

Supplement of

Drivers and modelling of blue carbon stock variability in sediments of southeastern Australia

Carolyn J. Ewers Lewis et al.

Correspondence to: Carolyn J. Ewers Lewis (ce8dp@virginia.edu)

The copyright of individual parts of the supplement might differ from the CC BY 4.0 License.

Table S1. Hypothesized drivers of 30-cm deep sediment blue C stock variability. Potential drivers were identified in the literature, as described in the text and under "Hypothesis and rationale" of this table. These drivers were grouped into three categories: 1) ecological (ecosystem type and dominant species/ecological vegetation class), 2) geomorphological (elevation, slope, distance to freshwater channel, distance to coast, and lithology), and 3) anthropogenic (land use and population). Sources and resolution (where appropriate) for spatial data used as driver proxies in our modelling are described in the far right column.

Driver	Hypothesis and rationale	Spatial data source and resolution
Ecological		
ECOSYSTEM TYPE Tidal marsh, mangrove, or seagrass	 Ecosystem is the dominant driver of C stock variability C stocks of tidal marshes > mangrove forests > seagrass meadows (Ewers Lewis et al., 2018; Siikamäki et al., 2013). C accumulation is driven by position in the tidal frame, therefore differs by ecosystem because each occupy a different inundation range in tidal frame (Saintilan et al., 2013). Differences in above- and below-ground plant biomass influence C stocks. Root C may be particularly important, as sediment C at depth in southeast Australian saltmarsh and mangrove has been observed to be dominated by root C and relatively low in allochthonous C, including leaf litter (Saintilan et al., 2013). Morphology impacts wave energy and particle settling (Mudd et al., 2010), as well as direct trapping by vegetation to the sediment surface (Chen et al., 2018). 	Saltmarsh & mangrove extent: Boon et al., 2011 Seagrass extent: Blake et al., 2000; Blake and Ball, 2001b, 2001a; Roob et al., 1998; Roob and Ball, 1997
DOMINANT SPECIES/EVC Dominant species (seagrass, mangrove); Ecological Vegetation Class (tidal marshes)	 Species composition better explains C stock variability than ecosystem alone C stocks vary across species (in seagrasses, e.g. Jankowska et al., 2016; Lavery et al., 2013; in tidal marsh plants, e.g. Sousa et al., 2010) and community composition (e.g. species richness in mangroves, Atwood et al. 2017). Species within a community occur at different elevations and positions in the tidal frame, which can impact sedimentation and C capture (e.g. Kelleway et al. 2017). 	Saltmarsh EVC & mangrove extent: Boon et al., 2011 Seagrass extent: (Blake et al., 2000; Blake and Ball, 2001b, 2001a; Roob et al., 1998; Roob and Ball, 1997)
Geomorphological		
ELEVATION	 Lower elevations are correlated with higher C stocks Lower elevations have higher sedimentation rates, aiding the trapping of organic C from organisms growing on soil surfaces (Connor et al., 2001). Lower elevations are inundated more often providing more opportunity for contribution of allochthonous C via particles and C settling out of the water column (Chen et al., 2015; Chmura et al., 2003; Chmura and Hung, 2004). 	Victorian Coastal Digital Elevation Model (VCDEM 2017) 2.5 m and 10 m resolutions Cooperative Research Centre for Spatial Information (CRCSI)
SLOPE	 Shallower slopes are correlated with higher C stocks Steeper slopes are more vulnerable to erosion and less conducive to sedimentation and particle trapping than shallower slopes. 	Calculated in ArcMap from 2.5 m and 10 m elevation data (above)

DISTANCE TO	Distance to freshwater channel is negatively correlated with C stocks	Vicmap Hydro
FRESHWATER	Sediment accretion rates (positively correlated to organic matter) decrease with distance from	1:25,000
CHANNEL	freshwater channels as elevation increases and inundation is less frequent (Chmura and Hung,	Department of Environment, Land,
Euclidean distance to	2004).	Water & Planning
closest channel	▶ Higher freshwater inputs may lead to higher production of autochthonous C (Kelleway et al.,	Victoria State Government
	2016).	
	> Delivery of nutrients from terrestrial sources may increase plant growth (Armitage and	
	Fourqurean, 2016).	
	Fluvial environments are associated with smaller grain size particles, which enhance C	
	preservation compared to sandy substrates (Kelleway et al., 2016; Saintilan et al., 2013).	
DISTANCE TO	C stocks are greater higher up in the catchment	Victorian Coastline 2008
COAST	C stocks in fluvial environments > marine environments (e.g. in tidal marshes, Van De Broek et	Department of Environment, Land,
Euclidean distance to	al., 2016; Kelleway et al., 2016; Macreadie et al., 2017a; Saintilan et al., 2013).	Water & Planning
closest point on the	> Fluvially located tidal marshes have on average over 2x higher C stocks compared to marine tidal	Victoria State Government
coast	marshes (Kelleway et al., 2017; Macreadie et al., 2017a).	
	➢ Greater inputs of suspended particulate organic C from terrestrial sources higher in the catchment	
	(Van De Broek et al., 2016).	
	Amount of deeper, stable C in tidal marshes decreased from the upper estuary toward the coast	
	(Van De Broek et al., 2016).	
LITHOLOGY	C stocks vary with terrestrial parent material of sediments	Geomorphology of Victoria
Rock type that covers	> Terrestrial weathering, erosion, and sediment properties influence organic C export (Galy et al.,	1:100,000
the greatest	2007)	Department of Economic
proportion of the	➢ Rock type may influence grain size of sediments exported from catchments; smaller grain sizes	Development, Jobs, Transport and
catchment	enhance C preservation (Kelleway et al., 2016; Saintilan et al., 2013), bind more organic	Resources
	molecules relative to coarse particles (Mayer, 1994), and can be associated with high C stocks	Victoria State Government
	(e.g. Serrano et al. 2016)	
	Mineral content affects organic C quantity, preservation, and flux (Torn et al., 1997).	
Anthropogenic		
LAND USE	C stocks vary based on land use activities in the catchment	Victorian Land Use Information
Represented as	Land use may impact export of terrestrial C contributing to allochthonous C inputs to blue C	System 2014/2015
proportion of	ecosystems; allochthonous C can contribute up to 50% of C stocks (e.g. in seagrasses, Kennedy et	Department of Economic
catchment area that	al. 2010).	Development, Jobs, Transport and
primary land use is	Nutrient inputs (e.g. from sewage effluent and agricultural runoff) can increase productivity, but	Resources
1) urbanized	have a negative impact on net C stocks (Armitage and Fourqurean, 2016; Kearns et al., 2018;	Victoria State Government
2) agricultural	Macreadie et al., 2017b).	
3) natural	Erosion of fine sediments in urbanized and agricultural regions may enhance sedimentation and C	
	burial (Mazarrasa et al., 2017; Serrano et al., 2016b; Yang et al., 2003).	

POPULATION	C stocks differ across population levels due to a correlation with land use	Population Density, Australia 201
Mean population	Increases in population size lead to increases in urbanisation and competition for land use.	Australian Bureau of Statistics
density of the		
catchment		

Raster Code	Lithology
0	other
1	Aeolian
2	Aeolian and Alluvium
3	Alluvial
4	Alluvium
5	Basalt
6	Colluvial
7	Duricrust
8	Fluvial
9	Fluvial Aeolian
10	Granite
11	Granitic
12	Lacustrine/Aeolian
13	Lagoonal
14	Limestone
15	Marl
16	Metamorphic
17	Paleozoic sediments
18	Sedimentary
19	Tertiary basalts
20	Volcanic

Table S2. Lithologies in Victoria

Table S3. Primary Land Use Categories

		Category
		for Land
Description	Details	Use Proxy
Residential	Housing	Urbanized
	Shops, restaurants, cinemas, amusement parks, bars,	Urbanized
Commercial	hospitals, offices, parking lots	
	Manufacturing, warehouses, noxious/dangerous	Urbanized
Industrial	production (e.g. tannery, oil refinery)	
Extractive Industries	Mining (sand, rock, metals, salt, water, dredging)	Urbanized
	Native, grazing, ag, farming, orchards, forestry,	Agricultural
Primary Production	aquaculture	
Infrastructure and	Gas, electricity, waste, recycling, water, roads, railways,	Urbanized
utilities	tramways, wharfs, post	
	Schools, day-care, hospitals, police, courts, emergency	Urbanized
	services, prisons, churches, sporting halls, government	
Community services	buildings and bases	
Sport Heritage and	Sports complexes, race tracks, fields, libraries, museums,	Urbanized
Culture	botanical gardens, aquariums, memorials	
National parks,		Natural
conservation areas,		
forest reserves, and		
natural water reserves	Reserves, wetlands, national parks, protected areas	
	Description Residential Commercial Industrial Extractive Industries Primary Production Infrastructure and utilities Community services Sport Heritage and Culture National parks, conservation areas, forest reserves, and natural water reserves	DescriptionDetailsResidentialHousingShops, restaurants, cinemas, amusement parks, bars, hospitals, offices, parking lotsCommercialManufacturing, warehouses, noxious/dangerous production (e.g. tannery, oil refinery)Extractive IndustriesMining (sand, rock, metals, salt, water, dredging) Native, grazing, ag, farming, orchards, forestry, aquacultureInfrastructure and utilitiesGas, electricity, waste, recycling, water, roads, railways, tramways, wharfs, postCommunity servicesSchools, day-care, hospitals, police, courts, emergency services, prisons, churches, sporting halls, government buildings and basesSport Heritage and CultureSports complexes, race tracks, fields, libraries, museums, botanical gardens, aquariums, memorialsNational parks, conservation areas, forest reserves, and natural water reservesReserves, wetlands, national parks, protected areas

Table S4. Covariates included in the twelve global models for 30-cm deep sediment blue C stocks. To avoid correlation between covariates, each model contained six fixed covariates and site as a random effect. EVC = ecological vegetation class (for tidal marsh); D = distance; FW = freshwater channel; population = mean population; % = proportion of the catchment area of the named land use.

GLOBAL MODEL					FIXE	D EFFECT	TS .					RANDOM EFFECT
		Ecological Covariates		C	Geomorpholo	gical Cova	riates		Anthropogen	nic Covariates		
1	Ecosystem			Slope	D to Coast	D to FW	Lithology	Population				Site
2		Dominant Species or EVC		Slope	D to Coast	D to FW	Lithology	Population				Site
3			Elevation	Slope	D to Coast	D to FW	Lithology	Population				Site
4	Ecosystem			Slope	D to Coast	D to FW	Lithology		% Urbanized			Site
5		Dominant Species or EVC		Slope	D to Coast	D to FW	Lithology		% Urbanized			Site
6			Elevation	Slope	D to Coast	D to FW	Lithology		% Urbanized			Site
7	Ecosystem			Slope	D to Coast	D to FW	Lithology			% Agricultural		Site
8		Dominant Species or EVC		Slope	D to Coast	D to FW	Lithology			% Agricultural		Site
9			Elevation	Slope	D to Coast	D to FW	Lithology			% Agricultural		Site
10	Ecosystem			Slope	D to Coast	D to FW	Lithology				% Natural	Site
11		Dominant Species or EVC		Slope	D to Coast	D to FW	Lithology				% Natural	Site
12			Elevation	Slope	D to Coast	D to FW	Lithology				% Natural	Site

Global Model	K	AICc	Delta_AICc	AIC _c Wt	Cum.Wt	LL
11	30	1823.61	0.00	0.70	0.70	-876.27
5	30	1826.39	2.79	0.17	0.87	-877.66
2	30	1828.21	4.60	0.07	0.94	-878.57
8	30	1828.65	5.04	0.06	1.00	-878.79
10	24	1858.48	34.87	0.00	1.00	-876.27
4	24	1860.99	37.38	0.00	1.00	-903.05
1	24	1864.31	40.71	0.00	1.00	-904.71
7	24	1864.75	41.14	0.00	1.00	-904.93
12	23	1886.26	62.65	0.00	1.00	-916.98
6	23	1893.33	69.72	0.00	1.00	-920.51
9	23	1895.62	72.01	0.00	1.00	-921.66
3	23	1895.97	72.37	0.00	1.00	-921.83

Table S5. AIC_C ranking of the twelve global models for 30-cm deep sediment blue C stocks.

Table S6. Dredge products of dominant species/EVC global models. Top models resulting from dredging the global models (based on delta AIC _C <2) were used to produce	
averaged models and parameter estimates. Note the anthropogenic covariate distinguishes the global models from one another. EVC = ecological vegetation class; N/A =	
parameter was not included in the dredge product model; "+" = factor included in model.	

Global	Dredge		Distance to	Dominant	Primary	Distance to		Proportion					
Model	product	Intercept	coast	species/EVC	lithology	freshwater	Slope	natural	df	logLik	AICc	delta	weight
11	3	0.0168564	NA	+	NA	NA	NA	NA	11	-895.369	1814.15	0	1.29E-01
	4	0.0189982	-0.0020353	+	NA	NA	NA	NA	12	-894.3325	1814.342	0.1926387	1.17E-01
	12	0.018197	-0.0022854	+	NA	-0.0025109	NA	NA	13	-893.5455	1815.059	0.9088236	8.17E-02
	36	0.0189583	-0.0023732	+	NA	NA	NA	0.001781	13	-893.6158	1815.199	1.0493365	7.61E-02
	11	0.0157893	NA	+	NA	-0.0019917	NA	NA	12	-894.8916	1815.461	1.31077	6.68E-02
	19	0.0166106	NA	+	NA	NA	-6.83E-04	NA	12	-894.9389	1815.555	1.4055444	6.37E-02
	20	0.0190315	-0.0021158	+	NA	NA	-7.06E-04	NA	13	-893.8551	1815.678	1.5279401	5.99E-02
	35	0.0164176	NA	+	NA	NA	NA	0.0012525	12	-895.0034	1815.684	1.534444	5.97E-02
Global	Dredge		Distance to	Dominant	Primary	Distance to		Proportion					
Model	product	Intercept	coast	species/EVC	lithology	freshwater	Slope	urbanized	df	logLik	AICc	delta	weight
5	3	0.01685643	NA	+	NA	NA	NA	NA	11	-895.3690	1814.150	0.0000000	1.113112e-01
	4	0.01899821	-0.0020353223	+	NA	NA	NA	NA	12	-894.3325	1814.342	0.1926387	1.010899e-01
	36	0.01800898	-0.0019729499	+	NA	NA	NA	-0.0021066956	13	-893.2183	1814.404	0.2543995	9.801593e-02
	35	0.01551172	NA	+	NA	NA	NA	-0.0019051529	12	-894.3987	1814.475	0.3251377	9.460978e-02
	12	0.01819697	-0.0022853901	+	NA	-0.002510929	NA	NA	13	-893.5455	1815.059	0.9088236	7.066271e-02
	44	0.01711336	-0.0023424427	+	NA	-0.002368407	NA	-0.0020726030	14	-892.4650	1815.213	1.0628511	6.542498e-02
	11	0.01578925	NA	+	NA	-0.001991729	NA	NA	12	-894.8916	1815.461	1.3107700	5.779746e-02
	19	0.01661063	NA	+	NA	NA	-0.0006827148	NA	12	-894.9389	1815.555	1.4055444	5.512248e-02
	20	0.01903147	-0.0021157993	+	NA	NA	-0.0007056025	NA	13	-893.8551	1815.678	1.5279401	5.185025e-02
	43	0.01470687	NA	+	NA	-0.002029556	NA	-0.0019050897	13	-893.9474	1815.862	1.7126661	4.727571e-02
	52	0.01798426	-0.0021412230	+	NA	NA	-0.0006979693	-0.0020573538	14	-892.7948	1815.872	1.7225099	4.704360e-02
	51	0.01478040	NA	+	NA	NA	-0.0005631329	-0.0021105856	13	-894.0431	1816.054	1.9040556	4.296140e-02
								Mean					
Global	Dredge		Distance to	Dominant	Primary	Distance to		Population					
Model	product	Intercept	coast	species/EVC	lithology	freshwater	Slope	Density	df	logLik	AICc	delta	weight
2	3	0.01685643	NA	+	NA	NA	NA	NA	11	-895.3690	1814.150	0.0000000	1.543957e-01
	4	0.01899821	-0.0020353223	+	NA	NA	NA	NA	12	-894.3325	1814.342	0.1926387	1.402182e-01
	12	0.01819697	-0.0022853901	+	NA	-0.002510929	NA	NA	13	-893.5455	1815.059	0.9088236	9.801370e-02
	11	0.01578925	NA	+	NA	-0.001991729	NA	NA	12	-894.8916	1815.461	1.3107700	8.016877e-02
	35	0.01661063	NA	+	NA	NA	-0.0006827148	NA	12	-894.9389	1815.555	1.4055444	7.645840e-02
	36	0.01903147	-0.0021157993	+	NA	NA	-0.0007056025	NA	13	-893.8551	1815.678	1.5279401	7.191961e-02
Global	Dredge		Distance to	Dominant	Primary	Distance to		Proportion					
Model	product	Intercept	coast	species/EVC	lithology	freshwater	Slope	agricultural	df	logLik	AICc	delta	weight
8	3	0.01685643	NA	+	NA	NA	NA	NA	11	-895.3690	1814.150	0.0000000	1.581714e-01
	4	0.01899821	-0.0020353223	+	NA	NA	NA	NA	12	-894.3325	1814.342	0.1926387	1.436472e-01
	12	0.01819697	-0.0022853901	+	NA	-0.002510929	NA	NA	13	-893.5455	1815.059	0.9088236	1.004106e-01

11	0.01578925	NA	+	NA	-0.001991729	NA	NA	12	-894.8916	1815.461	1.3107700	8.212926e-02
19	0.01661063	NA	+	NA	NA	-0.0006827148	NA	12	-894.9389	1815.555	1.4055444	7.832816e-02
20	0.01903147	-0.0021157993	+	NA	NA	-0.0007056025	NA	13	-893.8551	1815.678	1.5279401	7.367837e-02

Table S7. Full output table of averaged model parameter estimates containing dominant species/ecological vegetation class (EVC) as the ecological variable.

Averaged model 11

-			Confid inter	ence val	- Dolotivo	N
Parameter	Estimate	Adjusted SE	2.5%	97.5%	importance	containing models
Intercept: Coastal tussock saltmarsh	0.0177	0.0043	0.0093	0.0260		
Factor (dominant sp/EVC): Wet saltmarsh herbland	0.0012	0.0041	-0.0068	0.0092	1.00	8
Factor (dominant sp/EVC): wet saltmarsh shrubland	-0.0027	0.0042	-0.0110	0.0056	"	"
Factor (dominant sp/EVC): <i>A. marina</i> mangroves	0.0011	0.0041	-0.0070	0.0092	"	"
Factor (dominant sp/EVC): L. marina seagrass	-0.0024	0.0051	-0.0123	0.0075	"	"
Factor (dominant sp/EVC): <i>P. australis</i> seagrass	0.0394	0.0179	0.0043	0.0745	"	"
Factor (dominant sp/EVC): <i>R. megacarpa</i> seagrass	0.0903	0.0313	0.0289	0.1518	"	"
Factor (dominant sp/EVC): Z. muelleri seagrass	0.0291	0.0047	0.0198	0.0384	"	"
Factor (dominant sp/EVC): <i>Z. nigricaulis</i> seagrass	0.0397	0.0172	0.0060	0.0735	"	"
Distance to coast	-0.0011	0.0015	-0.0041	0.0019	0.51	4
Distance to freshwater	-0.0005	0.0014	-0.0032	0.0022	0.23	2
Proportion natural	0.0003	0.0009	-0.0015	0.0022	0.21	2
Slope	-0.0001	0.0004	-0.0015	0.0022	0.19	2

Averaged model 5

		_	Confid inter	lence val	Rolativo	Ν
Parameter	Estimate	Adjusted SE	2.5%	97.5%	importance	containing models
Intercept: Coastal tussock saltmarsh	0.0171	0.0042	0.0088	0.0254		
Factor (dominant sp/EVC): Wet saltmarsh herbland	0.0013	0.0040	-0.0066	0.0092	1.00	12
Factor (dominant sp/EVC): wet saltmarsh shrubland	-0.0023	0.0042	-0.0107	0.0060	"	"
Factor (dominant sp/EVC): <i>A. marina</i> mangroves	0.0015	0.0041	-0.0066	0.0095	"	"
Factor (dominant sp/EVC): L. marina seagrass	-0.0020	0.0051	-0.0119	0.0080	"	"
Factor (dominant sp/EVC): <i>P. australis</i> seagrass	0.0405	0.0179	0.0054	0.0756	"	"
Factor (dominant sp/EVC): <i>R. megacarpa</i> seagrass	0.0908	0.0314	0.0293	0.1523	"	"
Factor (dominant sp/EVC): Z. muelleri seagrass	0.0295	0.0047	0.0202	0.0388	"	"
Factor (dominant sp/EVC): Z. nigricaulis seagrass	0.0389	0.0172	0.0052	0.0727	"	"
Distance to coast	-0.0011	0.0015	-0.0040	0.0018	0.51	6

Proportion Urbanized	-0.0010	0.0014	-0.0037	0.0018	0.47	6
Distance to freshwater	-0.0006	0.0015	-0.0036	0.0023	0.29	4
Slope	-0.0002	0.0005	-0.0010	0.0007	0.23	4

Averaged model 2						
		_	Confid inter	ence val	Relative	Ν
Parameter	Estimate	Adjusted SE	2.5%	97.5%	importance	containing models
Intercept: Coastal tussock saltmarsh	0.0176	0.0042	0.0093	0.0260		
Factor (dominant sp/EVC): Wet saltmarsh herbland	0.0011	0.0041	-0.0069	0.0091	1.00	6
Factor (dominant sp/EVC): wet saltmarsh shrubland	-0.0028	0.0042	-0.0111	0.0055	"	"
Factor (dominant sp/EVC): <i>A. marina</i> mangroves	0.0011	0.0041	-0.0070	0.0092	"	"
Factor (dominant sp/EVC): <i>L. marina</i> seagrass	-0.0024	0.0051	-0.0124	0.0075	"	"
Factor (dominant sp/EVC): <i>P. australis</i> seagrass	0.0412	0.0180	0.0058	0.0765	"	"
Factor (dominant sp/EVC): <i>R. megacarpa</i> seagrass	0.0909	0.0313	0.0296	0.1522	"	"
Factor (dominant sp/EVC): Z. muelleri seagrass	0.0292	0.0047	0.0199	0.0385	"	"
Factor (dominant sp/EVC): Z. nigricaulis seagrass	0.0398	0.0172	0.0060	0.0736	"	"
Distance to coast	-0.0011	0.0015	-0.0040	0.0019	0.50	3
Distance to freshwater	-0.0007	0.0015	-0.0036	0.0023	0.29	2
Slope	-0.0002	0.0005	-0.0011	0.0007	0.24	2

Table S8. Dredge products of ecosystem global models. Top models resulting from dredging the global models (based on delta $AIC_C < 2$) were used to produce averaged
models and parameter estimates. Note the anthropogenic covariate distinguishes the global models from one another. N/A = parameter was not included in the dredge product
model; "+" = factor included in model.

Global Model	Dredge product	Intercept	Distance to coast	Ecosystem	Primary lithology	Distance to freshwater	Slope	Proportion natural	df	logLik	AICc	delta	weight
10	36	0.0181	-0.0020	+	NA	NA	NA	0.0029	7	-916.37	1847.33	0.00	0.1583
	35	0.0177	NA	+	NA	NA	NA	0.0023	6	-917.61	1847.66	0.32	0.1346
	3	0.0174	NA	+	NA	NA	NA	NA	5	-918.96	1848.23	0.90	0.1007
	52	0.0180	-0.0021	+	NA	NA	-0.0009	0.0030	8	-915.79	1848.34	1.01	0.0953
	51	0.0177	NA	+	NA	NA	-0.0008	0.0023	7	-917.15	1848.88	1.55	0.0730
Global Model	Dredge product	Intercept	Distance to coast	Ecosystem	Primary lithology	Distance to freshwater	Slope	Proportion urbanized	df	logLik	AICc	delta	weight
4	35	0.0165	NA	+	NA	NA	NA	-0.0027	6	-916.94	1846.31	0.00	0.2036
	36	0.0166	-0.0014	+	NA	NA	NA	-0.0029	7	-916.09	1846.77	0.46	0.1615
	51	0.0165	NA	+	NA	NA	-0.0006	-0.0026	7	-916.60	1847.79	1.48	0.0969
	52	0.0165	-0.0015	+	NA	NA	-0.0007	-0.0029	8	-915.70	1848.15	1.84	0.0810
	3	0.0174	NA	+	NA	NA	NA	NA	5	-918.96	1848.23	1.93	0.0778
Global Model	Dredge product	Intercept	Distance to coast	Ecosystem	Primary lithology	Distance to freshwater	Slope	Mean Population Density	df	logLik	AICc	delta	weight
1	3	0.0174	NA	+	NA	NA	NA	NA	5	-918.96	1848.23	0.00	0.2036
	4	0.0175	-0.0012	+	NA	NA	NA	NA	6	-918.45	1849.35	1.11	0.1168
	35	0.0173	NA	+	NA	NA	-0.0008	NA	6	-918.50	1849.44	1.21	0.1113
	19	0.0172	NA	+	NA	NA	NA	-0.0005	6	-918.67	1849.78	1.54	0.0943
Global Model	Dredge product	Intercept	Distance to coast	Ecosystem	Primary lithology	Distance to freshwater	Slope	Proportion agricultural	df	logLik	AICc	delta	weight
7	3	0.0174	NA	+	NA	NA	NA	NA	5	-918.96	1848.23	0.00	0.2181
	4	0.0175	-0.0012	+	NA	NA	NA	NA	6	-918.45	1849.35	1.11	0.1251
	19	0.0173	NA	+	NA	NA	-0.0008	NA	6	-918.50	1849.44	1.21	0.1192

Table S9. Full output table of averaged model parameter estimates containing ecosystem as the ecological variable.

U			Confidence	interval		Ν
Parameter	Estimate	Adjusted SE	2.5%	97.5%	Relative importance	containing models
Intercept: tidal marsh	0.0178	0.0020	0.0139	0.0217		
factor(Ecosystem): mangrove	0.0022	0.0013	-0.0002	0.0047	1.00	5
factor(Ecosystem): seagrass	0.0244	0.0026	0.0193	0.0294	"	"
Distance to coast	-0.0009	0.0014	-0.0036	0.0017	0.45	2
Slope	-0.0002	0.0006	-0.0014	0.0009	0.30	2
Proportion natural	0.0022	0.0017	-0.0011	0.0055	0.82	4

Averaged model 10

Averaged model 4

			Confidence interval		514	Ν
Parameter	Estimate	Adjusted SE	2.5%	97.5%	Relative importance	containing models
Intercept: tidal marsh	0.0166	0.0018	0.0130	0.0202		
factor(Ecosystem): mangrove	0.0024	0.0013	-0.0001	0.0049	1.00	5
seagrass	0.0254	0.0025	0.0204	0.0303	"	"
Distance to coast	-0.0006	0.0010	-0.0025	0.0014	0.39	2
Slope	-0.0002	0.0005	-0.0012	0.0008	0.29	2
Proportion urbanized	-0.0024	0.0015	-0.0054	0.0006	0.87	4

Averaged model 1

			Confidence interval			Ν
Parameter	Estimate	Adjusted SE	2.5%	97.5%	Relative importance	containing models
Intercept: tidal marsh	0.0174	0.0020	0.0135	0.0212		
factor(Ecosystem): mangrove factor(Ecosystem):	0.0022	0.0013	-0.0003	0.0047	1.00	4
seagrass	0.0252	0.0025	0.0202	0.0301	"	"
Distance to coast	-0.0003	0.0008	-0.0018	0.0012	0.22	1
Slope	-0.0002	0.0005	-0.0011	0.0008	0.21	1
Mean population density	-0.0001	0.0004	-0.0008	0.0006	0.18	1

Averaged model 7

			Confidence interval			Ν
Parameter	Estimate	Adjusted SE	2.5%	97.5%	Relative importance	containing models
Intercept (tidal marsh)	0.0174	0.0020	0.0136	0.0213		
factor(Ecosystem): mangrove factor(Ecosystem):	0.0022	0.0013	-0.0003	0.0047	1.00	3
seagrass	0.0252	0.0025	0.0202	0.0301	"	"
Distance to coast	-0.0003	0.0008	-0.0020	0.0013	0.27	1
Slope	-0.0002	0.0005	-0.0012	0.0008	0.26	1

Table S10. Data availability

Data Item	Description	Data Source & Location
Carbon Stock	Percent organic carbon and dry bulk density	Ewers Lewis et al. 2018 Ecosystems;
Dataset	data for sediment sampled to 30 cm deep in	Dataset available on Harvard Dataverse,
	96 blue carbon ecosystems (saltmarshes,	https://doi.org/10.7910/DVN/6PFBO0
	mangrove forests, and seagrass meadows)	
	across Victoria, Australia.	
Ecosystem	1. Mangrove areal extent in Victoria,	1. Boon et al. 2001; OzCoasts Australian
Extent Vectors	Australia; saltmarsh areal extent and	Online Coastal Information, Victorian
	ecological vegetation classes in Victoria,	Saltmarsh and Mangrove Vegetation Maps
	Australia.	https://ozcoasts.org.au/geom_geol/vic/Salt
	2. Seagrass areal extent in the major bays and	marsh/Master
	estuaries of Victoria, Australia.	2. Available from:
	a. Port Phillip Bay	a. Ball et al., 2014; Blake and Ball, 2001a
	b. Western Port Bay	https://discover.data.vic.gov.au/dataset/port
	c. Corner Inlet and Nooramunga	-phillip-bay-1-25-000-seagrass-2000
	d. Gippsland Lakes	b. Blake and Ball, 2001b
	e. Minor Inlets of Victoria	Distribution of Seagrass in Western Port in 1999
		https://discover.data.vic.gov.au/dataset/dist
		ribution-of-seagrass-in-western-port-in- 1999
		c. Roob et al., 1998
		Corner Inlet Seagrass 1998
		https://discover.data.vic.gov.au/dataset/cor
		ner-inlet-seagrass-1998
		d. (Roob and Ball, 1997)
		Gippsland Lakes Seagrass 1997
		https://discover.data.vic.gov.au/dataset/gip
		psland-lakes-seagrass-1997
		e. Blake et al., 2000
		https://discover.deta.via.cov.au/detaset/and
		nttps://discover.data.vic.gov.au/dataset/and
		Tamboon Inlet Seagrass 1999
		https://discover.data.vic.gov.au/dataset/tam
		https://discover.data.vie.gov.ad/dataset/talli
		Wingan Inlet Seagrass 1999
		https://discover.data.vic.gov.au/dataset/win
		gan_inlet_seagrass_1999
		Shallow Inlet Seagrass 1999
		https://discover.data.vic.gov.au/dataset/shal
		low-inlet-seagrass-1999
		Mallacoota Inlet Seagrass 1999
		https://discover.data.vic.gov.au/dataset/mal
		lacoota-inlet-seagrass-1999
		Sydenham Inlet Seagrass 1999
		https://discover.data.vic.gov.au/dataset/syd
		enham-inlet-seagrass-1999
Elevation	A gap free digital elevation model (DEM) for	Victorian Coastal Digital Elevation Model
Raster	the coastal region of Victoria, Australia, that	(VCDEM 2017)
	combines 2.5 m and 10 m DEMs.	https://vmdp.deakin.edu.au/geonetwork/srv
		/eng/metadata.show?uuid=8d3ccf63-ee85-
		41cd-917e-933624a50b2e
Freshwater	Location of channels and other freshwater	Vicmap Hydro 1:25,000
Vectors	objects in Victoria, Australia.	Victorian Government Data portal
		https://discover.data.vic.gov.au/dataset/vic
		map-hydro-1-25-000

Coastline Vector Lithology Vectors	Line delineating the coastline of Victoria, Australia. Rock types across Victoria, Australia.	Victorian Coastline 2008 Victorian Government Data portal <u>https://discover.data.vic.gov.au/dataset/vict</u> <u>orian-coastline-2008</u> Geomorphology of Victoria Victorian Government Data portal <u>https://discover.data.vic.gov.au/dataset/geo</u>
Land Use Vectors	Primary land use designations for land parcels in Victoria, Australia.	Victorian Land Use Information System 2014/2015 Victorian Government Data portal <u>https://discover.data.vic.gov.au/dataset/vict</u> <u>orian-land-use-information-system-2014-</u> 2015
Population	Human population data for Victoria,	Australian Population Grid, 2011
Raster	Australia.	Australian Bureau of Statistics
		https://www.abs.gov.au/AUSSTATS/abs@
		<u>.nst/Lookup/12/0.0.55.00/Main+Features1</u> 2011?OpenDocument
R Code	R code used to identify drivers and model	This study.
	carbon shallow sediment carbon stocks.	Dataset available on Harvard Dataverse,
		https://doi.org/10.7910/DVN/0WKEHJ
Model Output	Shallow sediment (to 30 cm deep) carbon	This study.
Raster	stock predictions in blue carbon ecosystems	Dataset available on Harvard Dataverse,
	(seagrass meadows, mangrove forests, and	https://doi.org/10.7910/DVN/UDOAUT
	saltmarshes) in Victoria, Australia	

Figure S1. Fluvial and estuarine catchment regions for Victoria, Australia (Barton et al., 2008).

Figure S2. Pairwise plots showing correlation relationships between covariates. From top left to bottom right: ecosystem type, elevation ("topo"), mean population density ("MeanPopDen"), distance to freshwater channel ("HydroEucD"), distance to coast ("CoastEucD"), dominant species/ecological vegetation class ("DominantSpEVC_codes"), proportion urbanized ("X1Urb100"), proportion agricultural ("X2Prim100"), proportion natural ("X3Nat100"), primary lithology ("PrimLith"), and slope.

Figure S3. Predicted v. actual 30-cm deep sediment blue C stocks. Averaged model 2 produced the best predictions out of the models using dominant species/EVC as the ecological variable (left column), while averaged model 7 produced the best predictions out of the models using ecosystem as the ecological variable. Neither of the best averaged models (2 and 7) included anthropogenic covariates. Linear regressions of predicted versus actual measured 30-cm deep sediment C values produced the following outputs for each averaged model: averaged model 11, residual standard error (RSE)=38.36 on 84 degrees of freedom (df), adjusted R-squared (R-sq(adj))=0.4868, F-statistic(F-stat)=81.63 on 1 and 84 df, p-value=5.044e-14; averaged model 5, RSE=38.51, R-sq(adj)=0.4829, F-stat=80.39 on 1 and 84 df, p-value=6.953e-14; averaged model 2, RSE=38.32, R-sq(adj)=0.4881, F-stat=82.06 on 1 and 84 df, p-value=4.517e-14; averaged model 10, RSE=39.67, R-sq(adj)=0.4514, F-stat=70.93 on 1 and 84 df, p-value=8.645e-13; averaged model 4, RSE=39.84, R-sq(adj)=0.4465, F-stat=69.58 on 1 and 84 df, p-value=1.254e-12; averaged model 1; RSE=39.48, R-

sq(adj)=0.4566, F-stat=72.43 on 1 and 84 df, p-value=5.73e-13; averaged model 7, RSE=39.29, R-sq(adj)=0.4618, F-stat=73.94 on 1 and 84 df, p-value=3.81e-13.