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Abstract. Half of Asian tropical forests were disturbed in the
last century resulting in the dominance of secondary forests
in Southeast Asia. However, the rate at which biomass ac-
cumulates during the recovery process in these forests is
poorly understood. We studied a forest landscape located in
Khao Yai National Park (Thailand) that experienced strong
disturbances in the last century due to clearance by swid-
den farmers. Combining recent field and airborne laser scan-
ning (ALS) data, we first built a high-resolution aboveground
biomass (AGB) map of over 60 km2 of forest landscape. We
then used the random forest algorithm and Landsat time se-
ries (LTS) data to classify landscape patches as non-forested
versus forested on an almost annual basis from 1972 to 2017.
The resulting chronosequence was then used in combination
with the AGB map to estimate forest carbon recovery rates
in secondary forest patches during the first 42 years of suc-
cession. The ALS-AGB model predicted AGB with an er-
ror of 14 % at 0.5 ha resolution (RMSE= 45 Mgha−1) us-
ing the mean top-of-canopy height as a single predictor. The
mean AGB over the landscape was 291 Mgha−1, showing a
high level of carbon storage despite past disturbance history.
We found that AGB recovery varies non-linearly in the first
42 years of the succession, with an increasing rate of accu-
mulation through time. We predicted a mean AGB recovery

rate of 6.9 Mgha−1 yr−1, with a mean AGB gain of 143 and
273 Mgha−1 after 20 and 40 years, respectively. This rate es-
timate is about 50 % larger than the rate prescribed for young
secondary Asian tropical rainforests in the 2019 refinement
of the 2006 IPCC guidelines for national greenhouse gas in-
ventories. Our study hence suggests that the new IPCC rates,
which were based on limited data from Asian tropical rain-
forests, strongly underestimate the carbon potential of forest
regrowth in tropical Asia. Our recovery estimates are also
within the range of those reported for the well-studied Latin
American secondary forests under similar climatic condi-
tions. This study illustrates the potential of ALS data not only
for scaling up field AGB measurements but also for predict-
ing AGB recovery dynamics when combined with long-term
satellite data. It also illustrates that tropical forest landscapes
that were disturbed in the past are of utmost importance for
the regional carbon budget and thus for implementing inter-
national programs such as REDD+.
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1 Introduction

Tropical forest disturbances and subsequent biomass recov-
ery through time significantly affect the global carbon cycle
(Harris et al., 2012). Although secondary forests in the trop-
ics could constitute a major global carbon sink, the magni-
tude of such a sink remains poorly known (Chazdon, 2014;
Lugo and Brown, 1992). A previous study estimated that
40 years of carbon storage in regenerating tropical forests
from Latin America offset the past 19 years of carbon emis-
sions from fossil fuels and industrial production in this region
(Chazdon et al., 2016). Thus, there has been much interest
in quantifying the ability of tropical secondary forests to se-
quester carbon in order to reduce uncertainties in the global
carbon balance (e.g., Chai, 1997; Lohbeck et al., 2015; Stas
et al., 2017).

Previous studies have used long-term forest plot surveys
along chronosequences to quantify forest carbon dynamics in
secondary tropical forests (Chazdon et al., 2007; N’Guessan
et al., 2019; Norden et al., 2011, 2015; Poorter et al., 2016a;
Rozendaal and Chazdon, 2015). Although long-term forest
plots are essential for understanding the dynamics of trop-
ical forests (Losos and Leigh, 2004), they are scarce, in-
herently labor-intensive, expensive and time-consuming to
maintain, and not evenly distributed in the tropics. In ad-
dition, most studies of carbon dynamics along tropical for-
est successions are concentrated in Latin America (Chave et
al., 2020; Letcher and Chazdon, 2009; Norden et al., 2015;
Poorter et al., 2016a; Rozendaal et al., 2017; Rozendaal and
Chazdon, 2015, but see N’Guessan et al., 2019, for Africa).
They show high among-site variation in forest carbon recov-
ery rates, suggesting a high context dependence (Chazdon et
al., 2007; Norden et al., 2011, 2015), partly depending on
climate conditions (Poorter et al., 2016a). A few pantrop-
ical studies have shown that the carbon potential of Latin
American forests is smaller than that of Southeast Asian
and African forests (Feldpausch et al., 2012; Sullivan et al.,
2017). However, a recent study based on a compilation of
published data throughout the pantropics surprisingly found
that the forest carbon sequestration potential of Asian trop-
ical secondary rainforest was in fact much lower than in
American and African rainforests. This work led to a recent
refinement of the 2006 IPCC guidelines for national green-
house gas inventories (Requena Suarez et al., 2019; IPCC,
2019). Whether these new estimates are representative of
Asian tropical rainforests is highly uncertain, due to a critical
lack of data for this region. This issue is especially crucial for
Asian tropical forests where half of the forests have been dis-
turbed during the last century, resulting in the dominance of
secondary forests throughout the region (Achard et al., 2014;
Mitchard et al., 2013; Stibig et al., 2014).

Remote sensing technology has emerged as a promising
tool for extrapolating local field carbon estimates over land-
scapes, regions, or at the global scale (Gibbs et al., 2007;
Goetz et al., 2009). However, current long-term (> 20-year)

satellite data such as Landsat are weakly sensitive to for-
est carbon, especially in high-biomass forests (Ferraz et al.,
2018; Lu, 2006; Meyer et al., 2019; Zheng et al., 2004). Yet,
these data may be used to produce reliable land-cover clas-
sifications (e.g., forest versus non-forest areas; FAO, 2010).
They allow for assessing the dynamics of deforestation and
reforestation worldwide (Hansen et al., 2013) and can thus
monitor disturbance history, particularly the time since aban-
donment of agriculture (Cohen et al., 1996; Masek and Col-
latz, 2006). However, the forest carbon dynamics associ-
ated with such deforestation and reforestation events remains
highly uncertain due to the large uncertainties of global car-
bon maps (Mitchard et al., 2013, 2014; Réjou-Méchain et al.,
2019).

On other hand, airborne laser scanning (ALS) provides ac-
curate landscape-scale estimates of forest structural param-
eters (Maltamo et al., 2005; Næsset, 2002; Wulder et al.,
2012). When calibrated with field-based estimates of above-
ground biomass (AGB), ALS metrics can be used to produce
high-resolution forest carbon maps, even for highly carbon-
dense tropical forests (Asner et al., 2010; Cao et al., 2016;
Ferraz et al., 2018; Kronseder et al., 2012; Labriere et al.,
2018; Zhao et al., 2009; Zolkos et al., 2013). Multi-temporal
ALS acquisitions may thus provide direct estimates of the
carbon balance of tropical forest landscapes (Dubayah et al.,
2010; Meyer et al., 2013; Réjou-Méchain et al., 2015). How-
ever, due to its relatively recent emergence, ALS technology
cannot yet be used to investigate long-term dynamics directly
(> 10 years).

Combining long-term (> 40-year) land cover change as-
sessment from satellite data archives (e.g., Landsat) and con-
temporary lidar AGB maps may be a promising avenue for
understanding long-term forest carbon dynamics. Such an
approach has been successfully implemented in temperate
and boreal forests (Bolton et al., 2015; Pflugmacher et al.,
2012, 2014; White et al., 2018; Zald et al., 2014). However,
to our knowledge, it has not been yet used to assess the for-
est carbon resilience of tropical forests (but see Helmer et al.,
2009, who used satellite-based lidar).

In this study, we combined extensive field, ALS, and Land-
sat time series (LTS) data to assess the spatial variation of
AGB and forest AGB dynamics of secondary forests in a
Thai landscape. More specifically, we first calibrated a ro-
bust ALS-AGB model to produce a fine-scale AGB map at
the landscape scale. We then used a random forest machine-
learning algorithm to classify historical Landsat images from
1972 to 2017 into forest and non-forest classes. Using this in-
formation over time, we generated a cumulative forest gain
map over a period of 42 years of succession. We finally com-
bined this chronosequence with our ALS-AGB map to esti-
mate the forest carbon resilience of secondary forests during
the 42 first years after land abandonment.

Biogeosciences, 17, 121–134, 2020 www.biogeosciences.net/17/121/2020/



N. Jha et al.: Forest aboveground biomass stock and resilience 123

Figure 1. Location of the study area in Thailand (a) and in the Khao Yai reserve (b). The central map (c) illustrates the lidar top of
canopy height (TCH) in the study area at 1 m resolution and the location of the 70 studied plots (in black). Examples of the different stand
development stages are illustrated (d–f; SIS: stand initiation stage; SES: stem exclusion stage; and OGS: old-growth stage).

2 Materials and methods

2.1 Study area

The study area of ca. 6400 ha is part of Khao Yai National
Park in central Thailand (14◦25′20.4′′ N, 101◦22′36.9′′ E;
Fig. 1). Khao Yai is the first national park established in
Thailand, in 1962. It is home to numerous endangered plant
and animal species (Kitamura et al., 2004). The area re-
ceives approximately 2200 mm of precipitation annually,
with a dry season of 5 to 6 months (precipitation below
100 mmmonth−1) from November to April (Brockelman et
al., 2011; Chanthorn et al., 2016). The annual mean tem-
perature is about 22–23 ◦C (Jenks et al., 2011), and the al-
titude of the study area varies from 650 to 870 m. Before
establishment of the park, some areas were used for low-
intensity agriculture activities that likely started at the end of
the 19th century (Brockelman et al., 2011, 2017) and then
naturally reforested at different times depending on when

burning ceased (Chanthorn et al., 2016). As a consequence,
the landscape constitutes a mosaic of secondary forests of
different ages amidst old-growth forests (Chanthorn et al.,
2016).

2.2 Field data

We used three sets of forest inventory plots with a total sam-
ple area of 35 ha (Fig. 1). First, a large 30 ha contiguous
(500m×600m) forest dynamics plot, named Mo Singto, was
established in old-growth forest after 1998 and completely
censused in 2004–2005, 2010–2011 and 2016–2017. The
census method follows the protocol of the Center for Tropi-
cal Forest Science (CTFS) network to which the plot belongs
since 2009 (Brockelman et al., 2011). The second set of plots
included eight separate 0.48 ha plots (60m×80m) that were
established from March to May 2013 and re-censused from
November 2017 to January 2018 (Chanthorn et al., 2017).
These plots are set along a successional gradient varying
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from near stand initiation to old-growth forest. Lastly, a 1 ha
plot (100m× 100 m) located near the north border of the
30 ha Mo Singto plot was established in a secondary for-
est in 2005 and then re-censused in 2010 and 2017. In all
plots, trees ≥ 1 cm in diameter at breast height (dbh) were
tagged, identified to species, mapped and measured for their
diameter, except in the 0.48 ha plots where the minimum dbh
was 4 cm. A total of 184 239 individual trees were measured
across all the plots, from which 517 trees were measured
for height using a pole for short trees (< 5 m), a laser range
finder (Nikon Forestry 550) for medium height trees (5–7 m)
and a Vertex III hypsometer for tall (> 7 m) trees (Chanthorn
et al., 2017). In this paper, we used the 2017 census data, con-
comitant with the ALS campaign, to estimate AGB and mul-
tiple censuses to estimate the AGB dynamics of secondary
plots. For the sake of homogeneity in tree measurements, we
used only trees ≥ 5 cm in dbh in the whole data set.

In order to homogenize plot size, we subdivided all plots
≥ 1 ha into 0.5 ha subplots. This resulted in 70 plots of ei-
ther 50m× 100m (n= 62) or 60m× 80m (n= 8) that we
classified in three successional stages from young- to old-
growth forests following the classification from Chanthorn
et al. (2017): stand initiation (early) stage (SIS; n= 3); stem
exclusion (intermediate) stage (SES; n= 5); and old-growth
stage (OGS; n= 62). Based on interviews of senior park
rangers and using Landsat remote sensing data, Chanthorn
et al. (2017) estimated that the ages were approximately
15–20 years for SIS forests, 35–40 years for SES forests
and unknown but probably older than 200 years for OGS
forests. This classification into successional stages followed
the framework of Oliver and Larson (1996) who studied suc-
cessional gradients in temperate forests. Although the orig-
inal framework considered four successional stages, we did
not find any area corresponding to the understory re-initiation
stage in the study landscape, i.e., the stage following SES
and preceding OGS. Most second-growth forests have re-
generated since the Park was established about 50–60 years
ago so that old second-growth forests, where understory re-
initiation occurs, are very rare in this area. Note also that
our study period (1972–2017; see below) cannot account for
forests from the SES stage older than 40 years, e.g., that di-
rectly started regenerating at the establishment of the park
in 1962, as suggested by some hand-drawn historical maps
(Cumberlege and Cumberlege, 1963; Smitinand, 1968).

2.3 ALS data

The airborne laser scanning (ALS) campaign was conducted
on 10 April 2017 over ca. 64 km2 (Fig. 1). The Asian
Aerospace Services Limited company (Bangkok) acquired
the ALS data with a RIEGL LMS Q680i installed into
a Diamond Aircraft “Airborne Sensors” DA-42 fixed-wing
airplane. The flying altitude was about 500–600 m above
ground level with a 60◦ field of view, and a pulse repetition
frequency of 400 kHz, for which the aircraft maintained an

average ground speed of 185 kmh−1 capturing the area of
interest in 50 overlapping laser strips. We discretized the full
waveform data for subsequent analyses resulting in an aver-
age point density of ca. 22 points m−2.

Post-processing of ALS data and point cloud classification
into ground, vegetation or noise was done using TerraScan of
Terrasolid Version 14. Points classified as ground were used
to build a digital terrain model (DTM) at 1 m resolution us-
ing a k nearest-neighbor kriging approach implemented in
the LidR R package (Roussel and Auty, 2017). A 1 m resolu-
tion canopy height model (CHM) was then computed from
the height of the normalized vegetation points, discarding
outliers classified as air or noise. Finally, we used the CHM
and the normalized vegetation point cloud to derive different
forest height metrics at the plot level (Table S1 in the Sup-
plement).

2.4 Landsat data

We retrieved Landsat images (MSS, TM, OLI and TIRS
products) for the study area from the Landsat archive (http:
//glovis.usgs.gov, last access: 17 April 2019) in the 1972–
2017 period (WRS-1 138/50 and WRS-2 path/row: 129/50).
To minimize the impact of clouds and potentially varying
phenology within years, we mostly selected images acquired
during the dry season, from November to March. We thus
collected Landsat 1–3 MSS data (1972–1983), Landsat 4–
5 TM (1984–2011) and Landsat 8 OLI & TIRS (2013–2017)
data. We did not consider Landsat 7 ETM+ images due to the
failure of the Scan Line Corrector, leading to data gaps. All
Landsat images were already orthorectified and displayed an
accurate co-registration with ALS data. Before 1984, Land-
sat MSS collected data at 60m× 60m spatial resolution in
most bands. Thus, to have consistent time series data, we
aligned all the post-1983 Landsat data using a reference im-
age from 1972 and aggregated each image to 60×60 m. Over
the 44 years, we selected a total of 34 high-quality images,
each representing 1 year. For the 11 missing years, we could
not find cloud-free images and no image was available in
2012 since we discarded Landsat 7 ETM+ data.

2.5 Field aboveground biomass calculation

We estimated tree aboveground biomass (AGB) using a
pantropical allometric model (Eq. 4 from Chave et al., 2014).
This model uses the diameter (D), total tree height (H ) and
wood density (WD) as the predictors and was shown to hold
across tropical vegetation types and regions. Wood density
was estimated using species- (47 % of stems), genus- (50 %)
or stand-averaged (3 %) values from the global wood density
database (Chave et al., 2009; Zanne et al., 2009). Tree height
was estimated through locally adjusted height–diameter (H -
D) models of the form given in Eq. (1):

ln(H)= a+ b× ln(D)+ c× ln(D)2+ ε, (1)
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where a and b are model parameters to be adjusted and ε
is a normally distributed error with mean 0 and standard er-
ror σ logH . Tree height was subsequently estimated using the
back-transformation formula including a known bias correc-
tion (Baskerville, 1972) using following Eq. (2):

H = exp
(

0.5× σ 2
logH + a+ b× ln(D)+ c× ln(D)2+ ε

)
.

(2)

Because the H -D relationship varies along the successional
gradient (Chanthorn et al., 2017), we fitted three independent
H -D models for the three different successional growth for-
est stages using 177 measured trees for SIS plots, 159 for
SES plots and 181 for OGS plots.

AGB at the plot level was then estimated in Mgha−1 by
summing individual tree AGB for all trees with dbh ≥ 5 cm
belonging to the plot. We did all these analyses using the R
BIOMASS package (Réjou-Méchain et al., 2017).

2.6 Lidar AGB model

We relied on a log–log model form given in Eq. (3) to model
AGB from ALS data (Asner et al., 2012; Réjou-Méchain et
al., 2015):

ln(AGB)= a+ b× ln(L1)+ c× ln(L2)+ . . .+ ε, (3)

where L1, L2, . . . are the lidar metrics to be selected (see
Table S1) and ε the error term assumed to be normally dis-
tributed with zero mean and residual standard error σ logL.
Fitting the model with log-transformed variables allows us
to model a multiplicative error and thus to account for higher
model prediction error with larger AGB values (Zolkos et
al., 2013). Using this model, we selected the most predictive
lidar metrics from our full set of lidar metrics using a leave-
one-out cross-validation (LOOCV) scheme nested within a
forward selection procedure. The LOOCV consists of fit-
ting models with all observations except one, and then us-
ing the model to predict the value of the observation held
out of model calibration. The process is repeated for all ob-
servations so that model prediction accuracy, here the root
mean squared error (RMSE), can be independently assessed
from all observations. This LOOCV approach was repeated
for different models following a forward procedure that be-
gins by selecting the most discriminant variable according to
the LOOCV-RMSE criterion. The procedure then continues
by selecting the second most discriminant variable and so on.
To minimize the problem of model overfitting, we only kept
explanatory variables that contribute to a decrease in relative
RMSE (RMSE divided by the mean observed AGB) by more
than 1 %. The selected lidar-AGB model was then used to
predict AGB values over the landscape at 60 m resolution, to
match the resolution of Landsat images.

2.7 AGB recovery analysis

2.7.1 Forest and non-forest classification

To classify areas as forest or non-forest, we applied the ran-
dom forest (RF) algorithm independently on each Landsat
image to minimize inter-image classification error that may
otherwise arise from instrumental (e.g., differences in sen-
sors spectral characteristics) and phenological effects. We
used all Landsat bands and their ratios as predictors in our RF
classification models, i.e., the four raw bands for Landsat 1–3
MSS data (1972–1983), the seven raw bands for Landsat 4–5
TM (1984–2011) and the nine raw bands for Landsat 8 OLI
& TIRS (2013–2017). The normalized difference vegetation
index (NDVI) was additionally used as a predictor for all
the sensors while the normalized burn ratio (NBR) was only
used for Landsat 4–5 and Landsat 8 due to non-availability
of short-wave infrared (SWIR) bands in MSS sensors. Thus,
we used 18 predictors for MSS, 51 predictors for TM and
83 for OLI & TIRS as an input for the RF algorithm. RF
model for each year of the study period was then trained on
the same set of pixels that likely remained either forested or
non-forested from 1972 up until 2017. This training data set
was built using the 2017 ALS data. We first aggregated the
1 m lidar-derived CHM at the same resolution as the Land-
sat images (60 m resolution) and defined non-forest pixels as
pixels having a mean top of canopy height of < 5 m (FAO,
2012; Sasaki and Putz, 2009). Because 60 m-scale deforesta-
tion is unlikely to have occurred in the area since the estab-
lishment of the national park in 1962, areas that were classi-
fied as non-forest with the 2017 lidar data very likely corre-
sponded to non-forested areas during the whole study period.
By contrast, we defined as forested areas all 60 m pixels that
had a lidar mean top of canopy height of > 30 m because
these tall forests very likely corresponded to forested areas
during the whole study period. We thus used a reference set
of 400 60 m pixels classified as non-forest and 110 as forest.
This data set was then randomly divided into a training data
set (60 %) to calibrate the RF models and a validation data
set (40 %) to assess the accuracy of the forest and non-forest
classification. We only considered classified pixels that had
a post-probability of assignment > 90 % in the RF outputs
(Pickell et al., 2016; White et al., 2018) and calculated the
classification accuracy as the proportion of pixels that were
correctly classified as forest or non-forest in the validation
data set. This statistical analysis was done using the random-
Forest R package (Liaw and Wiener, 2002).

2.7.2 Forest AGB recovery analysis

We combined time-series-classified Landsat images with the
60 m resolution lidar AGB map to quantify AGB recovery
as a function of time. We used classified time series data
to assign to each pixel the last date at which a shift from a
non-forest to forest status occurred during the study period.

www.biogeosciences.net/17/121/2020/ Biogeosciences, 17, 121–134, 2020
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Figure 2. Lidar-AGB model showing the relationship between
field-derived plot AGB and the lidar top-of-canopy height (TCH) at
0.5 ha resolution. The power model is illustrated by the red line, and
the points represent the field plot AGB estimates at different succes-
sional stages: stand initiation (early) stage (SIS; n= 3); stem ex-
clusion (intermediate) stage (SES; n= 5); old-growth stage (OGS;
n= 62) according to the classification by Chanthorn et al. (2017).

Thus, all pixels that did not experience any shift, i.e., that re-
mained non-forested or forested during the whole study pe-
riod, were discarded from this analysis. To minimize false
detection of land cover change due, for example, to atmo-
spheric pollution, we only considered shifts that entailed land
cover change for at least two consecutive images. Thus, we
did not consider any shift before 1975 because, to be consid-
ered, the non-forest to forest shift of a pixel should occur af-
ter being classified as non-forest in the two previous images
(in our case in 1972 and 1973). Finally, we also discarded
pixels that underwent more than four different shifts during
the whole study period because numerous shifts are likely to
indicate areas prone to forest degradation, e.g., close to hu-
man occupancy areas such as roads, introducing a bias in our
inferences on the natural successional dynamics. We thus as-
signed to each pixel the year of the last non-forest to forest
shift, if any, and considered this year as the forest recovery
starting time. The AGB predicted by the lidar AGB map in
2017 was then used to estimate how much AGB was stored
between the forest recovery starting time and 2017 through a
non-linear power model.

3 Results

3.1 Forest biomass stocks

Field plots AGB ranged from 80 to 577 Mgha−1 (mean of
315 Mgha−1), with a mean AGB of SIS, SES and OGS plots
of 87, 291 and 328 Mgha−1, respectively. Among all the li-
dar metrics, the mean of top-of-canopy height (TCH, defined

as the maximum height of 1 m resolution pixels) was the
best predictor of field AGB estimates with a relative RMSE
of 14 % (RMSE= 45 Mgha−1; R2

= 0.85) at 0.5 ha scale
(Fig. 2). Adding a second predictor did not reduce the rel-
ative RMSE by more than 1 % (Table S2). We thus kept TCH
as a single predictor for our analyses resulting in the Eq. (4)
for the lidar-AGB model:

AGBL = 4.30×TCH1.39. (4)

Using this lidar-AGB model, we predicted AGB over the
whole landscape (Fig. 3a). The distribution of AGB val-
ues over the landscape was not normally distributed due
to an over-representation of pixels with low AGB values.
At the landscape scale, predicted AGB ranged from 0 to
681 Mgha−1 with a mean of 291 Mgha−1 (Fig. 3b), close
to the mean AGB of the field plots.

3.2 AGB recovery analysis

Our forest and non-forest classification through time was
highly accurate, with 90 % to 99 % of well-classified val-
idation pixels in individual classified images (Table S3,
Figs. S1–S2 in the Supplement). Figure 4a illustrates the re-
sulting spatialized time series of non-forest-to-forest shifts
over the study area and showed that most (83 %) of the land-
scape did not experience such a shift at 60 m resolution.
About 78 % and 5 % of the study area remained permanently
forested and non-forested over the 42-year study period, re-
spectively. Most of the stable non-forested areas correspond
to National Park building areas, including tourist shops and
guesthouses or to continuously cleared areas such as camp-
ing locations. Over the 17 % remaining pixels that experi-
enced a shift, we concentrated our analyses on the 4 % pixels
(n= 550; ca. 198 ha) that passed our selection procedure and
that were well distributed over the landscape (Fig. 4b).

Considering the selected pixels that experienced a shift
from non-forest to forest, we found that AGB accumulated
non-linearly through time during the 42 first years of the suc-
cession (Fig. 5). A simple power model led to a pseudo-R2

of 0.66 and a power exponent of greater than 1, indicating
an increase in the rate of AGB accumulation with recovery
time. This model predicts an AGB gain of 143 Mgha−1 after
20 years of recovery and of 273 Mgha−1 after 40 years (spa-
tialized gain in AGB is shown in Fig. S3). Using field AGB
estimates at two different census dates from eight secondary
forest plots that started regenerating during the study period
(see Fig. S5), we showed that the observed rate of AGB accu-
mulation was similar to the one predicted by our model and
also tended to increase with forest age (in blue dots in Fig. 5).
Finally, focusing on the 17 % pixels that experienced at least
one shift from non-forest to forest since 1972, we estimated
that the study area has stored a minimum AGB of 455 Gg, as
observed in the 2017 lidar AGB map, equivalent to 214 GgC
during the study period.

Biogeosciences, 17, 121–134, 2020 www.biogeosciences.net/17/121/2020/
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Figure 3. Lidar-AGB map and the distribution of AGB values over the landscape at 60 m resolution. (a) Spatial distribution of AGB predicted
from the lidar-AGB inversion model over the study area; (b) density distribution of predicted AGB over the landscape.

Figure 4. Landsat time-series-derived map showing non-forest-to-forest change over the study area. (a) Map showing spatialized-selected
pixel shifts from non-forests to forests over the years. The shade gradient represents pixels that did not experience any shift (permanently
forested or deforested) and pixels that experienced a shift but that did not pass our quality procedure during the study period (not selected).
(b) Density distribution of selected pixel shifts over the landscape during the study period.

4 Discussion

In this study, we showed that the integration of field inven-
tory, Landsat archives and lidar data provides a powerful ap-
proach for characterizing the spatio-temporal dynamics of
aboveground biomass in tropical forests. While the carbon
stocks and recovery potential of Southeast Asian tropical
forests are globally poorly known, our approach contributes
to a better understanding of the role of these forests in global

carbon dynamics. We specifically showed that our study site
stores a large amount of carbon, despite its disturbance his-
tory, and acts as a strong carbon sink, through secondary suc-
cession pathways.

4.1 Spatial variation in AGB

Using extensive field data, we have shown that forest AGB
can be predicted with an error of 14 % at a 0.5 ha resolution

www.biogeosciences.net/17/121/2020/ Biogeosciences, 17, 121–134, 2020
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Figure 5. Relationship between forest biomass estimated from a
lidar-AGB model and forest recovery time estimated from a time se-
ries of classified Landsat images (grey dots). The fitted power model
is represented by the red line. Blue lines and dots represent the AGB
directly estimated from eight field plots (same plots are joined by a
line) in 2013 and in 2017/18 and for which the forest recovery time
was inferred from Landsat-derived forest age (Fig. S5).

using a single lidar metric, the mean top-of-canopy-height
(TCH), a metric previously identified as a robust predictor
of AGB (Asner and Mascaro, 2014). This error typically
falls within the range of expected errors at this resolution
(Zolkos et al., 2013). Using a robust metric selection ap-
proach, we showed that adding any other lidar metrics did not
bring any additional information and that our single predic-
tor did not show any saturation for large AGB values. Many
studies have used a combination of several lidar metrics se-
lected through less robust approaches, i.e., not through inde-
pendent validation approaches such as our LOOCV proce-
dure, potentially generating overfitting problems (Junttila et
al., 2015). We here confirm, similarly to Asner et al. (2012)
and Réjou-Méchain et al. (2015), that simple parsimonious
models should be preferred, at least within a given tropical
forest landscape. Due to a limited number of field plots in
low-biomass areas, we were, however, unable to test whether
model prediction error varied with forest stand AGB.

Using this lidar model, we predicted a mean AGB over
the landscape of 291 Mgha−1, corresponding to a carbon
density of 137 Mg Cha−1 (using a ratio of biomass to car-
bon conversion of 0.47; Thomas and Martin, 2012). Using a
large network of field plots, a recent pantropical study sug-
gested that Southeast Asian and African forests store sig-
nificantly more carbon than Amazonian forests (Sullivan et
al., 2017). However, in this latter study, Southeast Asian

forests were only represented by field data from Indonesia
and Malaysia where trees are known to be particularly tall
(Coomes et al., 2017; Feldpausch et al., 2011; Jucker et al.,
2018). Here, we found that our study forests stored signif-
icantly less carbon than forests in Indonesia and Malaysia,
where the mean carbon density reached ca. 200 MgCha−1

(Sullivan et al., 2017), but as much as in Amazonian forests
(mean of 140 MgCha−1; Sullivan et al., 2017), even when
considering only old-growth forest plots. Whether the rela-
tively low carbon density of our study site, compared to other
Southeast Asian forests, is specific to our study area or rep-
resentative of other Southeast Asian forests should be further
investigated.

We found a very high spatial heterogeneity of AGB at the
landscape scale with an apparent over-representation of low
AGB values. This is most probably the consequence of past
human activities in this area up to the establishment of the
park that led to the present mosaic of secondary and mature
forests. This result indicates that this area is currently likely
to be a net carbon sink.

4.2 AGB recovery through time

Combining classified images obtained from LTS and lidar
data, we quantified the recovery rate of forests after land
abandonment. As expected, we showed a significant increase
of AGB with recovery time. After 20 years of recovery, our
model predicts an AGB accumulation of 143 Mgha−1, an es-
timate slightly higher than the one predicted by Poorter et
al. (2016a) in Neotropical secondary forests (122 Mgha−1).
However, this difference can partly be explained by the in-
clusion of trees between 5 and 10 cm dbh in our study, con-
trary to the study of Poorter et al. (2016b). AGB accumu-
lation in our study corresponds to a net carbon uptake of
3.4 MgCha−1 yr−1 for the first 20 years. This rate of car-
bon accumulation is close to the pantropical estimate from
Silver et al. (2000) and is similar to the default continent
recovery rates given by the previous 2006 IPCC guidelines
for national greenhouse gas inventories (IPCC, 2006). How-
ever, the 2019 refinement of these guidelines halved the re-
covery rate estimate for young Asian secondary rainforest
(≤ 20 years; Requena Suarez et al., 2019; IPCC, 2019), sug-
gesting that young secondary forests in Asia store carbon at
a much lower rate than in Latin America or in Africa. This
new estimate is derived from a very limited data set (seven
chronosequences) that may not be representative of Asian
tropical rainforests. Besides, these data included very small
field plots (≤ 0.01 ha in size; Hiratsuka et al., 2006; Ewel et
al., 1983), potentially leading to important sampling errors
(Réjou-Méchain et al., 2014). Given the serious implications
of these updated IPCC default rates for Asian countries, we
here call for further testing of these new IPCC rates across
tropical Asia.

Our model showed that a non-linear power model with an
exponent of > 1 best fit our data, suggesting an increase in
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the rate of carbon accumulation during the first 42 years of
succession. Contrary to the results found by Feldpausch et
al. (2007), the rates of AGB accumulation inferred with our
approach provided estimates similar to those obtained from
long-term field plot surveys (Fig. 5), validating the chronose-
quence approach in our study area. Assuming that the car-
bon recovery rate rapidly decreases after 50–60 years (Brown
and Lugo, 1990; Silver et al., 2000), our result suggests a
sigmoid relationship of AGB accumulation with time in our
study area. Previous studies have shown different models of
AGB accumulation with forest age. Saldarriaga et al. (1988)
showed that the AGB of Neotropical forests from the up-
per Rio Negro increased linearly with stand age during the
40 years, while Jepsen (2006) reported a sigmoidal increase
in AGB accumulation in Sarawak, Malaysia, as is likely the
case in our study area. Finally, working on 41 Neotropical
sites, Poorter et al. (2016a) assumed a logarithmic trend in
the AGB accumulation over time, hence a decrease of the
rate of carbon accumulation through time, probably because
they investigated a longer time period. Selecting the sites of
Poorter et al. (2016a, b) that had at least 10 observations
over the first 44 years (n= 21 out of 28 sites, i.e., exclud-
ing 7 sites for which model fitting was not possible), site-
specific power models revealed that two-thirds of the sites
displayed a power exponent of < 1 and one-third showed an
exponent of > 1 (Fig. S4). Thus, the accumulation of AGB
with age follows different trends across sites, as already high-
lighted in previous studies (Kennard et al., 2002; Poorter et
al., 2016a; Ray and Brown, 2006; Ruiz et al., 2005; Silver
et al., 2000; Toledo and Salick, 2006). Understanding how
these trends vary according to abiotic factors (e.g., soil type,
rainfall), species assemblage and diversity, and prioritizing
effects such as types of land use and land management exist-
ing before forest recolonization, constitute an important av-
enue of research (Chazdon, 2014; McMahon et al., 2019).

Our analysis was based on a forest/non-forest classifica-
tion through time and our independent validation suggested
high overall accuracy (90 % to 99 %), similar to that reported
by other studies using Landsat data classification in boreal
systems (Bolton et al., 2015; White et al., 2018). Further-
more, our estimate of forest age using this approach was
highly consistent with our expectations. Indeed, using our
forest plots, we found that the SES and SIS forest stages
lasted on average 40 years (range 38–42) and 13 years (range
8–20), respectively, hence very close to suggestions of Chan-
thorn et al. (2017; Fig. S5). However, our overall approach
cannot be replicated easily in human-occupied areas. Indeed,
human disturbances lead to forest degradation that, in con-
trast to deforestation, is not captured by the Landsat signal,
so that, when combined with a reference AGB map, natu-
ral carbon recovery potential could be seriously underesti-
mated. Because our study area was protected from human
disturbances during the study period, we were in very favor-
able conditions to estimate forest carbon recovery rates and

strongly encourage researchers benefiting from similar con-
ditions to replicate our analyses in other study sites.

5 Conclusions

Our study demonstrates that combining field, lidar and long-
term satellite data provides an efficient way to assess for-
est carbon recovery rates during secondary successions. We
showed that it produces similar estimates as those inferred
from long-term field plots, but at a much lower cost and
within a much shorter time frame. Replicating this approach
in other protected tropical landscapes, notably in the Asian
subcontinent, would thus considerably increase the represen-
tativeness of forest carbon recovery rates. This would im-
prove our understanding of the environmental and historical
drivers of these varying rates between ecological zones and
continents. This is especially important in Southeast Asian
forests that constitute a hotspot of biodiversity and carbon,
and that are under threat due to the fast changing of both the
environment and socioeconomics in this region. Quantifying
the rates at which different forest types accumulate carbon
should thus stay at the forefront of the research agenda and
would greatly benefit the Earth system model community and
international policy initiatives such as REDD+.
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