the Barents Sea for E. huxleyi bloom season over the period from 1979 to 2005. Each box spreads from the lower quartile Q1 to
the upper quartile Q3 of biases; the grey lines represent the medians. The dots show mean values. The lower “whiskers” are represented as
Q1 — 1.5 standard deviation, and the upper whiskers are represented as Q3 + 1.5 standard deviation.

Table 2 presents all calculated statistics that were used to
rank GCMs for SST in the Barents Sea as well as the fi-
nal total score for each model. The spread of the total as-
signed scores is from 9 to 35. Based on this range we selected
the top 25 % of GCMs. Thus, the best model ensemble for
SST for the Barents Sea is the eight-model set: ACCESSI1-
0, ACCESS1-3, GFDL-CM3, HadGEM2-ES, MIROC-ESM,
MIROC-ESM-CHEM, MPI-ESM-LR, and MPI-ESM-MR.
The same procedure was performed for other target seas and
variables.

3 Results and discussion

The results of model validation and ranking, as well as the
selected CMIPS model subsets in the Barents, Bering, Green-
land, Labrador, North, and Norwegian seas, are presented in
Table 3 (for five oceanographic and meteorological variables)
and Table 4 (for five biochemical variables). Each number in
these tables shows the final skill score for each combination
of model, variable, and sea. For each individual column, a
colour gradation was applied based on our percentile ranking
approach: therefore, the same numbers in the tables can have
different colours. For example, for OCS in the Barents Sea,
the spread of the final model scores is from 7 to 26, whereas
for SS3g it is from 8 to 34. Therefore, even model no. 3
CanESM2 has the total score 26 for SS30m (which is higher
than that — 25 — for OCS); this model was not included in the
SS30m selected model subset and is coloured red, whereas
for OCS it is included in the selected model subset and high-
lighted in green. The final skill scores of those models, which

www.biogeosciences.net/17/1199/2020/

were included in the selected model subsets, are marked in
bold blue, and their total number is indicated at the bottom
of each column.

Analysing Tables 3—4, one can conclude that there is no
model ensemble or single model which could simulate all
variables equally well over the different target seas. However,
some climate models show good results for many cases, e.g.
ACCESS1-3, ACCESS1-0, GFDL-CM3, GISS-E2-R, GISS-
E2-R-CC, HadGEM2-AO, HadGEM2-CC, HadGEM2-ES,
INMCM4, MPI-ESM-LR, and MPI-ESM-MR. The mod-
els that have the lowest total scores across the majority
of the target regions are CMCC-CM, FGOALS-g2, IPSL-
CMS5A-LR, IPSL-CM5A-MR, IPSL-CM5B-LR, MIROCS,
and MRI-ESM1.

Such heterogeneity in the ability of climate models to re-
produce the climate features in different seas can be partly
explained. Climate models are often tuned to adequately
reproduce global processes and globally averaged values
(Mauritsen et al., 2012; Schmidt et al., 2017). An insufficient
number of long time series of observations is available for
model calibration, especially for marine waters. There are
also very limited observations of climate processes in the
Arctic which limit model development for the Arctic envi-
ronment (Vihma et al., 2014).

In order to verify our methodology, we compared the se-
lected ensemble with the full-model ensemble for the time-
averaged spatial distribution of biases, relative to reanaly-
ses data for the historical period (1979 and 1993-2005), for
each study variable in the six target seas (Fig. 4). The box
plots (Fig. 4) show that the selected model ensemble mainly

Biogeosciences, 17, 1199-1212, 2020
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Figure 4. Box plots of the spatial distribution of biases (model ensemble minus reanalyses) of five oceanographic and meteorological (left)
and five biochemical variables (right): sea surface temperature (SST), salinity averaged over 0-30 m (SS30 ), surface wind speed at 10 m
(WS), ocean surface current speed (OCS), surface shortwave downwelling solar radiation (SDSR), concentration of nutrients (NO3, POy,
and SI), dissolved CO, partial pressure (pCO;), and pH for the Barents, Bering, Greenland, Labrador, North, and Norwegian seas averaged
over the study period for comparison of full and selected model ensembles.
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Table 2. Results of the CMIP5 model performance for SST in the Barents Sea. Numbers in brackets indicate the models’ scores (RMSD is
the root-mean-square deviation — °C; r is the correlation coefficient between models and reanalysis; CPI is climate prediction index; |SDgis|
is the modulus of the standard deviation difference — model minus reanalysis — °C; |Try| is the modulus of spatial trend mean difference —
the model minus reanalysis — °C yr_l; |Tra| is the modulus of spread of spatial trends difference — the model minus reanalysis — °C yr_l;
|Brm| is the modulus of spatial bias mean difference — the model minus reanalysis — °C; |Bry| is the modulus of spread of spatial biases

difference — the model minus reanalysis — °C).

Model acronym ID Seasonal cycle Interannual variability Spatial trends (Tr) Total

(averaged over the territory) (averaged over the territory) and biases (Br) score

RMSD r CPI  |SDg;sl ‘ RMSD r CPI  [SDy;sl ‘ |Trm| [Tral |Brm| |Bry|

ACCESSI-0 1 026(3) 0992) 0.133) 0.08(3) | 1.17(3) 0.68(3) 0.81(3) 0.02(3) | 0.06(2) 0.01(3) 0.07(3) 14.7(2) 33
ACCESSI1-3 2 037(33) 0993) 0.193) 0.03(3) | 1.02(3) 0.75(3) 0.71(3) 0.193) | 0.01(3) 0.013) 0.57(3) 16.1(1) 34
CanESM2 3 1.76(2) 098(2) 0.88(2) 0.28(0) | 2.21(2) 0.64(3) 1.54(2) 1.12(3) | 0.10(1) 0.043) 0.85(3) 17.2(1) 24
CMCC-CM 4 5.15(00) 0.96(1) 2.580) 1.73(1) | 7.06(0) 0.28(3) 4.90(0) 0.63(0) | 0.06(2) 0.18(0) 6.64(0) 13.1(2) 9
CMCC-CMS 5 4.400) 097(2) 22000) 1.34(1) | 5.94(0) 0.56(3) 4.12(0) 0.59(0) | 0.01(3) 0.02(3) 5.58(0) 14.1(2) 14
CNRM-CM5 6 0.643) 0.99(2) 0323) 0.55(1) | 1.593) 0.73(3) 1.10(3) 0.81(2) | 0.08(2) 0.003) 0.49(3) 16.4(1) 29
EC-Earth 7 041(3) 099(2) 021(3) 0.13(2) | 1.43(3) 0.643) 0.99(3) 0.38(3) | 0.13(1) 0.12(1) 0.14(3) 18.1(0) 27
GFDL-CM3 8 1.343) 0.99(3) 0.67(3) 0.203) | 1.71(3) 0.80(3) 1.193) 0.22(3) | 0.003) 0.09(1) 1.393) 11.1(3) 34
GFDL-ESM2G 9 3.23(1) 098(2) 1.62(1) 0.27(2) | 3.72(1) 0.69(3) 2.58(1) 0.29(3) | 0.04(3) 0.04(3) 3.46(1) 13.9(2) 23
GFDL-ESM2M 10 2.60(2) 099(2) 1.302) 0.61(3) | 3.42(2) 0.683) 237(2) 0.25(2) | 0.01(3) 0.08(2) 3.10(2) 15.7(1) 26
GISS-E2-H 11 3.39(1) 097(3) 1.70(1) 0.413) | 4.09(1) 0.83(3) 2.84(1) 0.183) | 0.05(2) 0.043) 3.86(1) 11.4(3) 25
GISS-E2-H-CC 12 3.68(1) 0.96(2) 1.84(1) 0.56(3) | 4.62(1) 0.72(3) 3.20(1) 0.12(2) | 0.03(3) 0.02(3) 4.36(1) 10.8(3) 24
GISS-E2-R 13 3.34(1) 096(2) 1.67(1) 0.04(1) | 3.83(1) 0.72(3) 2.66(1) 0.84(3) | 0.05(2) 0.07(2) 3.34(1) 15.1(2) 20
GISS-E2-R-CC 14 3.38(1) 0.96(2) 1.69(1) 0.07(1) | 3.78(1) 0.75(3) 2.62(1) 0.83(3) | 0.03(3) 0.05(2) 3.29(2) 13.6(2) 22
HadGEM2-AO 15 1.28(3) 0.99(2) 0.64(3) 0.01(3) | 1.51(3) 0.733) 1.05(3) 0.13(3) | 0.023) 0.05(2) 1.33(3) 19.8(0) 31
HadGEM2-CC 16 1.702) 0.99(2) 0.85(2) 0.16(2) | 2.342) 0.62(3) 1.62(2) 0.35(3) | 0.05(2) 0.05(2) 1.66(3) 19.1(0) 25
HadGEM2-ES 17 0.303) 0.993) 0.15(3) 0.08(3) | 0.98(3) 0.77(3) 0.68(3) 0.00(3) | 0.05(2) 0.043) 0.093) 17.5(1) 33
IPSL-CM5A-LR 18 3.66(1) 0.98(2) 1.83(1) 0.31(3) | 459(1) 0.703) 3.19(1) 0.183) | 0.01(3) 0.03(3) 4.32(1) 18.4(0) 22
IPSL-CM5A-MR 19 222(2) 0992) 1.11(2) 0.67(1) | 2.57(2) 0.73(3) 1.78(2) 0.80(2) | 0.06(2) 0.05(2) 1.91(2) 16.0(1) 23
IPSL-CM5B-LR 20 5.03(0) 0.96(1) 2.520) 1.71(1) | 6.90(0) 0.36(3) 4.79(0) 0.69(0) | 0.003) 0.033) 6.51(0) 17.6(0) 11
MIROC-ESM 21 1.4033) 0.993) 0.703) 0.04(3) | 1.63(3) 0.82(3) 1.13(3) 0.06(3) | 0.01(3) 0.08(2) 1.51(3) 11.8(3) 35
MIROC-ESM-CHEM 22 0.97(3) 0.99(3) 0.49(3) 0.053) | 1.34(3) 0.82(3) 0.93(3) 0.13(3) | 0.07(2) 0.05(3) 1.083) 15.1(2) 34
MIROCS 23 242(0) 098(2) 1.21(0) 0.51(1) | 5.69(2) 0.51(3) 3.95(2) 0.64(2) | 0.18(0) 0.08(2) 5.14(0) 19.8(0) 14
MPI-ESM-LR 24 1.27(3) 0.99(3) 0.63(3) 0.04(3) | 1.543) 0.81(3) 1.07(3) 0.21(3) | 0.02(3) 0.04(3) 1.33(3) 16.3(1) 34
MPI-ESM-MR 25 091(3) 0.99(2) 0.453) 0.053) | 1.47(3) 0.71(3) 1.02(3) 0.11(3) | 0.05(2) 0.043) 0.96(3) 17.2(1) 32
MRI-CGCM3 26 2.88(2) 0.99(3) 1.44(2) 0.08(2) | 2.54(1) 0.82(3) 1.77(1) 0.34(3) | 0.003) 0.07(2) 2.30(2) 11.93) 27
NorESM1-M 27 1.53(2) 0.99(2) 0.77(2) 0.76(2) | 2.56(2) 0.64(3) 1.78(2) 0.31(2) | 0.05(2) 0.07(2) 2.33(2) 13.7(2) 25
NorESM1-ME 28 1.72(2) 0.99(2) 0.86(2) 0.78(2) | 2.792) 0.57(3) 1.942) 0.39(2) | 0.023) 0.02(3) 2.58(2) 15.02) 27

performs better than the full-model ensemble, i.e. the mean
value (red dot) located closer to the zero line (dashed). The
biggest difference between these two approaches obtained
for the concentration of silicate (SI) is in favour of the rank-
ing model approach.

Analysing the box plots of the selected model ensemble
(Fig. 4), the lower spread of biases is obtained for OCS,
SS30m, and concentration of silicate (SI). CMIP5 GCMs
generally underestimate SDSR, especially over the Labrador
Sea. Likewise, GCMs mainly underestimate WS except for
the Labrador and Barents seas. For OCS all ensembles have
a low spread of biases and a mean value located very close to
zero, but they have many outliers (black dots). CMIP5 GCMs
in different seas show heterogeneous results — they under-
estimate or overestimate SST, SS3pm, and all biochemical
variables. Also, Séférian et al. (2013) reported that CMIP5
GCMs differ enormously in biochemical variables, but they
show fewer biases when compared to the previous model
versions (CMIP3) for wind speed. Flato et al. (2013) found
that CMIP5 models have higher biases (both positive and
negative) for SST in polar regions and quite large negative

www.biogeosciences.net/17/1199/2020/

biases relative to other latitudes for salinity in the Arctic.
Rickard et al. (2016) summarized that oceanographic vari-
ables in CMIP5 models reveal better agreement across all
models compared to biochemical ones. Lavoie et al. (2013)
detected that GFDL and MPI models better represent nitrate
concentrations, and the GFDL model best represents salin-
ity among other considered models in the Labrador Sea. In
our study, these models were also selected as the best for
the Labrador Sea. It is quite difficult to compare obtained
results with other already-published research because of us-
ing different models or a various number of models in full-
ensemble and study regions. Some mentioned authors apply
the full-model ensemble to other select models with better
performance, but they did not compare these two approaches
as we have done.

4 Conclusions
In the paper, we presented results of validation of 34

CMIP5 models compared to ERA-Interim, GLORYS2V4,
and GLOBAL_REANALYSIS_BIO_001_029 reanalyses for

Biogeosciences, 17, 1199-1212, 2020
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Table 3. The final model scores obtained using the percentile ranking approach for the five oceanographic and meteorological variables (sea
surface temperature — SST; salinity averaged over 0-30 m — SS3q,; surface wind speed at 10 m — WS; ocean surface current speed — OCS;
and surface shortwave downwelling solar radiation — SDSR — for the Barents, Bering, Greenland, Labrador, North, and Norwegian seas based
on different statistical measures; Fig. 2; Table 2). The white cells indicate a lack of model output for historical and RCP projections (RCP4.5,
RCP8.5) in open data sources.
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"very good"

the historical period (1979 and 1993-2005). Besides this we
proposed the percentile ranking approach for selection cli-
mate model subsets that most accurately reproduce the state
of 10 forcing factors affecting E. huxleyi blooms over the
historical period in six Arctic and sub-Arctic seas, viz. the
Barents, Bering, Labrador, Greenland, North, and Norwe-
gian seas. In total 60 combinations of the most-skilful models
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= score < 25%

9 8 8 9 10 9 8

. = score > 75%

“unsatisfactory”

= 25% < score < 75%
“"good” & “"satisfactory”

were selected (10 variables and six target seas) based on dif-
ferent statistical measures: the root mean square error, corre-
lation coefficient, standard deviation, climate prediction in-
dex (CPI), spatial biases, and trends. Our results show that
there is no model ensemble or individual model which could
best simulate all variables across all target seas. Despite the
fact that the Arctic is often considered to be one single region
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Table 4. The final model scores obtained using the percentile ranking approach for the five biochemical variables (concentration of nutrients
—NO3, POy, and SI; dissolved CO;, partial pressure — pCO;; and pH) for the Barents, Bering, Greenland, Labrador, North, and Norwegian
seas based on different statistical measures (Fig. 2; Table 2). The white cells indicate a lack of model output for historical and RCP projections

(RCP4.5, RCP8.5) in open data sources.

Barents Bering Greenland Labrador North Norwegian
ID CMIP5 models
ND, FO, S| pH pCO,[MO, PO, S| pH pCO,|NO; PO, S| pH pCO(NO, PO, S pH pCO,|NOy PO, SI pH pCO|NO, PO, 51 pH plO;
1 CanESM?2 14 22 26|13 11 23|12 27 29|14 22 15|20 28 21|16 23 28
2 CMICC-CESM 9 12 9 25|13 93 10 20| 7 13 6 13|14 5 6 13 23 6 9 15|9 17 6 14
3 CNRM-CMS 5 10 30 19 32 20 16 29 5 4 27 9 14 22 6 8 28
4 GFDL-ESM2G 27 22 18 24 29|21 32 24 18 30|17 16 24 9 18|17 17 28 25 20(23 22 28 27 24| 8 7 21 18 21
5 GFDL-ESM2M 23 71 26 12 23|18 34 25 12 29|12 11 26[5 16|14 10 28 17 15(10 21 21 23 16|16 21 25 10 10
6 GISS-E2-H-CC 10 26 5189 21 22189 27 & |16 26 22|24 23 12112 31 16
7 GISS-E2-R-CC 11 29 11|11 22 7|10 25 15|17 26 30|24 20 20|15 26 25
8 HadGEM2-CC 12 8 20 2|5 11 8 24| 9 8 20 27|17 11 13 14|22 12 23 15|12 15 12 16
9 HadGEMZ-ES 12 14 19 27| 4 12 7 25|10 8 24 32|17 15 23 17|22 12 25 17|13 15 15 20
10 inmcm4 22 26 27 14 21 1
11 IPSL-CMSA-LR 15 16 27 20 10 33 2 17 11 11 28 11 18 3 26 14 24 18 26 21 18 5 30 18
12 IPSL-CMSA-MR 18 19 29 19 17 35 21|19 12 9 28 23 16 5 29 17 24 20 27 26 20 15 30 17
13 IPSL-CMSE-LR 19 15 27 21 10 33 20 13 11 07 29 14 11 3| 27 15 21 13 23 17 16 10 29 20
14 MIROC-ESM 30 28 19 18 19 18
15 MIROC-ESM-CHEM 30 27 21 18 14 19
16 MPI-ESM-LR 23 24 23 27 33| 8 32 23 10 24|19 17 23 15 26|17 1234 23 24 (27 27 26 30 30(22 24 32 17 22
17 MPI-ESM-MR 20 25 27 29 32| 7 33 26 14 25|17 12 27 16 26|18 9 33 23 24|27 23 25 30 33|22 19 30 18 25
18 MRI-ESM1 18 14 19 26|13 32 b 26|22 22 27 27|20 19 15 23|26 10 28 20|21 13 18 18
19 MorESMI1-ME 12710 22 22 28| 7 3212 18 30| 7 8 21 9 19| 9 14 13 11 15|17 13 26 26 26|15 14 23 7 19
Total selectedmodels 4 3 3 3 4 4 5 3 3 4 4 3 4 3 5 B 3 3 4 4 7 3 5 4 4 4 3 5 6 4
30 - selected optimal model ensemble - 5COre < 25% - 25% < score € 75% - SCOMe > 75%
"very good” "good" & "satisfactory” "unsatisfactory”

in many studies, our results show that CMIP5 climate mod-
els do not have consistent performance across such a large
area. However, the selected model ensembles show results
with smaller biases than the full-model ensemble.

The results of the percentile ranking approach proposed in
this paper show better performance (mean is closer to zero)
of the selected model ensemble vs. the full-model ensemble
for different variables and target seas. We can conclude that it
is important to include a number of different evaluation crite-
ria when selecting the best models from an ensemble, includ-
ing the spatial pattern of model biases, and that the proposed
methodology is a way of improving the model selection pro-
cedure that promises a better chance to identify more skilful
models for the features we are interested in.

Given that the environmental impacts of E. huxleyi com-
munities are diverse and encompass both climatological and
marine ecology dimensions, the established sets of CMIP5
climatological models most closely simulating the environ-
mental conditions under which this taxon grow open the way
for envisaging how this phenomenon will further evolve in
light of ongoing climate change. This can be done using the
E. huxleyi bloom model, for which the changes in the forc-
ing factors for E. huxleyi blooms will be employed. Finally,
although the present study has been performed for the coc-

www.biogeosciences.net/17/1199/2020/

colithophore E. huxleyi which vegetates at Arctic and sub-
Arctic latitudes, the reported methodological approach is not
algal-specific and can be applied to studies of other algal
species composing the phytoplankton communities in the
world ocean.

Data availability. Data of CMIPS GCMs are available at the
ESGF portal at: https://esgf-node.llnl.gov/search/cmip5/ (last ac-
cess: 13 February 2020). The reanalysis data for sea salin-
ity, OCS, and nutrients are available at the European Coperni-
cus Marine Environment Monitoring Service web page at: http:
//marine.copernicus.eu/services-portfolio/access-to-products/ (last
access: 13 February 2020). The reanalysis data of SST, WS,
and SDSR are available at the European Centre for Medium-
Range Weather Forecasts web page at: https://apps.ecmwf.int/
datasets/data/interim-full-daily/levtype=sfc/ (last access: 13 Febru-
ary 2020).
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