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1 Gap-filling methods from literature

Table S1. Overview of methods applied in literature to gap-fill eddy covariance methane flux time series.

Method References

Interpolation Hanis et al. (2013); Dengel et al. (2011)

Averaging Hatala et al. (2012); Mikhaylov et al. (2015)

Arrhenius-type
non-linear functions

half-hourly Kroon et al. (2010); Forbrich et al. (2011); Hommeltenberg et al. (2014); Goodrich

et al. (2015)

downsampled Suyker et al. (1996); Friborg and Christensen (2000); Rinne et al. (2007); Long

et al. (2010); Wille et al. (2008); Jackowicz-Korczyński et al. (2010); Parmentier

et al. (2011); Brown et al. (2014); Shoemaker et al. (2015); Mikhaylov et al. (2015)

Look-up tables Pypker et al. (2013); Hommeltenberg et al. (2014); Bhattacharyya et al. (2014)

Mean diurnal variation Dengel et al. (2011); Jha et al. (2014)

Marginal distribution sampling Alberto et al. (2014); Shoemaker et al. (2015)

Machine learning

Artificial neural
networks

Dengel et al. (2013); Deshmukh et al. (2014); Knox et al. (2015); Goodrich et al.

(2015); Nemitz et al. (2018); Knox et al. (2019); Kim et al. (2019)

Support vector
machines Kim et al. (2019)

Random forest Kim et al. (2019)

2 Model setup and input selection scheme

This section describes the selection of model inputs (see Table A1) using our scoring table approach. Also, the method we used

to select properties for the multilayer perceptron (MLP) neural networks is outlined. The MLPs were set up with one hidden

layer, tan-sigmoid activation functions, a single output layer node with a linear transfer function and Levenberg-Marquardt5

backpropagation as supervised learning method. See Papale and Valentini (2003), Dengel et al. (2013), Sarle (1994) for details

on MLP architecture. The input data was divided randomly in 70 % training and 30 % validation data. Inputs were re-scaled

before training to range between -1 and 1. Training data were used to optimize the network weights and biases for low MSE.

Validation data served as inputs independent from training data to check the generalization capability of the model. The model
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performance in relation to the validation data was used to avoid overfitting by terminating the learning process if for six

consecutive iterations the MSE of the validation data did not decrease (early stopping). Instead of using the response of a

single MLP, we calculated the ensemble average of multiple networks starting with varying initial weights and different sets

of training and validation data each. This method is frequently described in neural network literature (Naftaly et al., 1997;

Perrone and Cooper, 1993; Wolpert, 1992; Hashem, 1997; Haykin, 1999) as one type of so called committee machines. To5

avoid unnecessarily complex network architecture and thereby a higher amount of model parameters we inspected the model

performance of committee machines with 100 MLPs each for different numbers of hidden layer nodes (#HLN) between 1 and

20. We expected to find a #HLN optimum at the AIC minimum. However, for different gases and data sets, we encountered two

functional forms a relation like this would commonly assume. A parabola-like curve with a clear minimum and an asymptotic

function of the form AIC(#HLN) = #HLN−1+a. We fitted parabolas to the according data sets and assumed the function10

vertex as #HLN optimum. In the other cases, we fitted reciprocal functions and differentiated the results. We rounded the first

derivatives to the nearest multiple of 10 in case of CH4 and to 100 in case of CO2 flux modeling. We then defined the #HLN

optimum to be at the position where the rounded derivative turns zero for the first time. We performed #HLN optimization in

each case before applying MLPs for input sensitivity analysis or gap-filling.

We applied a selection procedure aiming for the identification of redundant as well as irrelevant model inputs. This scheme15

evaluates the outcome of stepwise MLRs in combination with the analysis of the response of MLPs to differently manipulated

versions of the input space. We used methods addressing predictive and causal importance as defined by Sarle (1997). In short,

predictive importance measures are those that check the change of model performance when an input is omitted, whereas causal

importance measures evaluate the change of a performance function when inputs are manipulated. The latter can be realized

by degrading the variability of an input for example by replacing it partly with its average (as in Schmidt et al., 2008; Hunter20

et al., 2000). Three categories of potential model inputs were presented to the selection scheme. Thirty minute time series of

meteorological and soil (Biomet) variables, fuzzy variables representing diurnal and seasonal cycles (following Papale and

Valentini, 2003) and footprint variables in the form of surface class contribution estimates. Table A1 gives an overview of the

available variables. Note that in Year 1 no soil properties were recorded.

We derived a second set of Biomet variables by estimating the time lag between each Biomet variable and the gas flux time25

series and subsequently shifting each Biomet time series by the calculated time lag. We used the lag time within a one-day

window for which the absolute cross-correlation between Biomet and gas flux time series was maximized (Kettunen et al.,

1996) to shift the respective Biomet time series.

Three data sets were used for sensitivity analysis: Only the original Biomet data, only the lagged data and both. All data

sets were extended by fuzzy and footprint data. We applied four methods to estimate the relevance of the individual inputs and30

combined them via a scoring table. If an input was selected by one method, one point was assigned to it. Inputs with more

points were regarded as more important.

As previously applied by Dengel et al. (2013) for EC flux gap-filling, we used the outcome of a stepwise multilinear re-

gression (MLR) with bidirectional elimination to identify important model inputs. Independent variables that remained in the

final model received one point in our scoring table. The calculations were made using the Matlab 8.4 Statistics and Machine35
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Learning Toolbox following Draper and Smith (1998). At each step the p-values of an F-statistic of models with or without

each input were evaluated by comparing them with an enter condition penter = 0.05 and an exit condition premove = 0.1. If inputs

currently not in the model had p-values below penter, the one with the lowest value was included into the model until the next

step (forward selection). If inputs currently in the model had p-values above premove, the one with the highest value was removed

from the model (backward elimination). These steps were repeated until the model could not be improved further by a single5

step. The initial model contained no inputs.

Following Schmidt et al. (2008), we calculated two similar measures of causal importance from the output of MLP ensem-

bles. The variability of each input variable was manipulated by replacing 50 % and 100 % with its median, while all remaining

variables in the input matrix were left unchanged. A MLP ensemble was first trained with the original data and then simulated

with the artificial input matrix. The relation of the resultant mean squared errors (MSEs) was calculated and called relative error10

(RE). This process was repeated 1000 times for all input variables to obtain diverse results for different data divisions. The

resulting values for RE were binned into six classes with centers at 0.8, 0.9, 1.0, 1.1, 1.2 and 1.3. If the latter was the bin with

the most counts, one point was assigned to this input variable in the scoring table, meaning that the manipulation of this input

vector resulted in a deterioration of the respective MSE of more than 25 % in most cases. This method yielded two measures

of causal importance for each input variable, RE50 and RE100, referring to the two percentages of data being manipulated.15

We furthermore analyzed the weights resulting from MLP optimization based on the algorithm of Garson (1991) as presented

in Olden and Jackson (2002). This method interprets the weights of a neural network similar to the coefficients of a linear

model. Before calculating the relative importance (RI) of an input, the products of the weights that connect this input with

each hidden neuron and the output layer is determined and normalized by the sum of weight products feeding also into the

same hidden unit. These so called neuron contributions are summed up and normalized by the sum of all neuron contributions20

resulting in the RIs of all inputs. We calculated the mean, median and maximum RIs of 1000 MLP runs for all input variables.

We then compiled three lists in which we sorted the inputs in descending order with respect to the determined statistics. The

lengths of those lists were afterwards shortened to equal the number of variables that were included in the MLR model that

was derived before – only variables with the highest RI statistics stayed in the lists. All inputs that occurred at least in two of

three lists received one point in the scoring table, which was completed with this step. We then summed up the scores for all25

input variables and calculated two score thresholds above which an input was to be selected. One threshold was derived for

the original and the lagged Biomet variables, one for fuzzy and footprint data. We proceeded like this owing to the structure of

the three input data sets. Each Biomet variable occurred in two of three data sets, each fuzzy and footprint variable was part

of all data sets, making it more likely for them to reach a high score. We calculated the mean score of the respective variable

category and used the next larger integer as a score threshold. The inputs that were selected via the scoring table were fed into30

a final stepwise MLR removing further apparently irrelevant model inputs. In the last step of the input selection algorithm we

checked if both a variable and its lagged derivative remained in the input matrix. If so, the scores of those two variables were

compared, and only the higher scoring variable stayed in the input matrix. In case there was no score difference, the lagged

derivative was removed from the input space, whose reduction was hereby finished.
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3 Model input selection results

To gain first insight into the relations between input variables and landscape-scale gas fluxes (tower view time series, TVTS)

as well as between the input variables among each other, scatter plots were inspected and Pearson’s correlation coefficient (r)

was determined for each pair. See Table A1 for definitions of the quantity symbols used hereafter. Three Biomet time series

correlate with r values of 0.4 or higher with CH4 flux in both years: Lwout, Tair and Rg. In Year 1, this list is extended by VPD5

and PAR while the highest linear relation exists with CCrew (0.5) and CCveg, rew (0.6). In Year 2, additional connections with

r values of 0.4 or higher include soil temperatures TSoil20, TSoil2 and TSoil40. Footprint variables were not as closely related

as in Year 1. Nevertheless, CCveg, rew yields again the highest correlation among the footprint variables. Compared to FCH4,

linear relations between model input variables and CO2 flux are more clear as the only strong connections exist with PAR and

Rg (both r = 0.5 in Year 1 and r = 0.6 in Year 2). Regarding linear dependencies between Biomet variables, Rg and PAR (r10

> 0.9 both years), Tair and VPD (r = 0.7 in both years) as well as Tair and Lwout (r > 0.9 both years) were highly correlated.

In Year 2, soil temperatures were closely connected among each other (r > 0.9) and with Tair (r > 0.7). Water table depth

was correlated negatively with all redox measurements at different positions in the soil profile, with the largest absolute r of

-0.7 for the relation with Redox20. WT was also correlated with TSoil20 (r = 0.3). The seasonality embedded in soil temperature

measurements was reflected by high correlation coefficients with the two low-frequency fuzzy variables fuzzy variable summer15

(fuzzysu) and fuzzy variable winter (fuzzywi). The deeper in the soil profile the temperature measurements were taken, the less

amplitude response they show to diurnal variations and the less noisy the relation to the fuzzy data appears to be.

Correlation analysis emphasizes the (not surprising) fact that collinearity does exist in the model input space. In order to

avoid overfitting and thereby to increase the predictive power of the applied models, we reduced the input matrices which drive

these models using our scoring table approach. Results of this input variables selection are detailed in tables S2 to S5. As a20

measure to ascertain collinearity reduction, we calculated the condition numbers (Belsley et al., 2005) of the input matrices at

successive stages of the selection process as well as for the complete original and time-lagged input series (see figures S1 and

S2). Within all 12 data sets, the condition numbers dropped throughout the selection process by at least one order of magnitude

denoting a consistent removal of collinear variables from the input space. In all cases, between 30 % and 40 % of the variables

presented to the selection scheme were included in the final model input matrices.25

In the following section, detailed results of our model input selection scheme are shown. The four tables cover two gases and

two years. Within each table, results for the two land use types (surface class drained, SCdra and surface class rewetted, SCrew)

are shown. See Table A1 for declarations of the used quantity symbols. Only variables reaching a score above the respective

score threshold are included. Variables which were selected in the last step of the scheme and used for gas flux modeling are

printed in bold face.30
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Table S2. Result of the model input selection scheme for Year 1 CO2 fluxes. Score threshold for Biomet variables: SCdra (6), SCrew (6).

Score threshold for Fuzzy & Footprint variables: SCdra (9), SCrew (10)

Surface class drained Surface class rewetted

Variable Score Variable Score

B
io

m
et

Lwout 8 Lwout 8

Tair 8 Tair 8

Rg 7 Rg 8

PAR 7 Lwout, lagged 8

Lwout, lagged 7 PAR 7

Rg, lagged 7 VPD, lagged 6

Tair, lagged 7 Tair, lagged 6

Fu
zz

y
&

Fo
ot

pr
in

t

CCveg, dra 12 CCveg, rew 12

fuzzysu 12 fuzzywi 12

fuzzywi 12 fuzzyaf 11

fuzzyaf 9 fuzzyni 11

fuzzyev 9 fuzzymo 10
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Table S3. Result of the model input selection scheme for Year 2 CO2 fluxes. Score threshold for Biomet variables: SCdra (6), SCrew (6).

Score threshold for Fuzzy & Footprint variables: SCdra (9), SCrew (9)

Drained Rewetted

Variable Score Variable Score

B
io

m
et

Tair 8 Tair 8

PAR, lagged 8 TSoil2 8

TSoil2 7 TSoil5 8

Redox5 7 TSoil10 8

Tair, lagged 7 PAR, lagged 8

TSoil20, lagged 7 TSoil40 7

Redox2, lagged 7 TSoil40, lagged 7

TSoil5 6 TSoil2, lagged 7

TSoil10 6 TSoil5, lagged 7

Redox10 6 TSoil10, lagged 7

Redox20 6 TSoil20, lagged 7

WT, lagged 6 TSoil20 6

TSoil2, lagged 6 Redox2 6

TSoil10, lagged 6 Redox10 6

Redox5, lagged 6 Tair, lagged 6

Redox10, lagged 6 Redox20, lagged 6

Redox20, lagged 6

Fu
zz

y
&

Fo
ot

pr
in

t

CCveg, dra 12 fuzzysu 11

fuzzywi 9 fuzzywi 11

fuzzyaf 9 CCveg, rew 9

fuzzyev 9 fuzzyaf 9

fuzzyni 9 fuzzyev 9

fuzzysu 9 fuzzyni 9
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Table S4. Result of the model input selection scheme for Year 1 CH4 fluxes. Score threshold for Biomet variables: SCdra (6), SCrew (6).

Score threshold for Fuzzy & Footprint variables: SCdra (8), SCrew (8)

Drained Rewetted

Variable Score Variable Score

B
io

m
et

VPD 8 VPD 8

Tair, lagged 8 Lwout, lagged 8

Lwout 7 Tair, lagged 8

Tair 7 Lwout 7

VPD, lagged 7 pair 7

Lwout, lagged 6 Tair 7

Fu
zz

y
&

Fo
ot

pr
in

t

CCveg, dra 12 CCveg, rew 12

fuzzysu 12 fuzzysu 12

fuzzyaf 10 fuzzyaf 11

fuzzymo 8 fuzzymo 8

fuzzywi 8
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Table S5. Result of the model input selection scheme for Year 2 CH4 fluxes. Score threshold for Biomet variables: SCdra (6), SCrew (7).

Score threshold for Fuzzy & Footprint variables: SCdra (8), SCrew (9)

Drained Rewetted

Variable Score Variable Score

B
io

m
et

VPD 8 VPD 8

TSoil40 8 WT 8

TSoil5 8 TSoil5 8

Redox10 8 TSoil20 8

TSoil40, lagged 8 Redox10 8

TSoil10, lagged 8 Redox20 8

Redox5, lagged 8 WT, lagged 8

Lwout 7 Redox2, lagged 8

TSoil2 7 TSoil40 7

TSoil10 7 TSoil2 7

Redox2 7 TSoil40,lagged 7

TSoil2, lagged 7 TSoil2,lagged 7

TSoil5, lagged 7 TSoil5,lagged 7

TSoil20, lagged 7 TSoil5,lagged 7

Redox2, lagged 7 Redox20, lagged 7

Redox10, lagged 7

Tair, lagged 6

TSoil20 6

Redox20 6

VPD, lagged 6

WT, lagged 6

Redox20, lagged 6

Fu
zz

y
&

Fo
ot

pr
in

t

CCveg, dra 12 CCveg, rew 12

fuzzysu 10 fuzzywi 12

fuzzymo 9 fuzzymo 9

fuzzyaf 8 fuzzysu 9
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4 Effect of dimension reduction of model input space on matrix condition

In this section, matrix condition numbers of the differently manipulated versions of input variable combinations that were fed

into the input selection scheme (first three groups from the left in the plots below) and condition numbers of matrices at the

two final stages of the selection scheme (last two groups from the left in the plots below) are given. Lower condition numbers

denote a smaller degree of linear dependencies within different variables in a matrix. Three data sets were modeled for each gas5

flux time series per year: The originally measured EC fluxes (tower view) representing landscape-scale integrated fluxes and

the extracted time series, using EC footprint modeling, which relate to areas under different land use (drainage and rewetting)

are shown.

Figure S1. Matrix condition numbers of input combinations which were fed into the CH4 flux model input selection scheme (first three

groups from the left) and condition numbers of matrices at the two final stages of the selection scheme (last two groups from the left).

Figure S2. Matrix condition numbers of input combinations which were fed into the CO2 flux model input selection scheme (first three

groups from the left) and condition numbers of matrices at the two final stages of the selection scheme (last two groups from the left).
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Jackowicz-Korczyński, M., Christensen, T. R., Bäckstrand, K., Crill, P., Friborg, T., Mastepanov, M., and Ström, L.: Annual cycle of methane5

emission from a subarctic peatland, Journal of Geophysical Research, 115, 1 – 10, https://doi.org/10.1029/2008JG000913, 2010.

Jha, C. S., Rodda, S. R., Thumaty, K. C., Raha, a. K., and Dadhwal, V. K.: Eddy covariance based methane flux in Sundarbans mangroves,

India, Journal of Earth System Science, 123, 1089 – 1096, https://doi.org/10.1007/s12040-014-0451-y, 2014.

Kettunen, A., Kaitala, V., Alm, J., Silvola, J., Nykänen, H., and Martikainen, P. J.: Cross-correlation analysis of the dynamics of methane

emissions from a boreal peatland, Global Biogeochemical Cycles, 10, 457–471, https://doi.org/10.1029/96GB01609, 1996.10

Kim, Y., Johnson, M. S., Knox, S. H., Black, T. A., Dalmagro, H. J., Kang, M., Kim, J., and Baldocchi, D.: Gap-filling approaches for

eddy covariance methane fluxes: A comparison of three machine learning algorithms and a traditional method with principal component

analysis, Global Change Biology, 00, 1–20, https://doi.org/10.1111/gcb.14845, 2019.

Knox, S. H., Sturtevant, C., Matthes, J. H., Koteen, L., Verfaillie, J., and Baldocchi, D.: Agricultural peatland restoration: effects of land-

use change on greenhouse gas (CO2 and CH4) fluxes in the Sacramento-San Joaquin Delta, Global Change Biology, 21, 750 – 765,15

https://doi.org/10.1111/gcb.12745, 2015.

Knox, S. H., Jackson, R. B., Poulter, B., McNicol, G., Fluet-Chouinard, E., Zhang, Z., Hugelius, G., Bousquet, P., Canadell, J. G., Saunois,

M., Papale, D., Chu, H., Keenan, T. F., Baldocchi, D., Torn, M. S., Mammarella, I., Trotta, C., Aurela, M., Bohrer, G., Campbell, D. I.,

Cescatti, A., Chamberlain, S., Chen, J., Chen, W., Dengel, S., Desai, A. R., Euskirchen, E., Friborg, T., Gasbarra, D., Goded, I., Goeckede,

M., Heimann, M., Helbig, M., Hirano, T., Hollinger, D. Y., Iwata, H., Kang, M., Klatt, J., Krauss, K. W., Kutzbach, L., Lohila, A., Mitra,20

B., Morin, T. H., Nilsson, M. B., Niu, S., Noormets, A., Oechel, W. C., Peichl, M., Peltola, O., Reba, M. L., Richardson, A. D., Runkle, B.

R. K., Ryu, Y., Sachs, T., Schäfer, K. V. R., Schmid, H. P., Shurpali, N., Sonnentag, O., Tang, A. C. I., Ueyama, M., Vargas, R., Vesala, T.,

Ward, E. J., Windham-Myers, L., Wohlfahrt, G., and Zona, D.: FLUXNET-CH4 Synthesis Activity: Objectives, Observations, and Future

Directions, Bulletin of the American Meteorological Society, 100, 2607–2632, https://doi.org/10.1175/BAMS-D-18-0268.1, 2019.

Kroon, P. S., Schrier-Uijl, a. P., Hensen, a., Veenendaal, E. M., and Jonker, H. J. J.: Annual balances of CH4 and N2O from a managed25

fen meadow using eddy covariance flux measurements, European Journal of Soil Science, 61, 773 – 784, https://doi.org/10.1111/j.1365-

2389.2010.01273.x, 2010.

Long, K., Flanagan, L. B., and Cai, T.: Diurnal and seasonal variation in methane emissions in a northern Canadian peatland measured by

eddy covariance, Global Change Biology, 16, 2420 – 2435, https://doi.org/10.1111/j.1365-2486.2009.02083.x, 2010.

Mikhaylov, O. A., Miglovets, M. N., and Zagirova, S. V.: Vertical methane fluxes in mesooligotrophic boreal peatland in European Northeast30

Russia, Contemporary Problems of Ecology, 8, 368 – 375, https://doi.org/10.1134/S1995425515030099, 2015.

Naftaly, U., Intrator, N., and Horn, D.: Optimal ensemble averaging of neural networks, Network: Computation in Neural Systems, 8, 283 –

296, https://doi.org/10.1088/0954-898X/8/3/004, 1997.

Nemitz, E., Mannarella, I., Ibrom, A., Aurela, M., Burba, G. G., Dengel, S., Gielen, B., Grelle, A., Heinesch, B., Herbst, M., et al.: Standard-

isation of eddy-covariance flux measurements of methane and nitrous oxide, International agrophysics, 32, 517–549, 2018.35

Olden, D. A. and Jackson, J. D. Y.: Illuminating the "black box": a ramdomization approach for understanding variable contributions in

artificial neuronal networks., Ecological Modelling, 154, 135 – 150, 2002.

S11

https://doi.org/10.1029/2008JG000913
https://doi.org/10.1007/s12040-014-0451-y
https://doi.org/10.1029/96GB01609
https://doi.org/10.1111/gcb.14845
https://doi.org/10.1111/gcb.12745
https://doi.org/10.1175/BAMS-D-18-0268.1
https://doi.org/10.1111/j.1365-2389.2010.01273.x
https://doi.org/10.1111/j.1365-2389.2010.01273.x
https://doi.org/10.1111/j.1365-2389.2010.01273.x
https://doi.org/10.1111/j.1365-2486.2009.02083.x
https://doi.org/10.1134/S1995425515030099
https://doi.org/10.1088/0954-898X/8/3/004


Papale, D. and Valentini, R.: A new assessment of European forests carbon exchanges by eddy fluxes and artificial neural network spatial-

ization, Global Change Biology, 9, 525 – 535, https://doi.org/10.1046/j.1365-2486.2003.00609.x, 2003.

Parmentier, F. J. W., Van Huissteden, J., Van Der Molen, M. K., Schaepman-Strub, G., Karsanaev, S. a., Maximov, T. C., and Dolman,

a. J.: Spatial and temporal dynamics in eddy covariance observations of methane fluxes at a tundra site in northeastern Siberia, Journal of

Geophysical Research: Biogeosciences, 116, 1 – 14, https://doi.org/10.1029/2010JG001637, 2011.5

Perrone, M. P. and Cooper, L. N.: When networks disagree: ensemble methods for hybrid neural network, in: Neural Networks for Speech

and Image Processing, edited by Mammone, R. J., pp. 126 – 142, Chapman Hall, London, 1993.

Pypker, T. G., Moore, P. a., Waddington, J. M., Hribljan, J. a., and Chimner, R. C.: Shifting environmental controls on CH4 fluxes in a

sub-boreal peatland, Biogeosciences, 10, 7971 – 7981, https://doi.org/10.5194/bg-10-7971-2013, 2013.

Rinne, J., Riutta, T., Pihlatie, M., Aurela, M., Haapanala, S., Tuovinen, J. P., Tuittila, E. S., and Vesala, T.: Annual cycle of methane emission10

from a boreal fen measured by the eddy covariance technique, Tellus, Series B: Chemical and Physical Meteorology, 59, 449 – 457,

https://doi.org/10.1111/j.1600-0889.2007.00261.x, 2007.

Sarle, W. S.: Neural Networks and Statistical Models, in: Proceedings of the Nineteenth Annual SAS Users Group International Conference,

April, 1994, pp. 1 – 13, https://doi.org/10.1.1.27.699, 1994.

Sarle, W. S.: Neural Network FAQ, periodic posting to the Usenet newsgroup comp.ai.neural-nets, ftp://ftp.sas.com/pub/neural/FAQ.html,15

1997.

Schmidt, A., Wrzesinsky, T., and Klemm, O.: Gap Filling and Quality Assessment of CO2 and Water Vapour Fluxes above an Urban Area

with Radial Basis Function Neural Networks, Boundary-Layer Meteorology, 126, 389 – 413, https://doi.org/10.1007/s10546-007-9249-7,

2008.

Shoemaker, W. B., Anderson, F., Barr, J. G., Graham, S. L., and Botkin, D. B.: Carbon exchange between the atmosphere and subtropical20

forested cypress and pine wetlands, Biogeosciences, 12, 2285 – 2300, https://doi.org/10.5194/bg-12-2285-2015, 2015.

Suyker, A. E., Verma, S. B., Clement, R. J., and Billesbach, D. P.: Methane flux in a boreal fen: Season-long measurement by eddy correlation,

Journal of Geophysical Research: Atmospheres, 101, 28 637 – 28 647, https://doi.org/10.1029/96JD02751, 1996.

Wille, C., Kutzbach, L., Sachs, T., Wagner, D., and Pfeiffer, E.-M.: Methane emission from Siberian arctic polygonal tundra: eddy covariance

measurements and modeling, Global Change Biology, 14, 1395 – 1408, https://doi.org/10.1111/j.1365-2486.2008.01586.x, 2008.25

Wolpert, D. H.: Stacked generalization, Neural Networks, 5, 241 – 259, https://doi.org/10.1016/S0893-6080(05)80023-1, 1992.

S12

https://doi.org/10.1046/j.1365-2486.2003.00609.x
https://doi.org/10.1029/2010JG001637
https://doi.org/10.5194/bg-10-7971-2013
https://doi.org/10.1111/j.1600-0889.2007.00261.x
https://doi.org/10.1.1.27.699
ftp://ftp.sas.com/pub/neural/FAQ.html
https://doi.org/10.1007/s10546-007-9249-7
https://doi.org/10.5194/bg-12-2285-2015
https://doi.org/10.1029/96JD02751
https://doi.org/10.1111/j.1365-2486.2008.01586.x
https://doi.org/10.1016/S0893-6080(05)80023-1

