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Abstract. Black-tailed prairie dogs (Cynomys ludovicianus)
have been described as a keystone species and are impor-
tant for grassland conservation, yet many concerns exist over
the impact of prairie dogs on plant biomass production and
consequently livestock production. The ability to map plant
communities in pastures colonized by prairie dogs can pro-
vide land managers with an opportunity to optimize range-
land production while balancing conservation goals. The aim
of this study was to test the ability of random forest (RF)
models to classify five plant communities located on and
off prairie dog towns in mixed-grass prairie landscapes of
north central South Dakota, assess the stability of RF models
among different years, and determine the utility of utilizing
remote sensing techniques to identify prairie dog colony ex-
tent. During 2015 and 2016, Pleiades satellites were tasked
to image the study site for a total of five monthly collec-
tions each summer (June–October). Training polygons were
mapped in 2016 for the five plant communities and used to
train RF models. Both the 2015 and 2016 RF models had low
(1 %) out-of-bag error rates. However, comparisons between
the predicted plant community maps using the 2015 imagery
and one created with the 2016 imagery indicate over 32.9 %
of pixels changed plant community class between 2015 and
2016. The results show that while RF models may predict
with a high degree of accuracy, overlap of plant communities
and interannual differences in rainfall may cause instability
in fitted models. A final RF model combining both 2015 and
2016 data yielded the lowest error rates and was also highly
accurate in determining prairie dog colony boundaries.

1 Introduction

Within the Northern Great Plains mixed-grass prairie ecosys-
tem, black-tailed prairie dog colonization is an issue of con-
cern for livestock producers (Miller et al., 2007). Competi-
tion between prairie dogs and livestock is a major concern for
land managers looking to optimize beef production while still
conserving wildlife species (Augustine and Springer, 2013).
Prairie dogs have been identified as a keystone species and
are often seen as ecosystem engineers providing habitat to a
number of other plant and wildlife species (Davidson et al.,
2010; Kotliar et al., 1999). Prairie dogs can also reduce avail-
ability of forage for livestock by directly reducing the quan-
tity of forage available (through direct consumption, clip-
ping plants to increase predator detection, and building soil
mounds) and by changing species composition (Derner et al.,
2006). Within the mixed-grass prairie, C3 midgrasses tend
to decrease and C4 shortgrasses increase along an increas-
ing gradient of grazing intensity (Irisarri et al., 2016). Due to
repeated defoliation, older core areas of prairie dog towns of-
ten become characterized by extensive areas of bare ground
and low vegetation production, which is generally limited to
annual forb and dwarf shrub species. Pastures containing ex-
tensive areas of bare ground due to prairie dog colonization
may potentially depress livestock forage intake rates and ul-
timately beef production. The ability to map the extent and
monitor the impact of prairie dogs on the landscape can help
land managers looking to optimize livestock production on
prairie-dog-occupied rangelands.
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Remote sensing of rangelands greatly improves our abil-
ity to study and understand complex ecological interactions
across the landscape. As technology advances, monitoring
of rangelands via remote sensing platforms will facilitate re-
search products freely available to land managers (Brown-
ing et al., 2015). One of the main advantages of remote
sensing data is their capacity to cover wide areas, allowing
assessment of plant communities at landscape level scales
compared to traditional point-based assessments (Ramoelo
et al., 2015; Yu et al., 2018). Numerous studies have demon-
strated the utility of remote sensing applications in moni-
toring rangeland condition, including mapping of vegetation
communities, plant species composition, biomass estimation,
and impact of grazing intensity on the landscape (Goodin and
Henebry, 1997; Blanco et al., 2008; Franke et al., 2012).

Many methods for accurately classifying plant communi-
ties using remote sensing techniques have been used in eco-
logical and natural resource studies. One method, random
forest (RF) classification, has gained considerable traction
in the remote sensing community for its ability to produce
accurate classifications, handle highly dimensional data, and
provide efficient computing times (Belgiu and Drăguţ, 2016).
RF is seen as an improvement over simple classification tree
analysis by reducing noise and misclassification of outliers
(Laliberte et al., 2007; Nitze et al., 2015). RF is an ensemble
decision tree classifier which combines bootstrap sampling
to construct several individual decision trees from which a
class probability is assigned (Mellor et al., 2013). RF builds
each tree using a deterministic algorithm selecting a random
set of variables and a random sample from the calibration
dataset (Ramoelo et al., 2015).

The utility of random forest algorithms has been demon-
strated in remote sensing applications across many plant
communities at multiple scales (Mutanga et al., 2012; Lowe
and Kulkarni, 2015; Ramoelo et al., 2015). Concerns exist,
however, over the transferability of these models to differ-
ent sites, across seasons, or years. For example, RF models
have shown to have a high degree of classification accuracy
for mapping fine-scale coastal vegetation using digital eleva-
tion maps and high-resolution orthophoto imagery, but model
accuracy decreased significantly when applied to spatially
separated sites (Juel et al., 2015). Selecting spatially rele-
vant training data or including species-level cover data may
help improve or explain differences observed when transfer-
ring models between sites. Incorporating additional seasons
of data may also improve RF model accuracy; previous re-
search has shown an improvement of RF model accuracy in
classifying wetlands in northern Minnesota with the inclu-
sion of Landsat 5 images across 2 years using full season
data versus summer-only and fall-only models (Corcoran et
al., 2013). Longer-term studies have also demonstrated the
utility of using RF modeling with 30 m Landsat data to mon-
itor rangeland cover across the western United States over a
33-year period (Jones et al., 2018). Results of these studies

suggest the scale and seasonality of the imagery may play an
important role in the stability and accuracy of RF models.

The stability in RF models to accurately map plant com-
munities within prairie-dog-occupied pastures may be par-
ticularly important for managers looking to monitor prairie
dog colony expansion or contraction over time. While clas-
sification rates are often reported in studies, the potential
overlap in plant community composition is rarely explored
as a potential source of error within the models. Many re-
search studies focus solely on spectral differences in plant
communities and fail to analyze community differences on
the ground at the species level (de Colstoun et al., 2003;
Geerken et al., 2005). This may be especially important
within prairie-dog-occupied rangelands, where shifts in plant
community composition may be driven more by the presence
or absence of an herbivore species versus elevation, soils, or
other landscape features. These herbivory-induced changes
in plant community may facilitate or hamper classification
schemes. The ability to accurately map plant communities
within prairie-dog-occupied pastures can help improve man-
agement of rangelands colonized by prairie dogs, yet little
research has explored the possibility of utilizing remote sens-
ing as a tool to do so.

A large collaborative study from 2012 to 2016 was
conducted to evaluate livestock production on mixed-grass
prairie pastures with varying levels of prairie dog occupa-
tion. A major goal of the larger study was to determine which
plant communities on the pastures cattle preferred to graze
and how those preferences shifted within and between years
(Olson et al., 2016). Plant communities on the site were cat-
egorized based on location (on- or off-town) and visually ap-
parent dominant plant functional groups. Thus, plant com-
munity as defined for this study was a collection of species
within an area of a relatively uniform composition differ-
ent from neighboring patches. Differences in neighboring
patches were evident by differences in dominant functional
group (forb vs. grass) or differences in photosynthetic path-
ways (C3 vs. C4 grasses). The overall goal of this paper,
then, was to develop maps that accurately classify plant com-
munities based on satellite imagery collected between years.
Specific objectives of this study were to (1) determine dif-
ferences in the five identified plant communities based on
species composition, (2) assess the utility of using a RF
model with high-resolution satellite imagery to classify plant
communities of interest within a mixed-grass prairie ecosys-
tem containing prairie dogs, (3) determine the stability of the
RF model when using subsequent years of satellite imagery
with identical training data, and (4) determine the ability of
high-resolution satellite imagery to accurately map prairie
dog towns. Our ability to map and understand these plant
communities at large scales will give researchers insight into
applying RF models across years using high-resolution im-
agery. Research from this study will allow us to better assess
how prairie dogs drive changes in plant communities and
provide a new tool to map the extent and impact of prairie
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dog colonization on the landscape to better inform land man-
agement decisions.

2 Methods

2.1 Study site

The study area (45.74◦ N, 100.65◦W) was located near
McLaughlin, South Dakota, on a northern mixed-grass
prairie ecosystem. Native prairie pastures (810 ha total area)
were leased from 2012 to 2016; pastures were continuously
stocked with yearling steers from June to October of each
year to achieve 50% utilization. Of the 810 ha, approxi-
mately 186 ha was occupied by black-tailed prairie dogs
(Cynomys ludovicianus). Predominant soils at the site were
clays and loams. Ecological sites, and the plant commu-
nities they support, vary widely; loamy and clayey were
the predominant ecological sites at the site with inclusions
of dense clay, shallow clay, and thin claypan (Barth et al.,
2014). Plant species dominating the site were largely native,
including western wheatgrass (Pascopyrum smithii Rydb.),
green needlegrass (Nassella viridula Trin.), and needle-and-
thread grass (Hesperostipa comata Trin. & Rupr), intermixed
with blue grama (Bouteloua gracilis Willd. ex Kunth), buf-
falo grass (Bouteloua dactyloides Nutt.), and sedges (Carex
spp.). The most common non-native species on the site was
Kentucky bluegrass (Poa pratensis Boivin & Love). Woody
draws occupied moist drainage areas; vegetation consists
primarily of bur oak (Quercus macrocarpa Nutt.), Amer-
ican plum (Prunus americana Marshall), and chokecherry
(Prunus virginiana L.). These draws were frequently flanked
by snowberry-dominated patches (Symphoricarpos occiden-
talis Hook.). Plant communities on areas occupied by prairie
dog towns on the site were largely dominated by western
wheatgrass and shortgrasses (buffalo grass, blue grama, and
sedges) intermixed with patches of bare ground and annual-
forb-dominated areas. Common annual forbs on prairie dog
towns included prostrate knotweed (Polygonum aviculare
L.), fetid marigold (Dyssodia papposa Vent.), dwarf horse-
weed (Conyza ramosissima Cronquist), and scarlet globe
mallow (Sphaeralcea coccinea Nutt.). A weather station has
been maintained on site from May 2013 operated by South
Dakota Mesonet. Mean annual rainfall at the site is 446 mm
and average growing season (May through September) tem-
perature is 15.3 ◦C (South Dakota Climate and Weather,
2017).

Five plant communities of interest for our study site were
identified: (1) forb-dominated sites on prairie dog towns (On-
Forb), (2) grass-dominated sites on prairie dog towns (On-
Grass), (3) snowberry-dominated sites off-town (Off-Snow),
(4) cool-season-grass-dominated sites off-town (Off-Cool),
and (5) warm-season-grass-dominated sites off-town (Off-
Warm). An additional plant community labeled “Draws” was
delineated visually within ArcGIS software due to difficulty

in mapping these areas in the field. Areas delineated as Draws
were removed from the analysis area.

2.2 Training sites

To facilitate classification, training site polygons were
mapped for On-Forb, On-Grass, Off-Cool, Off-Warm, and
Off-Snow plant communities using ArcPad for Trimble GPS
units in the summer of 2016. Twenty training sites were
mapped for each of the plant communities except Off-Warm,
for which only eight sites were mapped due to the diffi-
culty of finding homogenous stands of warm-season grasses.
Plant species in the Northern Great Plains are dominated by
cool-season species; warm-season species, where they occur,
are typically intermixed into stands of cool-season species.
Training sites for each plant community were selected from
across the entire study area to capture potential site differ-
ences across research pastures. Sites were mapped in the field
by walking the perimeter of the plant community patch with
a Trimble GPS unit. Training polygon perimeter boundaries
were always at least 3 m from the edge of the patch to mini-
mize error introduced to the training data as a result of GPS
signal noise. Identified patches were then converted into a
polygon shapefile within ArcGIS to be used as training poly-
gons for the RF classification algorithm. Within each training
site polygon, three 0.25 m2 plots were randomly located by
tossing plot frames into the area of interest to determine sam-
pling area. Within each plot, percent cover by species was
recorded in the summer of 2016 at the time of polygon map-
ping.

2.3 Plant community analysis

Plant community analysis was performed on vegetation data
collected from the three 0.25 m2 plots measured in each train-
ing polygon. Differences between plant community compo-
sitions were determined using a multi-response permutation
procedure (MRPP) with the Sørensen or Bray–Curtis dis-
tance method. MRPP is a nonparametric procedure used for
testing hypotheses between two or more groups (Mitchell et
al., 2015). Differences in community compositions were an-
alyzed for all plant communities, and pairwise comparisons
were generated. To analyze trends in species composition be-
tween plant community plots, nonmetric multidimensional
scaling (NMS) ordination was used (Kruskal, 1964). Only
species that occurred in three or more plots were included
in the ordination analysis. NMS analysis was conducted us-
ing the Sørensen or Bray–Curtis distance method with 250
iterations and a stability criterion of 0.00001. Analysis was
repeated five times to confirm ordination pattern in the data.
Similarity index matrices were generated to compare plot dif-
ferences between plant communities and averaged by plant
community. All ordination analyses (MRPP and NMS) were
performed using PC-ORD 6 software (McCune and Mefford,
2002).
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Table 1. Acquisition dates of Pleiades satellite imagery tasked for
each month (June–October) in 2015 and 2016.

2015 dates of acquisition 2016 dates of acquisition

1 June 2015 5 June 2016
9 July 2015 2 July 2016
4 August 2015 2 August 2016
1 September 2015 11 September 2016
8 October 2015 1 October 2016

2.4 Imagery

During the summers of 2015 and 2016, Pleiades satellites
were tasked to image the study site. Pleiades satellites, which
are members of the SPOT family of satellites, are operated
by Airbus Defense and Space. This platform was chosen due
to its high spatial resolution (0.5 m pan chromatic, 2 m mul-
tispectral) and four-band spectral resolution: pan chromatic
(480–830 nm), red (600–720 nm), green (490–610 nm), blue
(430–550 nm), and near infrared (750–950 nm). Pleiades
satellites were designed for commercial tasking and moni-
toring, allowing multiple revisits to a project site. A total of
10 image collections were acquired in the summer of 2015
and 2016 (five each year) from June through October dur-
ing the 1st–15th of each month (Table 1). Image collection
times were chosen to correspond to the time periods when
cattle were actively grazing on the site. Multispectral im-
ages were pan-sharpened and orthorectified by the image
provider (Apollo Imaging Corp). Each monthly image col-
lection was converted into a normalized difference vegetation
index (NDVI) image. In addition, boundaries of the prairie
dog town were mapped using a handheld Trimble GPS unit
to compare predicted colony location with ground truth loca-
tion.

2.5 Random forest model

For the RF model, the Random Forest package of the Com-
prehensive R Archive Network (CRAN) implemented by
Liaw and Wiener (2002) was utilized. Training data were
constructed by stacking all satellite imagery spectral bands
(red, blue, green, and NIR) and NDVI bands for each month
of each year (25 total dimensions per year) to create a raster
stack for each year’s imagery (2015 and 2016). To train the
model, pixel values were extracted from the satellite imagery
raster stack for each training polygon mapped in the field.
The random forest models were built using 200 decision trees
and a default number of nodes at each split (

√
n), with plant

community data as the response category (On-Grass, On-
Forb, Off-Cool, Off-Warm, and Off-Snow) and spectral band
values as the predictor. Models were checked for error stabi-
lization, for all models error rates stabilized around 50 trees.
Yearly models (2015 and 2016) were built for output compar-

ison. A combined-year model was also constructed using all
available spectral data from 2015 and 2016 (50 dimensions).

Within the random forest package, out-of-bag (OOB) er-
ror rates were calculated by reserving one-third of the train-
ing data to test the accuracy of the predictions. Models were
then used to predict class belonging for 2015 and 2016 raster
stacks and the combined 2015 and 2016 stack using the “pre-
dict” function within the program R. To assess the stability
of the RF models from year to year, the “crosstab” function
in the raster package in the program R was used to calculate
the number of pixels that changed class from 2015 to 2016.
The output was used to calculate percent of pixels that were
unchanged from 2015 to 2016 model predictions and percent
of pixel change that occurred between years for plant com-
munity predictions.

3 Results and discussion

3.1 Plant community

MRPP pairwise comparison results showed a significant dif-
ference between all plant communities (P < 0.001). Differ-
ences are evident between plant communities in the 2-D
plot of the NMS ordination (final stress= 20.01, instability
< 0.00001 after 66 iterations), with some overlap occurring
between communities (Fig. 1). Plant communities on-town
and off-town are clustered at opposite ends of the ordina-
tion plot, with the greatest distance being between On-Forb
and Off-Snow. Detrended correspondence analysis of plant
communities ranging from uncolonized, to 2 years post col-
onization, to 4–6 years post colonization showed that un-
colonized sites were clustered at one extreme and the 4–
6-year sites at the other extreme (Archer et al., 1987). In-
terestingly, Off-Warm and On-Grass communities are clus-
tered closer in ordination space. Plant community shifts on-
town towards those dominated by shortgrass species have
been documented (Agnew et al., 1986; Koford, 1958) and are
probably attributable to the high grazing resistance of the C4
species blue grama and buffalo grass (Derner et al., 2006).

Similarity index differences between plant communities
were generated from a Sørensen (Bray–Curtis) distance ma-
trix and can be seen in Table 2. While there is some over-
lap between plant communities, in general similarities are
low (< 29 %), with the greatest distance occurring between
the On-Forb communities and the off-town communities (Ta-
ble 2). Based on how plant communities were selected in this
study, we expected plant community composition to be dis-
tinct between groups. Though plant communities are defined
by dominant functional group in this study, the amount of
overlap occurring demonstrates that other functional groups
and species exist within these distinct patches, which may be
a potential source of instability in classification models.
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Figure 1. NMS ordination plots for plant communities located on and off of prairie dog towns, based on plant cover by species data collected
in 2016 on the study site in north central South Dakota. The “+” symbol followed by the community name represent the weighted mean
(centroid) of the multivariate dataset. Plant communities on prairie dog towns are grass-dominated (On-Grass) and forb-dominated (On-
Forb); plant communities in off-town areas are cool-season-grass-dominated (Off-Cool), warm-season-grass-dominated (Off-Warm), and
snowberry-dominated (Off-Snow).

Table 2. Similarity index (Sørensen (Bray–Curtis) distance method)
values averaged by plot across plant communities.

Community comparison∗ Similarity index (%)

Off-Cool vs. Off-Snow 28.2
Off-Cool vs. Off-Warm 27.8
Off-Cool vs. On-PDG 27.7
Off-Snow vs. Off-Warm 21.6
On-PDG vs. On-PDF 17.8
Off-Snow vs. On-PDG 17.3
Off-Warm vs. On-PDG 17.3
Off-Cool vs. On-PDF 7.9
Off-Snow vs. On-PDF 6.2
Off-Warm vs. On-PDF 6.2

∗ Plant communities on prairie dog towns are grass-dominated
(On-Grass) and forb-dominated (On-Forb); plant communities in
off-town areas are cool-season-grass-dominated (Off-Cool),
warm-season-grass-dominated (Off-Warm), and
snowberry-dominated (Off-Snow).

3.2 Random forest model results

Results from the RF models show low OOB misclassification
error rates for each individual plant community (Table 3),
indicating a high degree of accuracy in the model. Overall
the OOB model error rates were 0.9 % and 1.12 % for the
2015 and 2016 models, respectively. OOB accuracy is an un-
biased estimate of the overall classification accuracy, elimi-
nating the need for cross-validation (Breiman, 2001). OOB
error rates have been shown to be reliable estimates of class
accuracy for identifying invasive species (Lawrence et al.,
2006) and mapping corn and soybean fields across multiple
years (Zhong et al., 2014). Belgiu and Drăguţ (2016), in their
review of RF applications in remote sensing, acknowledge
that the reliability of OOB error measurements needs to be
further tested using a variety of datasets in different scenar-
ios. Consistency in error rates for plant communities appears
to indicate stability in the 2015 and 2016 RF models which
used identical training sites on consecutive yearly satellite
imagery. However, when comparing yearly predicted plant
community maps, differences between community classifi-
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Table 3. Out-of-bag misclassification error rates (%) for each plant
community for 2015, 2016, and combined-year random forest mod-
els.

Plant 2015 model 2016 model 2015–2016
community∗ combined model

Off-Cool 0.20 % 0.40 % 0.04 %
Off-Snow 2.2 % 1.9 % 0.69 %
Off-Warm 3.2 % 5.3 % 0.73 %
On-Grass 0.40 % 0.60 % 0.09 %
On-Forb 0.60 % 0.70 % 0.19 %

∗ Plant communities on prairie dog towns are grass-dominated (On-Grass) and
forb-dominated (On-Forb); plant communities in off-town areas are
cool-season-grass-dominated (Off-Cool), warm-season-grass-dominated
(Off-Warm), and snowberry-dominated (Off-Snow).

cations are slightly more pronounced, indicating the models
may not be as stable as predicted based solely on the OOB
error rates.

Overall a total of 67.04 % pixels remained unchanged in
their plant community classification from 2015 to 2016 (Ta-
ble 4). Of the pixels that changed classification between
years, 15.13 were on-town to off-town transitions, 2.26 were
on-town to on-town transitions, and 15.57 were off-town to
off-town plant community transitions. It is unlikely in this
northern mixed-grass prairie ecosystem that all the changes
in plant communities indicated by classification of pixels
were real changes from one plant community type to another
over 1 year. In the absence of a major disturbance event, such
major shifts in species composition typically occur much
more slowly (Vermeire et al., 2018). The results from the
plant community analysis indicate training sites were cho-
sen appropriately to account for differences in species com-
position on the ground; therefore apparent changes are much
more likely due to factors that affect the spectral signature
of the vegetation. Factors that may potentially affect spec-
tral signatures could include changes resulting from prairie
dog herbivory, changes in precipitation regimes, or changes
occurring along plant community transition zones.

The pixels changing from On-Grass to Off-Cool repre-
sented the highest percentage of pixels that changed plant
community classification at 7.28 %; these are likely occur-
ring along transition zones at the prairie dog colony edge.
Both On-Grass and Off-Cool plant communities have west-
ern wheatgrass as a dominant species. Similarity in species
dominance may explain some of the challenges to distin-
guishing between some on- and off-colony plant communi-
ties. Difficulty in classifying Off-Cool and On-PDG may also
be due to subtle vegetation changes likely induced by the
level of herbivory. Research on a South Dakota mixed-grass
prairie showed that prairie dogs remove over 4 times more
biomass than cattle grazing on-town (Gabrielson, 2009). Up
to 7 times more standing dead forage and 60 % less standing
crop biomass has been reported on uncolonized sites com-
pared to colonized areas, mainly attributed to prairie dogs

clipping vegetation, which greatly reduced the amount of
grasses that reached maturity (Johnson-Nistler et al., 2004).
Areas either less maintained on-town by prairie dogs or
grazed by cattle repeatedly off-town may show similar spec-
tral signatures.

Differences in year-to-year classification could also be
attributed to the interannual variability of rainfall between
2015 and 2016 (Fig. 2). Yearly rainfall patterns can result in
large differences in NDVI and biomass measurements across
years (Wehlage et al., 2016). While overall total rainfall be-
tween years was similar, differences in timing of precipita-
tion that occurred likely affected timing of green-up and dor-
mancy for many of the cool- and warm-season species on
the site. This, then, would create different NDVI patterns be-
tween years (Fig. 3). Goward and Prince (1995) suggested
that the relationship between NDVI and annual rainfall in
any given year also depends on the previous year’s history of
rainfall at the site. Previous research has shown that annual
aboveground primary production of shortgrass communities
is related to current as well as the previous 2 years’ precip-
itation (Oesterheld et al., 2001). The above-average rainfall
at the study site in 2015 could have added to the increase in
average NDVI in 2016 when compared to 2015 through an
increase in cumulative biomass or production at the site. In-
creased cumulative biomass in 2016 may cause higher NDVI
values, for example, in On-PDG plant communities, resulting
in classification shifts to Off-Cool; similarly, greater NDVI
values in Off-Cool in 2016 may result in some of those pix-
els being classified as Off-Snow.

Another possible cause for changes in plant community
classifications between years is overlap of species where two
communities share a boundary. One issue with using cate-
gorically classified vegetation maps is that plant communi-
ties in space are rarely mutually exclusive, and they tend
to change along a continuum with environmental gradients
(Equihua, 1990). Plant communities in the region, which are
predominantly comprised of cool-season grasses, often in-
clude varying levels of warm-season species; and snowberry
thickets often have an understory of grasses, especially near
the perimeter. The challenge of accurately classifying plant
communities along an ecological continuum may be further
exacerbated by changes induced by prairie dogs, where tran-
sition zones are less defined by environmental gradients and
more defined by the level of herbivory. Thus, within and be-
tween on-town and off-town plant communities, transition
zones are likely to account for a portion of the classification
change between plant communities between years (Fig. 4).
Alternative approaches to mapping plant communities can
be the recognition of fuzzy properties enabling a single point
in space to exhibit characteristics of a number of plant com-
munities (Duff et al., 2014; Fisher, 2010). While fuzzy clas-
sification maps are more likely to give a better picture of
plant community composition on a per-pixel basis, they are
also more difficult to use to draw inferences of species dom-
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Table 4. Percent of pixels within each plant community that remain unchanged and that changed class between 2015 and 2016 models.

Transition 2015 PC∗ 2016 PC Total pixels Percent of total pixels

Off-Cool Off-Cool 9 712 857 31.03
On-Grass On-Grass 6 427 817 20.54

Unchanged pixels Off-Snow Off-Snow 3 401 264 10.87
On-Forb On-Forb 887 151 2.83
Off-Warm Off-Warm 555 635 1.78

On-Grass Off-Cool 2 278 390 7.28
Off-Cool Off-Snow 1 468 042 4.69
Off-Cool On-Grass 1 262 373 4.03
Off-Snow Off-Cool 1 174 565 3.75
Off-Warm Off-Cool 729 511 2.33
Off-Cool Off-Warm 716 503 2.29
Off-Warm Off-Snow 629 212 2.01
On-Grass Off-Snow 626 695 2.00
On-Grass On-Forb 362 417 1.16

Changed pixels On-Forb On-Grass 343 774 1.10
Off-Snow On-Grass 281 061 0.90
Off-Snow Off-Warm 155 213 0.50
On-Grass Off-Warm 82 450 0.26
On-Forb Off-Cool 72 758 0.23
Off-Cool On-Forb 69 188 0.22
Off-Warm On-Grass 43 132 0.14
On-Forb Off-Snow 19 575 0.06
Off-Warm On-Forb 573 0.00
On-Forb Off-Warm 314 0.00
Off-Snow On-Forb 17 0.00

∗ Plant communities (PC) on prairie dog towns are grass-dominated (On-Grass) and forb-dominated (On-Forb);
plant communities in off-town areas are cool-season-grass-dominated (Off-Cool), warm-season-grass-dominated
(Off-Warm), and snowberry-dominated (Off-Snow).

Figure 2. Monthly and cumulative growing season precipitation patterns for 2015 and 2016 recorded at a weather station located in the study
area in north central SD (45.737296◦ N, 100.657540◦W) (South Dakota Climate Weather, 2018).
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Figure 3. Comparison of mean monthly NDVI for training polygons in five plant communities at the study site in north central SD. Plant
communities on prairie dog towns are grass-dominated (On-PDG) and forb-dominated (On-PDF); plant communities in off-town areas are
cool-season-grass-dominated (Off-Cool), warm-season-grass-dominated (Off-Warm), and snowberry-dominated (Off-Snow).

Figure 4. Random forest classification maps from 2015 and 2016
of one pasture in the study area in north central South Dakota. Plant
communities on prairie dog towns are grass-dominated (On-Grass)
and forb-dominated (On-Forb); plant communities in off-town areas
are cool-season-grass-dominated (Off-Cool), warm-season-grass-
dominated (Off-Warm), and snowberry-dominated (Off-Snow).

inance, livestock use patterns, and extent of prairie dog colo-
nization.

A final RF model combining all available bands and NDVI
values for 2015 and 2016 reduced error rates for all plant
communities below 1 % (Table 3). While we have shown that
lower error rates may not result in more stable predictions,
using all available data for a model will likely improve accu-
racy and result in a more accurate thematic map. Other stud-
ies have reported increases in classification accuracy in RF
models with the addition of combined seasonal images, hy-
perspectral data, lidar images, radar (synthetic aperture radar,

SAR) images, and ancillary geographical data such as eleva-
tion and soil types (Corcoran et al., 2013; Pu et al., 2018;
Shi et al., 2018; Xia et al., 2018; Yu et al., 2018; Zhou et al.,
2018). RF models have the ability to handle highly dimen-
sional correlated data and data combined from multiple dif-
ferent data sources across different temporal scales; however,
one disadvantage to using nonparametric classifiers such as
RF and decision trees is that they require a large number
of observations to accurately estimate the mapping function
(James et al., 2014). Thus the incorporation of additional pre-
dictor variables as well as additional training data will likely
result in higher accuracy rates.

The variable importance graph of the combined model in-
dicates that NDVI variables contribute the most to the model
over individual bands (Fig. 5). In classifying vegetation mor-
phology in a savanna grassland, Mishra and Crews (2014)
found spectral classification features (mean NDVI or ratio
NDVI) were the most significant. The variable importance
plot from the combined data model also indicates that dif-
ferent months between years contribute highly to the clas-
sification accuracy. Of the 10 most important variables in
the model, six were from 2015 and four were from 2016,
suggesting additional years’ data in the model are likely to
yield greater classification accuracy. The internal informa-
tion provided by the model, such as variable importance,
can be a useful tool for researchers to select features of the
greatest importance to reduce computation times in the in-
stance of large datasets. At the size of our study area (810 ha)
and a maximum of 50 variables, the combined 2015–2016
data model only slightly added to computation time, but not
enough to warrant feature trimming from the dataset. Land
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Figure 5. Variable importance reported as mean decrease in accu-
racy. The 10 most important variables are shown, with B1 and B4
corresponding to spectral bands 1 and 4, respectively, from Pleiades
image. Variable importance is determined by the model output as
the decrease in accuracy due to the exclusion of that variable during
the out-of-bag error calculation process. Higher mean decrease in
accuracy variables is more important in classifying the data.

managers looking to classify prairie dog colonies on more
extensive grasslands may look to including only NDVI vari-
ables into training datasets to increase computational effi-
ciency.

3.3 Remote sensing prairie dog colonies

Visual comparison of the predicted on-town plant communi-
ties versus off-town plant communities shows a clearly de-
fined boundary between areas colonized by prairie dogs and
areas not colonized (Fig. 6). Results from mapping colony
boundaries with a handheld GPS device estimated the colony
to be 276 ha in 2012 to 186 ha in 2015. Total colony acreage
estimated from summing the pixel area occupied by the On-
Grass and On-Forb community pixels from the combined
2015–2016 RF model was 246 ha. Previous research has
demonstrated that colonization by prairie dogs and subse-
quent increases in grazing pressure can result in significant
differences between on- and off-town plant community com-
position and production (Coppock et al., 1983; Winter et al.,
2002; Johnson-Nistler et al., 2004; Geaumont et al., 2019).
The results of our study demonstrate that these differences
are significant enough to be identified using remote sensing
techniques. Interestingly, a considerable portion of the area
misclassified as on-town is from a previously colonized area
that had been poisoned in 2013, suggesting that, at least spec-
trally, these areas still resemble plant communities similar to
those actively colonized. The higher area estimate from the
RF model is likely the result of transition areas controlled
2 years prior. Additionally, most other pixels misclassified
as on-town are likely drainage areas with high bare ground
off-town, whose variability was not captured in the dataset.

Figure 6. Random forest classification map created from predic-
tions from the combined 2015 and 2016 models. Off-town areas
were created by combining the predicted off-town plant communi-
ties (Off-Cool, Off-Warm, and Off-Snow) and on-town plant com-
munities (On-Grass and On-Forb). The prairie dog boundary was
mapped using a handheld GPS unit; the outlined 2012 prairie dog
boundary was former prairie dog colony poisoned in 2013.

One prior study had sought to identify prairie dog colonies
using 30 m Landsat imagery; however it concluded that the
scale was too coarse for accurately measuring prairie dog
towns (Wolbrink et al., 2002). High-resolution satellite im-
agery used in this study appears capable of capturing fine-
scale transitions that occur between plant communities along
the on-town–off-town gradient.

The RF model was also able to accurately predict older
core areas of prairie dog towns (On-forb) often characterized
by a high percentage of bare ground, low vegetation produc-
tion, and dominance by annual forb and dwarf shrub species
(Coppock et al., 1983). Area estimates of On-Forb were 33
and 32 ha in 2015 and 2016, respectively. State and transi-
tion models for prairie dog towns developed within Custer
State Park South Dakota found older core areas were con-
sidered undesirable for management due to losses of native
grasses, increased bare ground, potential for erosion, exten-
sive presence of exotic species, and increased inputs to re-
store to a more desirable state (Hendrix, 2018). The ability
to monitor these older core areas of prairie dog towns re-
motely may help land managers limit sites from becoming
highly degraded and serve as a useful tool for land managers
concerned over balancing wildlife conservation with losses
in livestock production.

4 Conclusions

Stability of models is important when applying similar tech-
niques across different sites, plant communities, and in this
case years. Differences in year-to-year NDVI values may al-
ter classification results, and the addition of 2 years’ worth
of data likely resulted in improved model performance. One
of the main benefits to RF classification in remote sensing
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is the relatively fast computing time (Belgiu and Drăguţ,
2016), and, given the availability of free satellite imagery, re-
searchers would be prudent to include multiple images across
years and seasons in their model to improve accuracy. Fur-
thermore, while the desired outcome is often to produce the-
matic maps, recognizing that plant communities rarely exist
in discrete communities is important when selecting com-
munity types to map. Combining plant community ordina-
tion results with remote sensing results can aid in under-
standing sources of model error and limitations of classifi-
cation algorithms. This is likely to be magnified as pixel size
decreases, resulting in fine-scale predictions which may be
more susceptible to plant community transition zones. Re-
sults from this study indicate that plant community changes
induced by prairie dogs are significant enough to be detected
via remote sensing techniques. Land managers looking to op-
timize rangeland health on pastures occupied by prairie dogs
may potentially utilize high-resolution imagery to monitor
colony size and make recommendations of appropriate stock-
ing rates based on extent of colonization.
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