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Abstract. Tidal marshes, mangrove forests, and seagrass
meadows are important global carbon (C) sinks, commonly
referred to as coastal “blue carbon”. However, these ecosys-
tems are rapidly declining with little understanding of what
drives the magnitude and variability of C associated with
them, making strategic and effective management of blue
C stocks challenging. In this study, our aims were three-
fold: (1) identify ecological, geomorphological, and anthro-
pogenic variables associated with 30 cm deep sediment C
stock variability in blue C ecosystems in southeastern Aus-
tralia, (2) create a predictive model of 30 cm deep sediment
blue C stocks in southeastern Australia, and (3) map regional
30 cm deep sediment blue C stock magnitude and variabil-
ity. We had the unique opportunity to use a high-spatial-
density C stock dataset of sediments to 30 cm deep from
96 blue C ecosystems across the state of Victoria, Australia,
integrated with spatially explicit environmental data to reach
these aims. We used an information theoretic approach to
create, average, validate, and select the best averaged gen-
eral linear mixed effects model for predicting C stocks across
the state. Ecological drivers (i.e. ecosystem type or ecolog-
ical vegetation class) best explained variability in C stocks,
relative to geomorphological and anthropogenic drivers. Of
the geomorphological variables, distance to coast, distance to
freshwater, and slope best explained C stock variability. An-

thropogenic variables were of least importance. Our model
explained 46 % of the variability in 30 cm deep sediment C
stocks, and we estimated over 2.31 million Mg C stored in the
top 30 cm of sediments in coastal blue C ecosystems in Vic-
toria, 88 % of which was contained within four major coastal
areas due to the extent of blue C ecosystems (∼ 87 % of to-
tal blue C ecosystem area). Regionally, these data can inform
conservation management, paired with assessment of other
ecosystem services, by enabling identification of hotspots for
protection and key locations for restoration efforts. We rec-
ommend these methods be tested for applicability to other
regions of the globe for identifying drivers of sediment C
stock variability and producing predictive C stock models at
scales relevant for resource management.

1 Introduction

Vegetated coastal wetlands – particularly tidal marshes, man-
grove forests, and seagrass meadows – serve as valuable or-
ganic carbon (C) sinks, earning them the term “blue carbon”
(Nellemann et al., 2009). Still, an increasing proportion of
these ecosystems are being degraded and converted, and with
pressures associated with human population growth the com-
petition for land use in coastal zones continues to increase.
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With the current momentum for including blue C ecosys-
tems in global greenhouse gas inventories, there is a need
to quantify the magnitude of C stocks and fluxes, especially
in the sediments where the majority of the long-term C pool
persists (Mcleod et al., 2011). However, global and regional
assessments of blue C reveal large variability in sediment C
stocks, both on small and large scales (Ewers Lewis et al.,
2018; Liu et al., 2017; Macreadie et al., 2017a; Ricart et al.,
2015; Sanderman et al., 2018). Identification of environmen-
tal variables driving differences in sediment C stocks in blue
C ecosystems has become a key objective in blue C science
and a necessary next step for quantifying C storage as an
ecosystem service. Knowledge of such drivers is also impor-
tant for coastal blue C management, including identification
of hotspots to prioritize for conservation, as well as maxi-
mization of C gains through strategic restoration efforts.

Drivers of sediment C stock variability are innately dif-
ficult to identify in that the stocks represent the net result of
many complex processes acting simultaneously, simplified as
follows: (1) production of autochthonous C, (2) trapping and
burial of autochthonous and allochthonous C, and (3) rem-
ineralization and preservation of buried and surface C. Spa-
tial variability in sediment blue C stocks resulting from these
processes exists in hierarchical levels across global, regional,
local, and ecosystem patch level scales (Ewers Lewis et al.,
2018; Sanderman et al., 2018) and may be influenced by cli-
matic, ecological, geomorphological, and anthropogenic fac-
tors (Osland et al., 2018; Rovai et al., 2018; Twilley et al.,
2018).

At the global scale, climatic parameters appear to drive
broadscale variability in C stocks through effects on C se-
questration (Chmura et al., 2003). Mangroves in the tropics
have higher C stocks compared to subtropical and temperate
mangroves, with rainfall being the single greatest predictor;
when modelled, a combination of temperature, tidal range,
latitude, and annual rainfall explained 86 % of the variabil-
ity in global mangrove forest C (Sanders et al., 2016). San-
derman et al. (2018) found large-scale factors driving soil
formation (e.g. parent material, vegetation, climate, relief)
were 4 times more important than local drivers for predict-
ing mangrove sediment C stock density. Despite this, local-
ized covariates were necessary for modelling the variability
of sediment C stocks at finer spatial scales.

Differences in sediment stocks have also been observed
across blue C ecosystem types, with metre-deep C stocks
being highest in tidal marshes (389.6 Mg C ha−1), fol-
lowed by mangroves (319.6 Mg C ha−1), and finally seagrass
(69.9 Mg C ha−1; Siikamäki et al., 2013). In southeastern
Australia this trend was observed on a regional scale, where
an assessment of 96 blue C ecosystems revealed sediment C
stocks to 30 cm deep were highest in tidal marshes (87.1±
4.9 Mg C ha−1) and mangroves (65.6± 4.2 Mg C ha−1), fol-
lowed by seagrasses (24.3± 1.8 Mg C ha−1; Ewers Lewis et
al., 2018).

Considerable variability in sediment C stocks has also
been observed across species of vegetation. Lavery et
al. (2013) compared 17 Australian seagrass habitats encom-
passing 10 species and found an 18-fold difference in sedi-
ment C stocks across them. Similarly, saltmarsh species dif-
fer not only in magnitude of C stocks but also in their capac-
ity to retain allochthonous C (Sousa et al., 2010a). Species
richness within an ecosystem type may also play a role in
sediment C stock variability. In a global assessment, man-
grove stands with five genera had 70 %–90 % higher sedi-
ment C stocks per unit area compared to other richness levels
(one to seven species stands; Atwood et al., 2017).

Beyond vegetation type, geomorphological factors appear
to be most important when considering fine spatial scale sed-
iment C stock variability (Sanderman et al., 2018). Elevation
is likely an important driver of C stock variability in blue C
ecosystems. Generally, the majority of the variability in C
sequestration rates is linked to differences in sediment sup-
ply and inundation (Chmura et al., 2003). At lower eleva-
tions, faster sediment deposition may aid in C sequestration
by trapping organic matter from macrophytes and microbes
growing on soil surfaces (Connor et al., 2001). At higher ele-
vations, tidal flooding is less frequent, providing less oppor-
tunity for particles and C to settle out of the water column,
resulting in a lower contribution of allochthonous C from
marine or other sources compared to lower, more frequently
inundated marshes (Chen et al., 2016; Chmura et al., 2003;
Chmura and Hung, 2004).

The relative importance of elevation on sediment C stocks
may vary depending on the contributions of autochthonous
and allochthonous C. In ecosystems where the majority of
the sediment C pool is autochthonous, elevation may be less
important. Large variations in the origin of organic C can oc-
cur in mangroves, often with high C stocks being associated
with autochthonous C and lower C stocks being associated
with imported allochthonous C from marine and estuarine
sources (Bouillon et al., 2003); similar variability in C ori-
gin has been observed in temperate tidal marshes. Higher C
accumulation rates have been observed for upper tidal marsh
assemblages that included rush (Juncus), compared to suc-
culent (Sarcocornia) and grass (Sporobolus) tidal marsh as-
semblages located lower in the tidal frame (Kelleway et al.,
2017). Rushes had high autochthonous C inputs, while sedi-
mentation in succulents and grasses were mainly mineral.

Evidence is mounting that blue C ecosystems higher up
in catchments (i.e. primarily fluvially influenced) maintain
larger sediment C stocks than ecosystems further down in
catchments (i.e. primarily marine influenced). For exam-
ple, in southeastern Australia, tidal marshes in brackish flu-
vial environments had sediment C stocks 2 times higher
than those in marine tidal settings (Kelleway et al., 2016;
Macreadie et al., 2017a). The deeper, stable C stores of tidal
marshes are also higher in fluvial vs. marine-influenced set-
tings, aiding long-term preservation of C (Van De Broek et
al., 2016; Saintilan et al., 2013). The influence of fluvial in-
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puts on sediment C stocks appears to be linked to three pos-
sible mechanisms: (1) fluvial environments are usually as-
sociated with smaller grain size sediments (silts and muds),
which can enhance C preservation by reducing sediment aer-
ation compared to sandy sediments (Kelleway et al., 2016;
Saintilan et al., 2013), (2) higher freshwater input may lead
to higher plant biomass and therefore autochthonous C inputs
(Kelleway et al., 2016), and (3) there is a greater contribution
of terrestrial sediments via suspended particulate organic C
and suspended sediment concentration higher up in the catch-
ment compared to near the coast (Van De Broek et al., 2016).

Along with position in an estuary or catchment, proxim-
ity to freshwater inputs may drive differences in sediment C
stocks among and within ecosystem patches. Tidal marsh ac-
cretion rates, which have been positively correlated (87 %)
with organic matter inventory, tend to decrease with distance
from freshwater channels (Chmura and Hung, 2004), sug-
gesting sediment C stocks may be higher closer to channels.
Distance to freshwater is positively correlated with surface
elevation, suggesting areas further from channels are inun-
dated less frequently and thus have less sedimentation and
slower accretion rates (Chmura and Hung, 2004).

It is important to note that high sedimentation rates do not
necessarily result in high C sequestration rates or stocks if in-
organic sediments make up a substantial portion of new sedi-
ment composition. Finer particles have higher surface area to
volume ratios and tend to bind more organic molecules than
coarse particles (Mayer, 1994). In seagrasses, high mud con-
tent is correlated with high sediment organic C content, ex-
cept when large autochthonous inputs (e.g. seagrass detritus
from large species such as those of Posidonia and Amphibolis
genera) disrupt this correlation (Serrano et al., 2016a).

Anthropogenic activities may also influence the C sink ca-
pacity of blue C ecosystems, even when the sediments are
not directly disturbed (Lovelock et al., 2017). Land use, par-
ticularly in areas dominated by farmland and urbanization,
has been associated with worsening of seagrass condition, in-
cluding abundance and species richness (Quiros et al., 2017),
which may result in impacts on sediment C stocks. Nutrient
additions resulting from agriculture and urbanization may
increase primary productivity in nutrient-limited areas (Ar-
mitage and Fourqurean, 2016). However, reduced nutrient
inputs to coastal ecosystems could benefit C sequestration,
as nutrient additions can result in net C loss through plant
mortality, erosion, efflux, and remineralization via enhanced
microbial activity (Macreadie et al., 2017b). Further, excess
N has been linked to enhanced decomposition and an overall
increase in tidal marsh ecosystem respiration due to shifts in
microbial communities (Kearns et al., 2018).

Land use and human population may also impact blue C
sediment stocks through erosion of terrestrial soils. Human
activities causing erosion on land can result in increased sed-
iment loads to coastal areas, including fine particles with a
high affinity for C (Mazarrasa et al., 2017; Serrano et al.,
2016b). An average of 60 % of global soil erosion has been

tied to human activities, particularly population density, agri-
culture, and deforestation (Yang et al., 2003). Export of fine
sediments to coastal ecosystems from eroded terrestrial soils
may encourage trapping and preservation of C within the sed-
iments of blue C ecosystems.

Assessments of the drivers of blue C stock variability are
often completed at global scales (Atwood et al., 2017; Rovai
et al., 2018). Given the variability of sediment C stocks at
finer spatial scales and that coastal resources are managed
on finer scales, we wanted to investigate drivers influencing
regional blue C sediment stock variability. Here, we had the
opportunity to exclude comparisons between temperate and
tropical climates or effects of latitude by working on a stretch
of coastline that spans approximately 1500 km west to east.
We tested the relationship between ecological, geomorpho-
logical, and anthropogenic variables and sediment blue C
stocks in the mineral-dominated sediments of southeastern
Australia. By identifying drivers of small-scale variability in
sediment C stocks, across and within ecosystem patches, we
created a predictive model for estimating C stocks on a scale
relevant to coastal resource management. Our specific objec-
tives were to (1) identify ecological, geomorphological, and
anthropogenic factors driving variability in 30 cm deep sed-
iment blue C stocks within and across ecosystem patches in
southeastern Australia; (2) produce a spatially explicit model
of current 30 cm deep sediment blue C stocks based on the
relative importance of environmental drivers in southeastern
Australia; and (3) map regional 30 cm deep sediment blue C
stock magnitude and variability.

2 Materials and methods

2.1 Sediment C stock dataset

Sediment C stocks to 30 cm deep were estimated for 287
sediment cores from 96 blue C ecosystems across Victoria
in southeastern Australia (Ewers Lewis et al., 2020; Ewers
Lewis et al., 2018; Fig. 1). Full details of sample collec-
tion, laboratory analyses, and calculations of C stocks can
be found in Ewers Lewis et al. (2018). Briefly, three repli-
cate sediment cores (5 cm inner diameter) were taken in each
ecosystem (n= 125 in tidal marsh, n= 60 in mangroves, and
n= 102 in seagrasses). Once back in the laboratory, samples
were taken from three depths (0–2, 14–16, and 28–30 cm)
within each core. Samples were dried at 60◦ until a consis-
tent weight was achieved and then ground. Dry bulk density
(DBD) was calculated as the dry weight divided by the orig-
inal volume for all samples.

Based on the protocols by Baldock et al. (2013), a combi-
nation of diffuse reflectance Fourier transform mid-infrared
(MIR) spectroscopy and elemental analysis via oxidative
combustion using a LECO Trumac CN analyser was used to
determine organic C contents of all samples. Previous stud-
ies have demonstrated the accuracy of using MIR to esti-
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Figure 1. Sample locations for 30 cm deep sediment blue C stock measurements across Victoria, Australia (a), focusing in on Port Phillip
and Western Port bays (b). Service layer credits: Esri, Garmin, GEBCO, NOAA NGDC, and other contributors. Adapted from Ewers Lewis
et al. (2018).

mate organic C stocks of sediments (Baldock et al., 2013;
Van De Broek and Govers, 2019; Ewers Lewis et al., 2018).
MIR spectra were acquired for all samples, and a subset of
200 representative samples was selected based on a prin-
cipal components analysis (PCA) of the MIR results uti-
lizing the Kennard-Stone algorithm. Gravimetric contents
of organic carbon were measured directly in the laboratory
for the 200-sample subset (Baldock et al., 2013). A partial
least-squares regression (PSLR) was created using a Ran-
dom Cross-Validation Approach (Unscrambler 10.3, CAMO
Software AS, Oslo, Norway) and used to build algorithms
to predict square-root-transformed total carbon, total organic
carbon, total nitrogen, and inorganic carbon for the entire
dataset. The PSLR model was evaluated based on parame-
ters from the chemometric analysis of soil properties (Bellon-
Maurel et al., 2010; Bellon-Maurel and McBratney, 2011),
and the relationship between measured and predicted values
was assessed based on slope, offset, correlation coefficient
(r), R2, the root-mean-square error (RMSE), bias, and stan-
dard error (SE) of calibration (SEC) and validation (SEP; see
Ewers Lewis et al., 2018 for full details). R2 for all square-
root-transformed variables was ≥ 0.94.

Sediment C stocks were calculated based on Howard et
al. (2014). Organic C density (mg C cm−3) was calculated by
multiplying organic C content (mg C g−1) by DBD (g cm−3).
Linear splines were applied to each core to estimate C den-
sity for each 2 cm increment within the 30 cm core, then C

densities for each interval (measured and extrapolated) were
summed and converted to Mg C ha−1 to estimate total stock
down to 30 cm deep for each core location.

Though it is common in the literature to sample to 1 m
deep in blue C sediments, the sampling protocol used for col-
lecting these data (Ewers Lewis et al., 2018) was designed to
maximize spatial coverage of sediment C samples rather than
sample entire sediment profiles (which may extend well be-
yond 1 m deep). Greater spatial coverage allowed us to test
the relationships between a variety of potential drivers and
30 cm deep sediment C stocks on both fine and broad scales.

2.2 Generation of predictor variables

Our general approach to identifying potential drivers of
30 cm deep sediment C stock variability was to develop a
predictive model based on spatially explicit environmental
factors associated with our high spatial density of sediment
C sampling. For clarity, we have grouped predictor variables
into three categories – ecological, anthropogenic, and geo-
morphological – though the processes impacting C storage
for each may span all three categories (Tables 1, S1 in the
Supplement).

Values of predictor variables for each core were deter-
mined from spatial data either as the collective value rep-
resenting activities within the catchment or based on the ex-
act location of sample collection, depending on the variable.
Geographical boundaries for catchments in Victoria were de-
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rived using high-resolution elevation data and flow accumu-
lation models to define the spatial extents influencing fluvial
and estuarine catchments (Barton et al., 2008; Fig. S1 in the
Supplement). In some instances, seagrass locations sampled
were beyond fluvial and estuarine catchments defined, thus
we allocated characteristics of the nearest catchment region
to characterize catchment influences at these locations.

Plant community was defined in two ways. First, more
generally as “ecosystem” (mangrove forest, tidal marsh, or
seagrass meadow) based on the plant cover where the sam-
ple was taken. Second, plant communities were further de-
fined by either dominant species (for seagrasses, for which
most were monotypic beds) or ecological vegetation class
(EVC; for tidal marshes); for clarity, classification by either
dominant species or EVC will be referred to as EVC from
here on out. EVC was determined for each sampling location
based on percentage cover of 1 m2 quadrat photos taken dur-
ing sample collection. Tidal marsh EVCs sampled included
coastal tussock saltmarsh, wet saltmarsh herbland, and wet
saltmarsh shrubland, as described by Boon et al. (2011).
Only one mangrove species is present in Victoria (the grey
mangrove, Avicennia marina); therefore, further classifica-
tion of this ecosystem was not used. Seagrass species sam-
pled included Lepilaena marina, Posidonia australis, Ruppia
megacarpa, Zostera muelleri, and Zostera nigricaulis.

Topographical variables for each sample location included
elevation and slope. Elevation data were obtained from the
Victorian Coastal Digital Elevation Model 2017 from the Co-
operative Research Centre for Spatial Information. Elevation
data at 2.5 m spatial resolution were used where available.
Where not available (for 2.8 % of cores), 10 m spatial reso-
lution elevation data were used to fill in the gaps. Slope was
calculated from these data using the “Slope” tool in ArcMap
(v. 10.2.2 for desktop). The elevation data are a composite
product that integrated terrestrial and bathymetric lidar as
well as multi-beam sonar data. The vertical accuracies of the
data varied with sensor setup for acquisition: ±10 cm at 1
sigma (68 % conf. level) in bare ground for topographic lidar
data (for the majority of our dataset), ±50 cm for bathymet-
ric lidar, and ±<10 cm for multi-beam sonar data. Examples
of spatial data used to develop models can be seen in Fig. 2.
Geomorphological setting was represented for each sample
location using two proxies: distance to coast and distance to
freshwater channel. For each, continuous Euclidean distance
rasters at 10 m resolution were created for the feature of inter-
est using the “Euclidean Distance” tool in ArcMap. Coastline
and freshwater channel data came from the State of Victoria,
Department of Environment, Land, Water and Planning 2018
(Victorian Coastline 2008 and Vicmap Hydro shapefiles, re-
spectively). The “Extract Values to Points” tool in ArcMap
was used to extract raster values to each sample location.

Primary lithology (rock type, i.e. potential sediment par-
ent material) was defined as the rock type covering the great-
est proportion of the catchment area intersecting with sample
locations. To calculate area of each lithology, the “Tabulate

Area” tool was used in ArcMap based on the catchment re-
gion polygons. From the total area of each lithology in each
catchment, the one with the greatest proportion was identi-
fied and input into a new field from which a new primary
lithology raster was created. The Extract Values to Points
tool in ArcMap was used to extract primary lithology raster
values to each sample location. In total, 21 lithologies were
identified in the dataset, 17 of which were identified as pri-
mary lithologies of the coastal catchments (Table S2).

Variables to assess the influence of anthropogenic pro-
cesses on 30 cm deep sediment blue C stocks included three
relating to land use and one relating to human population.
Primary land use for the catchment was first defined as the
primary land use (based on land use in individual poly-
gons) covering the greatest proportion of the catchment area.
Land use spatial data were obtained from the Victorian Land
Use Information System (2014/2015) from the Victoria State
Government, Department of Economic Development, Jobs,
Transport and Resources. In total, nine general primary land
use categories were identified in the dataset, all of which
were identified as primary land uses of the coastal catch-
ments (Table S3). The nine land use categories were pooled
into three simplified categories: urbanized, agricultural, and
natural. Then the areas of each within the catchment were
summed and divided by total catchment area to provide the
proportion of each catchment associated with those cate-
gories.

Human population densities were calculated for each
catchment based on 2011 Australian census data, which were
the most recent data available (Table S1). Population density
was calculated for each district by dividing the population of
the district by the area; this was then converted to a raster
(100 m2 resolution) to calculate the mean population density
for the area of each catchment.

Complete details of data availability for inputs and outputs
of our models can be found in Table S10.

2.3 Model generation, selection, averaging, and
validation

To identify drivers of 30 cm deep sediment C stock vari-
ability and create the best predictive model of sediment C
stocks to 30 cm deep, we utilized a multi-step process based
on an information theoretic approach and multi-model infer-
ence (Fig. 3). Traditional approaches have relied on identifi-
cation of the “best” data-based model; however, information-
theoretic approaches allow for more reliable predictions
through utilization of multiple models, especially in cases
where lower-ranked models may be essentially as good as the
best ranked model (Burnham and Anderson, 2002; Symonds
and Moussalli, 2011). Further, information theoretic model
selection has been demonstrated to provide significant advan-
tages for explaining phenomena with more complex drivers
(Richards et al., 2011). Here, we first looked broadly at our
variables of interest by narrowing down to the best mod-
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Figure 2. Variability of select potential C stock drivers in Port Phillip Bay, Victoria, Australia. Raw spatial data layers were processed to
define covariate values at each sample location or for the catchment of the sample location. Pictured layers include (a) elevation raster at
10 m resolution, (b) lithology polygons, (c) land use polygons, and (d) population density polygons.

els containing all possible variables (“global” models, as ex-
plained below) using AICC (Akaike information criteria, cor-
rected for small sample size) to explain the variability ob-
served in the training dataset (70 % of total C stock data;
Symonds and Moussalli, 2011). From there, we identified
which variables within the best global models best explained
the observed variability in C stock data in order to remove
unnecessary variables from the model equation (through the
process of “dredging” and selecting the best subset, ex-
plained in detail below). The validity of removing unnec-
essary variables from the model is supported by the con-
cept of parsimony, which suggests that models more compli-
cated than the best model provide little benefit and should be
eliminated (Burnham and Anderson, 2002; Richards, 2008).
The best subset of models generated from the global models
(“dredge products”) were selected based on delta AICC<2,
which are viewed as essentially interchangeable with the best
model (Symonds and Moussalli, 2011). Each subset of best
models was used to generate an averaged model, which was
tested by generating predictions of C stocks for a reserved
(30 %) subset of the dataset. The best-performing model was
used to generate a predictive map of C stocks to 30 cm deep

for mapped blue C ecosystems in Victoria. R code for this
project can be found in the Harvard Dataverse (Ewers Lewis
and Young, 2020).

To begin this process, potential ecological, geomorpholog-
ical, and anthropogenic drivers were identified from the lit-
erature, and relevant proxies were extracted from available
spatial data using ArcMap (Tables 1; S1). Predictor variable
values derived from spatial data (along with our response
variable values of C stocks) were compiled into a master data
table in ArcMap. Sample rows were randomly assigned as ei-
ther “training” data to build the model (70 % of the data) or
“evaluating” data with which to validate the model (the re-
maining 30 % of the data). The training dataset was imported
into R (R Core Team, 2018) for further analysis.

Covariates were tested for correlation before composing
the global models. From our 11 covariates of interest, covari-
ate pairs were considered correlated and not used together in
modelling based on a threshold value of ∼≥ 0.4 correlation.
The exception to this was covariate pairs that had a correla-
tion value <0.4 but were still considered correlated by defini-
tion and therefore were not used together in modelling (e.g.
proportion of the catchment area urbanized and proportion
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Figure 3. Conceptual workflow of sediment C stock modelling methods: preparation, model creation and selection, model averaging, vali-
dation, and predictions.

agricultural, Fig. S2). This resulted in four variables that did
not correlate with other covariates and could be used together
in all models (slope, distance to coast, distance to freshwa-
ter, and primary lithology – hereafter referred to as “geo-
morphological covariates”), along with correlating covariates
that fell into one of two groupings: (1) ecosystem, EVC, and
elevation were correlated (hereafter referred to as “ecologi-
cal covariates”, and (2) mean population density, proportion
urbanized land use, proportion agricultural land use, and pro-
portion natural land use were correlated (hereafter referred to
as “anthropogenic covariates”).

As a first step, we aimed to identify which models that in-
cluded all (non-correlated) variables were best for explaining
the variability in C stock data. Global models (i.e. containing
all possible variables) were created and ranked to identify the
most important drivers of C stock variability. General linear
mixed-effects models (GLMMs) were generated (family =
gamma, as our data were right-skewed; lme4 package v. 1.1–
17; Bates et al., 2015) using all geomorphological covariates,

along with one covariate each from the ecological and an-
thropogenic variable groups, resulting in 12 global models
containing 6 covariates each (Table S4). Continuous covari-
ates were scaled in R. Site (i.e. a single sampling area that
contained from one ecosystem up to all three ecosystems)
was used as a random effect in all models to account for spa-
tial autocorrelation observed at ∼ 78 km.

The 12 global models were ranked using AICC (AICcmo-
davg package v. 2.1–1; Mazerolle, 2017; Table S5). The four
best global models were chosen for further analysis based
on delta AICC ≤∼ 5.0 compared to >30 for all other mod-
els. Because the top four global models all used EVC as the
ecological variable, this process was repeated for the next
four best models – those that included ecosystem as the eco-
logical predictor – to create averaged models that could be
tested and used for predictions when more specific, spatially
explicit plant community data (i.e. EVC) were not available.

The eight global models were “dredged” (MuMIn pack-
age v. 1.42.1; Barton, 2018) to assess the relative importance
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Table 1. Hypothesized drivers of 30 cm deep sediment blue C stock variability. Drivers were grouped into three categories: (1) ecological
(ecosystem type and dominant species or EVC), (2) geomorphological (elevation, slope, distance to freshwater channel, distance to coast,
and lithology), and (3) anthropogenic (land use and population). A more detailed explanation of driver rationale, along with literature and
spatial data references, can be found in Table S1.

Driver Hypothesis and rationale

Ecological

Ecosystem type Ecosystem is the dominant driver of C stock variability. C stocks differ by ecosystem type due to
(1) differences in position in the tidal frame and (2) differences in morphology, which influence
settling and trapping of suspended particles, as well as production of autochthonous C inputs.

Ecological vegetation class Species composition better explains C stock variability than ecosystem alone. C stocks vary
across species and community composition, as well as elevation.

Geomorphological

Elevation Lower elevations are correlated with higher C stocks. Lower elevations have higher
sedimentation rates, aiding the trapping of organic C, and are inundated more often, providing
more opportunity for contribution of allochthonous C.

Slope Shallower slopes are correlated with higher C stocks. Steeper slopes are more vulnerable to
erosion and less conducive to sedimentation and particle trapping than shallower slopes.

Distance to freshwater channel Distance to freshwater channel is negatively correlated with C stocks. Being in close proximity
to freshwater inputs may increase plant growth via freshwater and nutrient inputs and enhance
C preservation through delivery of smaller grain size particles.

Distance to coast C stocks are greater higher up in the catchment. Greater inputs of organic C from terrestrial
sources higher in the catchment result in higher sediment C stocks.

Lithology C stocks vary with terrestrial parent material of sediments. Rock type may influence grain size
and mineral content of sediments exported from catchments; smaller grain sizes and certain
minerals enhance C stocks and preservation.

Anthropogenic

Land use C stocks vary based on land use activities in the catchment. Export of terrestrial C, nutrients, and
sediments varies by land use, especially when comparing urbanized, agricultural, and natural
land uses.

Population density C stocks differ across population levels due to a correlation with land use.
Increases in population size lead to increases in urbanization and competition for land use.

of covariates included in each model. In this context, dredg-
ing refers to the generation of a set of models that includes
all possible combinations of fixed effects from the global
model, containing from six to one variables (i.e. all combi-
nations of five variables, all combinations of four variables,
and so on). The dredge products of each global model (i.e.
models created from dredging) were ranked using AICC and
the best models (delta AICC<2) were used to produce aver-
aged models (named based on the global model they were
generated from, e.g. global model 7→ dredged and aver-
aged→ averaged model 7). Averaged models were produced
using the “model.avg” function (MuMIn package v. 1.42.1;
Barton, 2018). The parameter estimates for each averaged
model represent the average of that parameter’s values from
the models in which the variable appeared (from within the
subset AICC<2).

Averaged models were validated using the 30 % evalua-
tion dataset. Due to the limitations of using cross-validation
and bootstrapping on models with random effects (Colby and
Bair, 2013), a direct comparison was done between predicted
and actual values of the reserved dataset. The “predict” func-
tion in R was used to generate predicted C stock values for
30 cm deep sediments using each of the eight averaged mod-
els on the reserved dataset. Each set of predicted values was
compared to measured 30 cm deep sediment C stock values
using a linear model to compute R2 (adjusted) values. The
models with the highest R2(adj) value from each set (one for
“ecosystem-based” models and one for EVC-based” models)
were applied to generate C stock predictions.

To test for differences in 30 cm deep sediment C
stocks among EVCs, C stocks were log transformed
to meet assumptions of normality and equal variances
(log(Mg C ha−1)) and a one-way analysis of variance
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(ANOVA) was run using EVC as the factor. A Tukey’s
post hoc analysis was used to distinguish groupings.

2.4 Prediction of 30 cm deep sediment blue C stocks

Spatial data relevant to the best ecosystem model were com-
piled for prediction of current ecosystem extent sediment C
stocks to 30 cm deep and included rasters for total current
ecosystem extent across Victoria (all mapped tidal marsh,
mangrove, and seagrass), Euclidean distance to coast, and
slope. Details and source information for all spatial data can
be found in Table S1. All rasters were 10 m resolution and
cut to the same extent using the “Extract by Mask” tool
in ArcMap. The rasters were brought into R and processed
using the raster package (Hijmans, 2017). Continuous vari-
ables were scaled to match the scaled variables of the model.
Rasters were then compiled into a list, stacked, and used to
generate a predictive raster map (TIF file) of 30 cm deep
sediment C stocks using the predict function. The C stock
prediction raster (10 m resolution) was brought into ArcMap
and resampled to 5 m resolution to better align to ecosys-
tem extents. Sediment C stock values for each ecosystem ex-
tent were extracted to separate rasters and used to generate
zonal statistics tables for estimating 30 cm deep sediment C
stock sums and means. Rasters used for calculating C sums
were converted to proper units to match map resolution using
the “Map Algebra” tool (e.g. Mg C ha−1 converted to Mg C
per 25 m2 raster cell). Sediment C stocks to 30 cm deep were
summed for each ecosystem by catchment region, regions of
interest, and the entire state. Regions of interest were iden-
tified visually as bays or estuaries hosting a substantial frac-
tion of the state’s blue C ecosystem distribution. Mapped pre-
dictions of modelled 30 cm deep sediment C stocks for this
study can be found on the Harvard Dataverse (Ewers Lewis,
2020).

3 Results

3.1 Drivers of 30 cm deep sediment blue C stock
variability

Ranking of the 12 global models using AICC suggested the
ecological variable was the most important for determining
model quality (Tables S4 and S5). The top four models all
contained EVC as the ecological variable, with the following
four containing ecosystem, and the remaining four contain-
ing elevation. The top four models fell within a delta AICC
value of ∼ 5.0 and under, compared to the remaining mod-
els having delta AICC values of ∼ 35 or more, suggesting
the top four models using EVC were much better at explain-
ing 30 cm deep sediment C stock variability than the remain-
ing models. Within rankings for each ecological variable, an-
thropogenic variables in the top eight models ranked as fol-
lows, from highest to lowest importance: proportion catch-
ment land use that is natural, proportion urbanized land use,

mean population density, and proportion agricultural land
use.

Dredging the top four global models and averaging the
best dredge products (delta AICC<2; Table S6) resulted in
only three unique sets of model-averaged parameters (Ta-
ble 2; full output can be seen in Table S7). The anthropogenic
variables of mean population density and proportion agricul-
tural land use did not appear in the best models produced
from dredging global models 2 and 8, respectively. There-
fore, both resulted in averaged models containing the same
ecological and geomorphological variables, with no anthro-
pogenic variable, and will hereafter be referred to as averaged
model 2.

Parameter estimates from averaged models suggests EVC
was the most important predictor of 30 cm deep sediment C
stocks and was the only variable for which the 95 % con-
fidence interval of the estimates did not cross 0 (Tables 2
and S7), suggesting a true effect of the variable on observed
C stock variability (an estimate that included 0 means that
there is potentially no impact of the variable on C stocks).
Specifically, seagrasses P. australis, R. megacarpa, Z. muel-
leri, and Z. nigricaulis had 30 cm deep sediment C stocks
that were significantly different than those of coastal tussock
saltmarsh (assigned as the intercept in the model, or base-
line EVC for which to compare the effect of other EVCs
on C stocks), while all other tidal marsh EVCs, mangroves,
and seagrass L. marina did not. This was confirmed by the
ANOVA and Tukey’s pairwise comparisons; there was a sig-
nificant difference in 30 cm deep sediment C stocks based
on EVC F8,284 = 34.80, p<0.001, R2(adj)= 48.77 %); tidal
marsh, mangrove, and seagrass L. marina had significantly
higher C stocks than seagrasses P. australis, Z. nigricaulis,
and Z. muelleri (Fig. 4).

Across all three EVC-averaged models, distance to coast
was the next most important geomorphological predictor,
ranging from 50 % to 51 % relative importance compared to
EVC, followed by distance to freshwater (23 %–29 % relative
importance compared to EVC), and finally slope (19 %–24 %
relative importance compared to EVC). Of the two anthro-
pogenic variables included, proportion urbanized land use
was 47 % relative importance compared to EVC (averaged
model 5) and proportion natural land use was 21 % relative
importance compared to EVC (averaged model 11), suggest-
ing proportion urbanized better explains variability in 30 cm
deep sediment C stocks. The factor lithology did not appear
in any of the best dredged models from the four global mod-
els.

For the next four averaged models, the ecological variable,
ecosystem, was again the most important covariate (relative
importance= 1.00; Table 3; Tables S8 and S9). Seagrasses
impacted 30 cm deep sediment C stocks differently to tidal
marshes (the intercept), as evidenced by the seagrass con-
fidence intervals not crossing zero, while mangroves were
no different to tidal marshes. However, in these averaged
models, anthropogenic variables had greater relative impor-
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Table 2. Parameter estimates for averaged models containing ecological vegetation class (EVC) as the ecological variable. Parameter esti-
mates were calculated based on averaging the best model products (delta AICC<2) resulting from dredging the top four EVC global models
(global model 11, 5, 2, and 8; descriptions of global models can be found in Table S4). Note that averaged model 2 and 8 are the same because
neither of the anthropogenic covariates from the global models (mean population density and proportion of agricultural land use for global
models 2 and 8, respectively) appeared in the best dredge model products. EVCs are coded by ecosystem type: bold is tidal marsh, italic is
mangrove, bold and italic is seagrass. Adj SE stands for adjusted standard error, RI stands for relative importance. N/A: the parameter was
not included in the averaged model.

Averaged model 11 Averaged model 5 Averaged model 2

Parameter Estimate± adj SE RI Estimate± adj SE RI Estimate± adj SE RI

Intercept EVC: coastal
tussock saltmarsh

0.0177± 0.0043 0.0171± 0.0042 0.0176± 0.0042

EVC: wet saltmarsh herbland 0.0012± 0.0041 1.00 0.0013± 0.0040 1.00 0.0011± 0.0041 1.00
EVC: wet saltmarsh
shrubland

−0.0027± 0.0042 1.00 −0.0023± 0.0042 1.00 −0.0028± 0.0042 1.00

EVC: A. marina 0.0011± 0.0041 1.00 0.0015± 0.0041 1.00 0.0011± 0.0041 1.00
EVC: L. marina −0.0024± 0.0051 1.00 −0.0020± 0.0051 1.00 −0.0024± 0.0051 1.00
EVC: P. australis 0.0394± 0.0179 1.00 0.0405± 0.0179 1.00 0.0412± 0.0180 1.00
EVC: R. megacarpa 0.0903± 0.0313 1.00 0.0908± 0.0314 1.00 0.0909± 0.0313 1.00
EVC: Z. muelleri 0.0291± 0.0047 1.00 0.0295± 0.0047 1.00 0.0292± 0.0047 1.00
EVC: Z. nigricaulis 0.0397± 0.0172 1.00 0.0389± 0.0172 1.00 0.0398± 0.0172 1.00
Distance to coast −0.0011± 0.0015 0.51 −0.0011± 0.0015 0.51 −0.0011± 0.0015 0.50
Distance to freshwater −0.0005± 0.0014 0.23 −0.0006± 0.0015 0.29 −0.0007± 0.0015 0.29
Slope −0.0001± 0.0004 0.19 −0.0002± 0.0005 0.23 −0.0002± 0.0005 0.24
Proportion natural 0.0003± 0.0009 0.21 N/A N/A N/A N/A
Proportion urbanized N/A N/A −0.0010± 0.0014 0.47 N/A N/A

Figure 4. Measured C stocks (Mg C ha−1; average± standard er-
ror) in the top 30 cm of sediment by EVC. Bars are colour-coded
by ecosystem type: red is tidal marsh, green is mangrove, and blue
is seagrass. C stocks differed significantly by EVC, with higher C
stocks in coastal tussock saltmarsh, wet saltmarsh herbland, wet
saltmarsh shrubland, mangroves A. marina, and seagrass L. ma-
rina (group a), compared to seagrasses P. australis, Z. nigricaulis,
and Z. muelleri (group b; ANOVA and Tukey pairwise compari-
son: F8,284 = 34.80; p<0.001; R2(adj)= 48.77 %). Error bars rep-
resent standard error of the mean.

tance than geomorphological predictors, unlike the models
using EVC as the ecological covariate. Proportion urbaniza-
tion was still the most important anthropogenic variable, fol-
lowed by proportion natural, but both had much higher rela-

tive importance (0.87 and 0.82, respectively) to the ecologi-
cal variable compared to in the EVC models. Additionally,
mean population density appeared in one of the averaged
models, though it did not appear in any of the EVC mod-
els. Geomorphological variables, on the other hand, appeared
less important in the ecosystem models than the EVC mod-
els. Relative importance of distance to coast and slope were
both lower than in the previous models, and distance to fresh-
water channels did not appear in the top dredged models with
ecosystem at all.

3.2 Model validation

Comparison of 30 cm deep sediment C stock predictions
from averaged models to actual C stock values in the 30 %
evaluation dataset show that our models accounted for ∼
44 %–49 % of the observed variability in 30 cm deep sedi-
ment C stock values (Fig. S3). The best three averaged mod-
els, using EVC as the ecological predictor (averaged mod-
els 11, 5, and 2), had very similar R2(adj) values (ranging
0.4829–0.4881), with the best model (averaged model 2) be-
ing the one that did not include any anthropogenic variables.
The same was true when comparing models using ecosys-
tem as the ecological variable (averaged models 10, 4, 1,
and 7); the best R2(adj) was for the model with no anthro-
pogenic variable (averaged model 7; 0.4618 compared to
0.4514, 0.4465, and 0.4566; Fig. S3).

Biogeosciences, 17, 2041–2059, 2020 www.biogeosciences.net/17/2041/2020/



C. J. Ewers Lewis et al.: Drivers and modelling of blue carbon stock variability 2051

Table 3. Parameter estimates for averaged models containing ecosystem as the ecological variable. Parameter estimates were calculated
based on averaging the best model products (delta AICC<2) resulting from dredging the four global models that used ecosystem as the
ecological variable (global models 10, 4, 1, and 7; descriptions of global models can be found in Table S4), combined with geomorphological
and anthropogenic variables as specified. Ecosystems are coded by ecosystem type: bold is tidal marsh, italic is mangrove, bold and italic is
seagrass. Adj SE stands for adjusted standard error, RI stands for relative importance. N/A: the parameter was not included in the averaged
model.

Averaged model 10 Averaged model 4 Averaged model 1 Averaged model 7

Parameter Estimate± adj SE RI Estimate± adj SE RI Estimate± adj SE RI Estimate± adj SE RI

Intercept ecosystem:
tidal marsh

0.0178± 0.0020 0.0166± 0.0018 0.0174± 0.0020 0.0174± 0.0020

Ecosystem: mangrove 0.0022± 0.0013 1.00 0.0024± 0.0013 1.00 0.0022± 0.0013 1.00 0.0022± 0.0013 1.00
Ecosystem: seagrass 0.0244± 0.0026 1.00 0.0254± 0.0025 1.00 0.0252± 0.0025 1.00 0.0252± 0.0025 1.00
Distance to coast −0.0009± 0.0014 0.45 −0.0006± 0.0010 0.39 −0.0003± 0.0008 0.22 −0.0003± 0.0008 0.27
Slope −0.0002± 0.0006 0.30 −0.0002± 0.0005 0.29 −0.0002± 0.0005 0.21 −0.0002± 0.0005 0.26
Proportion natural 0.0022± 0.0017 0.82 N/A N/A N/A N/A N/A N/A
Proportion urbanized N/A N/A −0.0024± 0.0015 0.87 N/A N/A N/A N/A
Mean population
density

N/A N/A N/A N/A −0.0001± 0.0004 0.18 N/A N/A

3.3 Modelled 30 cm deep sediment blue C stocks

We estimated a total of over 2.31 million Mg C stored in
the top 30 cm of sediments in the ∼ 68 700 ha of blue C
ecosystems across Victoria (Table 4; Fig. 5). This estimate
is based on predictions from our best averaged model that
utilized ecosystem type as the ecological variable (aver-
aged model 7), which explained 46.18 % of observed vari-
ability in C stock data and had an RMSE of 39.29. Tidal
marshes stored 48.2 %, mangroves stored 11.0 %, and sea-
grasses stored 40.8 % of total predicted 30 cm deep sediment
C stocks. Mean predicted sediment C stocks (±SD) to 30 cm
deep for each ecosystem type were 57.96 (±2.90) Mg C ha−1

for tidal marsh, 50.64 (±1.35) Mg C ha−1 for mangroves, and
23.48 (±0.57) Mg C ha−1 for seagrass based on predicted C
stock values in all raster cells of each ecosystem’s mapped
areal extent in Victoria. These 30 cm deep sediment C stock
values ranged from 23.33 to 291.18, 23.34 to 77.81, and
23.33 to 73.42 Mg C ha−1 for tidal marsh, mangroves, and
seagrass, respectively.

A total of 14 areas of the coast were identified as regions
of interest (ROIs) and contained over 99.5 % of Victoria’s to-
tal 30 cm deep sediment blue C stocks (Table 5) in 95.6 % of
the state’s blue C ecosystem area (∼ 65 700 ha). Of these re-
gions, four of them contained over 87.6 % of total estimated
30 cm deep sediment C stocks in 86.5 % (∼ 59 410 ha) of the
state’s blue C ecosystem area. Listed from highest to lowest
C stocks, they were as follows: Corner Inlet, Western Port
Bay, Gippsland Lakes, and Port Phillip Bay.

4 Discussion

4.1 Drivers of 30 cm deep sediment blue C stock
variability

Our best model explained 48.8 % of the observed variability
in 30 cm deep sediment C stocks, with the ecological vari-
able, i.e. plant community, being the greatest predictor of C
stock variability in all of the models. Plant community is re-
lated to C stocks both directly and indirectly through corre-
lation with other variables driving C stock variability. Plant
morphology may directly influence 30 cm deep sediment C
stocks through the magnitude of plant biomass contributed
to autochthonous C stocks and through an interaction with
hydrodynamics. For example, higher C stock values in larger
seagrass species, such as P. australis, are thought to be linked
to both higher inputs of autochthonous C (larger rhizomes
with more refractory C) and better particle trapping via a
deeper canopy, which reduces water velocities and resus-
pension (Lavery et al., 2013). Under similar hydroperiods,
saltmarsh grasses have been shown to have better sediment
trapping abilities compared to mangrove trees (Chen et al.,
2018), further suggesting plant traits (e.g. productivity and
morphology) are an important driver of C stocks, rather than
indirect impacts of inundation regimes alone.

Plant community is correlated with a number of other
variables that may influence C storage, such as inundation
regimes. Within and among similar ecosystems, elevation is
a proxy for inundation regimes and can drive differences
in C stocks. For example, in southeastern Australia, tidal
marshes in the upper intertidal zone had lower C accumu-
lation rates than mangroves, with the cause hypothesized to
be that the tidal inundation was shallower, less frequent, and
for shorter durations, limiting the amount of allochthonous C
accumulation (Saintilan et al., 2013). This appeared to be a
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Figure 5. Modelled 30 cm deep sediment blue C stocks for Victoria, Australia. Location of Victoria in Australia (a); coastal catchment regions
of Victoria (b); modelled C stocks for all blue C ecosystems in Port Phillip Bay (c); modelled saltmarsh C stocks in Lake Connewarre (d);
modelled mangrove C stocks in subsection of Lake Connewarre (e); modelled C stocks for all blue C ecosystems in Western Port Bay
(f); modelled C stocks for all blue C ecosystems in Rhyll (Phillip Island) (g); and modelled saltmarsh C stocks (h1), mangrove C stocks
(h2), and seagrass C stocks (h3) in a subsection of Rhyll. Base map service layer credits: Esri, Garmin, GEBCO, NOAA NGDC, and other
contributors.

more important driver in C accumulation variability than the
difference in biomass production between the two ecosys-
tems (Saintilan et al., 2013), highlighting the importance of
elevation in determining C stocks. In our study, elevation
was correlated to ecosystem and EVC, thus the differing ef-

fects of elevation compared to vegetation community could
not be teased apart without violating assumptions of non-
collinearity in our models. However, the higher ranking of
global models with EVC or ecosystem above those with el-
evation in our study suggests that the plant community itself
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Table 4. Blue C ecosystem area (ha) and modelled 30 cm deep sediment C stocks (Mg C) by catchment region and total across the state
(Victoria, Australia). N/A signifies that no ecosystem extent is reflected in recent mapping in these catchment regions; therefore, C stock
measurements could not be scaled up or modelled by ecosystem area.

Tidal marsh Mangrove Seagrass All blue C ecosystems in Victoria

Catchment region Area (ha) C stocks (Mg C) Area (ha) C stocks (Mg C) Area (ha) C stocks (Mg C) Total area (ha) Total blue C
stock (Mg C)

Glenelg Hopkins 138 6828 N/A N/A N/A N/A 170 6828
Corangamite 3010 187 943 58 3022 5355 128 117 8423 319 083
Port Phillip and Western Port bays 3108 158 604 1828 90 359 14 457 328 725 19 393 577 688
West Gippsland 13 038 711 083 3301 161 652 17 508 413 642 33 847 1 286 377
East Gippsland 1332 50 504 N/A N/A 5552 72 873 6884 123 377

Total 20 626 1 114 961 5187 255 034 42 903 943 357 68 715 2 313 352

Table 5. Modelled 30 cm deep sediment blue C stocks (Mg C) by region of interest (ROI; listed from west to east). N/A: ecosystem does not
occur in ROI.

C stocks (Mg C) by ecosystem

Region of interest Tidal marsh Mangrove Seagrass All blue C
ecosystems in ROI

Breamlea 18 650 N/A N/A 18 650
Lake Connewarre/Barwon Heads 101 218 2890 N/A 104 109
Port Phillip Bay 105 169 243 156 824 262 236
Western Port Bay 120 827 90 248 300 420 511 495
Andersons Inlet 18 992 7455 890 27 337
Shallow Inlet 9384 N/A 19 778 29 162
Corner Inlet 253 367 154 198 346 317 753 882
Jack Smith Lake 73 839 N/A N/A 73 839
Lake Denison 7353 N/A N/A 7353
Gippsland Lakes 391 023 N/A 99 267 490 291
Lake Corringle 3449 N/A N/A 3449
Bemm River region N/A N/A 7806 7806
Tamboon Inlet N/A N/A 2563 2563
Wallagaraugh River/Mallacoota region 3180 N/A 8117 11 296

Total 1 106 452 255 034 941 982 2 303 468

is a better predictor of 30 cm deep sediment C stocks than
simply position in the tidal frame.

Our global models specifying dominant species (for sea-
grass meadows) or EVC (for tidal marshes) ranked higher in
our model selection than those that only specified the ecosys-
tem (i.e. tidal marsh, mangrove, or seagrass). This ranking
was supported by our model validation, in which our aver-
aged model that best explained 30 cm deep sediment C stock
variability included EVC and accounted for 48.8 % of the
variability observed (Fig. S3). Still, the best averaged model
containing ecosystem as the ecological predictor performed
nearly as well and explained 46.2 % of the variability. These
results suggest that even when specific data on species com-
position are not available, 30 cm deep sediment C stocks can
be estimated with a similar degree of confidence based on
ecosystem type, which is often a much more readily avail-
able form of data and therefore favourable for calculating
sediment C stocks in data-deficient areas.

Geomorphological variables were more important than
most anthropogenic variables in our models (Tables 2 and
3). Though lithology was not part of our averaged models, it
is possible that its exclusion was due mostly to scale (catch-
ment) and that it may be important when accounted for on
a more local scale. Distance to coast, distance to freshwa-
ter channels, and slope all appeared in the averaged mod-
els using EVC, with distance to coast being most important.
However, in models using ecosystem, distance to freshwater
channels was no longer important enough to appear in the
averaged models, and the anthropogenic variables, propor-
tion urbanized and proportion natural, were more important
than any of the geomorphological variables. Model valida-
tion revealed that the best predictions for either set of models
(those using EVC and those using ecosystem as the ecolog-
ical variable) came from the model that did not include any
anthropogenic variables.
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Although our models suggest anthropogenic variables
have little impact on 30 cm deep sediment C stocks, it is more
likely that anthropogenic variables are impacting processes
we could not measure. For example, excess nutrients result-
ing from certain land uses may stress plants to the point of af-
fecting survival and therefore sediment stability (Macreadie
et al., 2017b). Without measuring changes to ecosystem dis-
tribution or sediment thickness (i.e. erosion), we could not
pick up on these sediment C losses. Similarly, though en-
hanced sedimentation rates may increase C burial in catch-
ments with certain land uses (e.g. high population density or
high area of agriculture; Yang et al., 2003), this addition to C
stocks would be reflected in sequestration rate, which we did
not measure in this study.

Proxies for the drivers of sediment C stock variability can
be quantified and described for modelling in numerous ways.
Though we maximized our ability to choose variables repre-
senting meaningful relationships with 30 cm deep sediment
C stocks by alternating the forms of the anthropogenic vari-
ables tested in our models (i.e. proportion urban vs. propor-
tion agriculture vs. proportion natural vs. mean population
density), it may be beneficial to incorporate more direct mea-
sures of anthropogenic impacts in C stock modelling, such as
nutrients and suspended particulate organic matter coming
from catchments.

We also aimed to maximize our ability to capture relation-
ships between contemporary drivers and sediment C stocks
by utilizing sediment C stock data to only 30 cm deep, a
sediment horizon more directly impacted by recent environ-
mental conditions compared to deeper stocks due to age.
Based on previously estimated sediment accretion rates in
blue C ecosystems in the study region (averaging 2.51 to
2.66 mm yr−1 in tidal marshes, Ewers Lewis et al., 2019;
Rogers et al., 2006a; and 7.14 mm yr−1 in mangroves, Rogers
et al., 2006a), the top 30 cm of sediment represents roughly
∼ 113–120 years of accretion in Victorian tidal marshes
and ∼ 42 years of accretion in Victorian mangroves. These
timescales suggest sediments depths utilized in this study are
more appropriate for assessing the impacts of modern en-
vironmental conditions on sediment C stocks compared to
metre-deep stocks, which can be thousands of years old (e.g.
Ewers Lewis et al., 2019). Using 30 cm deep sediment C
stocks also allows us to be more confident that the vegetation
present now has been there during the time of sediment ac-
cretion, unlike deeper sediments that are thousands of years
old and for which it is difficult to determine what vegetation,
if any, was present at the time of accretion.

The variability in 30 cm deep sediment C stocks that could
not be explained by our modelling may also be related to the
inherent challenges surrounding spatial and temporal match-
ing of driver proxies and sediment C stock measurements; the
relationship between 30 cm deep sediment C stocks and con-
temporary environmental settings can be represented more
accurately for some variables over others.

Ecosystem type was a relatively powerful predictor of
30 cm deep sediment C stock variability in our study and this
is likely due, in part, to the direct relationship between vege-
tation and surface sediments. In most vegetated ecosystems,
the majority of underground plant biomass and microbial ac-
tivity exists within the top 20 cm of soils (Trumbore, 2009).
For saltmarsh, it has been demonstrated that the top 30 cm of
sediment are directly impacted by current vegetation (Owers
et al., 2016). Therefore, using 30 cm deep sediment C stock
measurements allowed us to target the portion of the sedi-
ment profile most likely to be influenced by current vegeta-
tion.

The portion of recently accreted sediments influenced by
contemporary anthropogenic drivers is harder to identify than
that influenced by ecosystem vegetation. Based on estimated
accretion rates for this region from the literature (Ewers
Lewis et al., 2019; Rogers et al., 2006b), 30 cm deep sedi-
ments would have taken an average of∼ 80 years to accumu-
late in Victoria (∼ 117 years in tidal marsh and ∼ 42 years
in mangroves). Though sedimentation rates vary over time,
they are relatively steady in comparison to changes in an-
thropogenic drivers, such as land use change, which can hap-
pen abruptly. This means that modern-day maps of land use,
though useful for looking at the general impact of human ac-
tivities on ecosystem processes, may be more useful for re-
lating to variability in sediment C stocks when the data are
assessed at finer temporal resolutions. For example, compar-
ing land use area data across various time periods with C
densities in aged bands of sediment could help capture the
pulse effects of sudden land use changes in narrower sed-
iment horizons representative of the same time periods. In
this study, the effects of land-use change may have been too
diluted within the 30 cm horizons to relate to impacts on sed-
iment C stock.

Spatially, anthropogenic variables are also difficult to as-
sign to particular ecosystem locations or depths. Many blue
C ecosystems in Victoria are located in coastal embayments
and receive inputs from multiple catchments, making the in-
fluence of specific areas of land-use or population changes
difficult to track to specific ecosystem locations. Modern-day
factors influencing vegetation can also have impacts on C
stocks deeper than the sediments we measured. The effects
of underground biomass on sediment C stocks can extend
beyond the top 30 cm, and in fact new C inputs and active
C cycling by microbial communities can occur as deep as
underground roots extend (Trumbore, 2009). These new C
additions (and fluxes) at depth fall outside the general pat-
tern of sediment C decay down-core in vegetated ecosystems
(Trumbore, 2009), which has previously allowed for linear or
logarithmic regressions to be used to extrapolate 1 m deep C
contents from shallow (e.g. 30–50 cm deep) sediment C data
(Macreadie et al., 2017a; Serrano et al., 2019). The activity
of underground biomass and microbes at depth, when con-
sidered over space and time, may account for large C fluxes.
The influence of anthropogenic activities, such as land use
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changes, on these processes via impacts to vegetation may
largely go unnoticed based on current methods (Trumbore,
2009), both in this study and in blue C stock assessments on
larger scales. We suggest further research to understand the
dynamics of active C cycling at sediment depths traditionally
considered stable.

Another limitation to C stock modelling is knowledge of
environmental features that may be important in influencing
C storage but are generally not monitored. For example, the
maturity of a blue C ecosystem can affect C storage and com-
position (Kelleway et al., 2015). Within a single saltmarsh
species, the maturity of the system is a major factor deter-
mining the role of the marsh as a C sink. Mature systems of
Spartina maritime have higher C retention – via higher below
ground production, slower decomposition rate, and higher
C content in sediments – than younger S. maritime marsh
systems (Sousa et al., 2010b). Mature marshes have also
been observed to have greater contributions of allochthonous
C storage over time, while younger marshes predominantly
have autochthonous organic matter signatures (Chen et al.,
2016; Tu et al., 2015). Long-term mapping of blue C ecosys-
tems could be beneficial for tracking maturity of vegetation
for C stock modelling as well as reducing the error in C stock
measurements associated with changes to blue C ecosystem
area.

Finally, we suggest future studies examine the relationship
between the drivers we have described and individual blue C
ecosystem types in order to further refine sediment blue C
stock modelling. With a large dataset from a single ecosys-
tem, relationships may be identified that were overshadowed
in this study by the inclusion of all three ecosystems. For ex-
ample, because elevation correlated with our two ecological
variables, it was not included in our best models. However,
within a single ecosystem, elevation may be an important
driver of sediment C stock variability due to its relationship
with inundation regimes (Chen et al., 2016; Chmura et al.,
2003; Chmura and Hung, 2004).

4.2 Modelled 30 cm deep sediment blue C stocks

Our estimate of 2.31 million Mg C stored in the top 30 cm
of sediment in all blue C ecosystems in Victoria was about
20 % lower than that of Ewers Lewis et al. (2018), who es-
timated 2.91 million Mg C based on the same C stock data
but calculated total stocks based on average C stock val-
ues and ecosystem extent in each of the five coastal catch-
ments. These results suggest that modelling 30 cm deep sed-
iment C stocks based on environmental drivers may reduce
the chances of overestimating sediment C stocks by better ac-
counting for fine-scale variability. Our modelled 30 cm deep
sediment C stock estimates support our earlier findings that
tidal marshes store more C than any other blue C ecosystem
in Victoria. Our estimates are now refined in that modelled
stocks suggest tidal marshes store closer to 48 % (rather than
53 %) and seagrasses store closer to 41 % (rather than 36 %)

of total 30 cm deep sediment blue C stocks (Ewers Lewis et
al., 2018). Our original estimate of mangrove contribution
to total blue C was supported by our modelling: by either
method, we estimated mangroves to store 11 % of Victoria’s
30 cm deep sediment blue C stocks.

It is important to emphasize here that total sediment depths
in blue C ecosystems can vary greatly, and are commonly
deeper than 30 cm. Blue C ecosystems can have sediments
up to several metres deep (e.g. Lavery et al., 2013; Scott
and Greenberg, 1983), suggesting the estimates of C stocks
measured here are conservative. In spite of these limitations,
30 cm deep sediment C stock estimates give us valuable
knowledge about the sediment C pool most vulnerable to
disturbance and how it may be impacted by environmental
drivers.

In examining C stocks within ROIs, i.e. areas of the coast
containing substantial distributions of blue C ecosystems, we
found that just four of the 14 ROIs housed nearly 88 % of
30 cm deep sediment blue C stocks in the state, a direct re-
flection of the large proportion of blue C ecosystem area in
these regions (nearly 87 % of the state’s total blue C area).
This trend appears to be driven by the presence of extensive
seagrass sediment C stocks (Table 5) in these four regions,
accompanied by extensive tidal marsh sediment C stocks.
This result has important implications for management of
coastal blue C. In cases where resources are limited, iden-
tification of areas housing major blue C sinks, in conjunction
with evaluation of other ecosystem services, can help provide
insight to guide conservation strategies. For example, strate-
gies to conserve tidal marshes in the four major ROIs could
serve the additional purpose of helping to preserve the adja-
cent seagrass meadows via facilitation; tidal marshes serve
as filters of excess nutrients coming down from the catch-
ment (Nelson and Zavaleta, 2012) that may otherwise cause
a loss of seagrass beds due to light reduction resulting from
the growth of algal epiphytes, macroalgae, and phytoplank-
ton (Burkholder et al., 2007). Further, our mapping of within-
ecosystem-patch variability in 30 cm deep sediment C stocks
is an important output for facilitating management actions on
an applicable level, allowing prioritization of particular parts
of an ecosystem patch for conservation when necessary.

5 Conclusions

In this study, we had the unique opportunity to assess a large
regional dataset of 30 cm deep sediment blue C stocks to ex-
plore the influence of ecological, geomorphological, and an-
thropogenic variables in driving sediment blue C stock vari-
ability. Because of the high spatial resolution of sampling
within similar latitudes we were able to focus on variables
driving differences in 30 cm deep sediment C stocks within
catchments. We found that plant community was most impor-
tant for determining 30 cm deep sediment C stocks and that
combining this variable with geomorphological variables re-
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lating to position in the catchment allowed us to model stocks
at a fine spatial resolution. Identification and mapping of
these dense 30 cm deep sediment blue C sinks in Victoria,
in conjunction with evaluation of other ecosystem services,
will be useful for conservation management regionally, e.g.
through the identification of hotspots for protection and key
locations for restoration efforts. We recommend these meth-
ods be tested in other areas of the globe to determine whether
they may be applicable for identifying relationships between
potential environmental drivers and sediment blue C stocks
and creating predictive sediment C stock models and maps
for blue C ecosystems at scales relevant to resource manage-
ment applications in other regions.
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