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Abstract. The sources of systematic error responsible for in-
troducing significant biases in the eddy covariance (EC) flux
computation are manifold, and their correct identification is
made difficult by the lack of reference values, by the complex
stochastic dynamics, and by the high level of noise charac-
terizing raw data. This work contributes to overcoming such
challenges by introducing an innovative strategy for EC data
cleaning. The proposed strategy includes a set of tests aimed
at detecting the presence of specific sources of systematic
error, as well as an outlier detection procedure aimed at iden-
tifying aberrant flux values. Results from tests and outlier
detection are integrated in such a way as to leave a large de-
gree of flexibility in the choice of tests and of test threshold
values, ensuring scalability of the whole process. The selec-
tion of best performing tests was carried out by means of
Monte Carlo experiments, whereas the impact on real data
was evaluated on data distributed by the Integrated Carbon
Observation System (ICOS) research infrastructure. Results
evidenced that the proposed procedure leads to an effective
cleaning of EC flux data, avoiding the use of subjective cri-
teria in the decision rule that specifies whether to retain or
reject flux data of dubious quality. We expect that the pro-
posed data cleaning procedure can serve as a basis towards a
unified quality control strategy for EC datasets, in particular
in centralized data processing pipelines where the use of ro-
bust and automated routines ensuring results reproducibility
constitutes an essential prerequisite.

1 Introduction

In the last decades, the number of eddy covariance (EC) sta-
tions for measuring biosphere–atmosphere exchanges of en-
ergy and greenhouse gases (mainly CO2 and H2O, followed
by CH4 and N2O) increased worldwide, contributing to ex-
pand regional (e.g. ICOS, AmeriFlux, NEON, TERN) and
global (e.g. FLUXNET) monitoring networks. Integration of
long-term flux datasets over regional and global scales en-
ables the evaluation of climate–ecosystem feedbacks and the
study of the complex interactions between terrestrial ecosys-
tems and the atmosphere.

The use of the EC technique involves a set of complex
choices. Selection of the measurement site and of the in-
strumentation, design of the data acquisition strategy, de-
ployment and maintenance of the EC system, and design
of the data processing pathway are only some examples of
such choices. Over time, the EC community has developed
guidelines and best practices aimed at “standardizing” the
methodology, with the overarching goal of increasing com-
parability and integrability of flux datasets across different
stations, thereby improving robustness and accurateness of
resulting synthesis, analysis and models. Examples of efforts
in this direction can be found in the EC handbooks by Lee
et al. (2005) and by Aubinet et al. (2012), in publications de-
scribing standardized EC systems for entire networks (e.g.
Franz et al., 2018) and in software intercomparisons aimed
at reconciling the complex EC processing chain and explain-
ing/quantifying any discrepancy (e.g. Mauder et al., 2006;
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Fratini and Mauder, 2014; Metzger et al., 2017). As part of
this effort, large regional networks have recently invested sig-
nificant resources in the definition of protocols and measure-
ment methods (e.g. Sabbatini and Papale, 2017; Rebmann
et al., 2018; Nicolini et al., 2018) and in the development
of centralized data processing pipelines (e.g. Sabbatini et al.,
2018).

An integral part of the EC method is the definition of
quality assurance (QA) and quality control (QC) procedures.
Quality assurance refers to the set of measures aimed at pre-
venting errors and therefore concerns design of the experi-
mental setup, selection of the site, choice of instrumentation
and its deployment, and maintenance scheduling. Quality
control, instead, refers to the ensemble of procedures aimed
at (1) identifying and eliminating errors in resulting datasets
(i.e. data cleaning) and (2) characterizing the uncertainty of
flux measurements. This paper is concerned with the defini-
tion of QC procedures for EC datasets, in particular for error
identification and data cleaning.

In the context of EC, a thorough QC scheme should aim
at detecting errors caused by instrumental issues as well
as by violations of the assumptions underlying the method
(see Foken et al., 2012b; Richardson et al., 2012), which in-
evitably occur during the measuring campaign. Surface het-
erogeneities and anisotropies, occurrence of poorly devel-
oped turbulence conditions, advection fluxes, instrumental
malfunctions (leading to spikes or discontinuities in the raw
data), miscalibrations or operation below the detection limit
of the instruments are common sources of systematic errors
introducing biases in resulting fluxes. Systematic errors can
also occur during the data processing stage, due to inappro-
priate choices of the processing options, poor parameteriza-
tion of corrections (e.g. a poor estimation of spectral attenu-
ations in an EC system) or cases that lead algorithms to di-
verge (e.g. when the denominator of a ratio tends to zero). An
effective QC procedure should in principle be able to identify
all such occurrences and hence allow the elimination of the
corresponding flux values.

It is worth noting that EC measurements, like any mea-
surement process, are also subject to a number of sources of
unavoidable random errors causing noise in flux data, due for
example to sampling a 3D stochastic process at a single point
or due to the finite precision of the measuring devices or to
the variability of the source area (the so-called flux footprint)
within the flux averaging timescale. By definition, random er-
ror cannot be eliminated in single-measurement experiments
such as EC measurements. However, their effect can be min-
imized by careful QA procedures (e.g. selection of station lo-
cation and of instrumentation, relative to the intended appli-
cation) and quantified by characterizing the random error dis-
tribution through an appropriate probability density function
(PDF), most commonly assumed to be well-approximated by
a normal or Laplace distribution (e.g. Richardson et al., 2008;
Lasslop et al., 2008; Vitale et al., 2019a). The characteriza-
tion of random error distribution is beyond the scope of the

current paper, but we will briefly touch on the subject since
it is relevant to our objectives.

Following Richardson et al. (2012), in order to define a
modelling framework suitable for the representation of a
variable y observed with error (e.g. a half-hourly flux time
series), we stipulate that the observed value at time t , yobs

t , is
related to the true value of the variable ytrue

t via

yobs
t = y

true
t + et , (1)

where et is an error term that can be further specified as

et =
∑
i

βi,t+ εt = βt+ εt , (2)

where βt represents the total systematic error given by the
sum of all individual systematic error components, βi,t, bias-
ing the variable, and εt is the random measurement error. The
standard deviation characterizing the distribution of random
errors, σε, provides a measure of the random uncertainty.
With this formalization in mind, QA procedures are aimed at
preventing all sources of systematic errors (βi→ 0 ∀i) and
at minimizing σε, while QC procedures are aimed at detect-
ing and rejecting any yobs

t data points, for which the effect of
any systematic error on flux estimates is not negligible (i.e.
βt 6= 0).

In practice, it is difficult to distinguish between random
and systematic errors because some sources of error can have
both a random and a systematic component, there are no ref-
erence values to quantify the bias, and there are no replicates
to consistently quantify the random uncertainty. To avoid
confusion, however, it is worth stressing that the difference
between random and systematic errors should not be linked
to the intrinsic characteristics of the source of error but rather
to the effect it has on the quantity of interest.

Following this rule, if some source of error is responsi-
ble for over-/underestimating the true target value, then the
source of error is systematic, even if it manifests itself as a
noise term showing characteristics similar to a random er-
ror component. In the ideal case of n replicates of EC mea-
surements affected by the same source of systematic error,
flux estimates will always be over-/underestimated compared
to the true flux value. Conversely, if the presence of some
source of error is responsible for increasing the uncertainty
associated with the estimate of the true value (i.e. the stan-
dard deviation), then the source of error has to be considered
random. In the ideal case of n replicates of EC measurements
not affected by any source of systematic error, flux estimates
will vary around the true flux value as a consequence of the
random error.

It follows from those definitions that long-term biases in
flux time series (say, a systematic underestimation) can only
be caused by sources of systematic error. However, it can
not be said that the effect of a specific source of systematic
error acts constantly over time because its effect can vary
both in sign and in magnitude. Sources of random error, in-
stead, never lead to long-term biases (Moncrieff et al., 1996;
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Richardson et al., 2012), because their effects tend to cancel
out, but they are responsible for increasing the uncertainty of
the estimates (e.g. the intrinsic variability due to sampling).

QC procedures developed to identify EC fluxes affected
by significant errors can be broadly classified into partially
and completely data-driven (or automatic) approaches. The
former entail at least some degree of subjective evaluation
in the decision process. They rely on the ability of the ana-
lyst to make a final call on whether a data point should be
retained or rejected, allowing the researcher to exploit the
accumulated knowledge about the site and the dataset, in or-
der to discern what is physically or ecologically implausible.
Such a call is usually made on the basis of some prelimi-
nary error detection algorithm and, in practice, is typically
performed via visual inspection. As an example, Vickers and
Mahrt (1997) proposed a suite of tests to detect problems
with high-frequency raw data. There, each test results in a la-
bel for the time series, such as retain or potentially reject, and
the investigator is required to make the final call on the latter.
The drawback of such procedures is that subjective evalua-
tion unavoidably introduces individual biases, which weaken
the robustness and the objectivity of results. In addition, the
fact that subjective evaluation is usually performed via visual
inspection strongly affects traceability of the data process-
ing history, severely hindering reproducibility of resulting
datasets. Completely data-driven procedures, however, sac-
rifice the benefit of first-hand knowledge of the dataset to
gain high levels of reproducibility and objectivity, by means
of fully automated QC algorithms and decision trees. An im-
portant advantage of such procedures is that they strongly
reduce the possibility of introducing selective subjective bi-
ases when cleaning datasets across multiple stations, thereby
contributing to the standardization we referred to at the be-
ginning. Moreover, fully automated algorithms are preferable
when the processing involves the ingestion of massive data
and the use of visual inspection becomes prohibitive because
it would be extremely time consuming. However, the con-
struction of a completely data-driven procedure that accounts
for and exploits all available knowledge of the system is com-
plex and requires care in testing development to prevent high
false-positive error rates.

Usually, a QC procedure is comprised of multiple rou-
tines, each of which evaluates data with respect to a specific
source of systematic error. In the case of EC, we therefore
have routines to identify instrumental issues, severe viola-
tions of the method assumptions, or issues with the data pro-
cessing pipeline. Obviously, there may be several routines
for each category, e.g. routines to look at specific types of
instrumental issues (e.g. spikes, reached detection limit, im-
plausible discontinuities in the time series). Once a set of QC
tests has been selected, the results of these tests must be com-
bined, in order to derive an actionable label to reject or retain
individual flux data. One of the most popular QC classifi-
cation schemes was proposed by Mauder and Foken (2004)
and was more recently adopted, with some modifications, by

Mauder et al. (2013). This classification scheme establishes
a data quality flag on the basis of a combination of results
from two tests, proposed by Foken and Wichura (1996), re-
ferred to as instationarity and integral turbulence character-
istics tests. Results of the two tests are combined based on a
predefined policy to derive the final classification, which as-
signs the overall flag 0 to high-quality data, 1 to intermediate-
quality data, and 2 to low-quality data. Recommendations are
that (a) low-quality data should be rejected; (b) the use of
intermediate-quality data should be limited to specific appli-
cations, e.g. long-term budget calculation, while it should be
avoided in more fundamental process studies; and (c) high-
quality data can be used for any purpose. Other quality clas-
sification schemes of this sort have been proposed and used
(e.g. Kruijt et al., 2004; Göckede et al., 2008; Thomas et al.,
2009).

Two aspects of this approach to QC classification are of
concern. Firstly, the combination of the results of individual
tests into an overall flag appears to be somewhat arbitrary
and no directives are provided – nor are they easily imagined
– as to how to extend the combination to integrate results
of additional or alternative tests. More fundamentally, with
the methods above, the final aim of the process is to attach a
quality statement to the data via a flag, as opposed to identify-
ing data points affected by severe errors, therefore confound-
ing the two processes – that we deem distinct – of cleaning
the dataset and of characterizing its quality. We suggest, in-
stead, that a data cleaning procedure for EC datasets should
exclusively aim at identifying flux values affected by errors
large enough to warrant their rejection. It should, therefore,
lead to a binary classification, such as retain or reject. As
for assigning a quality level to the retained data, we propose
that the random uncertainty is the appropriate metric. In fact,
as a general principle, the larger the random uncertainty, the
larger the amount of measurement error and, consequently,
the lower the quality of the data (for an in-depth discus-
sion of the random uncertainty in EC, see e.g. Richardson
et al. (2012) and references therein). The link between data
quality and random uncertainty has already been investigated
by Mauder et al. (2013). Using the turbulence sampling er-
ror proposed by Finkelstein and Sims (2001) as a measure
of the flux random uncertainty, they found that the highest-
quality data are typically associated with relative random un-
certainties of less than 20 %, whereas intermediate-quality
data are typically associated with random uncertainties be-
tween 15 % and 50 %. However, explicitly avoiding the bin-
ning into intermediate-quality and high-quality data allows
us to avoid uncertain recommendations as to what applica-
tion a given intermediate-quality datum should be used for.
Rather, we recommend taking into account the random un-
certainty throughout the data analysis and synthesis pipeline
and let the application itself (e.g. data assimilation into mod-
elling frameworks) reveal whether the level of uncertainty of
each data point in the dataset matters or not.
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Bearing this in mind, the aim of this paper is thus to
present a robust data cleaning procedure which (i) includes
only completely data-driven routines and is therefore suit-
able for automatic and centralized data processing pipelines,
(ii) guarantees result reproducibility, (iii) is flexible and scal-
able to accommodate addition or removal of routines from
the proposed set, and (iv) results in a binary label such as re-
tain or reject for each data point, decoupling the data cleaning
procedure from its quality evaluation.

2 Materials and methods

2.1 The proposed data cleaning strategy

Since quantifying bias affecting EC fluxes at a half-hourly
scale is not possible in the absence of reference values, the
only option is to ascertain the occurrence of specific sources
of systematic error which, in turn, are assumed to introduce
biases in flux estimates. Therefore, the proposed data clean-
ing procedure includes (i) a set of tests aimed at detecting the
presence of a specific source of systematic error and (ii) an
outlier detection procedure aimed at identifying aberrant flux
values. As described below, results from tests and outlier de-
tection are integrated in such a way as to leave a large degree
of flexibility in the choice of tests and of test threshold values
without losing in efficacy while striving to avoid the use of
subjective criteria in the decision rule that specifies whether
to ultimately retain or reject flux data of dubious quality.

For each test, two threshold values are defined, designed to
minimize false-positive and false-negative error rates. Com-
paring the test statistic with such thresholds, each test returns
one of three possible statements:

– SevEr, if the test provides strong evidence about the
presence of a specific source of systematic error;

– ModEr, if the test provides only weak evidence about
the presence of a specific source of systematic error;

– NoEr, if the test does not provide evidence about the
presence of a specific source of systematic error.

Threshold values can be set either based on the sampling
distribution of the test statistic (e.g. when the sampling distri-
bution of the statistic is standard normal, tabulated z-critical
values can be used) or making use of the laws of probability
or, when not possible, by evaluating the distribution of the
test statistic on large datasets and establishing those values
in correspondence with pre-fixed significance level, minimiz-
ing false-positive errors. Although the definition of threshold
values inevitably introduces some level of subjectivity based
on domain-specific knowledge, it does not hinder the overall
traceability of the process and result reproducibility.

Test results are used as inputs to the data cleaning proce-
dure, which includes two stages (see Fig. 1). In the first stage,
fluxes that inherited at least one SevEr statement are rejected,

Figure 1. Schematic summary of the proposed data cleaning pro-
cedure. SevEr and ModEr indicate strong and weak evidence about
the presence of a specific source of systematic error, respectively.

while fluxes that inherited no SevEr statements and any num-
ber of ModEr statements are retained. Importantly, the state-
ments resulting from different tests (or from the same test as
applied to different variables) are not combined in any way.
The rationale is that a single SevEr statement is sufficient to
establish the rejectability of a data point. Conversely, no mat-
ter how many ModEr statements are inherited by flux data,
those statements do not accumulate to the status of SevEr and
hence they do not lead per se to the rejection of the measure-
ment. There are two reasons for this: (i) test independence
cannot in general be guaranteed; i.e. the same source of error
can affect the statistics of more than one test and (ii) nothing
can be said about how different systematic errors combine,
e.g. whether they tend to cumulate or cancel out. This pol-
icy has the convenient side effect of making the application
and interpretation of tests completely independent from each
other, which makes the overall procedure extremely flexible
and scalable to accommodate new tests beyond what we pro-
pose later in this paper (e.g. tests for less investigated gas
species): all that is required is for the new test to return state-
ments such as SevEr, ModEr (if applicable) and NoEr.

In the second stage, flux data that inherited no SevEr state-
ment are subject to an outlier detection procedure and only
flux data that are both detected as outlier and inherited at
least a ModEr statement are conclusively rejected. This im-
plies that data points that inherited any number of ModEr
statements but were not detected to be outliers, as well as
outliers which showed no evidence of systematic errors, are
retained in the dataset and can be used for any analysis or
modelling purposes. In other words, only data points that
provide strong evidence of error (either because of a SevEr
or because of a ModEr and being identified as an outlier) are
rejected, while peculiar data points, which would look sus-
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picious to the visual inspection and are possibly identified as
outliers, but only inherited NoEr statements, are retained.

The following section details the set of tests used in the
proposed data-cleaning procedure and summarized in Ta-
ble 1. Depending on their specification, tests are applied
to individual high-frequency raw time series, pairs of vari-
ables, their statistics over the flux averaging interval, or even
derived variables. For example, instrumental problems (see
Sect. 2.2.1) are typically searched for on a per-variable basis,
while stationarity conditions (see Sect. 2.2.3) are assessed by
looking at the covariance between two variables. The test re-
sult is then inherited by all fluxes, to which the variable or
variable pair is relevant. As an example, sensible heat flux
H inherits the test results assigned to (at least) vertical wind
speed w, sonic temperature Ts and the pair w/Ts.

The proposed data cleaning procedure is implemented
in the RFlux R package (Vitale et al., 2019b) and is pub-
licly available via the GitHub repository. The procedure has
been designed and optimized for CO2/H2O and energy EC
fluxes over natural ecosystems based on current knowledge.
However in different conditions (gas species, ecosystem, in-
strumentation, etc.), new tests and further optimization of
the ones proposed here are possibly needed. As mentioned
above, the data cleaning procedure is designed to naturally
accommodate any number of tests that generate a statistic
that can be compared against threshold values.

2.2 Detection of sources of systematic error affecting
EC datasets

The possible sources of systematic errors are divided
and analysed into three categories: (1) instrumental is-
sues, (2) poorly developed turbulence regimes and (3) non-
stationary conditions.

2.2.1 Detection of instrumental issues

Modern EC instruments can detect and report malfunctions
occurring during the measurement process via diagnostic
variables. However, there are situations where a measure-
ment is affected by an error but it is still valid from the in-
strument’s perspective, and for this reason it is not flagged by
the instrument diagnostics. As an example, a physical quan-
tity may have variations that are too small to detect, given
the settings or the specifications of the instrument. This is
the case of a time series of temperature that varies very little
during a calm, stable night; the measurements may be af-
fected by a low-resolution problem, where the quantization
of the measurement due to the intrinsic resolution of the in-
strument becomes evident and leads to a reduced variabil-
ity of the underlying signal. In this case, from the measure-
ment perspective, there is nothing wrong with the measured
quantity and diagnostics would not indicate any issues. In
addition, with some instruments, especially older models, or
often when collecting data in analogue format, diagnostic in-

formation is simply not available (Fratini et al., 2018). It is
therefore useful to devise tests to detect instrument-related
situations that are likely to generate systematic errors in re-
sulting fluxes. In the following, we describe a series of rou-
tines to identify the most frequent errors caused by instru-
mental problems detectable on the raw, high-frequency time
series (most of which were already discussed in Vickers and
Mahrt, 1997, hereafter VM97).

Detection of unreliable records caused by system
malfunction and disturbances

EC fluxes are calculated starting from the covariance be-
tween the vertical wind speed, w, and the scalar of interest
computed over a specified averaging interval, typically 30 or
60 min. For the calculated covariance to be representative of
the entire interval, the actual number of available raw data
records should be close enough to the expected number (e.g.
18 000 records for fluxes over 30 min from raw data sampled
at 10 Hz). If the number of available records is too small, the
corresponding flux estimate may be significantly biased.

Data records can be unavailable for covariance computa-
tion for a variety of reasons. First, records may simply be
missing because of problems during data acquisition. In ad-
dition, specific values may be eliminated if

– instrumental diagnostics flag a problem with the mea-
surement system;

– individual high-frequency data points are outside their
physically plausible range or are identified as spikes (in
this work we used the despiking algorithm proposed by
VM97);

– data were recorded during periods when the wind was
blowing from directions known to significantly af-
fect the turbulent flow reaching the sonic anemometer
sampling volume, e.g. due to the interference of the
anemometer structure itself (C-clamp models) or to the
presence of other obstacles;

– the angle-of-attack of individual wind measurements
is beyond the calibration range specified by the sonic
anemometer manufacturer.

Note that the criteria above may apply to single variables,
groups of variables (e.g. anemometric variables) or entire
records. Although covariances can also be computed on time
series with gaps, some of the procedures involved in the typi-
cal data processing do require continuous time series (e.g. the
fast Fourier transform to compute power spectra and cospec-
tra, or the stationarity tests that compute statistics on sub-
periods as short as 50 s; Mahrt, 1998). The performance of
such procedures may depend on the technique used to im-
pute missing data (i.e. fill the gaps). It is therefore useful to
establish criteria for the appropriate use of imputation proce-
dures.
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Table 1. Sources of systematic error, test statistics and adopted threshold values to define NoEr, ModEr and SevEr statements. Details on
how the threshold values have been set are provided in Sect. 2.2.

Source of error Test statistic
Threshold values

NoEr ModEr SevEr

(1) EC system malfunction (1a) Fraction of missing records (FMR, %) ≤ 5 ≤ 15 > 15
and disturbances (1b) Longest gap duration (LGD, s) ≤ 90 ≤ 180 > 180

(2) R2 for linear regression of CCFs
(2) Low signal resolution estimated with original data and after > 0.995 ≤ 0.995 < 0.99

removal of repeated contiguous values

Homogeneity test of fluctuations:
(3a) HF5 – percent of fluctuations beyond ±5σ ≤ 2 ≤ 4 > 4

(3) Aberrant structural changes (3b) HF1 percent of fluctuations beyond ±10σ ≤ 0.5 ≤ 1 > 1
(e.g. sudden shift in mean, Homogeneity test of differenced data:
changes in variance) (3c) HD5 – percent of differenced data beyond ±5σ ≤ 2 ≤ 4 > 4

(3d) HD1 – percent of differenced data beyond ±10σ ≤ 0.5 ≤ 1 > 1
(3e) KID – kurtosis index of differenced data ≤ 30 ≤ 50 > 50

(4) Poorly developed (4) Integral turbulence characteristics (%)
≤ 30 ≤ 100 > 100

turbulence regimes by Foken and Wichura (1996)

(5) Non-stationary conditions (5) Non-stationary ratio by Mahrt (1998) ≤ 2 ≤ 3 > 3

Typically, gaps in raw time series are filled using linear
interpolation. While this algorithm provides obvious compu-
tational and implementation advantages, it should be noted
that it only performs satisfactorily when the time series is
dominated by low-frequency components, while it can intro-
duce biases in time series characterized by significant high-
frequency components, as is the case with EC data. Its appli-
cation should thus be limited to very short gaps. The pattern
of missing data plays a role too: when gaps occur simulta-
neously across all variables, linear interpolation can lead to
biases in resulting covariances even for short gaps. Such bi-
ases are linearly proportional to the amount of missing data
and relatively larger for smaller fluxes. These considerations
also apply to other interpolation methods such as splines and
the last-observation-carried-forward method.

With this in mind, by evaluating the fraction of missing
records (FMR) and the longest gap duration (LGD) in time
series involved in the covariance estimation, we suggest the
following classification criteria:

– SevEr if FMR > 15 % or LGD > 180 s,

– ModEr if 5 %< FMR≤ 15 % or 90 s<LGD≤ 180 s,

– NoEr if FMR≤ 5 % and LGD≤ 90 s.

Detection of low-signal-resolution problems

High-frequency EC data can be affected by low-signal-
resolution problems (see VM97 for a detailed description).
Resolution problems are mainly caused by a limited digi-
talization of the signal during data acquisition, when signal

fluctuations approach the resolution of the instruments. This
kind of problem causes a step ladder in the distribution of
sampled data, and time series are characterized by the pres-
ence of repeated contiguous values. Instrumental faults can
lead to a time series that remains fixed at a constant value
for a period of time (dropout), analogously introducing arti-
ficial repeated values, though with a very different pattern of
repetition. Repeated values are always to be considered an
artefact since even in the (unlikely) event of a signal main-
taining a constant value for an extended period of time, its
measured values would still vary on account of the random
error. In this particular scenario, contiguous repeated values
would not actually lead to a bias in the flux estimate, because
neglecting the presence of random error (as defined in the in-
troductory section) does not affect covariance estimates. In-
stead when repeated values do not reflect the true dynamic
of the underlying signal, they can lead to a significant bias in
flux estimates. To disentangle these two situations, we eval-
uate the discrepancy between the w-scalar cross-correlation
functions (CCFs) of the original time series and of the time
series after removal of repeated values. If the discrepancy is
negligible then the effect of repeated values on the covariance
estimate is considered irrelevant. This could occur in the case
of a small number of repeated data or if their values are still
representative of the underlying signal dynamic. Conversely,
when a significant discrepancy is found, the covariance es-
timate is considered biased. To evaluate the significance of
such a discrepancy, we propose using the coefficient of de-
termination (R2) of the linear regression through the origin
of the CCFs estimated at short lags (±25 steps). The criteria
used to assign a statement are as follows:
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– SevEr if R2 < 0.990,

– ModEr if 0.990≤ R2
≤ 0.995,

– NoEr if R2 > 0.995.

Detection of aberrant structural changes in time series
dynamics

EC time series can be subject to regime changes such as sud-
den shifts in the mean and/or in the variance. In some cir-
cumstances, those are imputable to natural causes as in cases
of intermittent turbulence (Sandborn, 1959) and wind pat-
tern change over a heterogeneous or anisotropic footprint. In
other cases, such changes are artefacts generated by instru-
mental malfunctions. Aberrant structural changes in mean
and variance due to either environmental causes or measure-
ment artefacts have similar effects on time series dynamics
(which makes them difficult to disentangle) and lead to vi-
olation of the assumption of stationarity underlying the EC
method. They should therefore be treated as sources of sys-
tematic errors. Here we propose three new tests to identify
such situations, whose rejection rules are based on objective
criteria but which, notably, do not discern natural changes
from measurement artefacts.

The first test takes into consideration the homogeneity of
the distribution of fluctuations (y′t = yt − y, where y is the
mean level estimated according to the averaging rule adopted
in the covariance calculation, e.g. block average or linear de-
trending) and consists of evaluating the percentage of data
in the tails with respect to the bounds imposed by Cheby-
shev’s inequality theorem. Irrespective of the PDF generating
the data, Chebyshev’s inequality provides an upper bound to
the probability that absolute deviations of a random variable
from its mean will exceed a given threshold value. As an ex-
ample, it imposes that a minimum of 75 % of values must lie
within 2 standard deviations of the mean and 89 % within 3
standard deviations. When the inequality is violated, it is a
symptom of data inhomogeneity due to structural changes in
time series dynamics (e.g. abrupt change in the mean level
and sudden upward or downward trend which may introduce
significant bias in the estimation of the mean values and, con-
sequently, of the covariances). In the following we indicate
the test statistic related to the homogeneity of the distribu-
tion of fluctuations as HFB, where the subscript B indicates
the sigma-rule adopted to define the boundary region (e.g.
±5σ ).

The second test makes use of the same rule, but it evaluates
the homogeneity of the distribution of first-order differenced
data, 1yt = yt − yt−1 (the corresponding statistic is denoted
as HDB). Besides highlighting other useful properties, differ-
encing a variable eliminates any trends present in it, whether
deterministic (e.g. linear) or stochastic (Box et al., 2015), and
the resulting time series is always stationary. Differencing
acts as a signal filtering procedure and the transformed data
can better highlight the characteristics of the measurement

error process whose variance, under second-order stationary
conditions, should be constant over time. Therefore, when
the inequality is violated, it is a symptom of data inhomo-
geneity mainly due to changes in variance (heteroscedastic-
ity). Based on the upper bounds imposed by Chebyshev’s in-
equality for 5σ and 10σ , the first two tests are summarized
in the following rules:

– SevEr, if HF5 > 4 %, HD5 > 4 %, HF10 > 1 % or
HD10 > 1 % (i.e. more than 4 % of fluctuations or dif-
ferenced values are beyond the±5σ limits or more than
1 % of them are beyond the ±10σ limits);

– ModEr, if 2 %<HF5 ≤ 4 %, 2 %<HD5 ≤ 4 %,
0.5 %<HF10 ≤ 1 % or 0.5 %<HD10 ≤ 1 % (i.e. more
than 2 % of fluctuations or differenced values are
beyond the ±5σ limits or more than 0.5 % of them are
beyond the ±10σ limits);

– NoEr, if HF5 ≤ 2 %, HD5 ≤ 2 %, HF10 ≤ 0.5 % and
HD10 ≤ 0.5 % (i.e. fewer than 2 % of both fluctuations
and differences are beyond the ±5σ limits and fewer
than 0.5 % of them are beyond the ±10σ limits).

As a robust estimate of σ , we used the Rousseeuw and
Croux (1993) Qn estimator corresponding approximately to
the first quartile of the sorted pairwise absolute differences.
Compared to other robust scale estimators – such as the me-
dian absolute deviation about the median (MAD) and the in-
terquartile distance (IQD) – it is a location-free estimator;
i.e. it does not implicitly rely on a symmetric noise distri-
bution. Similar to MAD, its breakdown point is 50 %; i.e. it
becomes biased when 50 % or more of the data are large out-
liers. However, its efficiency is larger, especially when iden-
tical measurements occur, e.g. due to low-signal-resolution
problems.

The third test consists of evaluating the kurtosis index on
the differenced data 1yt (hereafter denoted KID test). The
kurtosis index is defined by the standardized fourth moment
of the variable about the mean. Because variations about the
mean are raised to the power of 4, the kurtosis index is sen-
sitive to tail values of the distribution and can therefore be
used to characterize them (Westfall, 2014). Since the tails of
a distribution represent events outside the “normal” range, a
higher kurtosis means that more of the variance is contributed
by infrequent extreme observations (i.e. anomalies) as op-
posed to frequent, modestly sized deviations. The sensitiv-
ity to tail values and the application to differentiated values
make the KID a very useful tool to detect a range of instru-
mental problems, which include abnormal changes in mean,
variance, but also the presence of undetected residual spikes
and drop-out events (in these situations differenced time se-
ries will show a spike in correspondence of each change
point).

To eliminate the sensitivity of the KID to the presence
of repeated values (which become zeros in the differenced
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variable), such values were not included in KID estimation.
Bearing in mind that the kurtosis index for a Gaussian and a
Laplace PDF is equal to 3 and 6, respectively, we choose rea-
sonably large threshold values to make sure we select only
time series characterized by heavy-tailed distribution as is
the case of data contaminated by extreme events represen-
tative of the aforementioned problems. Namely, we suggest
that the following criteria be applied:

– SevEr if KID> 50,

– ModEr if 30<KID≤ 50,

– NoEr if KID≤ 30.

2.2.2 Detection of poorly developed turbulence regimes

One of the assumptions underlying the EC method is the oc-
currence of well-developed turbulence conditions. A widely
used test to assess the quality of the turbulence regime is the
integral turbulence characteristics (ITC) test proposed by Fo-
ken and Wichura (1996, hereafter FW96). Based on the flux-
variance similarity theory, the test consists of quantifying the
relative change of the ratio between the standard deviation
of a turbulent parameter and its corresponding turbulent flux
(the “integral characteristic”) with respect to the same ratio
estimated by a suitable parameterization. The ITC can be cal-
culated for each wind component and any scalar (temperature
and gas concentration), but for the purpose of data cleaning,
the ITC for vertical wind speed is used (see Foken et al.,
2012b). This is defined as

ITC=
∣∣∣ σw/u

∗

f (σw/u∗)
− 1

∣∣∣ · 100, (3)

where σw is the standard deviation of the vertical wind speed
w, u∗ the friction velocity and f (σw/u∗)= c1 ·((z−d)/L)

c2

the parameterization as a function of the dynamic measure-
ment height (z− d) and the Obukhov length L, with c1 and
c2 being parameters varying with atmospheric stability con-
ditions, as tabulated in Foken et al. (2012b, Tables 4.2 and
4.3).

The criteria adopted to assign SevEr, ModEr and NoEr
statements are based on threshold values proposed by
Mauder and Foken (2004, Table 16). In particular,

– SevEr if ITC> 100,

– ModEr if 30< ITC≤ 100,

– NoEr if ITC≤ 30.

2.2.3 Detection of non-stationary conditions

The working equation of turbulent fluxes as the (appropri-
ately scaled) w-scalar covariance is based on a simplifi-
cation of the mass conservation equation (see e.g. Foken
et al., 2012a). One of the assumptions behind such simpli-
fication is that of stationary conditions, which are however

not always fulfilled during the measurement period. Diur-
nal trends, changes in meteorological conditions (e.g. pas-
sage of clouds), boundary layer transitions, large-scale vari-
ability and changes in footprint areas are only some example
of sources generating non-stationary conditions. In the pres-
ence of non-stationarity, flux estimates are biased. The mag-
nitude and sign of the systematic error depend on the nature
of the non-stationarity, on the proportion of total variability
explained by trend components and on the way (determinis-
tic or stochastic) independent trend components interact with
each other.

To avoid biases, a possible approach is to preliminarily re-
move the source of non-stationarity before calculating co-
variances. This way, the amount of data rejected for non-
stationary conditions can be limited. To this end, procedures
based on linear detrending or running mean filtering are of-
ten used during the raw data processing stage. However, their
application can be ineffective, for example when linear de-
trending is used on nonlinear trends (see the Supplement,
Sect. S2) and even risk introducing further biases when data
are truly stationary or when non-stationarity is of more com-
plex nature (see Rannik and Vesala, 1999; Donateo et al.,
2017, for a comparison of detrending methods). For this rea-
son, an alternative approach is to remove periods identified
as non-stationary.

A few tests have been proposed for EC data, of which we
discuss two popular ones. A widely used statistic is based on
a test introduced by FW96, based on the comparison between
the covariance computed over the flux averaging period T
(30 or 60 min) and the average of covariances computed on
shorter intervals I (in the original proposal, six periods of
5 min each if T is 30 min). The test statistic is defined as

SFW96 =

∣∣∣∣ 〈x′y′〉− x′y′
x′y′

∣∣∣∣, (4)

where 〈x′y′〉 = 1
I

∑I
i=1[x

′y′]i is the mean covariance ob-
tained by averaging covariances [x′y′]i=1,2,...,I computed on
I intervals, and x′y′ is the covariance computed over the pe-
riod T . According to the authors’ suggestion, stationary con-
ditions are met when SFW96 ≤ 30 %.

A major problem with Eq. (4) is that when the covari-
ance at the denominator is close to zero, the test statistic
will approach infinity, making the ratio unstable. As a conse-
quence the FW96 test is disproportionately sensitive to fluxes
of small magnitude (see also Pilegaard et al., 2011).

An alternative test was proposed by Mahrt (1998, hereafter
M98). This test measures non-stationarity by comparing the
effects of coherent behaviour with the inherent random vari-
ability in the turbulent signals. As with FW96, the time series
is divided into I non-overlapping intervals of 5 min; in this
case however each interval is also divided into J = 6 non-
overlapping subintervals of 50 s. The test statistic is defined
as
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SM98 =
σB

σW/
√
J
, (5)

where σB is a measure of the variability of the covariance
between different intervals calculated as

σB =

√√√√ 1
I − 1

I∑
i=1

(
[x′y′]i − x′y′

)2
, (6)

and σW is a measure of the average variability within each
interval i and is given by

σW(i) =

√√√√ 1
J − 1

I∑
i=1

(
[x′y′]i,j − [x′y′]i

)2

i = 1, . . ., I, (7)

with x′y′ denoting the covariance computed over the flux
averaging period, [x′y′]i the covariance relative to the ith
5 min interval and [x′y′]i,j the covariance relative to the j th
50 s subinterval within the ith interval. Mahrt (1998) recom-
mended rejecting flux data when SM98 > 2, without exclud-
ing the possibility to increase the threshold value, bearing in
mind that a high threshold value could be particularly risky
for high towers in situations with strong convection.

With respect to the FW96 test, the non-stationarity ratio
by M98 is always well-behaved with the denominator strictly
positive (average of standard deviations). For this reason, the
test proposed by M98 was selected for this work. Based on
a performance evaluation described later in this paper (see
Sect. 3), we suggest the following flagging criteria:

– SevEr if SM98 > 3,

– ModEr if 2< SM98 ≤ 3,

– NoEr if SM98 ≤ 2.

2.3 Outlier detection for half-hourly EC flux time
series

As described in Sect. 2.1, the second step in the data clean-
ing procedure consists of detecting outlying fluxes and re-
moving them if they inherited at least one ModEr statement.
Outlying fluxes can be caused by a variety of sources involv-
ing instrument issues and natural causes (e.g. non-stationary
conditions as often occur during post-dawn transition from a
stable to a growing/convective boundary layer).

The outlier detection proceeds as follows: first, a signal ex-
traction is performed, to obtain an estimate ŷtrue

t of the true
signal; the residual term êt is estimated as êt = yobs

t − ŷ
true
t

and a PDF is built for it; outlying observations are then de-
fined as those fluxes for which the residual falls in the tails of
the distribution, according to pre-specified threshold values.
In the general case, extreme values of model residuals can

occur for three reasons: (i) the model is misspecified and the
residual is due to a wrong estimate for ŷtrue

t , (ii) the residual is
due to the presence of a non-negligible systematic error (i.e.
|βt|> 0 in Eq. 2) or (iii) the residual is indeed a tail instance
on the PDF of et .

Condition (i) can be assessed by examining the degree of
serial correlation in the residual time series. When a model is
correctly specified, residuals should not show any serial cor-
relation structure and resemble a white noise process. Distin-
guishing between conditions (ii) and (iii) is not trivial and
would require an in-depth analysis of the causes generat-
ing the anomalies. We propose considering the presence of
at least a ModEr statement as a symptom of condition (ii)
and thus rejecting flux data identified as outliers and flagged
with at least a ModEr statement. Otherwise, if all tests return
NoEr statements, the outlying data are retained irrespective
of the magnitude of the anomaly. Details about the modelling
framework and how to take into account the heteroscedastic
behaviour of the residual component are provided in the fol-
lowing.

2.3.1 Signal extraction

For the purpose of signal extraction, we considered the fol-
lowing multiplicative model:

yobs
t =Dt ×LRTt ×SRTt × It , (8)

where Dt represents the diurnal cycle, LRTt represents the
long-run (e.g. annual) trend, SRTt is the short-run (e.g. the
intra-day) temporal dynamics term and It is the irregular or
residual component, considered as an estimate êt of et in
Eq. (1). The choice of a multiplicative model is preferred
when the amplitude of the cyclic component is proportional
to the level (i.e. the long-run trend) of the time series (see
Hyndman and Athanasopoulos, 2018, chap. 6). Such a dy-
namic is typical of those ecosystems characterized by diurnal
cycles of fluxes which are more pronounced during growing
than during dormant seasons.

The estimation of each component in Eq. (8) can be per-
formed in a variety of ways. In this work we used the
STL (seasonal-trend decomposition based on LOESS – lo-
cally estimated scatterplot smoothing) algorithm developed
by Cleveland et al. (1990) and implemented in the stlplus R
software package (Hafen, 2010, 2019). We choose the STL
algorithm because of its flexibility and computational effi-
ciency in modelling both the cyclic and the trend components
of any functional forms and because of its ability to handle
missing values.

The main steps of the STL algorithm are as follows. To
separate out the diurnal cycle component, STL fits a smooth-
ing curve to each sub-series that consists of the points in the
same phase of the cycles in the time series (i.e. all points at
the same half hour of day, for diurnal cycles). After remov-
ing the diurnal cycle, it fits another smoothing curve to all
the points consecutively to get the trend components. This
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step can be executed iteratively in the presence of outliers.
In particular, the STL algorithm deals with outliers by down-
weighting them and iterating the procedure of diurnal cycle
and trend component estimation. As the diurnal cycle and
trend are smoothed, outliers tend to aggregate in the irreg-
ular component. The span parameters of the loess functions
used for the extraction of the Dt and LRTT were set equal to
7 d, while those for SRTt were set equal to seven half-hour
periods. The degree of locally fitted polynomials in Dt and
LRTt extraction was imposed to be linear, while that in SRTt
extraction was imposed to be constant. The number of itera-
tions involved was set equal to 20.

The ability of the model to adequately describe the dy-
namics of the time series under investigation is determined
by analysing the statistical properties of the residual time se-
ries. As mentioned above, a properly fitted model must pro-
duce residuals that are approximately uncorrelated in time.
Any pattern in residuals, in fact, indicates the fitted model is
misspecified and, consequently, some kind of bias in fitted
values is introduced. To this end, spectral properties of the
incomplete residuals are assessed through the Lomb–Scargle
(LS) periodogram (Lomb, 1976; Scargle, 1982). This method
is particularly suited to detect periodic components in time
series that are unequally sampled as a consequence of the
presence of missing data at this stage of the data cleaning
procedure.

2.3.2 Outlying flux data

Previous studies focusing on flux random uncertainty quan-
tification have evidenced a heteroscedastic behaviour of the
random error (see Richardson et al., 2012, and references
therein). Furthermore, it has been demonstrated that the
random error distribution can be better approximated by a
Laplace than by a Gaussian distribution (Vitale et al., 2019a).
To take into account these features, residuals are first grouped
into 10 clusters of equal size (defined by percentiles) based
on the estimated flux values. Then, for each of the 10 clus-
ters, the outlier detection is performed assuming a Laplace
distribution and taking into account the (1−α)% confidence
interval with α = 0.01 given by µ± log(α)σ , where µ (lo-
cation) is estimated by the median, and the scale parameter,
σ , is estimated through the Qn estimator by Rousseeuw and
Croux (1993) for the same reasons introduced in Sect. 2.2.1.

It is important to note here that a significant limitation of
the proposed outlier detection method is the inability to de-
tect systematic errors whose sources act constantly across a
flux time series, for long periods of time. As an example, a
miscalibration of the instruments that persists for days would
most likely not be identified as outlying fluxes by the pro-
posed outlier detection procedure. Such sources of system-
atic errors should be prevented via appropriate QA actions
or, at least, specific QC tests should be devised, able to mark
those time series with SevEr statements.

2.4 Monte Carlo simulations

This work has made extensive use of Monte Carlo experi-
ments that make use of simulated time series mimicking raw
EC datasets. The main purpose of the simulations is to create
pairs of reference time series with known covariance struc-
ture that, after being contaminated with a specific source of
systematic error, allow a quantitative and objective evalua-
tion of (i) the bias effect the source of systematic error has
and (ii) the ability of proposed tests to correctly detect it. We
note that, for these purposes, it is not strictly required to sim-
ulate medium- or long-term time series with realistic joint
probability distributions from which to generate half-hourly
fluxes with typical diurnal and seasonal cycles. In fact, it is
reasonable to assume that QC tests exhibiting poor perfor-
mances on simulated data have little chance of success when
applied to observed time series which can exhibit more com-
plex structures of the underlying signal and of the (random)
measurement error process, and which can be contaminated
by the simultaneous occurrence of several sources of system-
atic errors.

Based on the main properties of EC time series (summa-
rized in Sect. S1), synthetic time series were created from
two first-order autoregressive processes (hereafter denoted
AR; see Sect. S2 for an overview of their stochastic prop-
erties) representative of the vertical wind speed and of the at-
mospheric scalar. The procedure adopted to ensure that sim-
ulated AR processes have a pre-fixed correlation structure is
described in Sect. S3. All simulations were executed in the
R programming environment (R Development Core Team,
2019).

Several scenarios have been considered to simulate sta-
tionary time series with different degrees of temporal depen-
dence and with pre-fixed correlation structures in order to
simulate fluxes of different magnitude. All simulated time
series have 18 000 data points as in EC raw high-frequency
time series sampled at 10 Hz and collected in 30 min files.
Once simulated, time series were then contaminated with
specific sources of systematic error, the details of which will
be provided in Sect. 3.

2.5 Eddy covariance datasets and flux calculations

In this study, data from 10 EC sites that are part of
the ICOS network (ICOS RI, 2019) were used: BE-Lon
(Lonzee, Belgium, cropland; Moureaux et al., 2006), CH-
Dav (Davos, Switzerland, evergreen needleleaf forest; Zielis
et al., 2014), DE-HoH (Hohes Holz, Germany, alluvial for-
est; Wollschläger et al., 2017), DE-RuS (Selhausen Juelich,
Germany, cropland; Schmidt et al., 2012), FI-Hyy (Hyytiälä,
Finland, evergreen needleleaf forest; Suni et al., 2003), FI-Sii
(Siikaneva, Finland, wet grassland; Haapanala et al., 2006),
FR-Fon (Fontainebleau, France, deciduous broadleaf for-
est; Delpierre et al., 2015), IT-SR2 (San Rossore 2, Italy,
evergreen needleleaf forest; Matteucci et al., 2015), SE-
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Htm (Hyltemossa, Sweden, evergreen needleleaf forest; van
Meeningen et al., 2017) and SE-Nor (Norunda, Sweden, bo-
real forest; Lagergren et al., 2005).

The lack of knowledge of the reference flux value and of
the contributions of systematic and random error drastically
limits the use of field data in test performance evaluation.
However, field data are crucial to an evaluation of the impact
the proposed data cleaning procedure and, in particular, to
understand which is the main source of systematic error af-
fecting flux variables. Although the performance evaluation
of the proposed tests is mainly carried out via Monte Carlo
simulations, a selection of raw data were also used to provide
representative examples of test application.

The turbulent fluxes of CO2 (FC, µmol CO2 m−2 s−1), sen-
sible heat (H , W m−2) and latent heat (LE, W m−2) were cal-
culated from the covariances between the respective scalar
and the vertical wind speed (w, m s−1) following the standard
EC calculation method (see e.g. Sabbatini et al., 2018). The
EddyPro® software (LI-COR Biosciences, 2019) was used
to this aim, employing the double coordinate rotations for
tilt correction, 30 min block averaging, the maximum cross-
covariance method for time lag determination and the in situ
spectral corrections proposed by Fratini et al. (2012).

The net ecosystem exchange of CO2 (NEE,
µmol CO2 m−2 s−1) was estimated by integrating FC
with the concurrent storage flux (SC, µmol CO2 m−2 s−1),
calculated by means of the single profile approach (Aubinet
et al., 2001). Although more consistent estimates can be
achieved by means of multiple profile sampling (Nicolini
et al., 2018), it is important to note that the choice of the
storage estimation method does not drastically affect the
results of the proposed data cleaning procedure since the test
statistics are mainly based on turbulent raw data.

3 Results and discussion

3.1 Performance evaluation of QC tests

3.1.1 Low-signal-resolution (LSR) test

A simulation study was carried out with the twofold aim of
quantifying the bias caused by low-signal-resolution prob-
lems and evaluating the performance of the LSR test de-
scribed in Sect. 2.2.1.

To this end, error-free AR processes of length n= 18 000
were first simulated and subsequently contaminated with ar-
tificially generated errors. The correlation between time se-
ries has been set to 0.1, simulating medium to low fluxes,
while the autoregressive coefficient (φ) was allowed to take
on a value in the set [0.90, 0.95, 0.99] to represent differ-
ent degrees of serial dependence (i.e. autocorrelation) as ob-
served in EC data (Sect. S1). Low-resolution problems were
simulated (i) by rounding the simulated values from 2 to 0
digits and (ii) by sampling at random an increasing percent-

age of data (15 %, 30 %, 45 %, 60 % and 75 % of the sample
size) and then replacing it via the last-observation-carried-
forward (LOCF) imputation technique. This allows the cre-
ation of a typical ramp structure as is commonly encountered
in raw, high-frequency time series.

In summary, the following six macro-scenarios, SRi=1,...,6,
were considered:

SR1 AR processes with φ = 0.90 contaminated by rounding
the values from 2 to 0 digits;

SR2 AR processes with φ = 0.95 contaminated by rounding
the values from 2 to 0 digits;

SR3 AR processes with φ = 0.99 contaminated by rounding
the values from 2 to 0 digits;

SR4 AR processes with φ = 0.90 contaminated by replacing
15 %, 30 %, 45 %, 60 % and 75 % of their values via
LOCF;

SR5 AR processes with φ = 0.95 contaminated by replacing
15 %, 30 %, 45 %, 60 % and 75 % of their values via
LOCF;

SR6 AR processes with φ = 0.99 contaminated by replacing
15 %, 30 %, 45 %, 60 % and 75 % of their values via
LOCF.

Each of the six macro-scenarios was run 999 times to ob-
tain robust statistics. Three realizations of corrupted AR pro-
cesses are depicted in Fig. 2.

Bias affecting correlation estimates was quantified as the
difference in absolute percentage between the correlation
estimated on error-free (ρEF) and on contaminated (ρC)
data. Results for each scenario are shown in Fig. 3. When
low-resolution problems were simulated by rounding values
(SRi=1,2,3), the bias was less than 2 %. Similar results were re-
ported by VM97 and more recently by Foken et al. (2019).
Conversely, when low-resolution problems were simulated
by replacing values via LOCF, a significant bias was intro-
duced in correlation estimates, whose amount depends not
only on the number of contaminated data, but also on the de-
gree of serial dependence. As expected, with the percentage
of data affected by error being equal, the lower the degree
of serial correlation, the higher the amount of bias. In SR4 ,
when the AR processes were simulated with φ = 0.90, a bias
greater than 5 % was observed as soon as more than 30 % of
data were contaminated by error. Conversely, when φ = 0.99
as in SR6 , the bias was less than 5 %, even when 75 % of data
were contaminated by error. This is because when a series
has strong autocorrelation, the following values are expected
to be close to the current value, and therefore replacing them
with the current value does not change the time dynamic sig-
nificantly and as a consequence the correlation estimate re-
mains unbiased.

The ability of the LSR test to disentangle among these sit-
uations can be appreciated by looking at the distribution of
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Figure 2. Three realizations of AR processes of length 1000 with φ = 0.9 (a), φ = 0.95 (b) and φ = 0.99 (c), affected by low-resolution
problems simulated by discretizing the original variable (d–f) and by replacing 60 % of original data via the last-observation-carried-forward
(LOCF) technique (g–i).

the R2 values in the six scenarios as shown in Fig. 3 (mid-
dle panels). To aid in comparison we also added the results
of the amplitude resolution test by VM97 (right panels of
Fig. 3). Considering threshold values at 0.99 and 0.995 to
identify SevEr and ModEr statements, the LSR test showed
good performance with false-positive and false-negative rates
much lower than the amplitude resolution test. For the latter,
low-resolution problems were identified only for scenarios
SRi=1,2,3 and limited to cases when the number of digits is re-
duced to zero. The amount of bias in such cases was however
negligible. Conversely, the sensitivity of the LSR test was
such that the higher the bias affecting correlation estimates
the lower the R2 values, irrespective of the low-resolution
simulation method.

We applied both LSR and amplitude resolution testing pro-
cedures to the selected field datasets described in Sect. 2.5
(results are reported in Sect. S4). For LE and NEE, similar
amounts of data were flagged by the two tests. Conversely,
for the sensible heat flux the LSR test flagged much fewer
data than the amplitude resolution test. In particular, for five
sites the percentage of H data hard-flagged by the amplitude
resolution test exceeded 40 % with a maximum of 68.3 % at
SE-Htm. The hard flag was often assigned by the amplitude
resolution test to the sonic temperature time series during pe-
riods of low variability, which led to the typical step ladder
in the data. However, in most of these cases, that does not
necessarily imply biased covariance estimates.

To aid in comparison, some illustrative examples are
shown in Fig. 4. Panel (a) shows a sonic temperature time
series for which both tests provide negligible evidence of er-
ror. Notice that in this case, the R2 is close to unity although
19.8 % of data were constituted by repeated values. The case
shown in panel (b) is representative of contrasting results:

the amplitude resolution test assigned a hard flag, while the
LSR test returned a NoEr statement. By visual inspection,
it would seem that despite the step-ladder appearance in the
data, the time series dynamic is mostly preserved. In these
occurrences, bias affecting covariance estimates is typically
negligible, as demonstrated by the fact that the CCFs esti-
mated with original data and after removal of repeated values
overlap almost perfectly. The cases depicted in panels (c) and
(d) are representative of situations of strong resolution issues
leading to diverging CCFs and significant biases. The LSR
test successfully detects both problems, while the amplitude
resolution test fails to flag case (c).

3.1.2 Structural changes tests

The Monte Carlo experiment designed for the evaluation
of the performance of the proposed structural changes tests
described in Sect. 2.2.1 involved six scenarios, SSC

i=1,...,6,
where several synthetic AR processes (φ = 0.99) of length
n= 18 000 were contaminated by SSC

1 ).

SSC
1 a stochastic trend;

SSC
2 a deterministic linear trend;

SSC
3 an abrupt change in the mean level whose duration and

shift were fixed at 3000 time steps and 3 times the in-
terquartile distance (IQD) of the data, respectively;

SSC
4 multiplying a block of consecutive data of size 6000

(corresponding to 10 min in EC raw data sampled at
10 Hz) by a cosine function to mimic episodic burst
events as often observed in real data;

SSC
5 introducing 0.5 % of spiky data generated by adding

2×IQD to the original data;
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Figure 3. Bias effect of low-signal-resolution problems and test performance evaluation in the SR
i=1,...,6 scenarios (a–f, respectively) de-

scribed in Sect. 3.1.1. The left panels show the difference in percentage between correlation estimated on error-free time series (ρEF) and
on data contaminated (ρC) by low-resolution problems (dashed blue line indicates 5 % bias). The middle panels show the distribution of
the test statistic (R2) for the low-signal-resolution (LSR) test; dashed red lines indicate the threshold values at 0.99 and 0.995 adopted for
defining the SevEr and ModEr statements, respectively. The right panels show the distribution of the amplitude resolution test statistic by
VM97; dashed red lines indicate the threshold value at 70 % as recommended by the authors for assigning a hard flag to data. In the SR1 (a)
and SR4 (d) scenarios, the AR processes were simulated with φ = 0.90, in SR2 (b) and SR5 (e) with φ = 0.95, and in SR3 (c) and SR6 (f) with
φ = 0.99.

SSC
6 replacing 15 % of the data with the original values mul-

tiplied by 5, to simulate changes in variance.

Although these scenarios only cover a fraction of the prob-
lems encountered in real observations, the experiment aims
at evaluating the test sensitivity in the presence of aberrant
structural changes which, in most cases, can only be im-
putable to malfunction of the measurement system. Note that
scenarios SSC

i=1,2 do not aim at simulating time series affected
by structural changes. Rather, their purpose is to evaluate the
propensity of the tests to produce false-positive errors.

An illustrative example of the simulated AR process mim-
icking sonic temperature time series contaminated by struc-
tural changes according to the SSC

i=1,...,6 scenarios is shown in
Fig. 5. Each scenario was run 999 times. For each simulation,
the statistics of the HF5, HD5 and KID tests were calculated.
As a reference, we also applied the “discontinuity” and “kur-

tosis index” tests proposed by VM97 (while their “dropouts”
and “skewness” tests resulted in insensitivity to the simulated
scenarios and will therefore not be further discussed). Results
are summarized in Fig. 6.

We observe that all tests exhibited a low false-positive
error rate (compare scenarios SSC

1 and SSC
2 ). The only ex-

ception was the VM97 test based on the Haar transform to
detect discontinuities in the mean level (Fig. 6a), which in-
stead showed poor performance when time series were con-
taminated by a stochastic trend component. The sudden shift
in mean level simulated in the SSC

3 scenario was correctly
identified by the KID test in most simulations (Fig. 6f).
The Haar transform for detecting discontinuity in the mean
level identified the simulated structural changes, but only in
fewer than 50 % of cases in which the hard flag was assigned
(Fig. 6a). Good performances were observed in the SSC

4 sce-
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Figure 4. Comparison of low-signal-resolution (LSR) test and amplitude resolution test by VM97 on observed data collected at the SE-Nor
site. Sonic temperature time series collected in 30 min (left panels) and in a shorter temporal window of length equal to 1000 time steps
(middle panels). The right panels show the cross-correlation function (CCF) between w-scalar time series with original data (black line) and
after removal of repeated values (red line). The percentage of repeated consecutive values, the test statistics of the amplitude resolution and
LSR tests are reported on the right-hand side.

nario for both the Haar transform for detecting discontinu-
ity in mean (Fig. 6a) and the HF5 test (Fig. 6b). Structural
changes caused by heteroscedastic behaviour simulated in
the SSC

5 and SSC
6 scenarios were correctly detected by only

KID (Fig. 6f) and HD5 tests (Fig. 6d), respectively. The kur-
tosis index (estimated on de-trended time series) was almost
always lower than threshold values suggested by VM97 and
therefore never detected any of the structural changes simu-
lated in this Monte Carlo study (Fig. 6e).

The application of the testing procedures on actual EC
time series has shown a higher sensitivity of the VM97 tests,
compared to the newly proposed tests, with a tendency to
assign hard flags even in cases in which no evidence of in-
strumental error was supported by visual inspection. Con-
versely, the proposed tests were more selective at identifying
data affected by structural changes, although in some cases
such structural changes were not necessarily imputable to
instrument malfunction. In most of these occurrences, how-
ever, structural changes are indicative of non-stationary con-
ditions, which as we know are another source of system-
atic error that introduces bias in covariance estimates (see
Sect. 3.1.3). This is an example where two tests are not fully
independent and could identify the same issue, which is why
the ModEr statements are not combined. Illustrative exam-
ples of application of the testing procedures on raw data are
shown in Fig. 7.

3.1.3 Stationarity tests

We compared the performance of the stationary tests by
FW96 and by M98 via Monte Carlo simulation making use
of synthetic bivariate pairs of AR processes, xt as representa-
tive of vertical wind speed and yt as representative of scalar
atmospheric concentrations, with t = 1, . . . , n= 18 000, ac-
cording to the following scenarios:

SS1 φx,φy = 0.95 and ρ(x,y)= 0.05 simulating fluxes of
low magnitude;

SS2 φx,φy = 0.95 and ρ(x,y)= 0.25 simulating fluxes of
high magnitude;

SS3 φx,φy = 0.99 and ρ(x,y)= 0.05 simulating fluxes of
low magnitude, but in the presence of time series with a
high degree of serial correlation;

SS4 φx,φy = 0.99 and ρ(x,y)= 0.25 simulating fluxes of
high magnitude, but in the presence of time series with
a high degree of serial correlation;

SS5 as in SS3 , where both xt and yt were contaminated by
deterministic linear trend components;

SS6 as in SS4 , where both xt and yt were contaminated by
deterministic linear trend components;
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Figure 5. Illustrative example of an autoregressive (AR) process (a) contaminated by a stochastic trend (b, SSC
1 scenario), by a deterministic

linear trend (c, SSC
2 scenario) and by various structural changes (red lines) according to the SSC

i=3,...,6 scenarios described in Sect. 3.1.2 (d–g).

SS7 as in SS1 , where both xt and yt were contaminated by
stochastic trend components;

SS8 as in SS2 , where both xt and yt were contaminated by
stochastic trend components.

Notice that the SSi=1,...,4 scenarios simulate fluxes mea-
sured under stationary conditions (by definition, since
|φx,φy |< 1), while the remaining SSi=5,...,8 scenarios simu-
late fluxes measured under non-stationary conditions. Each
scenario was run 999 times.

To mimic trend dynamics of magnitude similar to those
observed in real cases, the slope of the deterministic linear
trend function f (t)= β · t , was fixed equal to 0.0004 and
0.004 for xt and yt , respectively. In the case of time series
of length n= 18 000, as in EC raw data sampled at 10 Hz
in an average period of 30 min, a slope coefficient equal to
0.0004 (0.004) increases the mean level of 7.2 (72) units of
the response variable, respectively (e.g. 7.2 m s−1 for vertical
wind speed, 72 µmol mol−1 for CO2 concentrations, 72 K for
sonic temperature).

Stochastic trend components were generated as
∑n
t=1εt ,

where ε is drawn from a normal distribution with a mean of
0 and standard deviation (s) equal to 0.025 and 0.25 for xt
and yt , respectively. Consequently, the sum of such variables
is normal with a mean of 0 and standard deviation σ =

√
n·s.

In the case of time series of length n= 18 000, as in EC raw
data sampled at 10 Hz in an average period of 30 min, s equal
to 0.025 (0.25) generates an ensemble of stochastic trajecto-
ries, responsible for non-stationary conditions, whose stan-
dard deviation at n= 18 000 is σ = 3.35(33.5) units of the
response variable (e.g. metres per second for vertical wind
speed, micromoles per mole for CO2 concentrations, kelvin
for sonic temperature).

Representative realizations of the simulated AR processes
and their CCFs estimated on either single run and averaged
over multiple runs (i.e. ensemble CCF) are illustrated in
Fig. 8.

Results of applying the FW96 and M98 stationarity tests
for each of the eight scenarios considered are shown in Fig. 9.
Test performances were evaluated through a statistical sensi-
tivity analysis given by the percentage of correctly identified
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Figure 6. Distribution of results for the structural change detection
tests in the SSC

i=1,...,6 scenarios described in Sect. 3.1.2. Horizontal
short and long dashed red lines indicate the threshold values adopted
for defining SevEr and ModEr statements (hard and soft flag for
VM97 tests), respectively.

cases. The threshold values used to assign ModEr and SevEr
statements were 30 % and 100 % for FW96 and 2 and 3 for
M98, respectively.

In the SS1 and SS2 scenarios, where simulated time series
are stationary and characterized by a lower degree of serial
correlation, both tests exhibited good performances (Fig. 9a–
d). The fraction of cases in which the statistics exceeded the
threshold values that would, wrongly, lead to the rejection of
data (i.e. 100 % for FW96 and 3 for M98) was less than 5 %,
with a slightly better score for M98. In SS3 and SS4 (Fig. 9e–h),
with stationary time series characterized by a higher degree
of serial correlation, the performance of the FW96 test ap-
peared discordant: unlike the excellent performance obtained
in SS4 , in SS3 the test statistic was higher than 30 % in 44 % of
cases and greater than 100 % in another 14 %. The cause of
this low performance is related to the sensitivity of the FW96
test to cases in which its denominator (i.e. covariance over
the entire period) approaches zero and thus tends to make the
ratio diverge, independent of the numerator. The M98 test
instead showed a lower sensitivity to low correlations among
variables but a greater sensitivity to the degree of serial cor-
relation. In both SS3 and SS4 , the percentage of data in which
the test statistic was greater than 2 was in fact higher than
15 %. At the same time, however, in only 1 % of cases did
the statistic exceed 3, the threshold value adopted to assign
a SevEr statement. This result indicates that the use of 3 in-

stead of 2 as a threshold value for the M98 test is preferable
since it reduces the false-positive error rate.

In both SS5 and SS6 (Fig. 9i–l), the M98 test showed an ex-
cellent ability to detect non-stationarity caused by the pres-
ence of deterministic linear trend components: the statistic
was higher than 3 in more than 95 % of cases. Conversely,
for the FW96 test a similar performance would require the
use of a 30 % threshold value. However, according to the
recommendations of Foken et al. (2004), when the value of
the statistics is between 30 % and 100 %, if well-developed
turbulence conditions are satisfied, the data would not be re-
jected but classified as data of intermediate quality. In the
presence of stochastic trend components as simulated in sce-
narios SS7 and SS8 (Fig. 9m–p), the M98 test performed better
than the FW96 test. However, the false-negative error rate
(i.e. data erroneously considered stationary) remained higher
than 20 % when using 3 as a threshold value. In particular,
only 72 % and 75 % in the SS7 and SS8 scenarios, respectively,
received the status of data affected by SevEr.

The performance considerations described above are con-
firmed when tests are applied to observed data. Some exam-
ples are shown in Fig. 10. Time series represented in pan-
els (a)–(c) refer to cases in which both tests provided strong
evidence of non-stationarity (SFW96 > 100 %, SM98 > 3). In
these cases, the difference between the average of 5 min co-
variances and those estimated over 30 min is indeed signifi-
cantly different from zero (right-hand panels). Panels (d)–(f)
represent three situations in which the M98 test provided ev-
idence of non-stationarity (SM98 > 3) while the FW96 test
returned high- or intermediate-quality assessments, as the
difference between the average of 5 min covariances and
those estimated over 30 min is negligible. However, in such
cases 5 min covariances are obviously affected by consider-
able variability and/or trends and only happen to provide a
mean value close to the 30 min covariance. Therefore, we
suggest that the FW96 test provides a necessary, but not
sufficient, condition for stationarity. Conversely, the M98
test also provides a satisfying performance in such cases.
Examples in panels (g)–(i) depict three situations in which
the FW96 test provided strong evidence of non-stationarity
(SFW96 > 100 %) while the M98 test provided, at most, weak
evidence (NoEr or ModEr). As mentioned earlier, such dis-
agreement often only occurred on account of the 30 min co-
variance being close to zero. As can be observed for these
selected cases, in fact, not only are the differences between
the average of 5 min covariances and those estimated on the
whole period of 30 min negligible, but the degree of disper-
sion of the individual 5 min covariances also remains at low
levels, as is expected in stationary conditions.

3.2 Application of the data cleaning procedure

In this section we report the results of the data cleaning pro-
cedure based on the workflow depicted in Fig. 1 and includ-
ing the application of QC tests described in Sect. 2. An il-
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Figure 7. Application of tests for structural change detection on a selection of CO2 time series (µmol mol−1, after mean removal) collected
at the BE-Lon site. The statistics of dropouts, skewness, kurtosis, discontinuities in mean (HaarM) and variance (HaarV) tests as described
by VM97 and the statistics of HF5, HD5 and KID tests described in Sect. 2.2.1 are reported at the top of each panel. For each test, green text
indicates NoEr (no flag by VM97 tests), orange text indicates ModEr (soft flag) and red text indicates SevEr (hard flag).

lustrative example for NEE time series collected at the FI-Sii
site during a period of 3 months is shown in Fig. 11 (for the
other flux variables and for all the other sites, we refer the
reader to the Sect. S4). The original time series had a rate of
missing data of 12.3 %. The data cleaning procedure elimi-
nated another 24.6 % of the data, for a total of 36.9 % result-
ing data gaps. In particular, 1.6 % of data were rejected after
the removal of unreliable data caused by system malfunction
and disturbances (Fig. 11b). A total of 3.6 % were removed
due to low-signal-resolution problems (Fig. 11c). A total of

5.4 % were eliminated due to evidence of aberrant structural
changes (Fig. 11d). The ITC test did not remove any data
(Fig. 11e). An additional 10.6 % of data were removed be-
cause of non-stationary conditions (M98 test, Fig. 11f), and,
finally, 1.6 % of fluxes were rejected because they were iden-
tified as both outlying and inheriting at least one ModEr
(Fig. 11g).

Figure 12 reports the percentages, averaged over the 10
sites under investigation, of H , LE and NEE flux data for
which the QC tests returned ModEr and SevEr statements.
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Figure 8. Illustrative examples of simulated AR processes, xt and yt , and their cross-correlation function (CCF) in each of the eight scenarios,
SS
i=1,...,8, described in Sect. 3.1.3 and designed to evaluate the performance of the stationarity tests. Grey areas represent the ensemble CCF

averaged over multiple simulation runs. Blue lines represent the CCF estimated in 10 individual simulation runs.

The highest percentage of data inheriting a SevEr statement
is caused by the lack of stationary conditions: irrespective
of the flux variable, the percentage was around 20 %, with
a maximum of 36.9 % for LE fluxes at the CH-Dav site
and a minimum of 10.2 % for H fluxes at the SE-Htm site
(see Sect. S4). With respect to the non-stationary test by
M98, a further 25 % of fluxes inherited a ModEr statement.
The percentage of data where the ITC test returned SevEr
(ITC> 100 %) was only 0.1 %, while about 6 % received the
status of ModEr.

Severe low-signal-resolution issues were identified only
sporadically (in no more than 2.4 % of flux values), while
a ModEr statement for the HDB test was inherited by 18 %
of H values, due also to a moderate heteroscedasticity often
observed in differenced sonic temperature time series. For
all three flux variables, the percentage of outlying data was
around 1.5 %. Approximately half of them received at least
a ModEr statement from one of the QC tests and were there-
fore removed.

Figure 13 shows the STL decomposition of NEE time se-
ries at the FI-Sii site using the set of parameters described
in Sect. 2.3.1. The ability of the modelling approach to sepa-
rate the signal from the noise was assessed by evaluating the
spectral characteristics of the irregular component by means
of the Lomb–Scargle (LS) periodogram. In general, the pe-
riodogram did not show significant peaks, as exemplified for
NEE in Fig. 13g and shown at length for all flux variables in
Sect. S4. Despite the ability of the STL algorithm to reliably

reproduce the complex correlation structure present in EC
flux data, the irregular component was often heteroscedas-
tic. This means that even if independent (since most of the
serial correlation structure is removed), the irregular compo-
nent is not identically distributed, i.e. its PDF changes over
time. Such a property strongly limits the ability to use global
threshold values above and below which data are identified
as outliers.

Previous research (e.g. Richardson et al., 2012; Vitale
et al., 2019a) has highlighted that the random error scales
with the flux magnitude and that a Laplace distribution can
better approximate the PDF of the random error. With this in
mind, we grouped the values of the irregular component into
10 clusters of equal size, defined by percentiles of the signal
estimated by the STL. This way, each cluster should con-
tain values of the irregular component that are more likely to
be identically distributed. Assuming a Laplace distribution
and the (1−α)% confidence interval at the α = 0.01 sig-
nificance level, any values exceeding ±4.6 · σ were detected
as outliers (where σ was estimated using the Qn estimator
of Rousseeuw and Croux, 1993). An illustrative example of
this procedure is depicted in Fig. 14, where for simplicity the
detail of only three clusters is reported.

4 Conclusions

Quality control of eddy covariance flux datasets is challeng-
ing. The sources of systematic error responsible for introduc-
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Figure 9. Performance evaluation of the stationarity tests by Foken and Wichura (1996, FW96) and by Mahrt (1998, M98) in each of the
simulated SS

i=1,...,8 scenarios described in Sect. 3.1.3. Left and right panels show the distribution of the FW96 and M98 test statistics,
respectively, in 999 simulation runs; percentage values are reported at the top of panels (a)–(p); yellow and blue vertical lines indicate
threshold values (30 % and 100 % for FW96, 2 and 3 for M98; see Sect. 2.2.3 for more details). The middle panels show the distribution of
the test statistic as a function of the correlation between variables in the first 100 simulation runs; yellow and blue points indicate simulations
when the test statistic exceeds the corresponding threshold values; the horizontal dashed line indicates the pre-fixed true correlation, ρ, used
in simulations.

ing significant biases in the flux computation are manifold,
and their correct identification is often made difficult by the
masking effect induced by both the intrinsic stochastic prop-
erties (e.g. high degree of serial dependence, heteroscedas-
ticity) and by the high level of noise characterizing raw data.

To take into account these features, new tests have been
developed and included in a robust data cleaning procedure
where the data rejection is articulated in two stages: the first
stage involves the removal of any flux data for which at least
one of the QC tests returned strong evidence of a specific
source of systematic error (SevEr); the second stage consists
of the removal of outlying fluxes, provided that at least one
of the QC tests returned weak evidence of systematic error
(ModEr) for the same flux value. Any flux data where all QC
tests provided only negligible evidence of systematic error

(NoEr) are never removed, even if they are later identified as
outliers in the flux time series.

Although there is a strict relationship between the value
of test statistics and the amount of bias affecting individual
flux data, the interpretation of SevEr, ModEr and NoEr state-
ments is performed in probabilistic terms, as the chances of
a systematic error responsible for introducing bias in flux es-
timation. Consequently, the choice of threshold values used
to assign the SevEr, ModEr and NoEr statements is to be in-
terpreted as indicative of the margin of error associated with
the result of a statistical test.

Compared to the existing classification schemes, the pro-
posed approach does not aim at assigning a quality flag to
flux data by combining the results of different QC tests.
Rather, it aims at ensuring its scalability in order to facili-
tate the inclusion of new tests beyond those proposed in this
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Figure 10. Application of stationary tests to a selection of EC raw data collected at the FI-Hyy site. From left to right: vertical wind speed
(w, m s−1); CO2 time series (µmol mol−1, after mean removal); cross-covariance function (CCF); comparison of 5 min covariances (black
points), their average (cyan lines) and 30 min covariance (blue lines). FW96 and M98 test statistics are reported on the right-hand side.

paper. As for assigning a quality level to the retained data,
we maintain that, given an unbiased flux estimate, a robust
quantification of the random uncertainty would be the appro-
priate metric. Indeed, as a general principle, the larger the
random uncertainty, the larger the amount of measurement
error and, consequently, the lower the quality of the data. As-
suming that flux data affected by systematic error have been
avoided or removed via appropriate QA–QC procedures, the
use of random uncertainty estimates as a quality indicator
(1) would not constrain the QC test development, (2) would
not preclude a classification of the data quality, if needed,
and (3) would meet the requirements of advanced methods
of analyses where interval estimates are more important than
individual point estimates, such as in studies based on data
assimilation techniques.

To this end, (global) uncertainty estimation procedures
representative of the contribution of all possible sources of
random error are required. They should include not only the

contribution of random error caused by temporal and spa-
tial sampling, but also those due to post-field data processing
(e.g. the uncertainty related to the estimates of the spectral
correction factors or those linked to the imputation model
used to replace missing data). For such analyses, however,
an essential prerequisite to achieve consistent results is the
availability of unbiased, cleaned datasets. In this perspective,
therefore, the data cleaning procedure proposed in this work
constitutes an essential step in reducing the uncertainty of
the results of subsequent analyses. Among these, also those
aiming at providing a posteriori information about the pres-
ence of undetected/unknown sources of systematic error (e.g.
those based on the evaluation of energy balance closure) can
also benefit from less biased data.

In this study, the performance evaluation of each proposed
test was carried out mainly by means of Monte Carlo sim-
ulations because they allow full control of (1) the time se-
ries dynamics (since the simulated autoregressive processes
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Figure 11. Illustrative example of the sequential data cleaning procedure applied to NEE fluxes at the FI-Sii site.

Figure 12. Percentages of H , LE and NEE flux data affected by
specific sources of systematic error according to several QC tests.
Each cell of the matrix indicates the percentage of data receiving
the status indicated in the ith row and the j th column; those on the
diagonal refer to the percentage of data identified by each individual
test. Empty cells indicate no data identified. Values are averaged
across the 10 EC sites under investigation.

are stationary with a pre-fixed, reference correlation), (2) the
presence of a specific source of systematic error and (3) the
uncertainty due to the random error component. As a con-
sequence, a proper evaluation of the bias effect caused by
systematic errors and a more objective performance evalua-
tion of the tests involved for their detection become feasible.
Such evaluations are difficult to achieve with real, EC field
data because the reference “true” value is unknown; there-
fore it is not possible to properly quantify the bias effect, and
replicates are not available, making it difficult to evaluate the
uncertainty associated with the estimates (either covariances
and test statistics) due to the random error component. Devel-
oping a stochastic simulation model so complex as to include
all the sources of error, both systematic and random, that are
present in real-word EC time series data is a difficult task
and is a target of ongoing work. Anyway, although the model
generating the simulated data has a simple dynamic that can
reproduce, at least in part, the behaviour of real EC data, if
a QC test exhibits high false-positive and/or false-negative
rates in such simple scenarios, it is most unlikely it will work
properly with real data. In this case, the test would likely be
methodologically robust but unusable in practice, affected by
overinflated false-positive and false-negative errors.

Although there is still room for improvement, particularly
in the development of more well-performing QC tests aiming
at detecting violations of the main assumptions underlying
the EC technique, we believe that the proposed data cleaning
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Figure 13. Example of STL decomposition applied to NEE time series collected at the FI-Sii site. Panel (a) shows the original NEE flux
data; (b) shows NEE after log10 transformation (c is a constant added to ensure the argument of log is positive); (c)–(f) show the diurnal
cycle (D), the long-run trend (LRT), the short-run trend (SRT) and the irregular component of the STL algorithm (see Sect. 2.3.1 for more
details). Notice that the irregular component is depicted after inverse log transformation. Panel (g) shows the Lomb–Scargle power spectral
density estimate applied to the irregular component of STL decomposition. Dashed line indicates the 0.01 significance level.

Figure 14. Illustrative example of the outlier detection procedure applied to NEE fluxes at the FI-Sii site. NEE time series for the whole
period (black lines) and selected flux values according to three deciles of the extracted signal (coloured points) are shown in (a)–(c). The
corresponding values of the Irregular component are shown in (d)–(f), while their probability density functions are depicted in (g)–(i). Dashed
red lines indicate the α-outlier regions (α = 0.01) assuming a Laplace distribution. Red points indicate the detected outliers.
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procedure can serve as a basis toward a unified QC strategy
suitable for the centralized data processing pipelines, where
the use of completely data-driven procedures that guarantee
objectivity and reproducibility of the results constitutes an
essential prerequisite.

Code and data availability. RFlux software package (Vitale et al.,
2019b) version 1.0.2 is available at https://github.com/icos-etc/
RFlux (last access: 12 March 2020).

Access to benchmark data described in Sect. 2.5 is available from
the Integrated Carbon Observation System (ICOS) Carbon Portal at
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