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Abstract. Understanding the response of marine organ-
isms to expected future warming is essential. Large benthic
foraminifera (LBF) are symbiont-bearing protists considered
to be major carbonate producers and ecosystem engineers.
We examined the thermal tolerance of two main types of
LBF holobionts characterized by different algal symbionts
and shell types (resulting from alternative biomineralization
mechanisms): the hyaline diatom-bearing Amphistegina lob-
ifera and the porcellaneous-dinoflagellate-bearing Sorites or-
biculus. In order to assess the holobiont thermal tolerance
we separately evaluated foraminiferal calcification rates and
symbionts’ net photosynthesis under present-day and future
warming scenarios. Our results show that both holobionts ex-
hibit progressive loss-of-life functions between 32 and 35 ◦C.
This sensitivity differs in the magnitude of their response:
calcification of A. lobifera was drastically reduced compared
with S. orbiculus. Thus, future warming may significantly
shift the relative contribution of the two species as carbonate
producers. Moreover, A. lobifera exhibited a synchronous re-
sponse of calcification and net photosynthesis. In contrast,
in S. orbiculus the symbionts decreased net photosynthesis
prior to calcification. This implies that algal symbionts limit
the resilience of the halobiont.

1 Introduction

Since the beginning of the industrial revolution, anthro-
pogenic activity has led to rapid ocean warming. This neg-
atively affects marine ecosystems and specifically symbiont-
bearing calcifiers (Kawahata et al., 2019). The observed
rate of global sea surface temperature (SST) rise stands at
0.11 ◦C per decade, and future scenarios predict a similar

rate until the end of the century (IPCC, 2014). Therefore, the
Mediterranean can be presented in biogeographic models as a
“miniature ocean”, providing indications of global patterns in
marine ecosystems in a warmer world (Lejeusne et al., 2010).
Warming in the Eastern Mediterranean is expected to rise al-
most 4 times more rapidly than the global forecast (Macias
et al., 2013). Thus, the Eastern Mediterranean is expected to
be one of the regions most affected by global warming.

Symbiont-bearing large benthic foraminifera (LBF) are
single-celled ecosystem engineers. Their carbonate produc-
tion is estimated to be at least 5 % of the annual production in
reef and carbonate shelf environments (Langer, 2008; Langer
et al., 1997). Temperature is a major factor in the distribution
of LBF that exhibits distinct thresholds for reproduction, sur-
vival, bleaching, and calcification (Evans et al., 2015; Hal-
lock et al., 2006a; Langer et al., 2012; Langer and Hottinger,
2000; Schmidt et al., 2011; Titelboim et al., 2019; Wein-
mann et al., 2013). The symbiont composition of LBF was
suggested to be controlled by temperature (Momigliano and
Uthicke, 2013; Prazeres, 2018; Prazeres et al., 2017; Prazeres
and Renema, 2019; Schmidt et al., 2018), which explains the
observation that species-specific thermal tolerance is associ-
ated with more diverse algal symbionts (Stuhr et al., 2018).

Many LBF species are Lessepsian invaders, which often
comprise over 90 % of the foraminiferal population in the
Eastern Mediterranean (Hyams-Kaphzan et al., 2014; Titel-
boim et al., 2016). Their invasion and successful establish-
ment are facilitated by rising temperatures, as in the case
of other Lessepsian organisms (Por, 1978, 2010; Zenetos et
al., 2010, 2012). However, some of these species currently
live very close to their upper thermal thresholds, and, con-
sequently, their presence will be impeded in the relatively
near future (Titelboim et al., 2016). The thermal sensitivity
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of some LBF species has already been investigated (Schmidt
et al., 2011, 2016b; Stuhr et al., 2018; Titelboim et al., 2019).
However, the relative contribution (positive or negative) of
the holobiont components to cope with rising temperatures
has not been fully constrained.

In this study, we present the thermal sensitivity of two very
dominant and prominent LBF holobiont systems (Fig. 1).
Specifically, our study separately assesses the thermal sen-
sitivity of the foraminiferal host calcification rate and algal
symbiont net photosynthesis as an indication of their well-
being under different warming scenarios. This approach was
chosen since calcification is a physiological activity done
only by the foraminifera and thus represents a proxy of
its well-being (like many organisms, lowering physiologi-
cal activities that involve high consumption of energy when
stressed). The same is true for photosynthesis, which is a pri-
mary life process and thus presents an efficient indicator for
the tolerance of the symbiont algae. Because of the exclu-
siveness of each parameter we could use them to disentangle
the complex relationship between the two components of the
holobiont.

2 Materials and methods

2.1 Specimen collection and handling

In this study, we targeted two LBF species that represent
different types of holobiont systems, which differ in their
shell construction mechanism and algal symbionts: Amphis-
tegina lobifera (diatom-bearing, hyaline; Larsen, 1976; Praz-
eres et al., 2017; Schmidt et al., 2015, 2016b) and Sorites
orbiculus (dinoflagellate-bearing, porcellaneous; Merkado et
al., 2013; Pawlowski et al., 2001; Pochon et al., 2014). Both
species have cosmopolitan distributions, are very common in
warm shallow marine environments (Langer and Hottinger,
2000), and display different thermal tolerances (Titelboim et
al., 2016). Specimens were picked from macro-algal sam-
ples that were scraped from beach rocks at Shikmona, on the
northern Mediterranean coast of Israel. To reduce variance in
growth derived from ontogenetic variability, the specimens
were picked between the specific size fractions of 750 and
1000 µm. Live specimens (indicated by their symbiont colour
and motility) were cleaned by brushing, divided into groups
with an equal number of specimens (40 S. orbiculus and 30
A. lobifera), and transferred into 60 mL airtight Erlenmeyer
flasks filled with natural seawater filtered to 0.45 µm, here-
after referred to as “samples”.

2.2 Laboratory manipulative experiments

We conducted temperature manipulative experiments on S.
orbiculus and A. lobifera. In these experiments, the well-
being of both holobionts was examined by separately deter-
mining the responses of the foraminiferal calcification rate
and symbiont algae net photosynthesis to elevated tempera-

tures. These are both very accurate quantitative parameters.
As such, they were chosen for this study, which aimed to
recognize even subtle differences between treatments and be-
tween species.

During the experiments, the samples were placed in
temperature-controlled water baths, which maintained con-
stant temperatures of ±0.5 ◦C; temperatures were monitored
using HOBO data loggers that recorded the temperature ev-
ery hour. During the cultivating period, the samples were
kept under a daily cycle of 12 h light–12 h darkness us-
ing a fluorescent light of ∼ 30 µmol photons m−2 s−1. These
are lower than the photosynthetic optimum for A. lobifera
(Ziegler and Uthicke, 2011). However, using these light con-
ditions, we were able to produce data comparable to those
presented in related published papers (Schmidt et al., 2016a,
b, 2018; Titelboim et al., 2019). These light levels should not
cause stress, since LBF acclimate rapidly to different light
levels (in under 48 h, Ziegler and Uthicke, 2011), and thus
the 10 d acclimation is sufficient for them to adjust to the
specific light level provided during the experiment.

All samples were acclimated under constant conditions for
at least 10 d. Acclimation temperatures were optimal for each
species: 27 ◦C for S. orbiculus and 25 ◦C for A. lobifera, and
other conditions are as described in Sect. 2.1. Then, the calci-
fication rate and net photosynthesis were measured to estab-
lish the performance baselines of the different species and
the natural variability between samples, under equal con-
ditions. Two samples (one A. lobifera replicate from 25 ◦C
treatment and one S. orbiculus replicate from 30 ◦C) did not
exhibit similar values of net oxygen production to the ma-
jority of samples and were excluded from the rest of the
study to avoid bias. At the end of the acclimation period,
seawater was replaced in all samples, and the temperature
of each bath was slowly adjusted (1 ◦C h−1). The examined
treatments (25, 30, 32, 35 ◦C) represent current and future
temperatures expected in the Eastern Mediterranean until the
end of the century (Macias et al., 2013). Each temperature
treatment included four replicates, unless reduced to three
following the low performance of the symbionts (A. lobifera
25 ◦C and S. orbiculus 30 ◦C). After acclimation, following
each week, the water was replaced with fresh natural seawa-
ter with a verified pH of 8.0–8.1 and salinity of 38.4–39.2.
The replaced water from all the samples was transferred to
airtight syringes, and then all oxygen samples were imme-
diately measured. Alkalinity measurements were conducted
over the next 2 d. To ensure that no changes occurred in this
time frame, standard material was measured before and after
the first and last sample of the set, respectively. Calcification
rates (µmol CaCO3 per week per specimen) were calculated
using the alkalinity anomaly method (Smith and Key, 1975).
In this method, the calcification rate is determined from the
change in total alkalinity of the seawater caused by the pre-
cipitation of CaCO3. These are determined by comparison to
a control sample containing no foraminifera. Accuracy was
assessed by analyses of the Scripps Institute of Oceanogra-
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Figure 1. The holobionts examined in this study. (a) Amphistegina lobifera and (b) Sorites orbiculus. Note the greenish-brown colour of the
symbiont algae.

phy reference seawater (Batch 180) and an internal standard.
The calcification rate involves high energetic consumption
and as such is drastically influenced by stress levels of a cal-
cifying organism and was especially shown to be related to
thermal stress in benthic foraminifera (Evans et al., 2015;
Schmidt et al., 2016b; Titelboim et al., 2019). Net photo-
synthesis (1O2 µg L−1 per specimen) was measured as net
oxygen production compared with a control sample contain-
ing no foraminifera. Dissolved oxygen was measured using
a Eutech DO 450 connected to a rugged dissolved oxygen
(RDO) sensor. Accuracy was assessed by calibration of the
sensor against Winkler titration.

2.3 Statistical analysis

To examine whether differences in calcification rates and
net photosynthesis are significant between temperature treat-
ments and between weeks, statistical analyses were per-
formed using STATISTICA10 software. For each set of data,
we tested assumptions of normality of the residuals and ho-
mogeneity of variances, and a statistical test was chosen
accordingly. If both assumptions were valid, ANOVA was
performed, and in cases where normality was valid and ho-
mogeneity was violated, Welch’s ANOVA test was applied.
In cases where normality was violated, the non-parametric
Kruskal–Wallis test was applied. Each was followed by the
proper post hoc test. All statistical analyses are summarized
in Table 1.

3 Results

Our experimental design takes biological variability in cal-
cification rates and net photosynthesis between different

Figure 2. Activity baseline of the foraminiferal calcification rate (a)
and symbionts’ net photosynthesis (b) of A. lobifera (n= 14, 15)
and S. orbiculus (n= 15, 15). Note the significant differences in
baseline values of both calcification rates (p < 0.001) and photo-
synthetic activity (p < 0.001) between the two holobionts. Error
bars represent minimum and maximum values.

species into consideration. This notion is based on previ-
ous observations that different species, even from the same
genus, and different populations of the same species display
different calcification rates under the same conditions (i.e.
baseline; Titelboim et al., 2019). Specifically, among our ex-
periments the activity baselines of both calcification and net
photosynthesis are significantly different between A. lobifera
and S. orbiculus (one-way ANOVA: p value < 0.001; Fig. 2;
Tables S1 and S2 in the Supplement). Hence, the thermal
tolerance of the two holobionts was separately evaluated for
each experiment.
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Table 1. Description of all statistical analyses conducted in this study, including the statistical test performed, if data were transformed, and
the number of samples in each data set.

Data Description Number
of samples

Statistical analysis

Baseline Calcification rate Comparison between S. orbiculus
and A. lobifera after acclimation pe-
riod

S. orbiculus: 15
A. lobifera: 14

One-way ANOVA on log-
transformed data

Net photosynthesis Comparison between S. orbiculus
and A. lobifera after acclimation pe-
riod

S. orbiculus: 15
A. lobifera: 15

One-way ANOVA on log-
transformed data

Sorites
orbiculus

Calcification rate Comparison between four tempera-
tures and 3 weeks

15 Two-way ANOVA and Tukey
HSD test

Net photosynthesis Comparison between four tempera-
tures

Weeks 1 and 2: 15
Week 3: 14

Kruskal–Wallis test and mul-
tiple comparisons

Comparison between the 3 weeks One-way ANOVA

Amphistegina
lobifera

Calcification rate Comparison between four tempera-
tures and 2 weeks

15 Two-way ANOVA on log-
transformed data and Tukey
HSD test.

Net photosynthesis Comparison between four tempera-
tures and 2 weeks

15 Two-way ANOVA and Tukey
HSD test

Third week bleaching
of A. lobifera

Comparing the number of bleached
specimens between four tempera-
tures

15 One-way ANOVA on log-
transformed data and Tukey
HSD test.

3.1 Sorites orbiculus (porcellaneous-dinoflagellate
holobiont system)

Calcification rates of S. orbiculus under the different tem-
perature treatments exhibited the highest values at 25, 30,
and 32 ◦C. A small decrease was observed at 35 ◦C, but this
was not significant during the first week (Fig. 3; Tables S3.1
and S3.2). Net photosynthesis shows positive values under
25, 30, and 32 ◦C. At 35 ◦C, net photosynthesis was negative
(Fig. 3; for statistical analyses, see Tables S4.1 and 4.2). Un-
accountably, in week 3, one sample exhibited an abnormally
high value (i.e. extreme in Fig. 3) with respect to previous
weeks as well as to other replicates and thus was neither in-
cluded in the average and error calculations nor in the statis-
tical analysis.

3.2 Amphistegina lobifera (hyaline diatom holobiont
system)

Both calcification and net photosynthesis are synchronous
throughout the experiment. After the first and second weeks,
calcification rates and net photosynthesis exhibited the high-
est values under 25, 30, and 32 ◦C. At 35 ◦C calcification
and net photosynthesis were both severely reduced and net
photosynthesis was negative (Fig. 4; Tables S5 and S6). Be-
tween the second and third weeks, many specimens exhibit
massive bleaching that occurred in different treatments be-

Figure 3. Calcification rates (a) and net photosynthesis (b) of S.
orbiculus. Letters represent the results of the post hoc tests (Ta-
bles S3.2 and S4.2). Error bars are SE. A single abnormal measure-
ment, obtained at week 3, is marked as extreme and is not calculated
as part of the average, error, and statistical analysis.

tween 25 and 32 ◦C in similar proportions (Tukey HSD post
hoc test: p values > 0.1; Table S7.2) and thus was clearly not
related to the different temperature. Bleaching in the 35 ◦C
treatment did not exceed two specimens per replicate (Ta-
ble S11). For this reason, measurements of the third week
are excluded from the results.
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Figure 4. Calcification rates (a) and net photosynthesis (b) of A.
lobifera. Note the synchronous negative response at 35 ◦C. Error
bars are SE, and letters represent the results of the post hoc tests
between temperatures and weeks (Tables S5.2 and S6.2).

4 Discussion

Our study separately describes the thermal sensitivity of
the foraminifera and the algal symbionts in two types
of holobiont systems: A. lobifera-hosting diatoms, mostly
from the order Fragilariales (Barnes, 2016; Prazeres et al.,
2017; Schmidt et al., 2016b, 2018), and S. orbiculus-hosting
dinoflagellates, Symbiodiniaceae (Merkado et al., 2013;
Pawlowski et al., 2001; Pochon et al., 2007). Both species are
considered to be prominent calcifiers based on their massive
occurrences and widespread distribution (Langer and Hot-
tinger, 2000), and both record a graduate decline in physio-
logical performance between 32 and 35 ◦C (Figs. 3–4). Both
holobionts show thermal resilience up to 32 ◦C and a negative
response at 35 ◦C (Figs. 3 and 4). However, they differ with
respect to the magnitude of their responses: A. lobifera and
its diatom symbionts share similar thermal sensitivity, with
near inhibition of calcification and negative net photosynthe-
sis at 35 ◦C, whereas in S. orbiculus calcification is less dra-
matically reduced at 35 ◦C, indicating that it is more resilient
to extreme SST than A. lobifera. Moreover, the Symbiodini-
aceae symbionts exhibit stress earlier (already after the first
week) than calcification, which was not reduced at the first
week and only slightly reduced after. The different thermal
sensitivity exhibited by calcification rate and by symbionts
of S. orbiculus implies that they might be a limiting factor
for the host to cope with future warming. A similar apparent
discordance was previously observed in Amphistegina (Praz-
eres et al., 2017; Stuhr et al., 2017; Schmidt et al., 2016;
Hallock et al., 2006b). Hallock et al. (2006b) suggested that
the ectoplasm of bleached specimens is “preprogrammed” to
continue calcification. Possible explanations for the synchro-
nized response of the A. lobifera holobiont in this study are
either that (1) the symbiont and host have similar thermal
sensitivity or (2) the weekly resolution of measurements may

not capture a short discordance time between the responses
of the symbiont and host.

It was previously shown that coral’s ability to cope with
elevated temperatures is related to its partnering with func-
tionally diverse symbionts (Baker et al., 2004; Howells et al.,
2012; Jones et al., 2008; Poquita-Du et al., 2020; Rowan,
2004), although its symbiosis is limited to dinoflagellate
from the Symbiodiniaceae “clades” (LaJeunesse et al., 2018;
Silverstein et al., 2015). LBF are known to host different
kinds of symbionts (Pochon et al., 2007), which include di-
noflagellates, diatoms, unicellular chlorophytes, unicellular
rhodophytes, and/or cyanobacteria (reviewed in Lee, 2006).
Whereas the general types of the symbiont (algal genus)
seem to be phylogenetically fixed, there appears to be con-
siderable flexibility in symbiont infestation even within one
individual (Lee, 2006). This versatile symbiont partnership
may control the holobionts’ thermal tolerance and provide
one of the key factors in their response to future warm-
ing. For example, a mechanism to cope with thermal stress
was suggested in Pararotalia calcariformata, an extremely
heat-tolerant symbiont-bearing foraminifera, that host a di-
verse symbiont community of diatoms. In case of thermal
stress, functionally relevant members of the symbiont com-
munity can become more dominant and magnify the ability
of the holobiont to tolerate elevated temperatures (Schmidt
et al., 2018). This might also explain the observation that
species-specific differences in the thermal tolerance of Am-
phistegina species are correlated to different symbiont as-
semblages. Specifically, larger diversity of algal symbionts
was associated with the more tolerant species (Stuhr et al.,
2018).

5 Conclusions

Considering the role of LBF in the carbon cycle and as
ecosystem engineers, their future with expected warming is
a major concern. Previous studies modelled the predicted
changes in the distribution of LBF and their contribution to
carbonate production (e.g. Langer, 2008; Langer et al., 2013;
Weinmann et al., 2013; Weinmann and Langer, 2017). How-
ever, our results highlight the need for species-specific con-
siderations for more accurate predictions on the fate of LBF.

Our study shows that LBF have different thermal toler-
ances that are limited by the sensitivity of their eukaryotic
algal symbionts. Considering recent findings on the signif-
icant role of the prokaryotic microbiome in the physiolog-
ical performance of LBF (Prazeres, 2018; Prazeres et al.,
2017), it will be highly valuable also to explore, in future
studies, their specific contribution to the thermal tolerance of
the holobiont.

Data availability. All data related to the paper are available in the
Supplement.
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