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Abstract. Soil moisture droughts have comprehensive im-
plications for terrestrial ecosystems. Here we study time-
accumulated impacts of the strongest observed droughts
on vegetation. The results show that drought duration, the
time during which surface soil moisture is below sea-
sonal average, is a key diagnostic variable for predict-
ing drought-integrated changes in (i) gross primary pro-
ductivity, (ii) evapotranspiration, (iii) vegetation greenness,
and (iv) crop yields. Drought-integrated anomalies in these
vegetation-related variables scale linearly with drought du-
ration with a slope depending on climate. In arid regions,
the slope is steep such that vegetation drought response in-
tensifies with drought duration, whereas in humid regions, it
is small such that drought impacts on vegetation are weak
even for long droughts. These emergent large-scale linear-
ities are not well captured by state-of-the-art hydrological,
land surface, and vegetation models. Overall, the linear rela-
tionship of drought duration versus vegetation response and
crop yield reductions can serve as a model benchmark and
support drought impact interpretation and prediction.

1 Introduction

Drought has complex and potentially severe impacts on the
terrestrial biosphere (Seneviratne et al., 2012a; Ciais et al.,
2005; Reichstein et al., 2013; Schwalm et al., 2017). In par-
ticular, it affects the vegetation and can thereby reduce or
even reverse carbon uptake from the atmosphere (Ciais et al.,
2005), increase (heat wave) temperatures through reduced
evaporative cooling (Seneviratne et al., 2010), increase wild-
fire activity (Gudmundsson et al., 2014), and reduce food

production (Rosenzweig et al., 2001). These multifaceted
drought effects on vegetation are relevant for the economy
and society, as well as for natural ecosystems. However,
these effects are complex (Reichstein et al., 2013; Knapp et
al., 2015; Bartlett et al., 2016), with the drought response
of plants (partly) non-linearly depending on various fac-
tors. These comprise vegetation characteristics, such as root
depth, leaf area, and plant physiology; soil characteristics,
such as water holding capacity; and hydrological and terrain
characteristics, which in turn affect groundwater level and
thereby also soil moisture conditions above (Destouni and
Verrot, 2014; Verrot and Destouni, 2016). Moreover, drought
history can also play a role through legacy effects (Senevi-
ratne et al., 2012a). The interplay of these factors in deter-
mining vegetation responses to drought is not yet well under-
stood, in particular over large spatial scales and with respect
to different and changing climate conditions. As of recently,
modern Earth observation through satellites and ground sta-
tion networks in combination with radiative transfer mod-
elling and/or upscaling approaches provides unprecedented
large-scale datasets. Using such datasets, it has become pos-
sible to identify dominant connections between key observed
variables during droughts, such as a strong and fast rela-
tionship between soil moisture and runoff deficits, emerg-
ing at large scales across hydrological catchments and cli-
mate zones of Europe (Orth and Destouni, 2018). Following
and expanding this investigation pathway, the present study
compiles and analyses worldwide data, revealing simple and
useful relationship(s) that integrate the complex large-scale
vegetation response to droughts of different magnitude.
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Table 1. Overview of employed observation-based datasets.

Meteorological Soil moisture ESA CCI 1979–2018 Daily 0.25◦
× 0.25◦ Gruber et al. (2017),

forcing Dorigo et al. (2017)
Gruber et al. (2019)

Precipitation ERA-Interim 1979–2018 Sub-daily 0.25◦
× 0.25◦ Dee et al. (2011)

Net radiation SRB and
CERES

1983–2007
(SRB)
2000–2018
(CERES)

Sub-daily 1◦
× 1◦ https://gewex-srb.larc.

nasa.gov (last access:
1 May 2020) (SRB),
https://ceres.larc.nasa.
gov/ (last access:
1 May 2020) (CERES)

Biospheric Gross primary FLUXCOM-RS 2001–2015 Every 8 d 0.5◦
× 0.5◦ Jung et al. (2019)

drought productivity

response Evapotrans- FLUXCOM-RS 2001–2015 Every 8 d 0.5◦
× 0.5◦ Jung et al. (2019)

piration

Normalized GIMMS3g 1982–2018 Twice a month 0.083◦
× 0.083◦ Zhu et al. (2013)

difference
vegetation
index

2 Data and methods

Drought in this study is determined through surface soil
moisture deficits, a simple and widely used drought indi-
cator that is directly related to vegetation-accessible wa-
ter availability (Seneviratne et al., 2012a). For this purpose
we use ESA CCI soil moisture data (Gruber et al., 2017,
2019; Dorigo et al., 2017). Further, in order to character-
ize the meteorological drought forcing, we employ precip-
itation from ERA-Interim (Dee et al., 2012) and net radia-
tion data from the SRB and CERES datasets. Moreover, to
infer the vegetation drought response, we consider data for
gross primary productivity (GPP), evapotranspiration (ET)
from the FLUXCOM-RS dataset (Jung et al., 2019), and nor-
malized differential vegetation index data (NDVI) from the
GIMMS3g dataset (Zhu et al., 2013). All employed datasets
are derived from observations and provide global coverage
(see Table 1 for an overview, and the Supplement for further
details). We employ satellite-derived datasets where avail-
able, namely for surface soil moisture, net radiation, and
NDVI. For robust drought-effect assessment, these are com-
plemented by precipitation, GPP, and ET datasets, obtained
from upscaled/interpolated site observations.

In addition to observational data, we use state-of-the-art
modelled datasets. In particular, we consider (surface) soil
moisture and ET from the GLEAM dataset (Martens et al.,
2017) and from six models from the Earth2Observe model
ensemble (version 1, (Schellekens et al., 2017); see also
Supplement), which provide these two required variables.
GLEAM is a land surface model that assimilates observa-
tions of soil moisture, vegetation optical depth, and snow
water equivalent. The Earth2Observe ensemble includes or-

dinary land surface models as well as hydrological models.
These models provide estimates of surface soil moisture, typ-
ically representing the top 2–10 cm (exact values are model-
dependent (Schellekens et al., 2017)), and can as such be
compared with the satellite-derived product. In addition, the
models provide total column soil moisture (typically repre-
senting 1–5 m; exact depths are model-dependent), which is
used to assess the impact of considered soil moisture depth
on our results. Besides these models, we further consider an
ensemble of land surface and vegetation models from the
TRENDY project (version 3, (Le Quéré et al., 2015; Sitch
et al., 2015); see also Supplement). These models provide
ET and total column soil moisture. All model simulations
considered here are uncoupled and forced with observation-
based gridded meteorological data.

Constrained by concurrent availability of different re-
quired data streams, we consider the time period 2001–
2015, half-degree spatial resolution, and half-monthly tem-
poral resolution of the data for the observation-based analy-
ses (see Supplement). While we use the same temporal and
spatial resolution for the model-based analyses, the time pe-
riod considered in this context is slightly shifted, 1998–2012.
This is because the Earth2Observe simulations only extend
until 2012. All time series are de-trended prior to further
analyses, with trends determined using a 3-year moving av-
erage window. To study the biospheric drought response, we
focus on droughts that peak during the local growing season.
This is determined for each location (half-degree grid cell) as
the 5 consecutive months with the highest multi-year average
NDVI, or ET in the case of the model-based analyses.

We consider for each grid cell the strongest drought in
terms of surface soil moisture within the study period 2001–
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2015. This drought is identified in three steps: (i) we compute
soil moisture anomalies by removing the mean seasonal cy-
cle from the actual time series, (ii) we determine the driest
anomaly in each year’s growing season, and (iii) we select
the drought with the greatest dry anomaly out of the total
15 peak anomalies over the whole time period. The duration
of each drought is then the period before and after drought
peak, during which the soil moisture anomalies are negative,
i.e. when soil moisture is drier than the seasonal mean. Note
that our drought definition therefore does not include an in-
dication for vegetation water stress; furthermore, rain events
may occur during diagnosed drought periods.

Anomalies are also computed for the other investigated
variables, in the same way as for soil moisture. To enable
direct comparison of anomalies across variables, and across
observations and models, we compute z scores. This is done
by standardizing all anomaly values by dividing them with a
characteristic variability value. This value is computed for
each variable and each grid cell as the standard deviation
across all half-monthly growing season values. This way, all
anomalies discussed and illustrated in this study are scaled by
inter-annual standard deviations to be expressed as z scores.

Whenever vegetation-related anomalies are integrated
over the course of particular droughts, the integration is per-
formed across a time window of 8 months. It starts 3 months
before the half-monthly period denoting drought peak and
finishes 4.5 months after the peak period. Not using the spe-
cific actual duration of each drought for the integrations en-
sures spurious correlations between drought duration and
the drought-integrated vegetation response are avoided. Also
for this purpose, the above-described standardization is per-
formed after the time integration.

Finally, to characterize the climate, and to measure the rel-
ative roles of water versus energy limitation for the water
use by the vegetation, we compute an aridity index (Fig. S1
in the Supplement). This index was originally introduced as
the ratio between mean potential evapotranspiration over the
study period and the respective mean precipitation, with the
latter scaled by the latent heat of vaporization to yield a unit-
less index value (Budyko et al., 1974). We use an adapted
form where we replace the potential evapotranspiration with
satellite-derived net radiation.

3 Results

3.1 Global vegetation drought response

The global GPP response to the respective strongest grid-cell
drought during the study period 2001–2015 is displayed in
Fig. 1. The strongest negative anomalies are found across
central North America, eastern South America, southern
Africa, and Australia. Note that these are normalized anoma-
lies; especially in very dry regions with low inter-annual veg-
etation variability, such as inner Australia, the actual absolute

anomalies are comparatively low. In contrast, we find posi-
tive GPP anomalies across eastern China, northern Europe,
central Russia, and eastern North America, even though the
magnitude is overall smaller compared with the aforemen-
tioned negative anomalies. In these regions, GPP anomalies
are mostly insensitive to soil moisture drought but are in-
duced by covariations in dry soil moisture with other, in
this case more relevant, GPP-limiting factors such as radi-
ation and temperature (Zhang et al., 2017). Averaging the
results across grid cells with similar aridity reveals a strong
dependency of the vegetation drought response on climate.
This is the first main result of our study; whereas anoma-
lies are small in energy-limited conditions (aridity index < 1,
i.e. more precipitation than (equivalent) net radiation), they
increase markedly for increasingly water-limited conditions
(aridity index > 1).

This aridity finding is consistent with results in (Walther
et al., 2019) and is mechanistically explainable by more wa-
ter being available as deeper soil water and groundwater in
wetter regions. Further, this greater water amount is also
(more) accessible to the vegetation because the fraction of
tree cover is higher in wetter regions, implying deeper root-
ing systems. Accessing these water reservoirs can help veg-
etation to bridge surface soil drought conditions, while also
benefitting from a surplus in net radiation which is often as-
sociated with less precipitation (Teuling et al., 2013). Similar
results as for GPP are also obtained for ET and NDVI (see
Figs. S2 and S3), illustrating the robustness of these findings.

3.2 Time evolution of drought and biospheric response

The evolution of drought across climate regions is analysed
by averaging data for each investigated variable across grid
cells with similar aridity. The results of this composite ap-
proach (Nicolai-Shaw et al., 2017) are displayed in Fig. 2 for
all meteorological forcing and biospheric response variables.
The precipitation deficits during drought buildup are com-
monly accompanied by a net radiation surplus. They jointly
lead to soil moisture deficits. The comparatively large soil
moisture anomalies result from our drought definition based
on the driest soil moisture anomalies. Only in the driest con-
sidered climate is no net radiation surplus found. This might
have to do with drought-induced albedo changes, which en-
hance the outgoing radiation. Interestingly, the peak vegeta-
tion responses are delayed and occur after drought peak. This
is consistent with site- and/or time-specific findings in earlier
studies, analysing particular drought events (Nicolai-Shaw et
al., 2017; Wolf et al., 2016). Aside from plant-physiological
reasons, this can be explained by the pre-peak radiation sur-
plus which tends to enhance vegetation functioning. By con-
trast, in the post-peak period, with both soil water deficit and
radiation deficit, the vegetation functioning is decreased. The
radiation deficit follows from the recovery precipitation and
the associated clouds that occur by definition after drought
peak.
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Figure 1. GPP anomalies integrated over 8 months during the strongest soil moisture drought observed during the study period 2001–2015,
expressed as accumulated z scores. The bar plot denotes mean anomalies across aridity regions. Regions shown in white have too little soil
moisture and/or vegetation data to obtain meaningful results (less than 8 years of at least 50 % growing season data availability).

While the drought forcing shown in Fig. 2a–c is compa-
rable in regions with similar aridity, the vegetation drought
response changes strongly as aridity exceeds 2. This non-
linear response is consistent with findings in Fig. 1. Finally,
the GPP and NDVI signals are similar, illustrating robustness
in observed vegetation response to drought across these dif-
ferent vegetation-related variables and associated data prod-
ucts.

3.3 Drought duration shaping the biospheric drought
response

In Fig. 3 we analyse the role of drought duration (i.e. the
time period with below-normal soil moisture). Drought du-
ration has no systematic influence on the vegetation drought
response in wet areas (aridity index < 1), where GPP anoma-
lies are comparatively small anyway. By contrast, the emerg-
ing linearity between the drought-integrated GPP anomalies
and the mean drought duration with increasing slope towards
drier conditions is another main result of this study. The slope
does not increase further between dry and very dry regions
(aridity index > 4) as already the shortest droughts lead to
negative impacts due to limited (ground)water availability.
The relatively large interquartile range underlying the rela-
tionships shown in Fig. 3 is likely due to the considerable
aridity condition variety within each considered aridity class
that spans across a factor of 2. The range also illustrates that

other processes and conditions than just aridity and drought
duration contribute to the vegetation drought responses lo-
cally. These results are not sensitive to the chosen drought
definition; using the longest growing season drought duration
instead of the strongest half-monthly soil moisture anomaly
to determine the strongest drought at each grid cell, we ob-
tain similar linearity relationships (Fig. S4). Further, as the
choice of an 8-month time period for integrating the vegeta-
tion drought response is necessarily arbitrary, we repeat the
analysis from Fig. 3 with an integration period of 6 months
and find very similar results (Fig. S5).

Overall, these findings indicate that in addition to a re-
gion’s mean aridity, drought duration is a key diagnostic vari-
able for characterizing the large-scale vegetation drought re-
sponse and consequently also for inferring drought impact on
the land–atmosphere exchanges of carbon and water. While
the relevance of drought duration has been recognized in pre-
vious studies (von Buttlar et al., 2018; Frank et al., 2015),
the simple linear relationships identified here are an essential
new step for straightforward representation and advancement
in understanding of drought impacts on vegetation, e.g. com-
paratively between different historic time periods (Charpen-
tier Ljungqvist et al., 2019), and associated ecosystem func-
tioning and land–atmosphere exchanges. Drought duration
as a main diagnostic variable integrates different interacting
factors in vegetation functioning during drought. These in-
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Figure 2. Aridity-specific time evolution of meteorological forcing (a–c) and biospheric response (d–e) during drought. Evolution for each
variable computed as a composite across all grid cells of the respective aridity regions. To ensure comparability of anomalies across vari-
ables, values are normalized by and expressed as the inter-annual standard deviation of each variable (z scores, left axes). Normalization
is performed by dividing the actual anomalies (right axes, example for aridity values between 2 and 4) through the typical aridity-specific
variability as expressed by the inter-annual standard deviation across all absolute, half-monthly growing season anomalies averaged across
all grid cells of each aridity region.

Figure 3. Drought duration controls integrated biospheric drought
response across global aridity regions. Lines obtained through
averaging within a 1-month moving window, i.e. GPP anomaly
at 4 months of drought duration is inferred with data between 3.5
and 4.5 months of drought duration. GPP anomalies are expressed
as accumulated z scores. Lines are computed if more than 50 val-
ues are available within the moving window. Shadows denote the
interquartile range determined within moving window.

clude higher (lower) general and initial-drought soil moisture
levels in a wetter (drier) climate, in which shorter (longer)
droughts can develop, while water stresses are also smaller
(greater) and induce less (more) severe drought effects on
vegetation.

The emergent linearity between vegetation response and
drought duration is not trivial, given the complex interact-
ing processes contributing to biospheric drought responses
(Seneviratne et al., 2012b; Reichstein et al., 2013). This com-
plexity is, for example, illustrated by the delayed peak in the
vegetation drought response in Fig. 2d–e. Further research
is needed to better understand why and how such simple
large-scale relationships can capture the interplay of various
small(er)-scale processes.

Figure S6 compares the explanatory power of drought du-
ration to infer the large-scale GPP response to drought with
that of several alternative controls. It is computed by (i) ob-
taining the drought-related GPP anomaly accumulated over
an 8-month time window containing the drought period (see
Methods) and the respective drought metric values for each
grid cell and its respective strongest drought and (ii) calculat-
ing the correlation between the drought-related GPP anoma-
lies and the respective drought metric values across all grid
cells of each aridity class. The results confirm the role of
drought duration as a simple and efficient prediction mea-
sure for biospheric drought impacts in semi-humid to arid
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regions (aridity index > 1), for which significant slopes are
found (Fig. 3). Other common drought description metrics
fail to achieve similar explanatory power in these climate re-
gions, including the number of consecutive dry days, which
was proposed as a preferred drought index (in addition to the
soil moisture anomalies used to derive drought duration in
this study) by the IPCC special report on extremes (Senevi-
ratne et al., 2012b). Only the number of dry days (within
the soil-moisture-diagnosed drought duration) yields slightly
higher correlations as in the case of drought duration, which
results from the additional precipitation-based information
contained in the number of dry days.

3.4 Modelled versus observed vegetation drought
response

While the large-scale vegetation response to drought dura-
tion was analysed with GPP data in the previous sections,
in Fig. 4 we additionally consider ET and NDVI as alter-
native observation-based variables, which also indicate the
functioning of the vegetation. Overall, similar relationships
are found for the three variables; this highlights the signifi-
cance of the emerging linear pattern in summarizing various
influences contributing to the biospheric drought response.
However, in a semi-humid climate (0.5 < aridity index < 2)
the ET drought response differs somewhat from the NDVI
and GPP responses, possibly due to changes in water use ef-
ficiency. Further, the NDVI drought response is slightly less
pronounced than that of GPP and ET in very dry regions
(aridity index > 4).

In a further step, we evaluate the vegetation drought re-
sponse from several state-of-the-art hydrological and land
surface models in relation to the observation-based results.
Note that a different time period is used in the model-based
analyses, 1998–2012 instead of 2001–2015. While we cannot
exclude an impact of this period shift on our conclusions, we
can assume that it is minimal as the observational and mod-
elled time periods are of the same length, and they largely
overlap.

In particular, we compare the state-of-the-art
GLEAM model dataset with simulation results from
the Earth2Observe model comparison project (see Sect. 2).
In general, the modelled ET responses to drought are
overestimated in wet climate and underestimated in dry
climate compared with the observation-based relationships.
This result implies relatively low sensitivity to climate in
the modelled vegetation drought response. The sensitivity
is slightly higher for GLEAM than for the Earth2Observe
models, leading to generally better GLEAM agreement
with the observation-based relationships. Interestingly, the
models capture the observed linearity in the vegetation
drought response only for short-to-medium drought du-
rations. As such, in a dry climate they fail to capture the
further intensification of the ET drought response towards
droughts longer than 6 months. The individual model results

are broadly similar (see Table S1 in the Supplement),
with a spread comparable to the interquartile range of the
observation-based ET relationship.

In order to test the role of surface versus total-column soil
moisture, we also recompute Fig. 4 with root-zone (GLEAM)
and total-column soil moisture (Earth2Observe models). The
results in Fig. S7 (see Table S2 for individual model results)
show a slightly weaker ET response to deeper soil mois-
ture drought than to surface soil moisture drought. Overall,
there is remarkable similarity across the drought response
relationships for both soil moisture depths, indicating rela-
tively small soil moisture depth impact on our results. This
finding suggests that, while plant water availability is actu-
ally determined by deep(er) soil moisture, surface soil mois-
ture is a reasonable proxy for meaningful estimation of the
drought duration–vegetation response relationships studied
here. In addition to the models used above, we also con-
sider TRENDY models that only provide total soil moisture
(see Sect. 2). The results found for these models confirm the
results of the Earth2Observe models; the TRENDY models
generally do not capture the differences in the drought re-
sponse relationships for different climates. Also, the spread
across the drought response patterns of the TRENDY models
is comparable to that of the Earth2Observe models.

Overall, the difficulties of models to capture the linearity
between vegetation drought response and drought duration
emerging from observations likely arise from the complex in-
terplay of several small-scale processes leading to the large-
scale relationships. Further model development efforts are
required to improve simulated drought responses; the emer-
gent linear relationships identified in this study can serve as
a straightforward guideline and constraint in this context.

3.5 Drought duration and food production

The global vegetation drought responses emerging in the pre-
vious sections for GPP, ET, and NDVI should also be re-
flected in crop yields, with high social relevance. As crop
yield data with consistent format and quality are only avail-
able across Europe, we correspondingly focus in the crop
yield analysis in this section on Europe. Specifically, we
analyse agricultural yield anomalies averaged across five
common crops (see Supplement), in the strongest drought
year for various European countries. In the grid-cell analy-
ses above, the year of the strongest drought has been deter-
mined at each grid cell through the strongest half-monthly
soil moisture anomaly. While the strongest droughts there-
fore might occur in different years across the grid cells of
a country, we select the year in which most of the strongest
grid-cell droughts occur as the country-based drought year
(see Supplement, (Friedl et al., 2010)). The drought duration
in this country-based drought year is then determined as the
mean across all grid-cell-based drought durations, weighted
by the fraction of agricultural area in each grid cell (Friedl et
al., 2010).
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Figure 4. Drought duration control on biospheric drought response in observations and models. Response of drought-integrated biospheric
anomalies across observation-based reference data (ET, NDVI, and GPP as displayed in Fig. 3), as well as for modelled ET (GLEAM and
Earth2Observe models).

Figure 5. Drought duration further controls drought-induced yearly
agricultural yield anomalies across various European countries. Dif-
ferent line slopes are found for countries where irrigation is applied
in agriculture (light blue least-squares fit) than for countries without
large-scale agricultural irrigation (grey least-squares fit).

As shown in Fig. 5, we find that, in addition to the
drought-integrated GPP and NDVI anomalies, the agricul-
tural yield anomalies in drought years are also linearly re-
lated to drought duration. Short droughts can even be ben-
eficial for food production, due to the associated net radia-
tion surplus. Significantly different linear regression slopes
(t test, 5 % level) are found for countries with and without
large-scale irrigation. Countries without irrigation exhibit a
steeper line slope and a higher explained fraction of variance
(0.65 versus 0.25) than countries with irrigation, where the
added irrigation water tends to mitigate drought impacts, as
reflected by the associated less steep line slope. These differ-
ences are well in line with the contrast seen between arid and

humid regions in Figs. 3 and 4. Overall, these results high-
light the important socio-economic relevance of drought du-
ration as a key diagnostic variable for predicting vegetation
drought response and associated crop yield anomalies.

4 Conclusions

The identified large-scale, aridity-dependent linearity in bio-
sphere responses to drought has important practical implica-
tions, especially as it is found globally and robustly across
different ecosystem-response variables. Drought duration as
a key diagnostic variable in this context is (i) straightfor-
ward to measure and monitor and (ii) efficient for representa-
tion and comparative understanding of observed/interpreted
vegetation responses to droughts (Charpentier Ljungqvist
et al., 2019), as well as for anticipation and planning for
adaptation to impacts on agricultural crop yields of pos-
sible/projected forthcoming drought years. This diagnostic
also enables us to infer associated implications for water and
carbon cycling and consequently also for atmospheric feed-
backs. Such knowledge can complement existing drought
monitors (http://droughtmonitor.unl.edu, last access: 2 Au-
gust 2018) and support efficient irrigation efforts (McCready
et al., 2009). Moreover, the identified linear relationships can
serve as constraints that inform future model developments;
such observation-based references are required to improve
modelled vegetation responses to drought, which are cur-
rently largely insufficient. These model improvements can in
turn also contribute to improve weather forecasting through a
more accurate representation of (drought-related) water and
carbon fluxes on land (Orth et al., 2015).

Caveats of our analysis include, firstly, that observation-
based global soil moisture is only available for the surface
soil, as microwave remote sensing only penetrates into the
upper few centimetres of the soil. In fact, the vegetation
drought response rather depends on the root-zone soil mois-
ture, where the depth and extent of the root zone is also
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species-dependent. Nevertheless, our conclusions are still
valid due to the close soil hydraulics links between soil mois-
ture at the surface and in deeper soil. At daily timescales,
surface soil moisture has been reported to reflect the mois-
ture dynamics across the top 10–20 cm (Akbar et al., 2018),
and this depth is likely even greater at the monthly-seasonal
timescales considered in this study, thereby capturing (at
least part of) the actual root zones of many plant species.
Moreover, we have tested the impact of using surface ver-
sus total-column soil moisture in our model analyses, find-
ing only minor differences in the results (Figs. 4 and S7).
Secondly, due to limited observation data availability, we
could, in this study, only consider the strongest drought over
15 years. Hence the investigated droughts represent rela-
tively weak extreme events, and it remains unclear if and
how this affects the (strength) of the emergent linear rela-
tionships found in our study. Nevertheless, in some grid cells,
droughts with return periods clearly exceeding 15 years oc-
curred during the study period, for example in 2003 and 2015
in Europe (Laaha et al., 2017; Orth et al., 2016). While we
may have only captured a few very extreme droughts, future
research is needed to revisit our analysis with longer obser-
vational records capturing more extreme droughts. Thirdly,
when analysing the link between the vegetation drought re-
sponse and drought duration, it is inevitable that both vari-
ables are assessed over (partly) overlapping time periods. To
avoid introducing a spurious relationship in this context, we
use, in this study, a constant time window for the integration
of the vegetation drought response (8 months, and compar-
atively also 6 months), independent of the actual diagnosed
drought duration. Further, the results obtained for the inde-
pendent country-wise anomalies of yearly crop yield confirm
the linearity resulting from the grid-cell-based analyses using
the 8-month (or 6-month) window.

Finally, while we have found aridity and drought dura-
tion to be main controls of the vegetation drought response
at large spatial scales (climate regions), this is not necessar-
ily the case at smaller scales. In fact, the spread around the
moving average relationships shown in Figs. 3 and 4 suggests
more drivers at play. These may include vegetation types, soil
characteristics, and/or legacy effects. These drivers can inten-
sify or dampen the local vegetation drought response com-
pared with the large-scale response induced by the identified
large-scale controls.

Overall, our results highlight an important role of climate
(aridity) in shaping the large-scale biospheric drought re-
sponse, in addition to the drought duration. While droughts
in energy-limited regions (aridity index < 1) usually have no
or even beneficial impacts, droughts in water-limited regions
(aridity index < 1) have major implications. These contrast-
ing drought impacts imply a critical need for future cli-
mate projections to accurately capture regions where the cli-
mate can be expected to change from transitional (aridity
index ≈ 1) to water-limited (aridity index > 11) conditions.
In such regions, the vegetation drought response will likely

become much more pronounced, assuming that the relation-
ships identified here also hold for increased future CO2 lev-
els.
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