
Biogeosciences, 17, 1673–1683, 2020
https://doi.org/10.5194/bg-17-1673-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.

An analysis of forest biomass sampling strategies across scales
Jessica Hetzer1, Andreas Huth1,2,3, Thorsten Wiegand1,3, Hans Jürgen Dobner4, and Rico Fischer1

1Department of Ecological Modelling, Helmholtz Centre for Environmental Research – UFZ, 04318 Leipzig, Germany
2Institute of Environmental Systems Research, University of Osnabrück, 49076 Osnabrück, Germany
3German Centre for Integrative Biodiversity Research (iDiv), Halle-Jena-Leipzig, 04103 Leipzig, Germany
4HTWK Leipzig – University of Applied Sciences, 04277 Leipzig, Germany

Correspondence: Jessica Hetzer (jessica.hetzer@ufz.de)

Received: 9 July 2019 – Discussion started: 21 August 2019
Revised: 13 February 2020 – Accepted: 18 February 2020 – Published: 30 March 2020

Abstract. Tropical forests play an important role in the
global carbon cycle as they store a large amount of carbon
in their biomass. To estimate the mean biomass of a forested
landscape, sample plots are often used, assuming that the
biomass of these plots represents the biomass of the sur-
rounding forest.

In this study, we investigated the conditions under which
a limited number of sample plots conform to this assumption.
Therefore, the minimum number of sample sizes for predict-
ing the mean biomass of tropical forest landscapes was de-
termined by combining statistical methods with simulations
of sampling strategies. We examined forest biomass maps
of Barro Colorado Island (50 ha), Panama (50 000 km2),
and South America, Africa, and Southeast Asia (3× 106–
11× 106 km2).

The results showed that around 100 plots (1–25 ha each)
are necessary for continent-wide biomass estimations if the
sampled plots are randomly distributed. However, locations
of current inventory plots often do not meet this requirement,
for example, as their sampling design is based on spatial tran-
sects among climatic gradients. We show that these nonran-
dom locations lead to a much higher sampling intensity being
required (up to 54 000 plots for accurate biomass estimates
for South America). The number of sample plots needed can
be reduced using large distances (5 km) between the plots
within transects.

We also applied novel point pattern reconstruction meth-
ods to account for aggregation of inventory plots in known
forest plot networks. The results implied that current plot net-
works can have clustered structures that reduce the accuracy
of large-scale estimates of forest biomass if no further statis-
tical approach is applied. To establish more reliable biomass

predictions across South American tropical forests, we rec-
ommend more spatially randomly distributed inventory plots
(minimum: 100 plots) and ensuring that the analyses of in-
ventory plot data consider their spatial characteristics. The
precision of forest attribute estimates depends on the sam-
pling intensity and strategy.

1 Introduction

For a better understanding of the global carbon cycle, re-
liable estimations of aboveground biomass (AGB) in veg-
etation have become increasingly important (Broich et al.,
2009; Malhi et al., 2006; Marvin et al., 2014), especially for
tropical forests, as they store more carbon in biomass than
any other terrestrial ecosystem (Pan et al., 2011). Current
biomass mapping approaches are based on forest field in-
ventory plots (e.g., Chave et al., 2003; Lewis et al., 2004;
Malhi et al., 2006; Mitchard et al., 2014) or remote sens-
ing measurements (e.g., Asner et al., 2013; Avitabile et al.,
2016; Baccini et al., 2012; Saatchi et al., 2015) and involve
statistical approaches (e.g., Malhi et al., 2006) or vegetation
modeling (e.g., Rödig et al., 2017). Remote-sensing-derived
maps have a typical spatial resolution of 100–1000 m and
capture the biomass of large landscapes or even entire conti-
nents (Asner et al., 2013; Avitabile et al., 2016; Baccini et al.,
2012; Saatchi et al., 2011). In contrast, biomass maps based
on field inventories have a higher resolution so that the local
distribution in biomass can be described in detail.

However, the biomass estimation of large forest land-
scapes by field inventory plots (typically between 0.25 and
1 ha) poses several challenges in the tropics. Firstly, field in-
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ventory campaigns of species-rich, densely grown tropical
forests are costly and labor intensive, resulting in a much
smaller number of available plots than in temperate and bo-
real regions (Schimel et al., 2015). Currently, tropical forests
are sampled with less than one plot per 1000 km2: a den-
sity that is up to 15 times less than those that can be found
in the temperate zone (Schimel et al., 2015). For instance,
the US national forest inventory includes more than 125 000
forest plots (Smith, 2002). This corresponds to 40 plots per
1000 km2. In contrast, investigations of the South American
Amazonian forest are often based on fewer than 500 forest
plots (0.05 plots per 1000 km2) (Lopez-Gonzalez et al., 2014;
Mitchard et al., 2014) including a highly debated sampling
error (Marvin et al., 2014; Mitchard et al., 2014; Saatchi
et al., 2015).

Secondly, establishments of forest plots are often lim-
ited mainly due to topographic, logistic, or political reasons
(Houghton et al., 2009; Mitchard et al., 2014). Even if plots
are representative for the landscapes (Anderson et al., 2009),
extrapolations from clustered plot networks to larger scales
can be biased (Fisher et al., 2008). Consequently, biomass
estimations can include large uncertainties; for example, es-
timates of the total biomass of the Amazon (93± 23 PgC,
based on 227 forest plots) include uncertainties of more than
25 % (Malhi et al., 2006).

A first step to ensure reliable extrapolations of forest
biomass from field plots to large scales is to determine how
many plots would be necessary to accurately estimate mean
biomass on a regional scale. Previous studies have suggested
that, for regions of about 1000 ha, 10–100 sampled 1 ha plots
would be necessary (Marvin et al., 2014). However, most in-
vestigations assume that plots or biomass is distributed ran-
domly in space (Chave et al., 2004; Fisher et al., 2008; Keller
et al., 2015; Marvin et al., 2014) and therefore do not con-
sider a possible bias due to the choice of sampling strategy.
The selected sampling design can significantly influence un-
certainty and, consequently, the number of sample plots re-
quired (Clark and Kellner, 2012). A deeper understanding
of how the choice of sampling design affects the number of
plots required and the influence of the size of the plots is still
lacking.

In this study, we present a novel simulation approach for
determining the number of plots necessary across scales, an-
swering the following questions: (i) how many sample plots
are necessary for forest biomass estimations in South Amer-
ica, and what is the role of the sampling strategy? (ii) What
is the influence of scale on the sampling design?

More specifically, we analyze different sampling strate-
gies for biomass in tropical forests at different scales: 50 ha
(Barro Colorado Island, BCI), 50 000 km2 (Panama; Asner
et al., 2013), and 11× 106 km2 (South America; Baccini
et al., 2012). Following the scenario of a “virtual ecologist”
(Zurell et al., 2010), we investigate through Monte Carlo sim-
ulations and analytical investigations the plot size and sample
size that are necessary for accurate biomass estimations. Fur-

thermore, we simulate nonrandom sampling strategies that
imitate measurements of transects and real-world forest in-
ventories.

2 Methods

2.1 Biomass maps at different scales

We focus on three forest biomass datasets for the South
American tropical region covering different scales (Fig. 1).
For an analysis at the local scale, a biomass map of the Barro
Colorado Island forest in Panama was applied (50 ha) with
resolutions between 10 and 100 m. The map was based on the
forest inventory of 2010 (Condit et al., 2012), which included
measurements of all trees with a stem diameter greater than
1 cm (Condit, 1998). The AGB per plot was determined us-
ing allometric relationships (see Supplements of Knapp et al.,
2018, for details).

Regional-scale analysis was carried out using a carbon
density map of Panama that was derived from airborne light
detection and ranging (lidar) measurements from 2012, in
combination with field measurements and satellite measure-
ments (Asner et al., 2013). The AGB values for this study
were calculated by multiplying the carbon values by a factor
of 2. We aggregated the AGB map from a 100 m resolution
to resolutions of 200, 300, 400, and 500 m. When aggregated
pixels covered a mixture of forest and non-forest areas, we
assumed the non-forest areas to have a biomass of zero.

At the continental scale, we utilized a biomass map cover-
ing South America, Africa, and Southeast Asia with a spatial
resolution of 500 m (Baccini et al., 2012). Biomass values
of this map give information on the aboveground vegetative
biomass in the time period from 2008 to 2010 and were de-
rived using a combination of MODIS data, lidar measure-
ments, and field data. For our analysis, we combined this
biomass map with a biome map (Dinerstein et al., 2017)
and excluded all areas that covered grasslands, savannas, and
shrublands as well as areas with an aboveground biomass
of less than 25 tha−1. To that end, remaining areas were as-
signed to one of the following four tropical and subtropical
forest biomes: (a) dry broadleaf forests, (b) moist broadleaf
forests, (c) coniferous forests, and (d) mangroves.

Based on the continental forest biomass map of South
America at 500 m resolution, we constructed an additional
biomass map of South America with a 100 m resolution us-
ing two different downscaling approaches (for details, see
Sect. S3 in the Supplement). The downscaling relationships
were derived from the Panama map by upscaling this map
from 100 to 500 m resolution.

2.2 Simulated sampling strategies

We investigated three different sampling strategies – (a) ran-
dom sampling, (b) transect sampling, and (c) clustered sam-
pling (Fig. 2) – with different sample sizes. For example, for
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Figure 1. Forest aboveground biomass (AGB) maps used for the study. (a) Biomass map of a forest plot on Barro Colorado Island (50 ha,
50 m resolution). (b) Biomass map for Panama (∼ 50 000 km2, 100 m resolution). (c) Biomass map for South America (∼ 11× 106 km2,
500 m resolution). For this study, we excluded all areas covering grasslands, savannas, and shrublands.

analysis of the BCI forest, we divided the 50 ha biomass map
into 200 square plots with a size of 50 m× 50 m (note that
results could slightly differ for circular plots) (Lindsey et al.,
1958). Then, we ran simulations with sample sets containing
one sample (0.25 ha), two samples (0.50 ha), and so forth un-
til we reached a sample size of 100 samples (25 ha, half of the
study area). For large-scale investigations, we analyzed sam-
ple sizes of up to 5000 plots for Panama and 200 000 plots
for South America.

2.2.1 Random sampling

Analysis of random sampling was performed using Monte
Carlo simulations. For every map, we selected sampling plots
at randomly selected positions (without replications) until the
sample set reached the desired sample size. Random sam-
pling is the only strategy where we can assume that the spa-
tial autocorrelation of the map does not influence analytical
analysis using the central limit theorem (Sect. S1).

2.2.2 Transect sampling

Transect sampling mimics sampling strategies used when-
ever plots should cover different gradients (e.g., climate or
soil gradients). In this case, field inventory plots are estab-
lished in a straight line. In our simulation approach, we as-
sume for simplification north–south transects that start at
a randomly selected position of the map. Within one transect,
the plots have regular distances of 0.5, 1, or 5 km. Whenever
the transect reaches the southern end of the map, a new ran-
domly selected north–south transect is chosen starting at the
northern border.

The analysis of Panama was conducted by selecting plots
of 1 ha (map with 100 m resolution). For South America, we
selected plots of 25 ha (map with 500 m resolution). To ex-
plore if the north–south climatic gradient influences the re-
sults, we also tested west–east instead of north–south tracks.

However, the sampling performance remained similar (i.e.,
the probability of estimating the mean biomass accurately did
not change considerably compared to north–south tracks).

2.2.3 Clustered sampling

The clustered sampling approach mimics the spatial clus-
tering of real-world field inventory networks. To this end,
we reconstructed the spatial pattern of the plot networks
of four studies that estimated forest biomass – including
Houghton et al. (2001), PP1; Poorter et al. (2015), PP2;
Malhi et al. (2006), PP3; and Mitchard et al. (2014), PP4 –
and analyzed them separately regarding the South American
map with a resolution of 500 m (25 ha plot size). After re-
moval of duplicate locations within the 500 m grid as well as
plots that are located in grasslands, savannas, or shrublands
(according to Dinerstein et al., 2017), the number of plots per
network ranged between 23 and 167. To generate 1000 plot
networks with spatial configurations similar to the original
ones, we applied the method of pattern reconstruction (Wie-
gand et al., 2013; software “Pattern-Reconstruction”). This
annealing method produces stochastic reconstructions of an
observed point pattern that show the same spatial character-
istics as the observed pattern, as quantified by several point
pattern summary functions (for details see Sect. S2).

2.3 Determining the minimum sample size

For each map and each sample size, n, we calculated the
sampling probability, Pn, which quantifies how often the
mean of a sample equals the mean of the underlying “true”
biomass distribution (under a given accuracy) as the relative
frequency out of 1000 sample sets. For each sample set, the
mean biomass (Xi,n in tha−1) was estimated, where i is the
sample set number, and n is the sample size. Xi,n was then
compared with the “true” mean biomass, µ [t ha−1], of the
underlying biomass map. A sample set was assumed to be
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Figure 2. Examples of different simulated sampling strategies for South America (colors indicate the tropical biome). Each black dot
represents the location of one selected plot (25 ha). (a) Randomly distributed plots. (b) Transect samples (shown are strips with distances of
100 km between the plots). (c) Clustered samples (reconstructions of PP4).

accurate if Xi,n was within µ± 10 %. The sampling perfor-
mance can be assessed as follows:

Pn ∼=
1

1000

1000∑
i=1

wi, with wi =

 1, if
∣∣ ¯Xi,n−µ∣∣

µ
≤ 0.1

0, if
∣∣ ¯Xi,n−µ∣∣

µ
> 0.1

. (1)

Pn typically increases with the sample size from 0 (no sam-
ple could represent the mean biomass) to 1 (all samples could
represent the biomass). We defined nmin as the minimum
sample size, n, at which Pn reaches 90 %. The minimum
sampling area, amin, is calculated by multiplying the number
of plots, nmin, by the plot size.

3 Results

3.1 Random sampling

3.1.1 Local scale (Barro Colorado Island)

The analysis of the 50 ha biomass map (BCI) shows the ex-
pected result that samples with larger plot sizes produce more
accurate biomass estimates (Fig. 3a). For instance, a ran-
domly chosen 0.01 ha plot has a probability (Pn) of 5 % of
representing the mean biomass of the whole BCI forest, but
if the plot has an area of 1 ha, Pn reaches 40 %. The size
of the plots also affects the minimum number of plots re-
quired (nmin) for reliable biomass estimates (biomass esti-
mates that have at least a 90 % chance of meeting the mean
biomass of the original biomass map). For small plots (plot
size ≤ 0.04 ha), nmin increases markedly (Fig. 3b). While
only 11 one-hectare plots are needed to estimate the biomass,
the number of plots increases to 176 if the plot size is 0.04 ha
(20× 20 m). However, the minimum total area of the sam-
ples (amin) remains similar (Table 1, BCI); i.e., it makes no
difference in sample performance whether the samples are
taken from 29 plots of 0.25 ha each or 746 plots of 0.01 ha
each, as an area of about 7 ha is sampled in both scenarios.
Therefore, the most efficient sampling strategy for the 50 ha
scale would involve 0.25 ha plots, as greater plot sizes would

result in a greater total sampling area (amin), and smaller plot
sizes would simply increase the number of plots.

3.1.2 Regional scale (Panama)

Analyzing the biomass map of Panama (50 000 km2) by us-
ing plot sizes between 1 and 25 ha (Table 1, Panama), we
found that the minimum sample size ranges between 70 and
74 plots. In contrast to the BCI analysis, plot size has no re-
markable influence on the minimum sample size. However,
the total sampling area (amin) increases from 70 to 1850 ha
for different plot sizes. The most efficient sampling strategy
at this scale is therefore to sample 70 plots of 1 ha each.

3.1.3 Continental scale (South America)

We found that the needed sampling number does not de-
pend on the total forest area of biomes when samples are
chosen randomly (Fig. 4). Mangrove forests (90 000 km2, re-
quiring a sample of 100 plots) are the least abundant biome
in South America but require a similar number of samples
to dry broadleaf forest (2× 106 km2, requiring a sample of
104 plots). Furthermore, the minimum sample size does not
increase compared to the Panama analysis (Table 1); for ex-
ample, plot number estimations for South America moist
broadleaf forest (46 plots at 500 m resolution) are even 35 %
less than for the Panama forest (74 plots at 500 m resolution,
mainly consisting of moist broadleaf forest).

For the whole of the South American tropical forest
(11× 106 km2), 74 plots of 25 ha are necessary to estimate
the mean biomass with sufficient accuracy (Table 1, South
America (500 m); for Africa and Southeast Asia, see Ta-
ble S1 in the Supplement). This corresponds to a total sam-
pling area (amin) of about 18.5 km2.

Using the downscaling approach D1 (see Sect. S3 for de-
tails), we found that about 70 one-hectare plots would be
necessary to estimate the mean biomass of the South Amer-
ican tropical forest (Table 1, South America (100 m)). If we
assume a much higher variation of biomass values than ob-
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Figure 3. Analysis of different random sampling strategies for the Barro Colorado Island forest (BCI, 50 ha). (a) Analytical results showing
the number of plots and probability (Pn) that the mean biomass of those plots reflects the mean biomass of the forest (for details, see
Methods). We consider strategies using 0.01–1 ha plots (plot size, represented by line colors). The upper boundary (grey) marks sample sizes
with at least a 90 % chance of meeting the mean biomass of the original biomass map. (b) Necessary number of plots, nmin, to estimate
the biomass reliably (minimum sample size from samples with Pn ≥ 90 %). Shapes above the bars represent the necessary sampling area,
amin = Aplot× nmin.

Table 1. Analyzed forest biomass maps and the corresponding minimum sample size. The forest biomass maps for South America
(11 000 000 km2; Baccini et al., 2012; Dinerstein et al., 2017), Panama (50 000 km2; Asner et al., 2013), and Barro Colorado Island (50 ha;
Condit et al., 2012) and their random sampling performance are shown. Different resolutions of the maps led to different results. The min-
imum sample size refers to the necessary number of plots to accurately estimate the observed mean biomass of the forest (the mean of the
samples does not deviate more than 10 % from the observed mean biomass with a probability of at least 90 %). The last column shows the
necessary sampling area, amin = Aplot× nmin.

Map (resolution) Plot size Coefficient of Minimum sample Minimum total area
Aplot [ha] variation CV [%] size nmin [plots] of samples amin [ha]

South America (500 m) 25 51.98 74 1850
South America (100 m) 1 50.63 70 70
Panama (500 m) 25 52.22 74 1850
Panama (400 m) 16 51.97 74 1184
Panama (300 m) 9 51.68 73 657
Panama (200 m) 4 51.27 72 288
Panama (100 m) 1 50.77 70 70
BCI (100 m) 1 19.32 11 11
BCI (50 m) 0.25 32.57 29 7.25
BCI (20 m) 0.04 80.55 176 7.04
BCI (10 m) 0.01 165.95 746 7.46

served on the map (downscaling approach D2; see Sect. S3),
this number can rise to 121 one-hectare plots.

3.2 Transect sampling

The performance of nonrandom strategies was related to
the spatial characteristics of maps (Sect. S4, Fig. S3 in the
Supplement). When the spatial clustering of the BCI forest
biomass map is analyzed at the scale of 50 m, the obtained
spatial biomass distribution is comparable to a random con-
figuration; thus, the design of the sampling strategy has no
influence on the results for this local forest area. For Panama
and South America, the biomass is distributed in such a way
that similar biomass values are more likely to be close to

each other, which leads to biased estimation of the mean
biomass if the samples are close to each other (e.g., tran-
sects with distances of 0.5 km between the plots). This results
in differences between random sampling and transect sam-
pling (Fig. 5a): compared to random sampling, transect sam-
ples show a lower probability (Pn) of estimating the mean
biomass of the forest accurately independent of the sample
size. For Panama, random samples based on 100 one-hectare
plots exhibit a Pn = 95 %, while transect samples are less
than 60 % reliable (Fig. 5a).

The results show that, if the distances between the plots in-
crease from 0.5 to 5 km, about 80 % fewer plots are necessary
for accurate estimations. Larger distances between measure-
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Figure 4. Results of random sampling for different biomes of South America. (a) Analytical results showing the number of plots and
probability (Pn) that the mean biomass of those plots reflects the mean biomass of the forest biome (for details, see Methods). The upper
boundary (grey) marks sample sizes with at least a 90 % chance of meeting the mean biomass of the original biomass map. (b) Necessary
number of 25 ha plots, nmin, to estimate the biomass for South America forest biomes reliably (minimum sample size from samples with
Pn ≥ 90 %; displayed above the bars).

ments within one transect make the strategy “more random”,
and it therefore performs better. When distances of 5 km are
used, Panama requires a total sampling area of 550 ha (in-
stead of 70 ha with random sampling) to estimate the biomass
of the 50 000 km2 forest with sufficient precision (Fig. 5b).
In summary, even with large distances between plots, tran-
sect sampling leads to higher sampling efforts than random
sampling.

For South America (11× 106 km2), transect sampling
based on 100 plots (25 ha plot size) shows a probability, Pn,
of less than 40 % (Fig. S4). Using distances of 5 km, the min-
imum sampling size increases by a factor of 140 compared
to random sampling (Fig. S4), leading to a total sample area
of about 2500 km2.

Stratification into forest biomes does not lead to a marked
reduction of the overall number of needed sample plots, since
the sum of the plots needed for all single biomes (in total
32 200; Fig. 5d) is similar to plots needed for an overall for-
est sampling (36 000 plots; Fig. S5). However in contrast to
the random sampling, the area size of each biome affects the
sampling effort. Here, the large broadleaf biomes need about
10 times more transect samples than coniferous or mangrove
forests.

3.3 Clustered sampling

Samples based on forest inventory plots are often influenced
by accessibility, which leads to nonrandom locations of the
sample plots that are simulated under the clustered sam-
pling approach. Here, we examine the biomass map of South
America with reconstructed point patterns PP1–PP4 based on
the locations of existing inventories in South America (23–
167 plots; see Methods). The results show that the probabil-
ity (Pn) of estimating forest biomass accurately is consider-
ably lower compared to the probability associated with ran-

dom samples (Fig. 6). All samples present less than a 45 %
chance of reflecting the real mean biomass for South Amer-
ica. For clustered sampling, a greater number of samples per
se does not lead to better biomass estimations. The positions
of the plots therefore play a crucial role. Although PP4 com-
bines many plots of PP1 and PP3, the stochastic sampling
scheme based on the spatial aggregation of plots cannot cap-
ture the biomass distribution substantially better than those
based on the single datasets alone. In summary, the simula-
tion results demonstrate that nonrandom strategies such as
transect sampling and clustered sampling differ considerably
from random sampling, leading to increased sampling efforts
and noticeably greater sampling uncertainties.

4 Discussion

Due to the large area of tropical forest, only a few parts of the
forest can be investigated in detail. Therefore, effective sam-
pling strategies for these forests are relevant (Broich et al.,
2009; Chave et al., 2004; Malhi et al., 2006; Marvin et al.,
2014). The question of how many forest plots are necessary
to predict forest biomass has not yet been fully answered.
Thus far, sampling quality has often been determined on the
basis of the assumption that samples are spatially randomly
distributed (Chave et al., 2004; Fisher et al., 2008; Keller
et al., 2015; Marvin et al., 2014). However, sampling at large
scales in the tropics often does not fulfill this condition be-
cause, in many cases, random locations are difficult to access
(Wang et al., 2012). In this study, we compared different sam-
pling strategies for tropical forests across various scales and
plot sizes, examining the probability of obtaining the cor-
rect biomass estimate and the associated minimum sample
size. Therefore, we analyzed random samples and compared
them to simulated samples that are spatially clustered. Please
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Figure 5. Results of transect sampling for (a–b) Panama and (c–d) forest biomes in South America. (a, c) Simulation results showing the
number of plots and probability (Pn) that the mean biomass of those plots reflects the mean biomass of the forest (for details, see Methods).
(a) We focus on three strategies using distances of 500 m, 1 km, and 5 km between plots (shown in blue) and compare them to random
sampling (red). (b) Results for different biomes of the American tropical forest using a distance of 1 km. The area around each line indicates
the 95 % confidence intervals of 100 repetitions (total of 1000× 100 runs for each sample size). The upper boundary (grey) marks sample
sizes with at least a 90 % chance of meeting the mean biomass of the original biomass map. (b, d) Necessary number (nmin) of 1 ha plots for
Panama and of 25 ha plots for biomes of South America (error bars show the 95 % confidence intervals of 100 repetitions).

note that in this study we did not consider additional error
sources, for instance those due to tree size measurements or
allometric models, even though they are also known to influ-
ence biomass estimates (Chave et al., 2004).

4.1 Random sampling

Focusing on forests in South America, we showed that,
independent from forest area, fewer than 100 randomly
distributed 1 ha plots are necessary to estimate the mean
biomass with sufficient precision. This result is in line with
a study by Marvin et al. (2014) predicting minimum sam-
ple sizes between 10 and 100 plots for forest regions in Peru
(1–10 km2).

By testing plot sizes between 0.01 and 1 ha, we demon-
strated that inventory plots should not be smaller than 0.25 ha
because smaller plots tend to be considerably more hetero-
geneous (reflected by a large increase of the coefficient of

variation (CV)) and lead to a noticeably greater number of
necessary sample plots. Although the CV of the biomass dis-
tribution increases with decreasing plot size for local forests
(Réjou-Méchain et al., 2014; Wagner et al., 2010), there
seem to be only small effects for larger landscapes. For
Panama, we even found that biomass distributions of the ag-
gregated maps were more heterogeneous due to averaging
forest with non-forest areas. To estimate the minimum sam-
ple size of a particular forest region, it might be useful to ex-
plore biomass variability, for example, by using forest mod-
els (Zurell et al., 2010) or topography (Réjou-Méchain et al.,
2014).

For large areas (tropical forests in South America, Africa,
and Southeast Asia), we obtained minimum sample sizes of
74–103 plots (randomly distributed, 25 ha each) on each con-
tinent. We also tested larger plot sizes with a biomass map
from Saatchi et al. (2011), but the results were similar (75–
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Figure 6. Clustered sampling of biomass in South America. We
tested different clustered sampling strategies using reconstructed
point patterns based on the locations of existing field plots in South
America (PP1–PP4). The simulation was performed with the South
America map with a resolution of 500 m (25 ha plot size). Results
show the probability (Pn) of accurate sampling for the spatial clus-
tering of each point pattern (black crosses; ”accurate” means that
the mean biomass of the sample does not deviate more than 10 %
from the mean biomass of the original map). The upper boundary
(grey) marks sample sizes with at least 90 % chance to estimate
biomass accurately. As a reference, the results for random sampling
are shown (red line).

136 plots, 100 ha each). Furthermore, we also tested smaller
plot sizes by downscaling the South American biomass map
to 100 m using relationships derived from the Panama forest
biomass map (50 000 km2 forest area). The analysis indicated
that 70 plots of 1 ha that are randomly distributed in space are
sufficient for biomass estimations in South America at large
scales (Table 1).

Some remote-sensing-based biomass maps can miss em-
pirically measured biomass patterns in tropical forests
(Mitchard et al., 2014). Biomass maps might not meet the
high variability of biomass in forests because they do not
include fine-scale variation (Mitchard et al., 2014) and sat-
urate at high biomass values (Lu, 2006; Sellers, 1985). We
addressed this issue of missing fine-scale variation by con-
structing an additional biomass map at 100 m resolution with
much higher variation in biomass values than observed in the
biomass map used. In this case, the number of 1 ha plots that
are necessary for continental estimates of the South Ameri-
can tropical forest increased to 121 one-hectare plots (instead
of 70 plots). Please note that we tested a simple downscaling
procedure, so caution must be applied to these initial find-
ings. In summary, we found that a higher variation in biomass
values leads to a higher sampling effort (see Fig. S1).

4.2 Nonrandom sampling

Our analysis showed that sampling efforts change consider-
ably if samples are not random in space. For South America,
nonrandom samples of forests are less reliable and require

substantially more plots to achieve accurate biomass estima-
tions. This means that the necessary number of plots for non-
random sampling strategies (as can be found in real-world
inventories) cannot be assessed by Monte Carlo simulations
that implicitly assume that samples are random (as in related
studies, e.g., Chave et al., 2004; Fisher et al., 2008; Keller
et al., 2015; Marvin et al., 2014). Instead simulation proce-
dures need to incorporate more advanced methods that in-
clude aggregated plot placement.

We demonstrated that a spatial autocorrelation has an ef-
fect on the sampling strategy (Legendre and Fortin, 1989;
Réjou-Méchain et al., 2014) if plots close to each other are
more similar than plots located farther apart (positive auto-
correlation). Result suggest that for larger regions biomass
tends to be more spatially clustered (e.g., large forest biomass
occurs more frequently within the Amazon basin than in the
surrounding landscape) because biomass varies due to en-
vironmental gradients and geographical reasons (Houghton
et al., 2009). Therefore, the uncertainty of large-scale esti-
mations might be more affected by the sampling design than
estimates for local scales. However, small forested regions
can also be spatially correlated in terms of biomass (e.g., due
to management or topography), so biases cannot be excluded
whenever the sampling design is not random.

The sampling performance of current plot networks is re-
lated to an interplay of clustering and scattering of the inven-
tory plots in certain areas. For instance, if inventory plots
are more likely to be located in densely overgrown ma-
ture forests, the biomass is overrated because the rest of the
plots cannot compensate for this bias (“majestic forest bias”;
Malhi et al., 2002). We see a high potential in point pattern
analysis to determine critical levels of aggregation that can
bias sampling estimation. Current plot networks might im-
prove their sampling performance by combining subsamples
of aggregated plot clusters while including additional plots
in poorly sampled regions.

Existing plot networks may provide better estimates than
suggested by “blind” sampling using additional information
(e.g., climate and soil covariates). Those covariates can be
utilized, for example, to define weighting factors that en-
hance biomass mean estimation. To analyze this issue, the
pattern reconstruction approach used in this study could in-
clude additional criteria (ideally also those used for selection
of plots). If the covariates can be mapped in the entire study
area, the pattern reconstruction approach can take into ac-
count the additional constraints and reject plot configurations
that do not agree with these criteria.

5 Conclusions

In summary, our study shows that the accuracy of the
biomass estimates derived from samples depends consider-
ably on the sampling strategy. Inventories are highly relevant
for studying forest structure and dynamics. For South Amer-
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ica, we have shown that more spatially randomly distributed
plots are beneficial for continent-wide biomass estimations.
For a given sampled area, plot size should not fall below
0.25 ha, as the variability of biomass values will strongly in-
crease (Chave et al., 2003; Clark et al., 2001; Keller et al.,
2015; Réjou-Méchain et al., 2014), and tree-level measure-
ment errors can dominate (Chave et al., 2004).

It is challenging to establish forest plots randomly across
South America. On the one hand, mature tropical forests have
high tree densities (Crowther et al., 2015), so measurements
are more labor intensive. On the other hand, random plot lo-
cations may lead to large distances between the plots (Wang
et al., 2012), making them more difficult to access and also
resulting in higher efforts and costs.

Some studies combine field inventories with remote sens-
ing data to estimate the biomass of large regions (Asner et
al., 2013; Baccini et al., 2012; Rödig et al., 2017; Saatchi
et al., 2011) as remote sensing can sample forest regions in
a short time (Houghton et al., 2009; Schimel et al., 2015).
The transect sampling shown here could also give hints for
remote-sensing-based airplane campaigns flying in straight
lines over forest transects (e.g., comparable to Asner et al.,
2013). The methods presented can be applied to any spatially
clustered sampling technique. The sampling design is very
relevant not only for forest biomass estimations but also in
view of other forest attributes (e.g., production). This should
be considered when establishing forest plot networks.

Code and data availability. Biomass data of BCI (Condit et al.,
2012), Panama (Asner et al., 2013), and the tropics (Baccini et al.,
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