

Supplement of

A meta-analysis on environmental drivers of marine phytoplankton C:N:P

Tatsuro Tanioka and Katsumi Matsumoto

Correspondence to: Tatsuro Tanioka (tanio003@umn.edu)

The copyright of individual parts of the supplement might differ from the CC BY 4.0 License.

Figure S1. S-factor for each PFT for (a) P vs P:C, (b) P vs N:C, (c) I vs P:C, (d) N vs N:C, (e) T vs P:C, and (f) I vs N:C. Heterogeneity due to moderators are not statistically significant (Table S1). Number next to the point indicates the number of experimental units.

Figure S2. Effects of N types on N vs P:C experiments. The heterogeneity amongst N types is statistically significant (P < 0.05).

TABLE S1. Effects of categorical moderators on the responses of fourteen photosynthesis-related traits to N addition. *n*, number of observation; $\overline{s_X^Y}$, weighted mean stoichiometry sensitivity factor with environmental driver X and response variable Y; ci.lb, lower boundary of 95% CI; ci.ub, upper boundary of 95% CI; sig., significance of the between-moderator heterogeneity test; ns, P > 0.05; *, P < 0.05; **, P < 0.01; ***, P < 0.001. Red bold texts highlight moderators significantly affecting the responses. For iron experiments $\overline{\ln(RR)}$, the weighted mean value of the natural logarithm-transformed response ratio was used for heterogeneity test.

		Phosp	Phosphorus vs P:C			
		n	$\overline{S_X^Y}$	ci.lb	ci.ub	sig.
Plankton functional type	Diatoms	6	0.34	0.042	0.65	ns
	Coccolithophores	18	0.27	0.12	0.42	
	Dinoflagellates	1	0.20	-0.45	0.85	
	Other Eukaryotes	12	0.27	0.025	0.52	
	Cyanobacteria	5	0.099	-0.22	0.42	
	Diazotrophs	12	0.029	-0.21	0.26	
	Eukaryotes	37	0.28	0.18	0.38	*
	Prokaryotes	17	0.049	-0.13	0.23	
	Temperate/Warm					
	Cold	NA	NA	NA	NA	NA
Culture Growth Mode	Batch	22	0.24	0.11	0.38	ns
	Semi-continuous	25	0.15	-0.034	0.34	
	Chemostat	7	0.31	-0.0096	0.63	
	Turbidostat	NA	NA	NA	NA	
Growth Phase at harvest	Exponential	18	0.095	-0.0097	0.20	ns
	Stationary	25	0.18	0.041	0.32	
				~		
		Phosp	horus vs N:	2		
		Phosp n	$\frac{1}{\overline{s_X^Y}}$	ci.lb	ci.ub	sig.
Plankton functional type	Diatoms	Phosp n 6	$\frac{\overline{s_X^Y}}{0.047}$	ci.lb -0.026	ci.ub 0.12	sig. ns
Plankton functional type	Diatoms Coccolithophores	<u>Phosp</u> <u>n</u> 6 18	$\frac{\overline{s_X^Y}}{0.047}$ 0.050	ci.lb -0.026 0.015	ci.ub 0.12 0.085	sig. ns
Plankton functional type	Diatoms Coccolithophores Dinoflagellates	Phosp <u>n</u> 6 18 1	$ \frac{1}{\overline{s_X^Y}} $ 0.047 0.050 0.015	ci.lb -0.026 0.015 -0.13	ci.ub 0.12 0.085 0.16	sig. ns
Plankton functional type	Diatoms Coccolithophores Dinoflagellates Other Eukaryotes	Phosp n 6 18 1 11	$ \frac{\overline{s_X^Y}}{0.047} $ 0.050 0.015 -7.2×10 ⁻⁴	ci.lb -0.026 0.015 -0.13 -0.060	ci.ub 0.12 0.085 0.16 0.059	sig. ns
Plankton functional type	Diatoms Coccolithophores Dinoflagellates Other Eukaryotes Cyanobacteria	Phosp <i>n</i> 6 18 1 11 5	$ \frac{\overline{s_X^Y}}{0.047} \\ 0.047 \\ 0.050 \\ 0.015 \\ -7.2 \times 10^{-4} \\ 0.0040 $	ci.lb -0.026 0.015 -0.13 -0.060 -0.073	ci.ub 0.12 0.085 0.16 0.059 0.081	sig. ns
Plankton functional type	Diatoms Coccolithophores Dinoflagellates Other Eukaryotes Cyanobacteria Diazotrophs	Phosp n 6 18 1 11 5 11	$ \frac{\overline{s_X^Y}}{0.047} $ 0.047 0.050 0.015 -7.2×10 ⁻⁴ 0.0040 0.0027	ci.lb -0.026 0.015 -0.13 -0.060 -0.073 -0.053	ci.ub 0.12 0.085 0.16 0.059 0.081 0.059	sig. ns
Plankton functional type	Diatoms Coccolithophores Dinoflagellates Other Eukaryotes Cyanobacteria Diazotrophs Eukaryotes	Phosp n 6 18 1 11 5 11 36	$ \frac{\overline{s_X^Y}}{0.047} = 0.047 \\ 0.050 \\ 0.015 \\ -7.2 \times 10^{-4} \\ 0.0040 \\ 0.0027 \\ 0.033 $	ci.lb -0.026 0.015 -0.13 -0.060 -0.073 -0.053 0.0096	ci.ub 0.12 0.085 0.16 0.059 0.081 0.059 0.056	sig. ns ns
Plankton functional type	Diatoms Coccolithophores Dinoflagellates Other Eukaryotes Cyanobacteria Diazotrophs Eukaryotes Prokaryotes	Phosp n 6 18 1 11 5 11 36 16	$ \frac{\overline{s_X^Y}}{0.047} $ 0.047 0.050 0.015 -7.2×10 ⁻⁴ 0.0040 0.0027 0.033 0.0032	ci.lb -0.026 0.015 -0.13 -0.060 -0.073 -0.053 0.0096 -0.037	ci.ub 0.12 0.085 0.16 0.059 0.081 0.059 0.056 0.043	sig. ns ns
Plankton functional type	Diatoms Coccolithophores Dinoflagellates Other Eukaryotes Cyanobacteria Diazotrophs Eukaryotes Prokaryotes Temperate/Warm	Phosp n 6 18 1 11 5 11 36 16	$ \text{bhorus vs N:} 0 \overline{s_X^Y} 0.047 0.050 0.015 -7.2 \times 10^{-4} 0.0040 0.0027 0.033 0.0032 $	ci.lb -0.026 0.015 -0.13 -0.060 -0.073 -0.053 0.0096 -0.037	ci.ub 0.12 0.085 0.16 0.059 0.081 0.059 0.056 0.043	sig. ns ns
Plankton functional type	Diatoms Coccolithophores Dinoflagellates Other Eukaryotes Cyanobacteria Diazotrophs Eukaryotes Prokaryotes Temperate/Warm Cold	Phosp n 6 18 1 11 5 11 36 16 NA	horus vs N:0 $\overline{s_X^Y}$ 0.047 0.050 0.015 -7.2×10 ⁻⁴ 0.0040 0.0027 0.033 0.0032 NA	ci.lb -0.026 0.015 -0.13 -0.060 -0.073 -0.053 0.0096 -0.037 NA	ci.ub 0.12 0.085 0.16 0.059 0.081 0.059 0.056 0.043 NA	sig. ns ns
Plankton functional type	Diatoms Coccolithophores Dinoflagellates Other Eukaryotes Cyanobacteria Diazotrophs Eukaryotes Prokaryotes Prokaryotes Temperate/Warm Cold Batch	Phosp n 6 18 1 11 5 11 36 16 NA 20	$\frac{\overline{s_X^Y}}{0.047}$ 0.047 0.050 0.015 -7.2×10 ⁻⁴ 0.0040 0.0027 0.033 0.0032 NA 0.017	ci.lb -0.026 0.015 -0.13 -0.060 -0.073 -0.053 0.0096 -0.037 NA 0.0033	ci.ub 0.12 0.085 0.16 0.059 0.081 0.059 0.056 0.043 NA 0.030	sig. ns ns NA ***
Plankton functional type Culture Growth Mode	Diatoms Coccolithophores Dinoflagellates Other Eukaryotes Cyanobacteria Diazotrophs Eukaryotes Prokaryotes Prokaryotes Temperate/Warm Cold Batch Semi-continuous	Phosp n 6 18 1 11 5 11 36 16 NA 20 25	horus vs N:0 $\overline{s_X^Y}$ 0.047 0.050 0.015 -7.2×10 ⁻⁴ 0.0040 0.0027 0.033 0.0032 NA 0.017 0.0067	ci.lb -0.026 0.015 -0.13 -0.060 -0.073 -0.053 0.0096 -0.037 NA 0.0033 -0.011	ci.ub 0.12 0.085 0.16 0.059 0.081 0.059 0.056 0.043 NA 0.030 0.025	sig. ns ns NA ***
Plankton functional type Culture Growth Mode	Diatoms Coccolithophores Dinoflagellates Other Eukaryotes Cyanobacteria Diazotrophs Eukaryotes Prokaryotes Prokaryotes Temperate/Warm Cold Batch Semi-continuous Chemostat	Phosp n 6 18 1 11 5 11 36 16 NA 20 25 7	$\frac{\overline{s_X^Y}}{0.047}$ 0.047 0.050 0.015 -7.2×10 ⁻⁴ 0.0040 0.0027 0.033 0.0032 NA 0.017 0.0067 0.14	ci.lb -0.026 0.015 -0.13 -0.060 -0.073 -0.053 0.0096 -0.037 NA 0.0033 -0.011 0.085	ci.ub 0.12 0.085 0.16 0.059 0.081 0.059 0.056 0.043 NA 0.030 0.025 0.20	sig. ns ns NA ***
Plankton functional type Culture Growth Mode	Diatoms Coccolithophores Dinoflagellates Other Eukaryotes Cyanobacteria Diazotrophs Eukaryotes Prokaryotes Temperate/Warm Cold Batch Semi-continuous Chemostat Turbidostat	Phosp n 6 18 1 11 5 11 36 16 NA 20 25 7 NA	horus vs N:0 $\overline{s_X^Y}$ 0.047 0.050 0.015 -7.2×10 ⁻⁴ 0.0040 0.0027 0.033 0.0032 NA 0.017 0.0067 0.14 NA	ci.lb -0.026 0.015 -0.13 -0.060 -0.073 -0.053 0.0096 -0.037 NA 0.0033 -0.011 0.085 NA	ci.ub 0.12 0.085 0.16 0.059 0.081 0.059 0.056 0.043 NA 0.030 0.025 0.20 NA	sig. ns ns NA ***
Plankton functional type Plankton functional type Culture Growth Mode Growth Phase at harvest	Diatoms Coccolithophores Dinoflagellates Other Eukaryotes Cyanobacteria Diazotrophs Eukaryotes Prokaryotes Prokaryotes Temperate/Warm Cold Batch Semi-continuous Chemostat Turbidostat Exponential	Phosp n 6 18 1 11 5 11 36 16 NA 20 25 7 NA 17	Norus vs N:0 $\overline{s_X^Y}$ 0.047 0.050 0.015 -7.2×10 ⁻⁴ 0.0040 0.0027 0.033 0.0032 NA 0.017 0.0067 0.14 NA 0.0044	ci.lb -0.026 0.015 -0.13 -0.060 -0.073 -0.053 0.0096 -0.037 NA 0.0033 -0.011 0.085 NA -0.0078	ci.ub 0.12 0.085 0.16 0.059 0.081 0.059 0.056 0.043 NA 0.030 0.025 0.20 NA 0.017	sig. ns ns NA ***

Environmental Driver 1: Dissolved inorganic phosphorus

		Nitrogen vs P:C				
		n	$\overline{s_X^Y}$	ci.lb	ci.ub	sig.
Plankton functional type	Diatoms	8	0.0042	-0.070	0.079	ns
	Coccolithophores	8	0.0053	-0.011	0.021	
	Dinoflagellates	2	0.018	-0.12	0.16	
	Other Eukaryotes	8	0.0045	-0.073	0.082	
	Cyanobacteria	2	-0.0056	-0.11	0.099	
	Diazotrophs	4	0.0022	-0.080	0.085	
	Eukaryotes	26	0.011	-0.0030	0.025	ns
	Prokaryotes	6	-0.010	-0.044	0.023	
	Temperate/Warm					
	Cold	NA	NA	NA	NA	NA
N form	NO ₃ ⁻	26	0.0066	-0.029	0.042	*
	NH ₄ NO ₃	1	0.14	0.060	0.22	
	NH4 ⁺	1	-0.0069	-0.070	0.56	
	N ₂ NO ₃	4	-0.010	-0.044	0.024	
Culture Growth Mode	Batch	18	0.0064	-0.011	0.024	ns
	Semi-continuous	14	0.0085	-0.018	0.035	
	Chemostat	NA	NA	NA	NA	
	Turbidostat	NA	NA	NA	NA	
Growth Phase at harvest	Exponential	8	0.022	-0.010	0.054	ns
	Stationary	13	0.0034	-0.039	0.046	
		Nitrog	gen vs N:C			
		n	$\overline{S_X^Y}$	ci.lb	ci.ub	sig.
Plankton functional type	Diatoms	24	0.11	-0.029	0.25	ns
	Coccolithophores	8	0.13	0.015	0.25	
	Dinoflagellates	3	0.056	-0.18	0.29	
	Other Eukaryotes	16	0.20	0.038	0.36	
	Cyanobacteria	4	-8.5×10 ⁻⁴	-0.20	0.20	
	Diazotrophs	4	-0.019	-0.23	0.19	
	Eukaryotes	51	0.17	0.11	0.22	*
	Prokaryotes	8	-0.017	-0.18	0.15	
	Temperate/Warm					
	Cold	NA	NA	NA	NA	NA
N form	NO ₃ ⁻	52	0.15	-0.077	0.37	ns
	NH4NO3	1	0.57	0.09	1.1	
	$\mathrm{NH_{4}^{+}}$	2	0.096	-0.32	0.51	
	N2NO3	4	-0.035	-0.25	0.18	
Culture Growth Mode	Batch	28	0.14	0.052	0.22	ns
	Semi-continuous	28	0.16	0.036	0.28	
	Chemostat	NA	NA	NA	NA	

Environmental Driver 2: Dissolved inorganic nitrogen

	Turbidostat	3	0.010	-0.26	0.28	
Growth Phase at harvest	Exponential	21	0.15	0.041	0.26	ns
	Stationary	24	0.18	0.024	0.33	

		Iron vs P:C				
		n	$\overline{\ln(RR)}$	ci.lb	ci.ub	sig.
Plankton functional type	Diatoms	23	-0.033	-0.23	0.17	ns
	Coccolithophores	NA	NA	NA	NA	
	Dinoflagellates		NA	NA	NA	
	Other Eukaryotes		-0.0085	-0.52	0.51	
	Cyanobacteria	3	-0.089	-0.67	0.49	
	Diazotrophs	7	0.19	-0.22	0.60	
	Eukaryotes	27	-0.029	-0.21	0.15	ns
	Prokaryotes	10	0.11	-0.24	0.45	
	Temperate/Warm/Unspecified	20	0.039	-0.27	0.35	ns
	Cold	17	-0.028	-0.26	0.20	
Culture Growth Mode	Batch	14	-0.030	-0.28	0.22	ns
	Semi-continuous	23	0.033	-0.29	0.35	
	Chemostat	NA	NA	NA	NA	
	Turbidostat	NA	NA	NA	NA	
Growth Phase at harvest	Exponential	11	-0.090	-0.29	0.11	ns
	Stationary	13	-0.12	-0.39	0.15	
	5					
	-	Iron v	s N:C			
		Iron van de la companya de la compan	s N:C In (RR)	ci.lb	ci.ub	sig.
Plankton functional type	Diatoms	Iron v: <i>n</i> 45	s N:C In (<i>RR</i>) 0.0061	ci.lb -0.084	ci.ub 0.096	sig. ns
Plankton functional type	Diatoms Coccolithophores	Iron v: <i>n</i> 45 NA	s N:C In (<i>RR</i>) 0.0061 NA	ci.lb -0.084 NA	ci.ub 0.096 NA	sig. ns
Plankton functional type	Diatoms Coccolithophores Dinoflagellates	Iron va n 45 NA NA	s N:C In (<i>RR</i>) 0.0061 NA NA	ci.lb -0.084 NA NA	ci.ub 0.096 NA NA	sig. ns
Plankton functional type	Diatoms Coccolithophores Dinoflagellates Other Eukaryotes	Iron v <i>n</i> 45 NA NA 6	s N:C In (<i>RR</i>) 0.0061 NA NA 0.046	ci.lb -0.084 NA NA -0.22	ci.ub 0.096 NA NA 0.31	sig. ns
Plankton functional type	Diatoms Coccolithophores Dinoflagellates Other Eukaryotes Cyanobacteria	Iron v <i>n</i> 45 NA NA 6 6	s N:C In (<i>RR</i>) 0.0061 NA NA 0.046 0.0033	ci.lb -0.084 NA NA -0.22 -0.26	ci.ub 0.096 NA NA 0.31 0.27	sig. ns
Plankton functional type	Diatoms Coccolithophores Dinoflagellates Other Eukaryotes Cyanobacteria Diazotrophs	Iron v <i>n</i> 45 NA NA 6 6 8	s N:C In (<i>RR</i>) 0.0061 NA NA 0.046 0.0033 -0.22	ci.lb -0.084 NA NA -0.22 -0.26 -0.45	ci.ub 0.096 NA NA 0.31 0.27 0.010	sig. ns
Plankton functional type	Diatoms Coccolithophores Dinoflagellates Other Eukaryotes Cyanobacteria Diazotrophs Eukaryotes	Iron v <i>n</i> 45 NA 6 6 8 51	s N:C In (<i>RR</i>) 0.0061 NA NA 0.046 0.0033 -0.22 0.011	ci.lb -0.084 NA NA -0.22 -0.26 -0.45 -0.073	ci.ub 0.096 NA NA 0.31 0.27 0.010 0.095	sig. ns
Plankton functional type	Diatoms Coccolithophores Dinoflagellates Other Eukaryotes Cyanobacteria Diazotrophs Eukaryotes Prokaryotes	Iron va n 45 NA NA 6 6 8 51 14	s N:C In (<i>RR</i>) 0.0061 NA NA 0.046 0.0033 -0.22 0.011 -0.13	ci.lb -0.084 NA NA -0.22 -0.26 -0.45 -0.073 -0.31	ci.ub 0.096 NA NA 0.31 0.27 0.010 0.095 0.054	sig. ns ns
Plankton functional type	Diatoms Coccolithophores Dinoflagellates Other Eukaryotes Cyanobacteria Diazotrophs Eukaryotes Prokaryotes Temperate/Warm/Unspecified	Iron vi n 45 NA 6 6 8 51 14 42	s N:C In (<i>RR</i>) 0.0061 NA NA 0.046 0.0033 -0.22 0.011 -0.13 -0.018	ci.lb -0.084 NA NA -0.22 -0.26 -0.45 -0.45 -0.073 -0.31 -0.18	ci.ub 0.096 NA NA 0.31 0.27 0.010 0.095 0.054 0.14	sig. ns ns ns
Plankton functional type	Diatoms Coccolithophores Dinoflagellates Other Eukaryotes Cyanobacteria Diazotrophs Eukaryotes Prokaryotes Temperate/Warm/Unspecified Cold	Iron va n 45 NA NA 6 6 8 51 14 42 21	s N:C In (<i>RR</i>) 0.0061 NA NA 0.046 0.0033 -0.22 0.011 -0.13 -0.018 -0.022	ci.lb -0.084 NA NA -0.22 -0.26 -0.45 -0.073 -0.073 -0.18 -0.15	ci.ub 0.096 NA NA 0.31 0.27 0.010 0.095 0.054 0.14 0.11	sig. ns ns ns
Plankton functional type Culture Growth Mode	Diatoms Coccolithophores Dinoflagellates Other Eukaryotes Cyanobacteria Diazotrophs Eukaryotes Prokaryotes Temperate/Warm/Unspecified Cold Batch	Iron vi n 45 NA 6 6 8 51 14 42 21 26	s N:C In (<i>RR</i>) 0.0061 NA NA 0.046 0.0033 -0.22 0.011 -0.13 -0.018 -0.022 -0.065	ci.lb -0.084 NA NA -0.22 -0.26 -0.45 -0.45 -0.073 -0.31 -0.18 -0.15 -0.18	ci.ub 0.096 NA NA 0.31 0.27 0.010 0.095 0.054 0.14 0.11 0.054	sig. ns ns ns
Plankton functional type Culture Growth Mode	Diatoms Coccolithophores Dinoflagellates Other Eukaryotes Cyanobacteria Diazotrophs Eukaryotes Prokaryotes Temperate/Warm/Unspecified Cold Batch Semi-continuous	Iron v n 45 NA NA 6 6 8 51 14 42 21 26 39	s N:C In (<i>RR</i>) 0.0061 NA NA 0.046 0.0033 -0.22 0.011 -0.13 -0.018 -0.022 -0.065 0.011	ci.lb -0.084 NA NA -0.22 -0.26 -0.45 -0.45 -0.073 -0.31 -0.18 -0.15 -0.18 -0.14	ci.ub 0.096 NA NA 0.31 0.27 0.010 0.095 0.054 0.14 0.11 0.054 0.16	sig. ns ns ns ns
Plankton functional type Culture Growth Mode	Diatoms Coccolithophores Dinoflagellates Other Eukaryotes Cyanobacteria Diazotrophs Eukaryotes Prokaryotes Temperate/Warm/Unspecified Cold Batch Semi-continuous Chemostat	Iron vi n 45 NA 6 6 8 51 14 42 21 26 39 NA	s N:C In (<i>RR</i>) 0.0061 NA NA 0.046 0.0033 -0.22 0.011 -0.13 -0.018 -0.022 -0.065 0.011 NA	ci.lb -0.084 NA NA -0.22 -0.26 -0.45 -0.45 -0.073 -0.31 -0.18 -0.15 -0.18 -0.14 NA	ci.ub 0.096 NA NA 0.31 0.27 0.010 0.095 0.054 0.14 0.11 0.054 0.16 NA	sig. ns ns ns
Plankton functional type Culture Growth Mode	Diatoms Coccolithophores Dinoflagellates Other Eukaryotes Cyanobacteria Diazotrophs Eukaryotes Prokaryotes Temperate/Warm/Unspecified Cold Batch Semi-continuous Chemostat Turbidostat	Iron v n 45 NA NA 6 6 8 51 14 42 21 26 39 NA NA	s N:C In (<i>RR</i>) 0.0061 NA NA 0.046 0.0033 -0.22 0.011 -0.13 -0.018 -0.022 -0.065 0.011 NA NA NA	ci.lb -0.084 NA NA -0.22 -0.26 -0.45 -0.45 -0.073 -0.31 -0.18 -0.18 -0.15 -0.18 -0.14 NA NA	ci.ub 0.096 NA NA 0.31 0.27 0.010 0.095 0.054 0.14 0.14 0.11 0.054 0.16 NA NA	sig. ns ns ns
Plankton functional type Plankton functional type Culture Growth Mode Growth Phase at harvest	Diatoms Coccolithophores Dinoflagellates Other Eukaryotes Cyanobacteria Diazotrophs Eukaryotes Prokaryotes Temperate/Warm/Unspecified Cold Batch Semi-continuous Chemostat Turbidostat Exponential	Iron vi n 45 NA NA 6 6 8 51 14 42 21 26 39 NA NA NA 38	s N:C In (<i>RR</i>) 0.0061 NA NA 0.046 0.0033 -0.22 0.011 -0.13 -0.018 -0.022 -0.065 0.011 NA NA NA -0.022 -0.065 0.011 NA -0.035	ci.lb -0.084 NA NA -0.22 -0.26 -0.45 -0.45 -0.073 -0.31 -0.18 -0.18 -0.18 -0.14 NA NA -0.14	ci.ub 0.096 NA NA 0.31 0.27 0.010 0.095 0.054 0.14 0.11 0.054 0.16 NA NA NA 0.073	sig. ns ns ns

Environmental Driver 3: Dissolved iron

		Irradia	ance vs P:C			
		n	$\overline{s_X^Y}$	ci.lb	ci.ub	sig.
Plankton functional type	Diatoms	9	-0.053	-0.13	0.025	ns
	Coccolithophores	9	-0.0080	-0.059	0.043	
	Dinoflagellates	3	0.0053	-0.12	0.13	
	Other Eukaryotes	9	-0.078	-0.16	-0.0013	
	Cyanobacteria	NA	NA	NA	NA	
	Diazotrophs	5	-0.0073	-0.10	0.085	
	Eukaryotes	30	-0.039	-0.069	-0.0088	ns
	Prokaryotes	5	-0.0076	-0.089	0.074	
	Temperate/Warm/Unspecified					
	Cold	NA	NA	NA	NA	NA
Culture Growth Mode	Batch	19	-0.052	-0.095	-0.010	ns
	Semi-continuous	8	-0.0092	-0.078	0.060	
	Chemostat	8	-0.031	-0.099	0.036	
	Turbidostat	NA	NA	NA	NA	
Growth Phase at harvest	Exponential	12	0.014	-0.025	0.054	ns
	Stationary	7	-0.0076	-0.068	0.053	
Light regime	Continuous Light	1	-0.012	-0.16	0.13	ns
	Periodic Light	34	-0.036	-0.19	0.11	
		Irradia	ance vs N:C)		
		n	$\overline{S_X^Y}$	ci.lb	ci.ub	sig.
Plankton functional type	Diatoms	48	-0.023	-0.055	0.0092	ns
	Coccolithophores	12	-0.034	-0.062	-0.0057	
	Dinoflagellates	3	0.013	-0.054	0.079	
	Other Eukaryotes	22	-0.030	-0.067	0.0061	
	Cyanobacteria	3	-0.027	-0.093	0.039	
	Diazotrophs	6	0.0037	-0.051	0.058	
	Eukaryotes	85	-0.025	-0.036	-0.014	ns
	Prokaryotes	9	-0.0081	-0.045	0.029	
	Temperate/Warm/Unspecified	89	6.0×10 ⁻⁴	-0.042	0.044	ns
	Cold	5	-0.025	-0.069	0.019	
Culture Growth Mode	Batch	46	-0.034	-0.049	-0.019	**
	Semi-continuous	27	0.0034	-0.020	0.026	
	Chemostat	12	-0.047	-0.076	-0.017	
	Turbidostat	9	-0.024	-0.058	0.010	
Growth Phase at harvest	Exponential	47	-0.014	-0.028	7.6×10 ⁻⁴	ns
	Stationary	18	-0.0042	-0.032	0.024	
Light regime	Continuous Light	30	-0.0092	-0.026	0.0077	*
	Periodic Light	64	-0.031	-0.052	-0.010	

Environmental Driver 4: Irradiance (photon flux density)

Environmental Driver 5: Temperature

		Temperature vs P:C				
		n	$\overline{S_X^Y}$	ci.lb	ci.ub	sig.
Plankton functional type	Diatoms	22	-9.0	-19.5	1.5	ns
	Coccolithophores	11	2.5	-6.0	11.1	
	Dinoflagellates	10	-0.071	-12.1	12.0	
	Other Eukaryotes		-0.58	-11.2	10.0	
	Cyanobacteria		-2.0	-15.5	11.5	
	Diazotrophs	14	-9.9	-22.5	2.7	
	Eukaryotes	62	-2.8	-6.4	0.81	ns
	Prokaryotes	21	-6.5	-14.4	1.5	
	Temperate/Warm/Unspecified	70	-3.5	-11.4	4.4	ns
	Cold	13	-3.6	-12.2	5.1	
Culture Growth Mode	Batch	28	-9.0	-14.1	-3.9	*
	Semi-continuous	53	-0.21	-6.7	6.3	
	Chemostat	2	-4.7	-26.3	16.9	
	Turbidostat	NA	NA	NA	NA	
Growth Phase at harvest	Exponential	50	-8.3	-12.2	-4.4	***
	Stationary	28	5.0	-1.2	11.2	
		Temp	erature vs l	N:C		
		n	$\overline{S_X^Y}$	ci.lb	ci.ub	sig.
Plankton functional type	Diatoms	31	-0.80	-6.0	4.4	ns
	Coccolithophores	11	-1.0	-5.5	3.4	
	Coccolithophores Dinoflagellates	11 10	-1.0 0.28	-5.5 -6.0	3.4 6.5	
	Coccolithophores Dinoflagellates Other Eukaryotes	11 10 19	-1.0 0.28 -1.8	-5.5 -6.0 -7.2	3.4 6.5 3.6	
	Coccolithophores Dinoflagellates Other Eukaryotes Cyanobacteria	11 10 19 8	-1.0 0.28 -1.8 0.28	-5.5 -6.0 -7.2 -6.2	 3.4 6.5 3.6 6.7 	
	Coccolithophores Dinoflagellates Other Eukaryotes Cyanobacteria Diazotrophs	11 10 19 8 17	-1.0 0.28 -1.8 0.28 2.8	-5.5 -6.0 -7.2 -6.2 -3.6	3.4 6.5 3.6 6.7 9.1	
	Coccolithophores Dinoflagellates Other Eukaryotes Cyanobacteria Diazotrophs Eukaryotes	11 10 19 8 17 71	-1.0 0.28 -1.8 0.28 2.8 -0.96	-5.5 -6.0 -7.2 -6.2 -3.6 -2.6	3.4 6.5 3.6 6.7 9.1 0.71	ns
	Coccolithophores Dinoflagellates Other Eukaryotes Cyanobacteria Diazotrophs Eukaryotes Prokaryotes	11 10 19 8 17 71 25	-1.0 0.28 -1.8 0.28 2.8 -0.96 1.6	-5.5 -6.0 -7.2 -6.2 -3.6 -2.6 -2.0	3.4 6.5 3.6 6.7 9.1 0.71 5.2	ns
	Coccolithophores Dinoflagellates Other Eukaryotes Cyanobacteria Diazotrophs Eukaryotes Prokaryotes Temperate/Warm/Unspecified	11 10 19 8 17 71 25 83	-1.0 0.28 -1.8 0.28 2.8 -0.96 1.6 1.0	-5.5 -6.0 -7.2 -6.2 -3.6 -2.6 -2.0 -3.0	3.4 6.5 3.6 6.7 9.1 0.71 5.2 5.0	ns
	Coccolithophores Dinoflagellates Other Eukaryotes Cyanobacteria Diazotrophs Eukaryotes Prokaryotes Temperate/Warm/Unspecified Cold	11 10 19 8 17 71 25 83 13	-1.0 0.28 -1.8 0.28 2.8 -0.96 1.6 1.0 -0.64	-5.5 -6.0 -7.2 -6.2 -3.6 -2.6 -2.0 -3.0 -5.0	3.4 6.5 3.6 6.7 9.1 0.71 5.2 5.0 3.7	ns
Culture Growth Mode	Coccolithophores Dinoflagellates Other Eukaryotes Cyanobacteria Diazotrophs Eukaryotes Prokaryotes Temperate/Warm/Unspecified Cold Batch	11 10 19 8 17 71 25 83 13 31	-1.0 0.28 -1.8 0.28 2.8 -0.96 1.6 1.0 -0.64 -1.8	-5.5 -6.0 -7.2 -6.2 -3.6 -2.6 -2.0 -3.0 -5.0 -4.2	3.4 6.5 3.6 6.7 9.1 0.71 5.2 5.0 3.7 0.59	ns ns *
Culture Growth Mode	Coccolithophores Dinoflagellates Other Eukaryotes Cyanobacteria Diazotrophs Eukaryotes Prokaryotes Temperate/Warm/Unspecified Cold Batch Semi-continuous	11 10 19 8 17 71 25 83 13 31 63	-1.0 0.28 -1.8 0.28 2.8 -0.96 1.6 1.0 -0.64 -1.8 0.71	-5.5 -6.0 -7.2 -6.2 -3.6 -2.6 -2.0 -3.0 -5.0 -4.2 -2.3	3.4 6.5 3.6 6.7 9.1 0.71 5.2 5.0 3.7 0.59 3.7	ns ns *
Culture Growth Mode	Coccolithophores Dinoflagellates Other Eukaryotes Cyanobacteria Diazotrophs Eukaryotes Prokaryotes Temperate/Warm/Unspecified Cold Batch Semi-continuous Chemostat	11 10 19 8 17 71 25 83 13 31 63 2	-1.0 0.28 -1.8 0.28 2.8 -0.96 1.6 1.0 -0.64 -1.8 0.71 -11.5	-5.5 -6.0 -7.2 -6.2 -3.6 -2.6 -2.0 -3.0 -5.0 -4.2 -2.3 -22.5	3.4 6.5 3.6 6.7 9.1 0.71 5.2 5.0 3.7 0.59 3.7 -0.53	ns ns
Culture Growth Mode	Coccolithophores Dinoflagellates Other Eukaryotes Cyanobacteria Diazotrophs Eukaryotes Prokaryotes Temperate/Warm/Unspecified Cold Batch Semi-continuous Chemostat Turbidostat	11 10 19 8 17 71 25 83 13 31 63 2 NA	-1.0 0.28 -1.8 0.28 2.8 -0.96 1.6 1.0 -0.64 -1.8 0.71 -11.5 NA	-5.5 -6.0 -7.2 -6.2 -3.6 -2.6 -2.0 -3.0 -5.0 -4.2 -2.3 -2.5 NA	3.4 6.5 3.6 6.7 9.1 0.71 5.2 5.0 3.7 0.59 3.7 -0.53 NA	ns ns *
Culture Growth Mode Growth phase at harvest	Coccolithophores Dinoflagellates Other Eukaryotes Cyanobacteria Diazotrophs Eukaryotes Prokaryotes Temperate/Warm/Unspecified Cold Batch Semi-continuous Chemostat Turbidostat Exponential	11 10 19 8 17 71 25 83 13 31 63 2 NA 59	-1.0 0.28 -1.8 0.28 2.8 -0.96 1.6 1.0 -0.64 -1.8 0.71 -11.5 NA -1.6	-5.5 -6.0 -7.2 -6.2 -3.6 -2.6 -2.0 -3.0 -5.0 -5.0 -4.2 -2.3 -22.5 NA -3.5	3.4 6.5 3.6 6.7 9.1 0.71 5.2 5.0 3.7 0.59 3.7 -0.53 NA 0.29	ns ns *

Section S1. List of 104 studies used in meta-analysis

ID	Abbreviation	Driver(s)	Reference:
1	Bechemin99	P, N	Béchemin, C., Grzebyk, D., Hachame, F., Hummert, C. and Maestrini, S.:
			Effect of different nitrogen/phosphorus nutrient ratios on the toxin
			content in Alexandrium minutum, Aquat. Microb. Ecol., 20(2), 157-
			165, doi:10.3354/ame020157, 1999.
2	Berges02	Т	Berges, J., Varela, D. and Harrison, P.: Effects of temperature on growth rate,
			cell composition and nitrogen metabolism in the marine diatom
			Thalassiosira pseudonana (Bacillariophyceae), Mar. Ecol. Prog. Ser.,
			225, 139-146, doi:10.3354/meps225139, 2002.
3	BermanFrank01	Fe	Berman-Frank, I., Cullen, J. T., Shaked, Y., Sherrell, R. M. and Falkowski, P.
			G.: Iron availability, cellular iron quotas, and nitrogen fixation in
			Trichodesmium, Limnol. Oceanogr., 46(6), 1249-1260,
			doi:10.4319/lo.2001.46.6.1249, 2001.
4	Bertilsson03	Р	Bertilsson, S., Berglund, O., Karl, D. M. and Chisholm, S. W.: Elemental
			composition of marine Prochlorococcus and Synechococcus:
			Implications for the ecological stoichiometry of the sea, Limnol.
			Oceanogr., 48(5), 1721–1731, doi:10.4319/lo.2003.48.5.1721, 2003.
5	Bi17	Т	Bi, R., Ismar, S., Sommer, U. and Zhao, M.: Environmental dependence of the
			correlations between stoichiometric and fatty acid-based indicators of
			phytoplankton nutritional quality, Limnol. Oceanogr., 62(1), 334-347,
			doi:10.1002/lno.10429, 2017.
6	Bi18	P, N, T	Bi, R., Ismar, S. M. H., Sommer, U. and Zhao, M.: Simultaneous shifts in
			elemental stoichiometry and fatty acids of Emiliania huxleyi in
			response to environmental changes, Biogeosciences, 15(4), 1029-
			1045, doi:10.5194/bg-15-1029-2018, 2018.
7	Bittar13	Ι	Bittar, T. B., Lin, Y., Sassano, L. R., Wheeler, B. J., Brown, S. L., Cochlan, W.
			P. and Johnson, Z. I.: Carbon allocation under light and nitrogen
			resource gradients in two model marine phytoplankton 1, edited by M.
			Posewitz, J. Phycol., 49(3), 523–535, doi:10.1111/jpy.12060, 2013.
8	BlancoAmeijeiras18	Fe	Blanco-Ameijeiras, S., Moisset, S. A. M., Trimborn, S., Campbell, D. A.,
			Heiden, J. P. and Hassler, C. S.: Elemental Stoichiometry and
			Photophysiology Regulation of Synechococcus sp. PCC7002 Under
			Increasing Severity of Chronic Iron Limitation, Plant Cell Physiol.,
			59(9), 1803–1816, doi:10.1093/pcp/pcy097, 2018.
9	Borchard12	Т	Borchard, C. and Engel, A.: Organic matter exudation by Emiliania huxleyi
			under simulated future ocean conditions, Biogeosciences, 9(8), 3405-
			3423, doi:10.5194/bg-9-3405-2012, 2012.
10	Boyd16	Т	Boyd, P. W., Dillingham, P. W., Mcgraw, C. M., Armstrong, E. A., Cornwall,
			C. E., Feng, Y. Y., Hurd, C. L., Gault-Ringold, M., Roleda, M. Y.,
			Timmins-Schiffman, E. and Nunn, B. L.: Physiological responses of a
			Southern Ocean diatom to complex future ocean conditions, Nat. Clim.
			Chang., 6(2), 207–213, doi:10.1038/nclimate2811, 2016.

11	Brauer13	Т	Brauer, V. S., Stomp, M., Rosso, C., van Beusekom, S. A., Emmerich, B., Stal,
			L. J. and Huisman, J.: Low temperature delays timing and enhances the
			cost of nitrogen fixation in the unicellular cyanobacterium Cyanothece,
			ISME J., 7(11), 2105–2115, doi:10.1038/ismej.2013.103, 2013.
12	Bucciarelli10	Fe	Bucciarelli, E., Pondaven, P. and Sarthou, G.: Effects of an iron-light co-
			limitation on the elemental composition (Si, C, N) of the marine
			diatoms Thalassiosira oceanica and Ditylum brightwellii,
			Biogeosciences, 7(2), 657-669, doi:10.5194/bg-7-657-2010, 2010.
13	Claquin02	Ι	Claquin, P., Martin-Jezequel, V., Kromkamp, J. C., Veldhuis, M. J. W. and
			Kraay, G. W.: Uncoupling of silicon compared with carbon and
			nitrogen metabolisms and the role of the cell cycle in continuous
			cultures of Thalassiosira pseudonana (bacillariophyceae) under light,
			nitrogen, and phosphorus control, J. Phycol., 38(5), 922-930,
			doi:10.1046/j.1529-8817.2002.t01-1-01220.x, 2002.
14	Cunningham17	Fe	Cunningham, B. R. and John, S. G.: The effect of iron limitation on
			cyanobacteria major nutrient and trace element stoichiometry, Limnol.
			Oceanogr., 62(2), 846–858, doi:10.1002/lno.10484, 2017.
15	DeLaRocha00	Fe	De La Rocha, C., Hutchins, D., Brzezinski, M. and Zhang, Y.: Effects of iron
			and zinc deficiency on elemental composition and silica production by
			diatoms Mar Ecol Prog Ser 195 71–79 doi:10.3354/mens195071
			2000
16	Feng08	IТ	Feng Y Warner M E. Zhang Y Sun I Eu F X Rose I M and Hutchins
10	1 ongoo	-, -	D A : Interactive effects of increased nCO2 temperature and
			irradiance on the marine coccolithonhore Emiliania huxleyi
			(Prympesionbyceae) Fur J Phycol 43(1) 87–98
			doi:10.1080/09670260701664674_2008
17	Feng18	PNIT	Eeng V Roleda M V Armstrong E Law C S Boyd P W and Hurd C
17	Tengro	1, 11, 1, 1	L. Environmental controls on the elemental composition of a Southern
			Hamisphara strain of the accessible phara Emilionia buylavi
			Disperse 15(2) 521 505 doi:10.5104/bg.15.521.2019.2019
10	Einter106	T	Biogeosciences, 15(2), 381–395, doi:10.5194/og-15-381-2018, 2018.
18	FINKEIOO	1	Finker, Z. V., Quigg, A., Raven, J. A., Reinieider, J. R., Scholieid, O. E. and
			Faikowski, P. G.: Irradiance and the elemental stoicniometry of marine
			phytoplankton, Limnol. Oceanogr., 51(6), 2690–2701,
10	D 05		doi:10.4319/10.2006.51.6.2690, 2006.
19	Fu05	Р	Fu, FX., Zhang, Y., Bell, P. R. F. F. and Hutchins, D. A.: Phosphate Uptake
			And Growth Kinetics Of Trichodesmium (Cyanobacteria) Isolates
			From The North Atlantic Ocean And The Great Barrier Reef, Australia,
			J. Phycol., 41(1), 62–73, doi:10.1111/j.1529-8817.2005.04063.x, 2005.
20	Fu06	Р	Fu, FX., Zhang, Y., Feng, Y. and Hutchins, D. A.: Phosphate and ATP uptake
			and growth kinetics in axenic cultures of the cyanobacterium
			Synechococcus CCMP 1334, Eur. J. Phycol., 41(1), 15–28,
			doi:10.1080/09670260500503037, 2006.

21	Fu07	Т	Fu, FX. X., Warner, M. E., Zhang, Y. H., Feng, Y. Y., Hutchins, D. A., Fu, F
			X. X., Warner, M. E., Zhang, Y. H., Feng, Y. Y. and Hutchins, D. A.:
			Effects of increased temperature and CO2on photosynthesis, growth,
			and elemental ratios in marine Synechococcus and Prochlorococcus
			(Cyanobacteria), J. Phycol., 43(3), 485-496, doi:10.1111/j.1529-
			8817.2007.00355.x, 2007.
22	Fu08a	Т	Fu, F. X., Zhang, Y., Warner, M. E., Feng, Y., Sun, J. and Hutchins, D. A.: A
			comparison of future increased CO2and temperature effects on
			sympatric Heterosigma akashiwo and Prorocentrum minimum,
			Harmful Algae, 7(1), 76–90, doi:10.1016/j.hal.2007.05.006, 2008a.
23	Fu08b	Fe	Fu, F. X., Mulholland, M. R., Garcia, N. S., Beck, A., Bernhardt, P. W., Warner,
			M. E., Sañudo-Wilhelmy, S. A. and Hutchins, D. A.: Interactions
			between changing pCO2, N2fixation, and Fe limitation in the marine
			unicellular cyanobacterium Crocosphaera, Limnol. Oceanogr., 53(6),
			2472–2484. doi:10.4319/lo.2008.53.6.2472. 2008b.
24	Fu14	Т	Fu F Yu E Garcia N Gale I Luo Y Webb E and Hutchins D.
2.	1 41 1	-	Differing responses of marine N2 fixers to warming and consequences
			for future diazotroph community structure. Aquat Microb Ecol
			72(1) 22 46 doi:10.2254/amo01602.2014
25	Caraia 11	T	Carrie N. S. Ev. E.V. Broome, C.L. Bernherdt, D.W. Mulhelland, M.D.
23	Garcian	1	Galera, N. S., Fu, FA., Breene, C. L., Bernhardt, F. W., Multionand, M. K.,
			Sonm, J. A. and Hutchins, D. A.: Interactive effects of irradiance and
			CO2 on CO2 fixation and N2 fixation in the diazotroph Trichodesmium
			erythraeum (Cyanobacteria), J. Phycol., 47(6), 1292–1303,
			doi:10.1111/j.1529-8817.2011.01078.x, 2011.
26	Giovagnetti12	Ι	Giovagnetti, V., Cataldo, M. L., Conversano, F. and Brunet, C.: Growth and
			photophysiological responses of two picoplanktonic Minutocellus
			species, strains RCC967 and RCC703 (Bacillariophyceae), Eur. J.
			Phycol., 47(4), 408–420, doi:10.1080/09670262.2012.733030, 2012.
27	Greene91	Fe	Greene, R. M., Geider, R. J. and Falkowski, P. G.: Effect of iron limitation on
			photosynthesis in a marine diatom, Limnol. Oceanogr., 36(8), 1772-
			1782, doi:10.4319/lo.1991.36.8.1772, 1991.
28	Heiden16	Ι	Heiden, J. P., Bischof, K. and Trimborn, S.: Light Intensity Modulates the
			Response of Two Antarctic Diatom Species to Ocean Acidification,
			Front. Mar. Sci., 3, 260, doi:10.3389/fmars.2016.00260, 2016.
29	Hoffmann07	Fe	Hoffmann, L. J., Peeken, I. and Lochte, K.: Effects of iron on the elemental
			stoichiometry during EIFEX and in the diatoms Fragilariopsis
			kerguelensis and Chaetoceros dichaeta, Biogeosciences, 4(4), 569-
			579, doi:10.5194/bg-4-569-2007, 2007.
30	Hong17	N	Hong, H., Li, D., Lin, W., Li, W. and Shi, D.: Nitrogen nutritional condition
			affects the response of energy metabolism in diatoms to elevated
			carbon dioxide, Mar. Ecol. Prog. Ser., 567, 41–56,
1	1	1	

31	Hoogstraten12	Ι	Hoogstraten, A., Peters, M., Timmermans, K. R. and De Baar, H. J. W.:
			Combined effects of inorganic carbon and light on Phaeocystis globosa
			Scherffel (Prymnesiophyceae), Biogeosciences, 9(5), 1885-1896,
			doi:10.5194/bg-9-1885-2012, 2012.
32	Hutchins07	Р, Т	Hutchins, D. A., Fu, F. X., Zhang, Y., Warner, M. E., Feng, Y., Portune, K.,
			Bernhardt, P. W. and Mulholland, M. R.: CO2 control of
			Trichodesmium N2 fixation, photosynthesis, growth rates, and
			elemental ratios: Implications for past, present, and future ocean
			biogeochemistry, Limnol. Oceanogr., 52(4), 1293-1304,
			doi:10.4319/lo.2007.52.4.1293, 2007.
33	Jacq14	Fe	Jacq, V., Ridame, C., L'Helguen, S., Kaczmar, F. and Saliot, A.: Response of
			the Unicellular Diazotrophic Cyanobacterium Crocosphaera watsonii
			to Iron Limitation, PLoS One, 9(1), e86749,
			doi:10.1371/journal.pone.0086749, 2014.
34	Jiang18	Fe, T	Jiang, HB., Fu, FX., Rivero-Calle, S., Levine, N. M., Sañudo-Wilhelmy, S.
			A., Qu, PP., Wang, XW., Pinedo-Gonzalez, P., Zhu, Z. and Hutchins,
			D. A.: Ocean warming alleviates iron limitation of marine nitrogen
			fixation, Nat. Clim. Chang., 8(8), 709-712, doi:10.1038/s41558-018-
			0216-8, 2018.
35	Jing17	Ν	Jing, X., Lin, S., Zhang, H., Koerting, C. and Yu, Z.: Utilization of urea and
			expression profiles of related genes in the dinoflagellate Prorocentrum
			donghaiense, PLoS One, 12(11), 1–15,
			doi:10.1371/journal.pone.0187837, 2017.
36	Johansson99a	P, N	Johansson, N. and Granéli, E.: Cell density, chemical composition and toxicity
			of Chrysochromulina polylepis (Haptophyta) in relation to different
			N:P supply ratios, Mar. Biol., 135(2), 209–217,
			doi:10.1007/s002270050618, 1999a.
37	Johansson99b	P, N	Johansson, N. and Granéli, E.: Influence of different nutrient conditions on cell
			density, chemical composition and toxicity of Prymnesium parvum
			(Haptophyta) in semi-continuous cultures, J. Exp. Mar. Bio. Ecol.,
			239(2), 243-258, doi:10.1016/S0022-0981(99)00048-9, 1999b.
38	Kaffes10	Ν	Kaffes, A., Thoms, S., Trimborn, S., Rost, B., Langer, G., Richter, K. U.,
			Köhler, A., Norici, A. and Giordano, M.: Carbon and nitrogen fluxes
			in the marine coccolithophore Emiliania huxleyi grown under different
			nitrate concentrations, J. Exp. Mar. Bio. Ecol., 393(1-2), 1-8,
			doi:10.1016/j.jembe.2010.06.004, 2010.
39	Knapp12	Ν	Knapp, A. N., Dekaezemacker, J., Bonnet, S., Sohm, J. A. and Capone, D. G.:
			Sensitivity of Trichodesmium erythraeum and Crocosphaera watsonii
			abundance and N2fixation rates to varying NO3-and PO43-
			concentrations in batch cultures, Aquat. Microb. Ecol., 66(3), 223–236,
			doi:10.3354/ame01577, 2012.

40	Koch19	Fe	Koch, F., Beszteri, S., Harms, L. and Trimborn, S.: The impacts of iron
			limitation and ocean acidification on the cellular stoichiometry,
			photophysiology, and transcriptome of Phaeocystis antarctica, Limnol.
			Oceanogr., 64(1), 357-375, doi:10.1002/lno.11045, 2019.
41	Kranz10	Ι	Kranz, S. A., Levitan, O., Richter, KU., Prášil, O., Berman-Frank, I. and Rost,
			B.: Combined effects of different CO2 levels and N sources on the
			diazotrophic cyanobacterium Trichodesmium, Plant Physiol., 154(1),
			334-345, doi:10.1104/pp.110.159145, 2010.
42	Kremp09	Т	Kremp, A., Rengefors, K. and Montresor, M.: Species-specific encystment
	-		patterns in three Baltic cold-water dinoflagellates: The role of multiple
			cues in resting cyst formation, Limnol. Oceanogr., 54(4), 1125–1138,
			doi:10.4319/lo.2009.54.4.1125, 2009.
43	Kudo97	Fe. I	Kudo I and Harrison P J. Effect of iron nutrition on the marine
		, -	cvanobacterium Synechococcus grown on different N sources and
			irradiances I Phycol 33(2) 232–240 doi:10.1111/i.0022-
			3646 1997 00232 x 1997
44	Kudo00	Fe T	Kuda I Miyamota M Nairi V and Maita V: Combined affects of
	Kuuooo	10, 1	temperature and iron on the growth and physiology of the marine
			distam Dhagadaatulum trigamutum (Dagillarianhugaga) I. Dhugal
			26(6) 1006 1102 doi:10.1046/i.1520.8817.2000.00042 x 2000
45	L D 1 02	DNE	36(6), 1096–1102, doi:10.1046/j.1329-8817.2000.99042.x, 2000.
45	Lakocne93	P, N, Fe	La Rocne, J., Gelder, R. J., Graziano, L. M., Murray, H. and Lewis, K.:
			Induction of specific proteins in eukaryotic algae grown under iron-,
			phosphorus-, or nitrogen-deficient conditions, J. Phycol., 29(6), 767–
			777, doi:10.1111/j.0022-3646.1993.00767.x, 1993.
46	Langer12	P, N	Langer, G., Oetjen, K. and Brenneis, T.: Calcification of Calcidiscus
			leptoporus under nitrogen and phosphorus limitation, J. Exp. Mar. Bio.
			Ecol., 413, 131–137, doi:10.1016/j.jembe.2011.11.028, 2012.
47	Langer13	P, N	Langer, G., Oetjen, K. and Brenneis, T.: Coccolithophores do not increase
			particulate carbon production under nutrient limitation: A case study
			using Emiliania huxleyi (PML B92/11), J. Exp. Mar. Bio. Ecol., 443,
			155–161, doi:10.1016/j.jembe.2013.02.040, 2013.
48	Leonardos04a	Ι	Leonardos, N. and Geider, R. J.: Effects of nitrate: Phosphate supply ratio and
			irradiance on the C:N:P stoichiometry of Chaetoceros muelleri, Eur. J.
			Phycol., 39(2), 173-180, doi:10.1080/0967026042000201867, 2004a.
49	Leonardos04b	P, I	Leonardos, N. and Geider, R. J.: Responses of elemental and biochemical
			composition of Chaetoceros muelleri to growth under varying light and
			nitrate : phosphate supply ratios and their influence on critical N: P,
			Limnol. Oceanogr., 49(6), 2105–2114, doi:10.4319/lo.2004.49.6.2105,
			2004b.
50	Leonardos05a	P, I	Leonardos, N. and Geider, R. J.: Elemental and biochemical composition of
			Rhinomonas reticulata (Cryptophyta) in relation to light and nitrate-to-
			phosphate supply ratios, J. Phycol., 41(3), 567–576.
			doi:10.1111/j.1529-8817.2005.00082.x, 2005a.
1	1	1	

51	Leonardos05b	Р, І	Leonardos, N. and Geider, R. J.: Elevated atmospheric carbon dioxide
			increases organic carbon fixation by Emiliania huxleyi (Haptophyta),
			under nutrient-limited high-light conditions, J. Phycol., 41(6), 1196-
			1203, doi:10.1111/j.1529-8817.2005.00152.x, 2005b.
52	Leong04	Ν	Leong, S. C. Y. and Taguchi, S.: Response of the dinoflagellate Alexandrium
			tamarense to a range of nitrogen sources and concentrations: Growth
			rate, chemical carbon and nitrogen, and pigments, Hydrobiologia,
			515(1-3), 215-224, doi:10.1023/B:HYDR.0000027331.49819.a4,
			2004.
53	Levasseur93	Ι	Levasseur, M., Thompson, P. A. and Harrison, P. J.: Physiological Acclimation
			of Marine Phytoplankton To Different Nitrogen Sources, J. Phycol.,
			29(5), 587-595, doi:10.1111/j.0022-3646.1993.00587.x, 1993.
54	Levitan10	Т	Levitan, O., Brown, C. M., Sudhaus, S., Campbell, D., LaRoche, J. and
			Berman-Frank, I.: Regulation of nitrogen metabolism in the marine
			diazotroph Trichodesmium IMS101 under varying temperatures and
			atmospheric CO2 concentrations, Environ. Microbiol., 12(7), 1899-
			1912, doi:10.1111/j.1462-2920.2010.02195.x, 2010.
55	Li12	Ν	Li, W., Gao, K. and Beardall, J.: Interactive Effects of Ocean Acidification and
			Nitrogen-Limitation on the Diatom Phaeodactylum tricornutum, PLoS
			One, 7(12), e51590, doi:10.1371/journal.pone.0051590, 2012.
56	Li13	Ι	Li, G. and Campbell, D. A.: Rising CO2 Interacts with Growth Light and
			Growth Rate to Alter Photosystem II Photoinactivation of the Coastal
			Diatom Thalassiosira pseudonana, PLoS One, 8(1), e55562,
			doi:10.1371/journal.pone.0055562, 2013.
57	Li17	N, I	Li, G. and Campbell, D. A.: Interactive effects of nitrogen and light on growth
			rates and RUBISCO content of small and large centric diatoms,
			Photosynth. Res., 131(1), 93-103, doi:10.1007/s11120-016-0301-7,
			2017.
58	Li18	Ν	Li, Z., Wu, Y. and Beardall, J.: Physiological and biochemical responses of
			Thalassiosira punctigera to nitrate limitation, Diatom Res., 33(2), 135-
			143, doi:10.1080/0269249X.2018.1489897, 2018.
59	Marchetti07	Fe	Marchetti, A. and Harrison, P. J.: Coupled changes in the cell morphology and
			the elemental (C, N, and Si) composition of the pennate diatom Pseudo-
			nitzschia due to iron deficiency, Limnol. Oceanogr., 52(5), 2270–2284,
			doi:10.4319/lo.2007.52.5.2270, 2007.
60	Martiny16	Т	Martiny, A. C., Talarmin, A., Mouginot, C., Lee, J. A., Huang, J. S., Gellene,
			A. G. and Caron, D. A.: Biogeochemical interactions control a
			temporal succession in the elemental composition of marine
			communities, Limnol. Oceanogr., 61(2), 531-542,
			doi:10.1002/lno.10233, 2016.

61	McKew15	P, N	McKew, B. A., Metodieva, G., Raines, C. A., Metodiev, M. V. and Geider, R.
			J.: Acclimation of E miliania huxleyi (1516) to nutrient limitation
			involves precise modification of the proteome to scavenge alternative
			sources of N and P, Environ. Microbiol., 17(10), 4050-4062,
			doi:10.1111/1462-2920.12957, 2015.
62	Meyerink17	Fe	Meyerink, S. W., Ellwood, M. J., Maher, W. A., Dean Price, G. and Strzepek,
			R. F.: Effects of iron limitation on silicon uptake kinetics and elemental
			stoichiometry in two Southern Ocean diatoms, Eucampia antarctica
			and Proboscia inermis , and the temperate diatom Thalassiosira
			pseudonana, Limnol. Oceanogr., 62(6), 2445–2462,
			doi:10.1002/lno.10578, 2017.
63	Mou17	Ν	Mou, S., Zhang, Y., Li, G., Li, H., Liang, Y., Tang, L., Tao, J., Xu, J., Li, J.,
			Zhang, C. and Jiao, N.: Effects of elevated CO2 and nitrogen supply
			on the growth and photosynthetic physiology of a marine
			cyanobacterium, Synechococcus sp. PCC7002, J. Appl. Phycol., 29(4),
			1755–1763, doi:10.1007/s10811-017-1089-3, 2017.
64	Mouginot15	Р	Mouginot, C., Zimmerman, A. E., Bonachela, J. A., Fredricks, H., Allison, S.
			D., Van Mooy, B. A. S. and Martiny, A. C.: Resource allocation by the
			marine cyanobacterium S ynechococcus WH8102 in response to
			different nutrient supply ratios, Limnol. Oceanogr., 60(5), 1634-1641,
			doi:10.1002/lno.10123, 2015.
65	Muggli96	Fe	Muggli, D., Lecourt, M. and Harrison, P.: Effects of iron and nitrogen source
			on the sinking rate, physiology and metal composition of an oceanic
			diatom from the subarctic Pacific, Mar. Ecol. Prog. Ser., 132, 215–227,
			doi:10.3354/meps132215, 1996.
66	Nielsen91	Т	Nielsen, M. V. and Tønseth, C. P.: Temperature and salinity effect on growth
			and chemical composition of Gyrodinium aureolum Hulburt in culture,
			J. Plankton Res., 13(2), 389–398, doi:10.1093/plankt/13.2.389, 1991.
67	Nielsen92	Ι	Nielsen, M. V: Irradiance and daylength effects on growth and chemical
			composition of Gyrodinium aureolum Hulburt in culture, J. Plankton
			Res., 14(6), 811-820, doi:10.1093/plankt/14.6.811, 1992.
68	Nielsen93	Ι	Nielsen, M. V. and Sakshaug, E.: Photobiological studies of Skeletonema
			costatum adapted to spectrally different light regimes, Limnol.
			Oceanogr., 38(7), 1576-1581, doi:10.4319/lo.1993.38.7.1576, 1993.
69	Nielsen96	Ι, Τ	Nielsen, M.: Growth and chemical composition of the toxic dinoflagellate
			Gymnodinium galatheanum in relation to irradiance, temperature and
			salinity, Mar. Ecol. Prog. Ser., 136, 205–211,
			doi:10.3354/meps136205, 1996.
70	Norici11	Ι	Norici, A., Bazzoni, A. M., Pugnetti, A., Raven, J. A. and Giordano, M.:
			Impact of irradiance on the C allocation in the coastal marine diatom
			Skeletonema marinoi Sarno and Zingone, Plant, Cell Environ., 34(10),
			1666–1677. doi:10.1111/i1365-3040.2011.02362.x. 2011.

71	Oviedo14	Р	Oviedo, A. M., Langer, G. and Ziveri, P.: Effect of phosphorus limitation on
			coccolith morphology and element ratios in Mediterranean strains of
			the coccolithophore Emiliania huxleyi, J. Exp. Mar. Bio. Ecol., 459,
			105-113, doi:10.1016/j.jembe.2014.04.021, 2014.
72	Passow15	I, T	Passow, U. and Laws, E.: Ocean acidification as one of multiple stressors:
			growth response of Thalassiosira weissflogii (diatom) under
			temperature and light stress, Mar. Ecol. Prog. Ser., 541(1), 75-90,
			doi:10.3354/meps11541, 2015.
73	Perrin16	P, N, I	Perrin, L., Probert, I., Langer, G. and Aloisi, G.: Growth of the coccolithophore
			Emiliania huxleyi in light-and nutrient-limited batch reactors:
			relevance for the BIOSOPE deep ecological niche of coccolithophores,
			Biogeosciences, 13(21), 5983-6001, doi:10.5194/bg-13-5983-2016,
			2016.
74	Plum15	N, I	Plum, C., Hüsener, M. and Hillebrand, H.: Multiple vs. single phytoplankton
			species alter stoichiometry of trophic interaction with zooplankton,
			Ecology, 96(11), 3075-3089, doi:10.1890/15-0393.1, 2015.
75	Qu18	N, T	Qu, P., Fu, F. and Hutchins, D. A.: Responses of the large centric diatom
			Coscinodiscus sp. to interactions between warming, elevated CO 2,
			and nitrate availability, Limnol. Oceanogr., 63(3), 1407-1424,
			doi:10.1002/lno.10781, 2018.
76	Rabouille17	Ι	Rabouille, S., Semedo Cabral, G. and Pedrotti, M.: Towards a carbon budget
			of the diazotrophic cyanobacterium Crocosphaera: effect of irradiance,
			Mar. Ecol. Prog. Ser., 570, 29-40, doi:10.3354/meps12087, 2017.
77	Rasdi15	P, N	Rasdi, N. W. and Qin, J. G.: Effect of N:P ratio on growth and chemical
			composition of Nannochloropsis oculata and Tisochrysis lutea, J. Appl.
			Phycol., 27(6), 2221–2230, doi:10.1007/s10811-014-0495-z, 2015.
78	Richardson96	Ν	Richardson, T. L., Ciotti, Á. M., Cullen, J. J. and Villareal, T. A.: Physiological
			and optical properties of Rhizosolenia formosa (bacillariophyceae) in
			the context of open-ocean vertical migration, J. Phycol., 32(5), 741-
			757, doi:10.1111/j.0022-3646.1996.00741.x, 1996.
79	Rokita12	Ι	Rokitta, S. D. and Rost, B.: Effects of CO2and their modulation by light in the
			life-cycle stages of the coccolithophore Emiliania huxleyi, Limnol.
			Oceanogr., 57(2), 607-618, doi:10.4319/lo.2012.57.2.0607, 2012.
80	Roleda13	Т	Roleda, M. Y., Slocombe, S. P., Leakey, R. J. G., Day, J. G., Bell, E. M. and
			Stanley, M. S.: Effects of temperature and nutrient regimes on biomass
			and lipid production by six oleaginous microalgae in batch culture
			employing a two-phase cultivation strategy, Bioresour. Technol., 129,
			439-449, doi:10.1016/j.biortech.2012.11.043, 2013.
81	Ruan17	Ν	Ruan, Z. and Giordano, M.: The use of NH 4 + rather than NO 3 – affects cell
			stoichiometry, C allocation, photosynthesis and growth in the
			cyanobacterium Synechococcus sp. UTEX LB 2380, only when energy
			is limiting, Plant. Cell Environ., 40(2), 227-236,
			doi:10.1111/pce.12858, 2017.

82	SanudoWilhelmy04	Р	Sañudo-Wilhelmy, S. A., Tovar-Sanchez, A., Fu, FX., Capone, D. G.,
			Carpenter, E. J. and Hutchins, D. A.: The impact of surface-adsorbed
			phosphorus on phytoplankton Redfield stoichiometry, Nature,
			432(7019), 897-901, doi:10.1038/nature03125, 2004.
83	Schaum18	Т	Schaum, CE., Buckling, A., Smirnoff, N., Studholme, D. J. and Yvon-
			Durocher, G.: Environmental fluctuations accelerate molecular
			evolution of thermal tolerance in a marine diatom, Nat. Commun., 9(1),
			1719, doi:10.1038/s41467-018-03906-5, 2018.
84	Schoo10	Р	Schoo, K. L., Aberle, N., Malzahn, A. M. and Boersma, M.: Does the nutrient
			stoichiometry of primary producers affect the secondary consumer
			Pleurobrachia pileus?, Aquat. Ecol., 44(1), 233-242,
			doi:10.1007/s10452-009-9265-4, 2010.
85	Shi15	Ι	Shi, D., Li, W., Hopkinson, B. M., Hong, H., Li, D., Kao, S. J. and Lin, W.:
			Interactive effects of light, nitrogen source, and carbon dioxide on
			energy metabolism in the diatom Thalassiosira pseudonana, Limnol.
			Oceanogr., 60(5), 1805-1822, doi:10.1002/lno.10134, 2015.
86	Six04	Ι	Six, C., Thomas, J., Brahamsha, B., Lemoine, Y. and Partensky, F.:
			Photophysiology of the marine cyanobacterium Synechococcus sp.
			WH8102, a new model organism, Aquat. Microb. Ecol., 35(1), 17–29,
			doi:10.3354/ame035017, 2004.
87	Skau17	Р, Т	Skau, L. F., Andersen, T., Thrane, JE. and Hessen, D. O.: Growth,
			stoichiometry and cell size; temperature and nutrient responses in
			haptophytes, PeerJ, 5, e3743, doi:10.7717/peerj.3743, 2017.
88	Staehr02	Ν	Staehr, P., Henriksen, P. and Markager, S.: Photoacclimation of four marine
			phytoplankton species to irradiance and nutrient availability, Mar. Ecol.
			Prog. Ser., 238, 47-59, doi:10.3354/meps238047, 2002.
89	Steinhoff14	P, N	Steinhoff, F. S., Karlberg, M., Graeve, M. and Wulff, A.: Cyanobacteria in
			Scandinavian coastal waters - A potential source for biofuels and fatty
			acids?, Algal Res., 5(1), 42–51, doi:10.1016/j.algal.2014.05.005, 2014.
90	Strzepek00	I, T	Strzepek, R. F. and Price, N. M.: Influence of irradiance and temperature on
			the iron content of the marine diatom Thalassiosira weissflogii
			(Bacillariophyceae), Mar. Ecol. Prog. Ser., 206, 107-117,
			doi:10.3354/meps206107, 2000.
91	Sugie13	Fe	Sugie, K. and Yoshimura, T.: Effects of p CO 2 and iron on the elemental
			composition and cell geometry of the marine diatom Pseudo-nitzschia
			pseudodelicatissima (Bacillariophyceae) 1, J. Phycol., 49(3), 475-488,
			doi:10.1111/jpy.12054, 2013.
92	Sugie16	Fe	Sugie, K. and Yoshimura, T.: Effects of high CO2levels on the ecophysiology
			of the diatom Thalassiosira weissflogii differ depending on the iron
			nutritional status, ICES J. Mar. Sci., 73(3), 680-692,
			doi:10.1093/icesjms/fsv259, 2016.

93	Sugie17	N, Fe	Sugie, K. and Kuma, K.: Change in the elemental composition and cell
			geometry of the marine diatom Attheya longicornis under nitrogen- and
			iron-depleted conditions, Diatom Res., 32(1), 11-20,
			doi:10.1080/0269249X.2017.1301999, 2017.
94	Sun11	Р	Sun, J., Hutchins, D. A., Feng, Y., Seubert, E. L., Caron, D. A. and Fu, F. X.:
			Effects of changing pCO2and phosphate availability on domoic acid
			production and physiology of the marine harmful bloom diatom
			Pseudo-nitzschia multiseries, Limnol. Oceanogr., 56(3), 829-840,
			doi:10.4319/lo.2011.56.3.0829, 2011.
95	Sun18	Ν	Sun, M., Yang, Z. and Wawrik, B.: Metabolomic Fingerprints of Individual
			Algal Cells Using the Single-Probe Mass Spectrometry Technique,
			Front. Plant Sci., 9, 571, doi:10.3389/fpls.2018.00571, 2018.
96	Taucher15	Т	Taucher, J., Jones, J., James, A., Brzezinski, M. A., Carlson, C. A., Riebesell,
			U. and Passow, U.: Combined effects of CO 2 and temperature on
			carbon uptake and partitioning by the marine diatoms Thalassiosira
			weissflogii and Dactyliosolen fragilissimus, Limnol. Oceanogr., 60(3),
			901–919, doi:10.1002/lno.10063, 2015.
97	Tew14	Т	Tew, K. S., Kao, Y. C., Ko, F. C., Kuo, J., Meng, P. J., Liu, P. J. and Glover, D.
			C.: Effects of elevated CO2and temperature on the growth, elemental
			composition, and cell size of two marine diatoms: potential
			implications of global climate change, Hydrobiologia, 741(1), 79–87,
			doi:10.1007/s10750-014-1856-y, 2014.
98	Thompson89	Ι	Thompson, P. A., Levasseur, M. E. and Harrison, P. J.: Light-limited growth
			on ammonium vs. nitrate: What is the advantage for marine
			phytoplankton?, Limnol. Oceanogr., 34(6), 1014-1024,
			doi:10.4319/lo.1989.34.6.1014, 1989.
99	Thompson93	Ι	Thompson, P. A., Guo, M. and Harrison, P. J.: The influence of irradiance on
			the biochemical composition of three phytoplankton species and their
			nutritional value for larvae of the Pacific Oyster (Crassostrea gigas),
			Mar. Biol., 117(2), 259-268, doi:10.1007/BF00345671, 1993.
100	Thompson94	Ι	Thompson, P. A., Guo, M. X. and Harrison, P. J.: Influence of irradiance on the
			nutritional value of two phytoplankton species fed to larval Japanese
			scallops (Patinopecten yessoensis), Mar. Biol., 119(1), 89-97,
			doi:10.1007/BF00350110, 1994.
101	Wood95	Ι	Wood, G. J. and Flynn, K. J.: Growth of Heterosigma carterae
			(Raphidophyceae) on nitrate and ammonium at three photon flux
			densities: evidence for N stress in nitrate-growing cells, J. Phycol.,
			31(6), 859-867, doi:10.1111/j.0022-3646.1995.00859.x, 1995.
102	Xu14	Fe	Xu, K., Fu, FX. and Hutchins, D. A.: Comparative responses of two dominant
			antarctic phytoplankton taxa to interactions between ocean
			acidification, Warming, Irradiance, And iron availability, Limnol.
			Oceanogr., 59(6), 1919-1931, doi:10.4319/lo.2014.59.6.1919, 2014.

103	Zhu16	Fe, T	Zhu, Z., Xu, K., Fu, F., Spackeen, J. L., Bronk, D. A. and Hutchins, D. A.: A
			comparative study of iron and temperature interactive effects on
			diatoms and Phaeocystis antarctica from the Ross Sea, Antarctica, Mar.
			Ecol. Prog. Ser., 550, 39-51, doi:10.3354/meps11732, 2016.
104	Zhu17	Т	Zhu, Z., Qu, P., Gale, J., Fu, F. and Hutchins, D. A.: Individual and interactive
			effects of warming and CO2 on Pseudo-nitzschia subcurvata and
			Phaeocystis antarctica, two dominant phytoplankton from the Ross
			Sea, Antarctica, Biogeosciences, 14(23), 5281-5295, doi:10.5194/bg-
			14-5281-2017, 2017.

Section S2. Description of files uploaded in the Zenodo repository (http://doi.org/10.5281/zenodo.3723121)

Bibliography

1. AppendixS1.pdf : list of 104 papers used in the main meta-analysis.

Excel spreadsheets:

- 2. New_data_190211a.xlsx: C:N and C:P dataset
- 3. res_all_190211a_P.csv: Effect sizes calculated for each P experiment
- 4. res_all_190211a_N.csv: Effect sizes calculated for each N experiment
- 5. res_all_190211a_Fe.csv: Effect sizes calculated for each Fe experiment
- 6. res_all_190211a_I.csv: Effect sizes calculated for each I experiment
- 7. res_all_190211a_I.csv: Effect sizes calculated for each T experiment
- 8. META_BIiblio_articles1st_k4899.xlsx : list of 4899 in the first round of data collection/screening (see Fig. 1 in the main text)
- 9. META_Biblio_articles2nd_k948.xlsx : list of 948 papers in the second round of data collection/screening (see Fig. 1 in the main text)
- 10. META_Biblio_articles3rd_k196.xlsx : list of 196 papers in the third round of data collection/screening (see Fig. 1 in the main text)

R scripts:

- 11. analysis_190211a_test_P.R: script to conduct meta-analysis on P experiments
- 12. analysis_190211a_test_N.R: script to conduct meta-analysis on N experiments
- 13. analysis_190211a_test_F.R: script to conduct meta-analysis on Fe experiments
- 14. analysis_190211a_test_I.R: script to conduct meta-analysis on I experiments
- 15. analysis_190211a_test_T.R: script to conduct meta-analysis on T experiments
- 16. functions_eff_logrr.R: function file to calculate ln(RR) (used in "analysis_190211a_test_X.R")
- 17. functions_scalc.R function file to calculate s-factor (used in "analysis_190211a_test_X.R")