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Abstract. Spatial and temporal variations in atmospheric
carbon dioxide (CO2) reflect large-scale net carbon exchange
between the atmosphere and terrestrial ecosystems. Soil het-
erotrophic respiration (HR) is one of the component fluxes
that drive this net exchange, but, given observational lim-
itations, it is difficult to quantify this flux or to evaluate
global-scale model simulations thereof. Here, we show that
atmospheric CO2 can provide a useful constraint on large-
scale patterns of soil heterotrophic respiration. We analyze
three soil model configurations (CASA-CNP, MIMICS, and
CORPSE) that simulate HR fluxes within a biogeochemical
test bed that provides each model with identical net primary
productivity (NPP) and climate forcings. We subsequently
quantify the effects of variation in simulated terrestrial car-
bon fluxes (NPP and HR from the three soil test-bed models)
on atmospheric CO2 distributions using a three-dimensional
atmospheric tracer transport model. Our results show that at-
mospheric CO2 observations can be used to identify deficien-
cies in model simulations of the seasonal cycle and interan-
nual variability in HR relative to NPP. In particular, the two
models that explicitly simulated microbial processes (MIM-
ICS and CORPSE) were more variable than observations at
interannual timescales and showed a stronger-than-observed
temperature sensitivity. Our results prompt future research
directions to use atmospheric CO2, in combination with ad-
ditional constraints on terrestrial productivity or soil carbon
stocks, for evaluating HR fluxes.

1 Introduction

Atmospheric CO2 observations reflect net exchange of car-
bon between the land and oceans with the atmosphere. Ob-
servations of atmospheric CO2 concentration have been col-
lected in situ since the late 1950s (Keeling et al., 2011), and
global satellite observations have become available within
the last decade (Crisp et al., 2017; Yokota et al., 2009).
The high precision and accuracy of in situ observations and
the fact that these measurements integrate information about
ecosystem carbon fluxes over a large spatial footprint make
atmospheric CO2 a strong constraint on model predictions
of net carbon exchange (Keppel-Aleks et al., 2013). For
example, at seasonal timescales, atmospheric CO2 can be
used to evaluate the growing-season net flux, especially in
the Northern Hemisphere (Yang et al., 2007). At interannual
timescales, variations in the atmospheric CO2 growth rate are
primarily driven by changes in terrestrial carbon fluxes in re-
sponse to climate variability (Cox et al., 2013; Humphrey et
al., 2018; Keppel-Aleks et al., 2014). Recent studies have hy-
pothesized that soil carbon processes represent one of the key
processes in driving these interannual variations (Cox et al.,
2013; Wunch et al., 2013). Moreover, soil carbon processes
represent one of the largest uncertainties in predicting future
carbon–climate feedbacks, in part because non-permafrost
soils contain an estimated 1500 to 2400 PgC (Bruhwiler et
al., 2018), at least a factor of 3 larger than the preindustrial
atmospheric carbon reservoir.

Soil heterotrophic respiration (HR), the combination of
litter decay and microbial breakdown of organic matter, is
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the main pathway for CO2 release from soil carbon pools
to the atmosphere. Currently, insights into HR rates and
controls are mostly derived from local-scale observations.
Ecosystem respiration, or the combination of autotrophic and
heterotrophic respiration fluxes, can be isolated from eddy
covariance net ecosystem exchange observations at spatial
scales around 1 km2, but with substantial uncertainty (Bal-
docchi, 2008; Barba et al., 2018; Lavigne et al., 1997). The
bulk of ecosystem respiration fluxes come from soils, but
soil respiration fluxes from chamber measurements can ex-
ceed ecosystem respiration measurements from flux towers,
highlighting uncertainties in integrating spatial and temporal
variability in ecosystem and soil respiration measurements
(Barba et al., 2018). Further partitioning of soil respiration
measurements into autotrophic and heterotrophic compo-
nents to derive their appropriate environmental sensitivities
remains challenging but critical to determining net ecosys-
tem exchange of CO2 with the atmosphere (Bond-Lamberty
et al., 2004, 2011, 2018). Additionally, because fine-scale
variations in environmental drivers such as soil type and soil
moisture affect rates of soil respiration, it is difficult to scale
local respiration observations to regional or global levels
(Zhao et al., 2017). Currently, insights into HR rates and con-
trols are mostly derived from local-scale observations. Soil
chamber observations can be used to measure soil respira-
tion at spatial scales on the order of 100 cm2 (Davidson et
al., 2002; Pumpanen et al., 2004; Ryan and Law, 2005).

Local-scale observations reveal that HR is sensitive to nu-
merous climate drivers, including temperature, moisture, and
freeze–thaw state (Baldocchi, 2008; Barba et al., 2018; Lavi-
gne et al., 1997). Because of these links to climate, predicting
the evolution of HR and soil carbon stocks within coupled
Earth system models is necessary for climate predictions.
Within prognostic models, heterotrophic respiration has been
represented as a first-order decay process based on precipi-
tation, temperature, and a linear relationship with available
substrate (Jenkinson et al., 1990; Parton, 1996; Randerson et
al., 1996). However, such representations may neglect key
processes for the formation of soil and persistence of soil
organic carbon (SOC) stocks (Lehmann and Kleber, 2015;
Schmidt et al., 2011; Rasmussen et al., 2018). More re-
cently, models have begun to explicitly represent microbial
processes in global-scale simulations of the formation and
turnover of litter and SOC (Sulman et al., 2014; Wieder et
al., 2013) as well as to evaluate microbial trait-based sig-
natures on SOC dynamics (Wieder et al., 2015). These ad-
vances in the representation of SOC formation and turnover
increase capacities to test emerging ideas about soil C per-
sistence and vulnerabilities, but they also increase the uncer-
tainties in how to implement and parameterize these theories
in models (Bradford et al., 2016; Sulman et al., 2018; Wieder
et al., 2018).

Given these uncertainties, developing methods to bench-
mark model representations of HR fluxes is an important re-
search goal (Bond-Lamberty et al., 2018) as model predic-

tions for soil carbon changes over the 21st century are highly
uncertain (Schuur et al., 2018; Todd-Brown et al., 2014). A
common method for model evaluation is to directly com-
pare spatial or temporal variations in model properties (e.g.,
leaf area index) or processes (e.g., gross primary produc-
tivity) against observations (Randerson et al., 2009; Turner
et al., 2006). Such comparisons assess model fidelity un-
der present-day climate, but they may not ensure future pre-
dictability of the model. The use of functional response met-
rics, which evaluate the relationship between a model process
and an underlying driver, may ensure that the model captures
the sensitivities required to predict future evolution (Collier
et al., 2018; Keppel-Aleks et al., 2018). A third benchmark-
ing approach is to use hypothesis-driven approaches or ex-
perimental manipulations to evaluate processes (Medlyn et
al., 2015). It is likely that these methods will have maxi-
mum utility when combined within a benchmarking frame-
work (e.g., Collier et al., 2018; Hoffman et al., 2017) since
they evaluate different aspects of model predictive capability.

Although a lack of direct respiration observations remains
a gap for model evaluation, indirect proxies for respira-
tion may be obtained from atmospheric CO2, which reflects
the balance of all carbon exchange processes between the
atmosphere and biosphere. Previous work has shown that
atmospheric CO2 observations are inherently sensitive to
HR across a range of timescales. For example, at seasonal
timescales, improving the parameterization for litterfall in
the CASA model improved phasing – i.e., the timing of sea-
sonal maxima, minima, and inflection points – for the simu-
lated annual atmospheric CO2 cycle (Randerson et al., 1996).
At interannual timescales, variations in the Northern Hemi-
sphere CO2 seasonal minimum are hypothesized to arise
from variations in respiration (Wunch et al., 2013), and vari-
ations in the growth rate have been linked to tropical respi-
ration and its temperature sensitivity (Anderegg et al., 2015).
Here, we hypothesize that atmospheric CO2 data can be used
to evaluate simulations of soil heterotrophic respiration and
differentiate between the chemical and microbial parameter-
izations used in state-of-the-art models. In this analysis, we
simulate atmospheric CO2 distributions using three differ-
ent soil model representations that are part of a soil biogeo-
chemical test bed (Wieder et al., 2018). The three sets of HR
fluxes, shown by Wieder et al. (2018) to have distinct patterns
at seasonal timescales, are used as boundary conditions for a
three-dimensional atmospheric transport model. We evaluate
temporal variability in the resulting CO2 simulations against
observations, quantify the functional relationships between
CO2 variability and temperature variability, and quantify the
regional influences of land carbon fluxes on global CO2 vari-
ability. The methods and results are presented in Sects. 2 and
3, and discussion of the implications for benchmarking and
our understanding of drivers of atmospheric CO2 variability
are presented in Sect. 4.

Biogeosciences, 17, 1293–1308, 2020 www.biogeosciences.net/17/1293/2020/



S. J. Basile et al.: Leveraging the signature of heterotrophic respiration on atmospheric CO2 1295

2 Data and methods

We used a combined biosphere–atmosphere modeling ap-
proach to diagnose the signatures of land fluxes on atmo-
spheric CO2 (Fig. 1). At the heart of this approach is com-
parison of simulated atmospheric CO2 owing to individual
processes and regions to atmospheric CO2 observations. The
observations and models used are described below.

2.1 Observations and time series analysis

For this analysis we use reference CO2 measurements re-
ported in parts per million (ppm) from 34 marine bound-
ary layer (MBL) sites (Table S1 in the Supplement) within
the NOAA Earth System Research Laboratory sampling net-
work (ESRL, Fig. 2; Dlugokencky et al., 2016). These sites
were chosen to minimize the influence of local anthropogenic
emissions and had at least 50 % data coverage over the 29-
year period between 1982 and 2010. Following the approach
in Keppel-Aleks et al. (2018), we aggregate site-specific CO2
by averaging measurement time series across six latitude
zones (Fig. 2, solid lines): Northern Hemisphere high lati-
tudes (NHL: 61 to 90◦ N), midlatitudes (NML: 24 to 60◦ N),
and tropics (NT: 1 to 23◦ N); Southern Hemisphere trop-
ics (ST: 0 to 23◦ S); and two southern extratropics bands:
the southern midlatitudes (SML, 24–60◦ S) and the southern
high latitudes (SHL, 61–90◦ S). The global-mean CO2 time
series is constructed as an area-weighted average of these six
atmospheric zones.

We detrend all time series data using a third-order poly-
nomial fit to remove the impact of annually increasing atmo-
spheric concentration in our seasonal and interannual calcu-
lations (Fig. S1 in the Supplement). Using the detrended CO2
data, we calculate a period median annual cycle by averag-
ing all observations for a given calendar month. To calculate
CO2 interannual variability (CO2 IAV), the median annual
cycle is subtracted from the detrended time series (Fig. S1).
The magnitude of CO2 IAV is calculated as 1 standard de-
viation on the detrended, deseasonalized time series, unless
otherwise noted. Model-simulated CO2 seasonality and in-
terannual variability is calculated using the same methods.

2.2 Soil test-bed representations of heterotrophic
respiration

We used a soil biogeochemical test bed (Fig. 1; Wieder et al.,
2018), which generates daily estimates of soil carbon stocks
and fluxes at global scale without the computational burden
of running a full land model. All test-bed fluxes are output
in grams of carbon per meter square (gC m−2) at a daily
temporal resolution and then converted to petagrams (PgC)
over a region. The test bed is a chain of model simulations
where soil models with different structures can be run under
the same forcing data, including the same gross primary pro-
ductivity (GPP) fluxes, soil temperature, and soil moisture.

The test bed produces its own estimates of net primary pro-
duction (NPP), the difference between GPP and autotrophic
respiration (AR; Eq. 1). Each test-bed soil model in this anal-
ysis produces unique gridded heterotrophic respiration (HR)
values based on its own underlying mechanism and soil C
stocks. Currently, the test bed is run with a carbon-only con-
figuration.

For the simulations described in this paper, the mod-
eling chain starts with the Community Land Model 4.5
(CLM4.5; Oleson et al., 2013), run with satellite phenology
with CRUNCEP climate reanalysis as forcing data (Jones
et al., 2012; Kalnay et al., 1996; Le Quéré et al., 2018).
In this simplified formulation of CLM, a single plant func-
tional type is assumed in each 2◦ by 2◦ grid cell. Daily val-
ues for gross primary productivity (GPP), soil moisture, soil
temperature, and air temperature from CLM4.5 are passed
to the Carnegie–Ames–Stanford Approach terrestrial model
(CASA-CNP; Potter et al., 1993; Randerson et al., 1996,
1997; Wang et al., 2010). The CASA-CNP model uses the
data from CLM4.5 to calculate NPP and carbon allocation
to roots, wood, and leaves. This module also determines
the timing of litterfall. Finally, metabolic litter, structural lit-
ter, and decomposing coarse woody debris (CWD) are then
passed to the soil biogeochemical models to simulate HR.

From the test-bed output we calculate the net ecosystem
productivity (NEP; Eq. 3). In the analysis presented here,
CASA NPP was used across the test-bed ensemble in the
NEP calculation, thus highlighting differences in the timing
and magnitude of HR fluxes from the individual soil mod-
els. From a land perspective (positive NEP fluxes into land),
NEP is calculated as NPP – HR, where respiration release
of CO2 decreases net carbon gains through photosynthesis.
Here, we use an atmospheric perspective for NEP (positive
NEP fluxes into the atmosphere) by reversing the sign on the
NPP flux and taking HR as positive (Eq. 3).

NPP= GPP−AR (1)
NEP= HR+ (−NPP) (2)

The three soil models make distinct assumptions about mi-
crobial processes. More details regarding these formulations
and their implementation in the test bed are found in Wieder
et al. (2018), but we provide brief descriptions here. The
CASA-CNP soil model computes first-order, linear decay
rates modified by soil temperature and moisture, implic-
itly representing microbial activity and soil carbon turnover
through a cascade of organic matter pools (CASA: Rander-
son et al., 1997; CASA-CNP: CASA carbon cycling with
additional nitrogen, and phosphorus cycling, Wang et al.,
2010). These include metabolic and structural litter, as well
as fast, slow, and passive soil carbon pools. The Microbial-
Mineral Carbon Stabilization model (MIMICS; Wieder et
al., 2014, 2015) explicitly represents microbial activity with
a temperature-sensitive reverse Michaelis–Menten kinetics
(Buchkowski et al., 2017; Moorhead and Weintraub, 2018)
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Figure 1. Flow chart depiction of the analysis process from soil model fluxes to simulated CO2 concentration and comparison with NOAA
observations.

Figure 2. Tagged flux regions and marine boundary layer CO2 observing sites used in our analysis. The five tagged flux regions are shown in
color fill: northern high latitudes (NHL), northern midlatitudes (NML), northern tropics (NT), southern tropics (ST), and southern extratropics
(SE). For sampling simulated CO2 consistent with the tagged flux regions, we aggregate marine boundary layer sites (filled circles) into six
latitude bands defined by the black lines.

but has no soil moisture controls. The decomposition path-
way is set up with two litter pools (identical to those simu-
lated by CASA-CNP), three soil organic matter pools (avail-
able, chemically and physically protected), and two micro-
bial biomass pools for copiotrophic (fast) and oligotrophic
(slow) microbial functional groups. The Carbon, Organ-
isms, Rhizosphere, and Protection in the Soil Environment
(CORPSE) model is also microbially explicit and uses re-
verse Michaelis–Menten kinetics, but it assumes different
microbial and soil carbon pools. Surface litter and soil C
pools are considered separately, but only soil C has a par-
allel set of physically protected pools that are isolated from
microbial decomposition. CORPSE includes a temperature-
dependent maximum reaction velocity (Vmax) parameter, but
it also includes a term for the soil moisture controls on de-
composition rates that uses volumetric liquid soil water con-
tent. For all three models, soil texture inputs were also de-
rived from the CLM surface dataset (Oleson et al., 2013). We
acknowledge that one potential limitation of the approach is
a lack of vertical resolution in terms of temperature or frozen
fraction of soil moisture (Koven et al., 2013). Overall, while
the test-bed approach contains necessary simplifications, it

provides the ability to query the role of model structure, in-
cluding assumptions about the number of soil carbon pools,
the role of microorganisms, and the sensitivity to environ-
mental factors, in driving HR flux differences when NPP and
environmental controls are held in common.

The test-bed fluxes are used in two ways: first, we analyze
monthly-averaged, regional fluxes for net primary production
(NPP) from CASA-CNP and HR simulated by CASA-CNP,
CORPSE, and MIMICS. Second, we use the raw daily fluxes
as boundary conditions for global GEOS-Chem runs to sim-
ulate the influence of these fluxes on atmospheric CO2, as
described in the following section.

2.3 GEOS-Chem atmospheric transport modeling of
CO2

We simulate the imprint of the test-bed fluxes on at-
mospheric CO2 using GEOS-Chem, a 3-D atmospheric
transport model. We run the GEOS-Chem v12.0.0 CO2
simulation between 1980 and 2010 at a resolution of 2.0◦

in latitude by 2.5◦ in longitude with 47 vertical levels. The
model is driven by hourly meteorological data from the
Modern-Era Retrospective analysis for Research and Ap-
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plications version 2 (MERRA-2) reanalysis data (Gelaro et
al., 2017; http://geoschemdata.computecanada.ca/ExtData/
GEOS_2x2.5/MERRA2/, last access: January 2019), with
the dynamic time step set to be 600 s. The model is initialized
with globally uniform atmospheric CO2 mole fraction equal
to 350 ppm. The test-bed fluxes from 1980 to 2010 are used
for land emissions to simulate the imprint of these different
soil model configurations on atmospheric CO2 (Fig. 1). In
our simulations, HR and NPP fluxes were separated into
the five regions listed above (NHL, NML, NT, ST, SE) so
that the influence of carbon fluxes originating from these
individual regions on global atmospheric CO2 mole fraction
could be quantified. We initialized separate species of CO2
in the atmospheric model, one for each flux (HR or NPP)
and region (NHL, NML, etc.). Since we considered four
fluxes (CASA-CNP NPP and three types of HR) originating
in five regions, we simulated a total of 20 species. These
species were tracked throughout the simulation as their
spatiotemporal distribution changed due to the combined
influence of CO2 fluxes at the surface and atmospheric
weather. Although these species are simulated individually,
we can simply sum the regional atmospheric species for
a given flux (e.g., CASA-CNP HR) to determine the at-
mospheric CO2 arising from all fluxes over the globe. We
also simulated the fossil and ocean imprint on atmospheric
CO2 using boundary conditions from CO2 CAMS inversion
17r1 (https://atmosphere.copernicus.eu/sites/default/files/
2018-10/CAMS73_2015SC3_D73.1.4.2-1979-2017-v1_
201807_v1-1.pdf, last access: May 2019). However, at
the temporal scales of this analysis, ocean and fossil fuel
fluxes had a much smaller influence on regional patterns of
atmospheric CO2 than did land fluxes. Across the six latitude
bands, the detrended CONEP

2 annual amplitude ranges from a
factor of 1.5 (in the tropics) to an order of magnitude larger
(at high latitudes) than CO2 from ocean fluxes and fossil fuel
emissions. Likewise, the IAV from fossil and ocean-derived
CO2 was at most 25 % that of NEP-derived CO2 at most
latitude bands. These results are consistent with previous
studies that have demonstrated that NEP drives most of the
atmospheric CO2 seasonality (>90 %; Nevison et al., 2008;
Randerson et al., 1997) and interannual variability (e.g.,
Rayner et al., 2008; Battle et al., 2000). Given that patterns
of IAV in ocean and fossil CO2 partially cancel each other
and the large uncertainty in ocean fluxes, we choose to omit
these CO2 species from our analysis.

We discard the first 2 years of the atmospheric simula-
tions for model spin-up, and we analyze the monthly average
model outputs for the period 1982–2010. We sample the grid-
ded atmospheric simulation output at the 34 marine boundary
layer (MBL) sites identified in Sect. 2.1, using the third ver-
tical level to minimize influence of land–atmosphere bound-
ary layer dynamics. We then calculate the latitude zone av-
erage, median annual cycle and interannual variability using
the methods described for CO2 observations (see Sect. 2.1).
Averaging CO2 from all sites within a latitude band is consis-

tent with our hypothesis that atmospheric CO2 may provide
constraints on large-scale patterns of heterotrophic respira-
tion, but individual sites may be too heavily influenced by
local characteristics not accounted for by the test-bed fluxes.
As such, averaging simulated and observed CO2 across lati-
tude zones smooths local information while retaining infor-
mation about regional-scale fluxes.

Throughout the paper, we refer to CO2 originating from
these NPP and HR component fluxes as CONPP

2 and COHR
2 ,

respectively. We use a sign convention for the fluxes whereby
a positive value indicates a source of carbon to the atmo-
sphere, which means we can combine the CO2 tracers from
NPP and HR to calculate the expected atmospheric variation
owing to NEP using (Eq. 3):

CONEP
2 =COHR

2 +CONPP
2 . (3)

We note that the net CO2 response from the model (i.e.,
CONEP

2 ) is approximately equivalent to observations in terms
of seasonal and interannual variations, although we neglect
ocean fluxes and emissions from fossil fuels, land use and
land cover change, and disturbance. In the results below,
the superscript notation will be used to denote the test-
bed ensemble sources. For example, COHR

2 simulated from
CORPSE fluxes is defined as COCORPSE HR

2 , similarly for
COCORPSE NEP

2 .

2.4 Global temperature sensitivity and separation of
regional influences

For insight into a functional climate response, we investi-
gate the global temperature sensitivity of the atmospheric
CO2 growth rate and the test-bed ensemble fluxes. Rates
of change were derived from monthly and annual time se-
ries to calculate the temperature sensitivity of the test-bed
fluxes, the modeled CO2, and the observed CO2 values. The
CO2 growth rate anomaly was calculated as the difference
between time step n and n− 1 in both the monthly and an-
nual CO2 IAV time series. As a result of this technique, the
monthly CO2 growth rate anomalies were centered on the
first day of the corresponding months. To compare flux infor-
mation with CO2 growth rate anomalies, daily test-bed flux
time series were averaged to monthly resolution and then in-
terpolated by averaging between months to center values on
the first day of each month.

Following Arora et al. (2013), we calculate temperature
sensitivity (γ ) using an ordinary linear regression (OLR).
We calculate OLR for the interannual variability time series
of CASA-CNP soil temperature (T IAV) against (1) atmo-
spheric CO2 growth rate anomalies and (2) land flux IAV (see
Sect. 2.2). For atmospheric CO2 growth rate anomalies, each
time series was converted from parts per million per year to
petagrams of carbon per year based on the global mass of
atmospheric dry air. Thus, all global temperature sensitiv-
ity values are reported in units of petagrams of carbon per
year per kelvin. The global temperature sensitivity value for
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the observed CO2 growth rate anomaly was calculated for
1982 to 2010 using ESRL CO2 observations and the Climatic
Research Unit’s gridded temperature product (CRU TS4.01;
Jones et al., 2012), which is derived from interpolated ground
station measurements.

We also assess the influence of individual regions on
the global-mean signal for both component land fluxes
(NPP, HR) and simulated atmospheric CO2 (CONPP

2 , COHR
2 ,

CONEP
2 ). We first quantify the magnitude of variability in

each region relative to the magnitude of global variability
(σREL) as the ratio of regional IAV standard deviation to
global IAV standard deviation. This ratio is calculated for
monthly flux IAV from each of the five flux regions and for
the global-mean CO2 time series that arises from fluxes in
each of the five flux regions (e.g., the global CO2 response
to NHL fluxes, or the global CO2 response to NML fluxes).
The value of σREL has a lower bound of 0, which would indi-
cate that a region contributes no IAV, but has no upper bound,
since a value greater than 1 simply indicates that the fluxes
in a given region are more variable than global fluxes.

We note that the timing of IAV in a given region may be in-
dependent of IAV in other regions and thus may or may not
be temporally in-phase with global IAV. We therefore also
calculate correlation coefficients (r) for the time series of re-
gional flux IAV and CO2 IAV with the global signal. Thus, if
an individual region were responsible for all observed global
flux or CO2 variability, it would have both σREL and r values
equal to 1 in this comparison. The value for r will be small
if a regional signal is not temporally coherent with the global
signal, even if the magnitude of variability is high.

3 Results

3.1 Seasonal imprint of heterotrophic respiration

Our evaluation of CO2 simulated using test-bed fluxes re-
vealed that all test-bed models overestimated the mean an-
nual cycle amplitude of atmospheric CO2 observations. In
the Northern Hemisphere, the bias was largest for MIM-
ICS, as the COMIMICS NEP

2 amplitude was overestimated
by up to 100 % (Fig. 3). The mismatch was smallest in
COCORPSE NEP

2 , which was within 70 % of the observed an-
nual cycle amplitude where CORPSE simulates the largest
seasonal HR fluxes (Fig. 3a–c, Table 1). Within the modeled
carbon dioxide concentrations resulting from land fluxes,
CONPP

2 and COHR
2 show the largest seasonality in the NHL,

with seasonal amplitudes decaying toward the tropics and
Southern Hemisphere. In the NHL, the peak-to-trough am-
plitude of CONPP

2 is 39± 2 ppm, with a seasonal maxi-
mum in April and a seasonal minimum in August (Fig. 4a;
note this CONPP

2 peak reflects the sign reversal in the driv-
ing NPP flux (Sect. 2.3)). The seasonal cycles for COHR

2
simulated from all test-bed models are out of phase with
that of CONPP

2 , and there are large amplitude differences in

Figure 3. Climatological annual cycle (median) of CO2 for obser-
vations (black) and global net ecosystem productivity flux (CONEP

2 ,
colors) between 1982 and 2010. Monthly climatology values were
created after detrending the CO2 time series for atmospheric sam-
pling bands in the (a–c) Northern Hemisphere (d–f) and Southern
Hemisphere. Note the change in y-axis scale between the two hemi-
spheres and the sign of CONEP

2 reflects the combination of CONPP
2

and COHR
2 (Eq. 3). Shading on the observed line represents one

standard deviation due to interannual variability in the seasonal cy-
cle.

COHR
2 among the model ensemble members. Specifically, the

NHL amplitude of COCORPSE HR
2 is 28± 3 ppm, while the

amplitudes for COMIMICS HR
2 and COCASA-CNP HR

2 are only
17± 1 ppm, accounting for about 40 %–70 % of the ampli-
tude from CONPP

2 (Table 1). However, in all latitude bands,
the largest COHR

2 amplitude comes from the microbially ex-
plicit model – CORPSE for the Northern Hemisphere. In
the Southern Hemisphere extratropics, the amplitudes for all
components were less than 3 ppm (Table 1).

The three soil carbon models in the test bed impart dif-
ferent fingerprints on atmospheric CO2 variability. Specif-
ically, the phasing of COHR

2 is an important driver of the
overall comparison between CONEP

2 and observed CO2 sea-
sonality (Fig. 3). When the contributions of NPP and HR
seasonality are considered together (i.e., COHR

2 +CONPP
2 ),

the simulated amplitude of CONEP
2 is larger than the ob-

served CO2 across all latitude bands (Fig. 3). The largest
mismatch is in the NHL zone, where the observed mean an-
nual cycle is 15± 0.9 ppm, while the peak-to-trough CONEP

2
ranges from 23± 1.3 ppm for CORPSE to 33± 1.4 ppm for
MIMICS (Fig. 3a). The smaller CONEP

2 amplitude simu-
lated by CORPSE is due to the large COHR

2 seasonality that
counteracts the seasonality in NPP (Fig. 4a–b). Furthermore,
COMIMICS HR

2 and COCASA-CNP HR
2 have similar amplitudes

in the NHL (Fig. 4a; Table 1), but the CONEP
2 amplitude
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Table 1. Atmospheric CO2 mean annual cycle amplitude (in ppm) simulated from heterotrophic respiration (HR), net primary productivity
(NPP), and net ecosystem productivity (NEP). The median annual cycle amplitudes for observed CO2 (COOBS

2 ) averaged over latitude bands
are also reported.

61–90◦ N 24–60◦ N 0–23◦ N 1–23◦ S 24–60◦ S 61–90◦ S

COCASA-CNP HR
2 17.6 11.4 4.3 4.3 1.1 1.9

COCORPSE HR
2 28.2 16.6 6.4 4.9 1.4 2.2

COMIMICS HR
2 17.2 11.8 5.1 4.4 1.9 2.5

COCASA-CNP NPP
2 39.3 24.6 11.9 6.0 3.1 3.1

COCASA-CNP NEP
2 26.2 16.3 9.3 1.6 2.2 2.2

COCORPSE NEP
2 23.4 14.8 8.7 1.3 2.2 2.4

COMIMICS NEP
2 32.8 19.0 10.4 1.7 1.9 2.1

COOBS
2 15.3 10.6 6.1 0.9 0.8 1.4

from these two models differs (33± 1.2 ppm versus 26±
1 ppm, respectively; Fig. 3a; Table 1). This occurs because
COMIMICS HR

2 peaks 1 month later than COCASA-CNP HR
2 and

has a zero crossing that is more closely aligned with the
trough of CONPP

2 (Fig. 4a), leading to the larger amplitude
in COMIMICS NEP

2 (Fig. 3a; Table 1). Although the amplitude
mismatch decreases towards the south (Fig. 3b–f), the overall
bias in the Northern Hemisphere suggests that either the sea-
sonality of NPP is too large or that all test-bed models under-
estimate the seasonality of HR. Within the ST region, ensem-
ble COHR

2 minima are opposite to those in CONPP
2 , leading to

a small annual cycle in simulations, consistent in magnitude
with that of the observations (Figs. 3d, 4d).

3.2 Interannual imprint of heterotrophic respiration

The test-bed ensemble reasonably simulates the magnitude
and timing of interannual variability (IAV) compared with
CO2 observations (Fig. 5). Across the six latitude bands an-
alyzed, simulated CONEP

2 IAV generally falls within 1 stan-
dard deviation of the median variation from observations for
most of the study period (Fig. 5). Taking a closer look at the
CO2 from the component fluxes (NPP and HR), across all
six latitude bands, the CONPP

2 IAV standard deviation is be-
tween 0.9 and 1.1 ppm (Fig. 6b). COCASA-CNP HR

2 IAV shows
standard deviation similar to that of CONPP

2 IAV, whereas
the standard deviations of COCORPSE HR

2 and COMIMICS HR
2

range from 0.7 to 1.4 ppm and 0.5 to 1.1 ppm, respectively
(Fig. 6b).

Combining the CO2 responses from component fluxes
to CONEP

2 reveals a latitudinal gradient in IAV standard
deviation similar to that of ESRL observations, with the
largest standard deviation found in the northern extratrop-

Figure 4. Climatological annual cycle (median) of atmospheric
CO2 simulated from land fluxes (CONPP

2 , COHR
2 ) between 1982 and

2010. Monthly climatology values were created after detrending the
CO2 time series for atmospheric sampling bands in the (a–c) North-
ern Hemisphere (d–f) and Southern Hemisphere. Note the change in
y-axis scale between the two hemispheres, and the sign of CONPP

2
reflects the sign reversal of the underlying NPP (positive flux to the
atmosphere; Eq. 2).

ics (Fig. 6a). Among the three test-bed models, the standard
deviation of COCASA-CNP NEP

2 agrees best with observations
across all latitude bands (COCASA NEP

2 : 0.5–0.9 ppm; ESRL:
0.6–1.0 ppm; Fig. 6a). COCORPSE NEP

2 overestimates IAV by
up to 30 % in NHL and NML but agrees better with observa-
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Figure 5. Interannual variability of CO2 from global net ecosystem productivity (CONEP
2 IAV) for test-bed models (colors) and marine

boundary layer observations from the NOAA ESRL network (black). Gray shading outlines 1 standard deviation of observed CO2 interannual
variability. High-latitude, midlatitude, and tropical land belts are shown for the Northern Hemisphere (a–c) and Southern Hemisphere (d–f).

tions in the tropics and Southern Hemisphere. COMIMICS NEP
2

overestimates IAV standard deviations across all latitude
bands (Fig. 6a). Interestingly, in the NHL, the overestima-
tion is 20 % even though COMIMICS HR

2 shows IAV similar to
that of CONPP

2 (both 1.1 ppm; Fig. 6b). This suggests that the
atmospheric CO2 diagnostic for IAV, like that for amplitude,
is critically sensitive to the phasing of IAV in heterotrophic
respiration relative to the IAV of NPP.

Both global NPP and HR fluxes are sensitive to tem-
perature variations at interannual timescales, with increased
buildup of CO2 in the atmosphere at higher temperatures,
in part because the rate of HR increases at higher temper-
ature and in part because most latitude bands show a re-
duction in NPP at above-average temperatures. For CASA-
CNP, the temperature sensitivity (γ ) for globally integrated
NPP and HR fluxes is 2.5 and 1.7 PgC yr−1 K−1, respectively
(Fig. 7b). The temperature sensitivity of HR was higher
for the microbially explicit models: 2.1 PgC yr−1 K−1 for
CORPSE and 4.2 PgC yr−1 K−1 for MIMICS (Fig. 7b). For
any given test-bed flux (NPP, HR, or NEP), the temper-
ature sensitivity of the resulting global-mean CO2 growth
rate anomaly is higher than that of the underlying flux
IAV. For example, the temperature sensitivity of the glob-
ally integrated NPP flux IAV (γNPP) is 2.5 PgC yr−1 K−1

whereas γCONPP
2 is 3.2 PgC yr−1 K−1. The apparent am-

plification of the temperature sensitivity was even larger

for HR. For example, the temperature sensitivity of MIM-
ICS HR IAV (γHRMIMICS) was 4.2 PgC yr−1 K−1, whereas
γCOMIMICS HR

2 was 7.7 PgC yr−1 K−1 (Fig. 7b). The simu-
lated γCONEP

2 simulated by the test-bed models all over-
estimate the temperature sensitivity of the observed atmo-
spheric CO2 growth rate anomaly (6.1± 2.5 PgC yr−1 K−1;
Fig. 7a). CASA-CNP and CORPSE have temperature sensi-
tivities within the range of the observed sensitivity (5.16±
0.9 PgC yr−1 K−1, Cox et al., 2013; 6.5±1.8 PgC yr−1 K−1;
Keppel-Aleks et al., 2018), but γCOMIMICS NEP

2 is 80 %
larger than the observed value (10.9 PgC yr−1 K−1; Fig. 7a).
We note that the γHR and γCOHR

2 are emergent properties
that reflect both direct and indirect temperature influences,
including the impact of temperature variability on NPP and
litterfall (Table S3). Nevertheless, these results suggest that
the direct temperature sensitivity of MIMICS HR is too high
relative to observational constraints.

3.3 Geographic origins of CO2 IAV

The interannual variability (IAV) in global NPP and HR orig-
inates from different geographic regions. The IAV in global
NPP fluxes is dominated by variations within the tropics
(both NT and ST regions), with a relative standard devia-
tion σREL ∼ 0.5 and correlation coefficient r ∼ 0.6 (Fig. 8a–
b). The NML region also has a similar contribution to the
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Figure 6. Magnitude of CO2 interannual variability resulting from
(a) net ecosystem productivity and (b) component fluxes. Observed
CO2 IAV from the NOAA ESRL network is shown with black bars
whereas colors represent simulated data. Error bars shown on the
observed IAV represent 2 standard deviations, calculated as the me-
dian magnitude after removing a 12-month sliding window from the
IAV time series.

NT in magnitude, but with a lower timing coherence (r =
0.44; Fig. 8a–b). In contrast to the dominance of the trop-
ics in contributing to the interannual variability of global
NPP, the NML region contributes most to IAV in global HR,
with σREL ≥ 0.6 and r ∼ 0.8 for all three test-bed models
(Fig. 8c–d). The NHL region is also important in driving
global HR flux variability based on CORPSE model results
(σREL = 0.59 and r = 0.82; Fig. 8c–d). Despite high NPP
variability in the tropics, the magnitude of tropical HR vari-
ability is only about 10 %–30 % of global HR variability, and
the timing coherence with the global signal is generally low
(r<0.45; Fig. 8a–b). MIMICS HR IAV is the exception for
the ST, measuring close to 40 % of global HR IAV magni-
tude and relatively high correlation (r = 0.58; Fig. 8c–d).
Together, the tropics and NML contribute roughly equally
to the magnitude of global NEP variability (σREL between
0.44 and 0.55; Fig. 8e). Although the NML and NT show
relatively high timing coherence (0.41–0.55), the ST show
the strongest timing coherence with global NEP IAV (r>0.7;
Fig. 8f).

Atmospheric transport modifies patterns of IAV in fluxes,
emphasizing tropical flux patterns and de-emphasizing
Northern Hemisphere flux patterns. For example, the role
of ST in driving global CONPP

2 variability is amplified com-
pared to the underlying fluxes, as the timing coherence with
the global signal increases from r = 0.64 for flux IAV to

Figure 7. Temperature sensitivity (γ ) calculated for interannual
variability (IAV) of CASA-CNP air temperature and (a) NEP flux
IAV and corresponding CONEP

2 growth rate anomalies and (b) com-
ponent flux IAV and CO2 growth rate anomalies. The reference sen-
sitivity value (black) was calculated using NOAA ESRL CO2 and
CRU TS4 air temperature. Sensitivity values were calculated as the
ordinary linear regression coefficient between IAV time series for
1982 to 2010. Error bars represent the 95 % confidence interval for
coefficient values.

r = 0.88 for CONPP
2 IAV for this region (Fig. 8b). Conversely,

the role of NML is dampened, with timing coherence de-
creasing to r = 0.33 for CONPP

2 IAV versus r = 0.44 for NPP
IAV (Fig. 8b). Similarly, timing coherence for tropical COHR

2
IAV is substantially higher than that for HR fluxes in the ST
and NT (>0.7), although the atmospheric transport impact
differs across the three test-bed models (Fig. 8d). In contrast
to closely aligned NML correlation values for COHR

2 and HR
(r ∼ 0.8–0.9), NML COHR

2 IAV shows σREL between 0.45
and 0.58, a decrease from the HR IAV contribution (NML
HR IAV σREL range: 0.57 to 0.74; Fig. 8c). For CONEP

2 IAV,
the regional contribution is more consistent with σREL and
r similar to that of flux IAV (Fig. 8e–f). Thus, numerical ef-
fects of transport modeling should be considered when isolat-
ing the impact of regional land fluxes on global atmospheric
CO2.

4 Discussion

Modeled differences in heterotrophic respiration impart dis-
cernible signatures on atmospheric CO2, suggesting that at-
mospheric CO2 observations may be able to help evalu-
ate broad differences in the timing and magnitude fluxes
simulated by different vegetation and soil biogeochemical
models. We used a 3-D atmospheric transport model to an-
alyze the imprint of the atmospheric CO2 resulting from
soil heterotrophic respiration and net ecosystem exchange
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Figure 8. Comparison of regional and global interannual variabil-
ity (IAV) from land fluxes and resulting atmospheric CO2 between
1982 and 2010. (a, c, e) Normalized ratio taken between regional
IAV and global IAV magnitude. (b, d, f) Linear correlation between
regional IAV and global IAV. The scatterplot shows a direct com-
parison of ratio and correlation values for land flux values (x axes)
and corresponding CO2 (y axes). Shapes denote the source regions
for both land fluxes and CO2 response.

fluxes from the soil test-bed ensemble with three representa-
tions of soil biogeochemistry (CASA-CNP, CORPSE, MIM-
ICS). Results show that the phasing of heterotrophic respi-
ration fluxes relative to net primary productivity fluxes is
an important source of bias in evaluating simulated CO2
against atmospheric observations at both seasonal and in-
terannual timescales. Regional patterns of heterotrophic res-
piration variability provide non-negligible contributions to
global CO2 variability. Here we discuss these findings in
more detail as well as implications for the use of CO2 ob-
servations for flux evaluation and model benchmarking.

4.1 Impacts of heterotrophic respiration on seasonality

Our evaluation of CO2 simulated using test-bed fluxes re-
vealed that all test-bed models overestimated the mean an-
nual cycle amplitude of atmospheric CO2 observations. In
the Northern Hemisphere, the bias was largest for MIM-
ICS, which had a CO2 amplitude from net ecosystem pro-
duction that was overestimated by up to 100 % (Fig. 3).
The mismatch in the amplitude of the Northern Hemisphere
NEP fluxes was smallest from CORPSE, despite CORPSE

also simulating the largest seasonal amplitude in HR fluxes
(Fig. 3a–c, Table 1). By contrast, in the Southern Hemi-
sphere the simulated CO2 annual cycle amplitudes were sim-
ilar across all three models, with small absolute mismatches
(about 1 ppm) compared to observations (Fig. 3). We note
that the differences in the amplitude of NEP fluxes across
all three test-bed formulations could be due to biases in the
timing and magnitude of NPP and HR fluxes simulated by
models in the test bed. However, an advantage of the test-
bed approach is that, because all of the models are driven by
the same GPP and climate variables, the differences in the
timing and magnitude of NEP fluxes are all related to differ-
ences in HR fluxes that are simulated by different soil models
in the test bed. With future work we would like to consider
forcing uncertainty that could be generated by using different
inputs of productivity, temperature, and moisture from land
model ensembles (e.g., TRENDY simulations, CMIP6 mod-
els). From these results, however, it appears that the seasonal
amplitude of atmospheric CO2 fluxes from net ecosystem
production that are simulated in the northern high latitudes
and midlatitudes are higher than atmospheric observations
for all of the models tested here, but especially MIMICS.

One challenge in using atmospheric CO2 to evaluate HR
representation in soil models is the influence of productiv-
ity (NPP) on both HR fluxes and atmospheric CO2 varia-
tions. The seasonal diagnostics we present are very sensi-
tive to the phasing of HR fluxes relative to NPP. For ex-
ample, in NHL a 1-month lag in the seasonal maximum of
COHR

2 between MIMICS and CASA-CNP (Fig. 4a) leads to
a 7 ppm difference in the overall amplitude of CONEP

2 – this
despite identical amplitudes of COHR

2 for the two models
(Fig. 3a). Although the substantial impacts of subtle phase
differences complicate benchmarking, the sensitivity reveals
interesting and important differences related to model struc-
tural choices (i.e., first order versus microbially explicit).
Wieder et al. (2018) noted that the microbially explicit mod-
els in the test bed had seasonal HR fluxes that peaked in the
fall, about a month later than the HR fluxes simulated by
CASA-CNP. Annual phasing of HR is altered with the ad-
dition of microbial processes but also reflects NPP seasonal-
ity. The timing of CASA-CNP fluxes largely depend on soil
temperature (highest HR flux when temperature is highest),
whereas MIMICS and CORPSE have maximum HR fluxes
set by trade-offs between the timing of maximal temperature
and maximal microbial biomass, which is more tightly linked
with litterfall (Fig. 7 from Wieder et al., 2018). Thus, phas-
ing of HR is a sensitive diagnostic for benchmarking, espe-
cially if additional constraints on the magnitude and phasing
of NPP are available.

In this study, determining the unique contribution from HR
was possible since NPP was common among the three soil
models used in the test bed, but the contribution of NPP will
need to be resolved for model evaluation in other contexts.
For example, long-term records of vegetation productivity at
regional and global scales have been observed via satellite
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vegetation indices (Hicke et al., 2002; Meroni et al., 2009;
Running et al., 2004) and more recently chlorophyll fluores-
cence (Frankenberg et al., 2011; Guan et al., 2016; Köhler et
al., 2018; Li et al., 2018). Our study underscores the impor-
tance of developing methods to use these datasets together
with atmospheric CO2 to inform the dynamics of carbon cy-
cling and its component fluxes. Current benchmarks used to
evaluate carbon cycle metrics in land models include glob-
ally gridded estimates of fluxes (GPP, NEE, ecosystem res-
piration) and C stocks (leaf area index, vegetation biomass,
and soil C; Collier et al., 2018). This is an excellent start-
ing point, but it provides a rather coarse estimate for the
component fluxes we are trying to evaluate with this analy-
sis. Notably, current benchmarks but do not yet consider the
other metrics like NPP, litterfall, or root turnover and exu-
dation that are important drivers of ecosystem, soil, and het-
erotrophic respiration. Globally gridded estimates of annual
soil respiration have been upscaled using machine learning
techniques (Zhao et al., 2017), and we recognize the value
in using this and similar data products to provide an inde-
pendent benchmark to evaluate C fluxes that are simulated
by models in the test bed or other model ensembles. These
annual estimates are useful for looking at the spatial distri-
bution of fluxes and inferring information about simulated
trends, but they will not help resolve differences in the tim-
ing of heterotrophic respiration fluxes (Fig. 4) that are driv-
ing differences in net ecosystem production in the test-bed
models (Fig. 3). Instead, additional work with databases of
soil and heterotrophic respiration (e.g., Bond-Lamberty and
Thomson, 2010; Schädel et al., 2019) will be critical to eval-
uating the seasonal dynamics and environmental sensitivities
of soil and heterotopic respiration fluxes.

4.2 Impacts of heterotrophic respiration on
interannual variability

Capturing appropriate interannual variability is important to
generating credible land C-cycle representations (Cox et al.,
2013; Piao et al., 2020). To a first approximation, all models
in the test bed generated interannual variability in NEP fluxes
that matched latitudinal distributions from atmospheric ob-
servations (Fig. 5). Similar to the analyses on seasonal cy-
cles, the test-bed ensemble simulations showed a higher in-
terannual variability of CO2 fluxes associated with explicit
microbial representation – especially for heterotrophic res-
piration fluxes with CORPSE in the northern high latitudes
(Figs. 5a, 6).

Interestingly, in the tropics and southern extra-tropics,
the interannual variability of heterotrophic respiration fluxes
simulated by MIMICS is only slightly higher than CASA-
CNP or CORPSE (Fig. 6b), but the interannual variability
of NEP fluxes simulated by MIMICS was 20 %–30 % higher
than that of other models (Fig. 6a). Further, in these regions
the interannual variability of heterotrophic respiration fluxes
simulated by MIMICS also shows an inverse but highly cor-

related relationship with the interannual variability of NPP
(R2>0.60, Table S3). This suggests that the large interan-
nual variability of NEP fluxes simulated by MIMICS may
result from differences in phasing between NPP and MIM-
ICS HR fluxes, similar to phasing between MIMICS NPP
and HR affecting the shape of the CONEP

2 annual cycle in
northern high latitudes. In the northern high latitudes, all test-
bed models show interannual variability of heterotrophic res-
piration is correlated with the interannual variability of both
NPP and temperature (R2 of 0.32 to 0.77; Table S3). Addi-
tionally, the interannual variability NPP is sensitive to tem-
perature variability (γ = 0.15, R2

= 0.43; Table S3). As in
Sect. 4.1, better diagnostics to partition the interannual vari-
ability of atmospheric CO2 measurements into environmen-
tal sensitivities of heterotrophic respiration and productivity
are required, especially at high latitudes, but our results sug-
gest that the carbon cycle simulated by the MIMICS model
shows interannual variability of CO2 fluxes that is higher
than atmospheric observations.

This high interannual variability of NEP simulated by
MIMICS is consistent with this model having the highest
global temperature sensitivity, overestimating observed val-
ues by 80 % (Fig. 7a). CORPSE, the other microbially ex-
plicit model, had a 30 % higher temperature sensitivity in
CONEP

2 than observed globally (Fig. 7a). This large bias
in temperature sensitivity demonstrates uncertainties in the
model structure and parameterization that is associated with
soil biogeochemical models (Sulman et al., 2018). And al-
though the temperature sensitivity of microbial kinetics sim-
ulated in MIMICS was parameterized with observations from
enzyme assays from laboratory experiments (German et al.,
2012; Wieder et al., 2014, 2015), additional factors, includ-
ing substrate availability, exert important proximal controls
over the ultimate temperature sensitivity of soil C decompo-
sition (Conant et al., 2011; Dungait et al., 2012). Recently,
Zhang et al. (2020) used observations from >200 sites in
Europe and China to calibrate parameters for MIMICS, but
these parameters have not yet been tested globally. Future
work should similarly leverage local observations for model
calibration to develop parameters that can be applied in sub-
sequent global-scale simulations. The work presented here
establishes a framework that uses a top-down constraint of at-
mospheric CO2 observations to then evaluate, or benchmark,
the CO2 fluxes that are simulated by the revised model(s). As
with larger land models (Collier et al., 2018), we see this in-
terplay of model parameterization, testing, and evaluation as
critical to refining and improving confidence in projections
from soil biogeochemical models (Bradford et al., 2016).

4.3 Implications for model benchmarking using
atmospheric CO2

Our results provide useful insights for model benchmark-
ing using atmospheric CO2. On a global scale, interannual
variability of simulated atmospheric CO2 was shown to be
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affected by the variability in component fluxes (NPP, HR)
from different land regions (Figs. 6–8). The tropics domi-
nate the interannual variability in global NPP, while north-
ern extratropics dominate the interannual variability in global
heterotrophic respiration (Fig. 8a–d). Taken together, NEP
variability reflects roughly equal contributions from North-
ern Hemisphere temperate ecosystems (NML) and tropical
ecosystems (NT and ST; Fig. 8e–f). These results suggest
that the interannual variability of atmospheric CO2 results
from two different processes (respiration and productivity)
across multiple ecoclimatological regions, whereas previous
studies have mostly identified tropical (e.g., Cox et al., 2013;
Wang et al., 2013) or subtropical, semiarid regions (e.g.,
Ahlström et al., 2015; Poulter et al., 2014) as dominant con-
trols on the global interannual variability of atmospheric CO2
observations. Additional analyses are needed to test the ro-
bustness of this finding with different forcings and soil mod-
els, but these results emphasize the importance of different
processes and regions as sources of variability in the terres-
trial carbon cycle.

Our analysis underscores that patterns of variability in at-
mospheric CO2 are tied not only to variations in the underly-
ing fluxes, but also to atmospheric transport. For example, we
showed that the temperature sensitivity of CO2 growth rate
anomalies was larger than the sensitivity estimated from the
fluxes themselves (Fig. 7). The enhanced temperature sensi-
tivity for COHR

2 was larger than for that of CONPP
2 , which sug-

gests that the geographic origin of the fluxes relative to dom-
inant patterns of transport affects the result (Fig. 7b). This
transport enhancement of the apparent temperature sensitiv-
ity of CO2 growth rate anomalies is consistent with results
from Keppel-Aleks et al. (2018). While these results may be
tied to the choice of GEOS-Chem to simulate atmospheric
transport, they do underscore that (1) atmospheric CO2 must
be simulated from land fluxes to be used as a benchmark and
(2) atmospheric observations should not be assumed to be a
direct proxy for fluxes themselves.

We employed several benchmarking approaches, includ-
ing time series comparison and functional response to tem-
perature, to evaluate if CO2 patterns reflect underlying rep-
resentations of soil heterotrophic respiration. We found that
soil heterotrophic respiration leaves non-negligible imprints
on atmospheric CO2, leaving open the possibility of more
explicitly accounting for respiration variability using atmo-
spheric CO2 observations. Given that HR links to NPP, soil
C pools, and temperature, we recommend synergistically us-
ing datasets that reflect these variables (instead of identifying
metrics in isolation). This could provide better model process
evaluation if implemented in a larger benchmarking frame-
work, such as the International Land Model Benchmarking
project (ILAMB; Collier et al., 2018; Hoffman et al., 2017).
Model development will be crucial in the next decade of
carbon cycle research, but so will tools to test mechanistic
understanding and elucidate a coherent picture of the land–
atmosphere carbon response to a changing climate.
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