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Abstract. Global biogeochemical ocean models are often
tuned to match the observed distributions and fluxes of in-
organic and organic quantities. This tuning is typically car-
ried out “by hand”. However, this rather subjective approach
might not yield the best fit to observations, is closely linked
to the circulation employed and is thus influenced by its spe-
cific features and even its faults. We here investigate the ef-
fect of model tuning, via objective optimisation, of one bio-
geochemical model of intermediate complexity when sim-
ulated in five different offline circulations. For each circu-
lation, three of six model parameters have been adjusted to
characteristic features of the respective circulation. The val-
ues of these three parameters – namely, the oxygen utilisa-
tion of remineralisation, the particle flux parameter and po-
tential nitrogen fixation rate – correlate significantly with
deep mixing and ideal age of North Atlantic Deep Water
(NADW) and the outcrop area of Antarctic Intermediate Wa-
ters (AAIW) and Subantarctic Mode Water (SAMW) in the
Southern Ocean. The clear relationship between these pa-
rameters and circulation characteristics, which can be easily
diagnosed from global models, can provide guidance when
tuning global biogeochemistry within any new circulation
model. The results from 20 global cross-validation experi-
ments show that parameter sets optimised for a specific cir-
culation can be transferred between similar circulations with-
out losing too much of the model’s fit to observed quantities.
When compared to model intercomparisons of subjectively
tuned, global coupled biogeochemistry–circulation models,
each with different circulation and/or biogeochemistry, our
results show a much lower range of oxygen inventory, oxy-
gen minimum zone (OMZ) volume and global biogeochem-
ical fluxes. Export production depends to a large extent on

the circulation applied, while deep particle flux is mostly
determined by the particle flux parameter. Oxygen inven-
tory, OMZ volume, primary production and fixed-nitrogen
turnover depend more or less equally on both factors, with
OMZ volume showing the highest sensitivity, and residual
variability. These results show a beneficial effect of optimi-
sation, even when a biogeochemical model is first optimised
in a relatively coarse circulation and then transferred to a dif-
ferent finer-resolution circulation model.

1 Introduction

Global models of marine biogeochemistry are applied to
prognostic problems, such as the future exchange of CO2
between the ocean and atmosphere, the evolution of oxygen
minimum zones (OMZs) under a changing climate or future
primary production, which is the ultimate food source for
fish. Unfortunately, in steady state, these models vary greatly
in their representation of, for example, ocean oxygen inven-
tory (up to 50 % of the current value; Bopp et al., 2013) or
primary production (varying by more than 90 % of present-
day global production; Bopp et al., 2013). The largest uncer-
tainty is related to OMZ volume – here Bopp et al. (2013)
report a range of variation that is several times the observed
volume, depending on the criterion (maximum oxygen con-
centration) used for OMZ definition.

Because these coupled models differ in both their physical
and biogeochemical setups, to date the contribution of the
different model components to this large variation is not clear
(e.g. Cabre et al., 2015). Studies indicate a strong impact of
physics on deep oxygen levels, leading to a divergence of
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up to 150 mmolO2 m−3 (Najjar et al., 2007; Séférian et al.,
2013). On the other hand, Kriest et al. (2012) and Kriest and
Oschlies (2015) showed that the impact of biogeochemical
model structure and parameters on deep oxygen profiles can
be equally large; also, in the latter study OMZ volume varied
among different biogeochemical model setups up to 3 times
the observed value (for an OMZ criterion of 8 mmolO2 m−3).
Thus, so far neither oxygen content nor OMZ volume seems
well constrained, possibly because of both circulation and
biogeochemistry.

In practice, biogeochemical models are often tuned to the
corresponding circulation, in order to make the model results
(nutrients, oxygen, organic components) agree better with
observations (e.g. Schwinger et al., 2016). To keep the num-
ber of computationally expensive global simulations low,
this model calibration is usually carried out “by hand”, i.e.
by subjectively tuning some biogeochemical model parame-
ters until the models show a good fit to the observed tracer
fields. The criterion for “good” is not absolute – it may con-
sist of a sufficient visual match, good indices of some core
statistics (e.g. in Taylor plots; Taylor, 2001), the root-mean-
squared error of model results vs. observed quantities or non-
parametric methods such as the Bhattacharyya distance (e.g.
Ilyina et al., 2013). Ideally these converge; i.e. they result in
a well-defined set of parameters, which provides an optimal
fit for all metrics.

However, biogeochemical models include a high-
dimensional parameter space with respect to the biogeo-
chemical constants, many of which are not well known.
Carrying out a sensitivity study helps to explore a model’s
sensitivity to its constants (e.g. Kriest et al., 2012), but this
is a time-consuming task, in terms of both work hours and
computational time. The computational demand is amplified
by the fact that global biogeochemical ocean models require
a long time to equilibrate (many millennia), owing to the
sluggish circulation (e.g. Wunsch and Heimbach, 2008;
Primeau and Deleersnijder, 2009) and because biogeo-
chemical processes act in concert with it (e.g. Kriest and
Oschlies, 2015). Short spinup times, on the other hand, will
produce model results that still depend on initial conditions
and can hamper a thorough assessment of model skill.
Because of these difficulties, there is no common recipe
for model spinup (and calibration). This complicates model
inter-comparison (Séférian et al., 2016).

Recently, tools have become available to speed up model
equilibration, either by efficient offline methods (Khatiwala,
2007) or by root-finding algorithms that solve for the model’s
steady state (Li and Primeau, 2008; Khatiwala, 2008). Using
these tools, automatic calibration of global biogeochemical
ocean models becomes more feasible (e.g. DeVries et al.,
2014; Holzer et al., 2014; Letscher et al., 2015; Kriest et al.,
2017; Kriest, 2017). However, these approaches have so far
mostly been applied to biogeochemical models of low com-
plexity or to circulation models of rather coarse resolution.
As physical processes and resolution can play a large role

in the representation of biogeochemical tracer distributions
(e.g. Najjar et al., 2007; Duteil et al., 2014), it would be de-
sirable to apply optimisation directly to the more highly re-
solved models applied in prognostic simulations. Yet, to date
this approach has proven to be prohibitive, due to the large
computational demand mentioned above.

Therefore, we currently must accept a trade-off between
finely resolved representation of physical transport processes
and well-tested and objectively optimised biogeochemical
models. The calibration of model biogeochemistry in one
computationally cheap circulation may elucidate the model’s
behaviour in its (biogeochemical) parameter space and indi-
cate a best set of parameters consistent with observed tracer
fields. If the mean transport simulated by models were inde-
pendent from model resolution, one could then transfer these
parameters into the more expensive, high-resolution model.
However, like biogeochemical models, physical parameteri-
sations also reflect an idealised system, which can introduce
errors in small- and large-scale patterns and processes. Bio-
geochemical model calibration is affected by these physical
errors – the resulting optimal parameters can thus strongly
depend on the circulation applied (Löptien and Dietze, 2019).
So far it is not clear how model dynamics and performance
will change once these calibrated parameters are transferred
to a different circulation that resolves physical processes in
more detail.

To investigate the mutual effects of circulation, biogeo-
chemical model parameters and model performance, we have
tested the effect of five different circulations on the ob-
jectively optimised parameters of a biogeochemical model.
The ocean models differ in resolution as well as physical
forcing and dynamics. Biogeochemical model calibration
against nutrients and oxygen was carried out using a quasi-
evolutionary algorithm, which carries out a dense scan of
a six-dimensional, biogeochemical parameter space. Differ-
ences in optimal parameters are discussed before the back-
ground of large-scale physical properties. In portability ex-
periments we examine model performance when parameters
optimal for one circulation are transferred into another circu-
lation. We finally quantify the effects of changes in parame-
ter sets vs. those of circulation on global quantities such as
oxygen inventory, OMZ volume and global biogeochemical
fluxes.

2 Models, experiments, and optimisations

2.1 Circulation and physical transport

All model simulations and optimisations apply the transport
matrix method (TMM; Khatiwala, 2007, 2018) as an effi-
cient “offline” method for ocean passive tracer transport. The
TMM represents advection and mixing in the form of trans-
port matrices that have been calculated from an ocean circu-
lation model simulation prior to the biogeochemical simula-
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tions performed here. For our model simulations we apply
monthly mean transport matrices (TMs), as well as monthly
wind speed, temperature and salinity for air–sea gas ex-
change. One set of TMs and forcing have been derived from
a 2.8◦ global configuration of the MIT ocean model with 15
vertical levels (Marshall et al., 1997; see also Table 1). Us-
ing this rather coarse spatial grid and a time step length of
1/2 d for tracer transport, a model setup with seven tracers
can be integrated for 3000 years in ≈ 1–1.5 h on four nodes
of Intel Xeon Ivybridge at the North-German Supercomput-
ing Alliance (http://www.hlrn.de, last access: 16 June 2020).
This circulation is hereafter referred to as MIT28. For the
second physical model configuration (hereafter referred to as
ECCO), we apply TMs derived from a circulation of the Es-
timating the Circulation and Climate of the Ocean (ECCO)
project, which provides circulation fields that yield a best fit
to hydrographic and remote sensing observations over the
10-year period 1992 through 2001 with a horizontal resolu-
tion of 1◦× 1◦ and 23 levels in the vertical (Stammer et al.,
2004). A full spinup (3000 years) of the coupled model re-
quires about 9 h on 16 nodes of Intel Xeon Ivybridge.

Finally, three sets of transport matrices have been derived
from version 2.9 of the University of Victoria Earth Sys-
tem Climate Model (UVic ESCM, hereafter called “UVic”;
Weaver et al., 2001), a coarse-resolution (1.8◦× 3.6◦× 19
vertical layers) ocean–atmosphere–biosphere–cryosphere–
geosphere model. TM extraction was carried out as described
by Kvale et al. (2017). One set of TMs is identical to that
described in Kvale et al. (2017) and includes tidal mixing
and a high-mixing scheme in the Southern Ocean, as well
as an increased low-latitude isopycnal diffusivity (configura-
tion “UHigh”). This configuration utilises a vertical diffusion
coefficient of 0.43 cm2 s−1 to stabilise meridional overturn-
ing in its linear, third-order upwind-biased advection scheme
(UW3, Holland et al., 1998; Griffies et al., 2008). This ver-
tical diffusion coefficient is more than double the “standard”
value of 0.15 cm2 s−1, typically used with the UVic ESCM
configured with the default first-order flux-corrected trans-
port (FCT; Weaver and Eby, 1997) advection scheme. Rea-
sons for the change in advection scheme for the application
of the TMM to UVic are given in Kvale et al. (2017), but it
is important to note here that the UW3 configuration has not
benefitted from the more than 2 decades of careful parameter
adjustments that users of the FCT configuration appreciate.
The annual maximum global meridional overturning strength
in the UHigh configuration is 18.5 Sv, but other physical fea-
tures of the circulation have not been previously assessed
in detail. Two further sets of UVic ESCM TMs do not in-
clude regional adjustments to mixing. They have been tuned
to a maximum annual average global overturning circulation
of either 20 Sv (named U20) or 17.5 Sv (named U17.5). This
tuning was achieved by adjusting the vertical diffusion coef-
ficient (0.409 cm2 s−1 in U17.5 and 0.4179 cm2 s−1 in U20).
The physical circulation parameterisation is otherwise iden-
tical to UHigh: utilising UW3 advection and the same tidal

mixing scheme. Differences arising in the calibrations be-
tween UVic ESCM TMs therefore reflect differences in both
the application of regional mixing “corrections” (UHigh vs.
U17.5 and U20) and in global overturning strengths and sec-
ondary effects from changed values of the vertical diffusion
coefficient. We note that none of the circulation configu-
rations, aside from UHigh, have been previously evaluated
against the most commonly used UVic ESCM FCT config-
uration (e.g. Weaver et al., 2001; Schmittner et al., 2005;
Somes et al., 2013).

2.2 Properties of circulation models

The five circulations differ in many aspects. First, being sup-
ported by observational data, ECCO’s spatial salinity and
density distribution agrees very well with observations, while
the MIT28 and UVic circulations show, for example, a too
shallow depth of the σ = 27.5 isopycnal in the Atlantic
Ocean and too saline waters in the deep northern North At-
lantic (Figs. 1 and S1 in the Supplement). In addition, the
three UVic circulations all suffer from a too weak forma-
tion and northward propagation of Antarctic Intermediate
Waters (AAIW), as identified from water of low salinity at
≈ 1000 m depth in the Southern Hemisphere. MIT28, U20
and U17.5 also show a too large outcrop area of dense wa-
ters (σθ ≥ 27.5) in the Southern Ocean, which does not agree
with the observed pattern. Here ECCO and UHigh better
match observations.

Striking differences also occur with respect to the an-
nual maximum mixed-layer depth, as derived from a poten-
tial density difference to the surface of 1σθ ≥ 0.03 (Fig. 2),
calculated from the models’ monthly mean temperature and
salinities. Obviously, MIT28 shows a too large area of deep
mixing around 60◦ S in the Southern Ocean, which does not
agree with mixed-layer depths derived from observed tem-
perature and salinity. On the other hand, only this circulation
exhibits deep mixing in the Labrador Sea, which is in agree-
ment with observations. All configurations of UVic exhibit
a too large area of deep mixing in the Southern Ocean, while
ECCO tends to underestimate mixing in this area.

Differences between circulations are also reflected in the
global distributions of ages diagnosed from the models.
MIT28, U20 and U17.5 show very old (> 1400 years) wa-
ters in the deep northern North Pacific (Fig. 3). Here, ECCO
and UHigh contain much younger waters, mostly below
1400 years. In MIT28 the age increases rapidly with depth
in the Southern Ocean (up to more than 800 years). Espe-
cially ECCO but also UVic exhibit much younger waters
below 2000 m in this region. Finally, the U20 and U17.5
configurations result in too old deep waters in the northern
North Atlantic (Khatiwala et al., 2012, their Fig. 4). In gen-
eral, ECCO and UHigh agree much better with mean age
constrained with transient (radiocarbon, chlorofluorocarbons
– CFCs) and hydrographic (temperature, salinity, nutrients,
oxygen) tracer observations (Khatiwala et al., 2012).
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Table 1. General setup, performance and results of optimisations expressed as N , the number of generations (each with a population size of
10) until convergence of the optimisation algorithm, the minimum misfit J ∗ (the target of optimisation), bias of global average nitrate and
oxygen, OMZ volume (for OMZs defined by O2 < 50 and O2 < 80 mmolm−3), optimal parameters, and their uncertainties. To determine
parameter uncertainty, we defined the group � of model simulations whose misfit Jk deviates less than 1 % from the optimal misfit J ∗

(Jk/J ∗− 1≤ 0.01). For each parameter the first value gives the optimal parameter, averaged over the last generation, and the range of all
individuals of � is given in square brackets. See Sect. 2.1 for more information on the setup of the offline circulations.

MIT28∗ UHigh∗ U20∗ U17.5∗ ECCO∗

Ocean model: MIT28 UVic UVic UVic ECCO
Horizontal resolution: 2.8◦× 2.8◦ 3.6◦× 1.8◦ 3.6◦× 1.8◦ 3.6◦× 1.8◦ 1.0◦× 1.0◦

Vertical resolution: 15 19 19 19 23

Global metrics and optimisation performance:

N 119 144 125 130 100a

J ∗ 0.439 0.401 0.431 0.489 0.366
Bias NO3 (mmolm−3) −0.27 0.68 0.30 0.52 0.28
Bias O2 (mmolm−3) 3.03 1.63 3.56 5.29 0.08
Bias OMZ Vol. 50 (1015 m3) −19.0 −5.7 3.1 12.6 −23.2
Bias OMZ Vol. 80 (1015 m3) −44.0 16.8 11.7 22.7 −40.7

Parameters [range]

b 1.39 [1.3–1.5] 1.27 [1.2–1.3] 1.40 [1.3–1.5] 1.44 [1.3–1.6] 1.46 [1.4–1.5]
R−O2 :P 173.7 [166–178] 161.5 [158–166] 161.5 [158–167] 167.0 [159–175] 151.1 [150–154]
µNFix 1.19 [1.1–1.8] 2.98 [2.1–3.0] 1.00 [1.0–1.4] 1.98 [1.5–3.0] 2.29 [1.5–3.0]
DINmin 15.8 [12.2–16.0] 16.0 [6.2–16.0] 15.9 [7.0–16.0] 16.0 [12.0–16.0] 16.0 [10.2–16.0]
KDIN 32.0 [17.2–32.0] 26.5 [17.4–31.4] 31.9 [25.8–32.0] 32.0 [21.3–32.0] 23.1 [21.7–32.0]
KO2 1.01 [1.0–8.5] 13.58 [2.1–14.3] 7.15 [1.0–8.0] 5.62 [1.5–16.0] 1.07 [1.0–16.0]

a Optimisation ECCO∗ was stopped at generation 100, when the minimum misfit varied less than 10−4 around the optimal value.

To summarise, our applied offline circulations for MIT28
and ECCO differ strongly with respect to resolution and
many global physical properties, with the UVic configura-
tions in between these two. As a data-constrained circulation,
ECCO shows the best overall agreement with observations of
all five circulations.

2.3 Derived indicators of circulation

The underlying circulation models, from which the TMs and
forcing were extracted, differ in many aspects, such as pa-
rameterisation of mixing, forcing, sea ice, etc., all of which
can affect their dynamic behaviour and the quantities and
diagnostics described above. For example, in the Southern
Ocean the eastward transport of waters through the Drake
Passage can affect the properties and formation of SAMW
(e.g. Sallee et al., 2010, 2013), while parameterisation of sea
ice in the models might affect the formation and ventilation
of Antarctic Bottom Water (AABW) (Dutay et al., 2002),
with consequences for water mass age. It is beyond the scope
of this paper to compare and discuss the details of the circula-
tion models. Instead, to examine the potential impact of their
characteristic features on optimal biogeochemical model pa-
rameters (Sect. 3.2), we will focus on three diagnostics that
can be easily derived from most circulation models (see Ta-
ble S1 in the Supplement for simulated and observed values).

2.3.1 Area of deep mixing

Deep mixing in the North Atlantic supplies oxygen to the
ocean (Khatiwala et al., 2012). In the Southern Ocean mode
and intermediate waters acquire their biogeochemical signa-
tures north of the Antarctic Circumpolar Current (ACC), be-
fore being subducted into the interior ocean. These waters
then ventilate the thermocline of the subtropics in the South-
ern Hemisphere (Sallee et al., 2013). However, as also shown
in other studies (for example, Sallee et al., 2013, who found
a large variability in Southern Ocean mixed-layer depths sim-
ulated by 21 ocean circulation models) the circulations ap-
plied in our study differ strongly in the extent and location
of deep mixing in this region. To account for the potential
effects of this variability on optimal parameter choice, we
evaluated the area of annual maximum deep mixing in the
two regions. Mixed-layer depth was defined by a density
difference of 1σθ ≥ 0.03 (in line with de Boyer Montégut
et al., 2004; Dong et al., 2008; Sallee et al., 2013), calcu-
lated from monthly mean potential temperature and salinity.
For the Southern Ocean (south of 40◦ S) and the North At-
lantic (north of 40◦ N) we then calculated the area, where the
annual maximum mixed-layer exceeds either 200 or 400 m
(the range of mixed-layer depths simulated and observed in
the Southern Ocean; Sallee et al., 2013). Altogether, we thus
obtain four different indicators for ocean ventilation through
deep ocean mixing
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Figure 1. Density (σθ ) at 25 m (left panels) and salinity along sections at 23 and 140◦W (middle and right panels) of forcing from (top to
bottom) MIT28, UHigh and ECCO circulation. The bottom row of panels show observations mapped onto ECCO geometry. Density has
been derived from annual mean potential temperature and salinity. Contour lines highlight isopycnal of σθ = 26.5 and σθ = 27.5.

2.3.2 Outcrop area of mode and intermediate water
masses

On centennial timescales the Antarctic Intermediate Water
(AAIW) and Subantarctic Mode Water (SAMW) formed in
the Southern Ocean determine nutrient concentrations in sub-
tropical areas. Their nitrate deficit and isotopic composi-
tion carry signatures of denitrification and nitrogen fixation
(Rafter et al., 2013; Tuerena et al., 2015). Given that the
models differ so strongly with respect to the surface den-

sity in the Southern Ocean (Fig. 1), we evaluated the outcrop
area of waters defined by a density of 26.5≤ σθ < 27.5 and
27.5≤ σθ in both the Southern Ocean and the northern North
Atlantic (defined as above). In the Southern Ocean the first
criterion approximately reflects SAMW and AAIW com-
bined, and the second criterion reflects Circumpolar Deep
Water (CDW) (similar to the definitions used by Palter et al.,
2010; Iudicone et al., 2011; Rafter et al., 2012, 2013). North
Atlantic waters defined by densities of 26.5≤ σθ < 27.5 and
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Figure 2. Annual maximum mixed-layer depths of models and observations (gridded onto ECCO model geometry). Mixed-layer depths have
been determined from a density difference of σθ = 0.03 (density calculated from monthly mean temperature and salinity).

σθ ≥ 27.5 coincide mainly with the region between 40 and
60◦ N and the Greenland Sea, respectively (Fig. 1).

2.3.3 Age of water masses

We use the concept of water mass (or ventilation) age as a di-
agnostic for the combined effects of ocean circulation, mix-
ing and ventilation on the time elapsed since a water par-
cel has been isolated from the atmosphere. We distinguish
between average ideal age in three different water masses
by applying the criteria of Matsumoto et al. (2004). Ac-
cording to their water mass definitions, North Atlantic Deep
Water (NADW) comprises all waters in the North Atlantic
between 0 and 60◦ N at 1500–2500 m depth. North Pacific
Deep Water (NPDW) is defined for a region between 0◦ and
60◦ N at 1500–5000 m depth. Finally, Circumpolar Deep Wa-
ter (CDW) consists of all waters south of 45◦ S, for a depth
between 1500 and 5000 m (see also Fig. 3). We note that,
using these region definitions, the average age of NADW is
influenced by waters of the eastern tropical Atlantic (ETA),
which are quite old in ECCO circulation (> 400 years) and
young in UHigh (Fig. 3, left panels). One reason for this
could be different rates of overturning, which is between 13
and 14 Sv in ECCO (together with a weak western boundary
current; Wunsch and Heimbach, 2006), while the UVic con-
figurations are characterised by higher overturning around
17.5 to 20 Sv. Finally, because the eastern tropical Pacific
(ETP) is the main region of fixed-nitrogen loss in the mod-
els (Kriest and Oschlies, 2015), but the water age in this re-
gion varies strongly among the circulations applied in our

study (Fig. S2), we also calculated average age in the eastern
equatorial Pacific (ETP) at±20◦ latitude, east of 160◦W and
within 150–500 m depth as a fourth potential indicator.

2.4 The biogeochemical model

For all model simulations we apply the Model of Oceanic
Pelagic Stoichiometry (MOPS), which simulates the bio-
geochemical cycling among phosphate, phytoplankton, zoo-
plankton, dissolved organic phosphorus (DOP) and detri-
tus. The model is described in detail in Kriest and Oschlies
(2015), and we here only give a brief overview on model
structure, with focus on parameters (and processes) affected
by optimisation (see below). All components are calculated
in units of millimoles of phosphorus per cubic metre. We
assume a constant nitrogen-to-phosphorus ratio of organic
matter of 16 [molN :molP]. The oxygen demand of aer-
obic remineralisation is given by R−O2 :P [molO2 :molP],
following the stoichiometry by Paulmier et al. (2009). In
the model oxygen-dependent aerobic remineralisation of or-
ganic matter follows a saturation curve with half-saturation
constantKO2 mmolm−3. With declining oxygen, denitrifica-
tion takes over as long as nitrate is available above a defined
threshold DINmin mmolm−3. Suboxic remineralisation (den-
itrification) also follows a saturation curve for the oxidant
nitrate, defined by the half-saturation constant for nitrate,
KDIN mmolm−3. The model assumes immediate coupling of
the different processes involved in nitrate reduction to dini-
trogen, following the stoichiometry derived by Paulmier et al.
(2009). Loss of fixed nitrogen (through denitrification) is bal-
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Figure 3. Simulated ideal age (years) averaged over 1500–2500 m in the North Atlantic (NADW, left panels) and as zonal mean for the
Atlantic (middle panels) and the Pacific (right panels). Boxes indicate regions of NADW, NPDW, CDW and ETP (see Fig. S2 for detailed
plot).

anced by a temperature-dependent parameterisation of nitro-
gen fixation, which relaxes the nitrate-to-phosphate ratio to
d with a maximum rate µNFix µmolm−3 d−1. Detritus sinks
with a vertically increasing sinking speed: w = a z md−1.
With a constant degradation rate r = 0.05 d−1, in equilib-

rium this is equivalent to a depth-dependent particle flux
curve, corresponding to a power law: F(z)= (z/z0)

−b, with
b = r/a (see Kriest and Oschlies, 2008). Depending on the
rain rate to the sea floor, a fraction of detritus deposited at
the bottom of the deepest vertical box is buried in some hy-
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pothetical sediment. Non-buried detritus is resuspended into
the deepest box of the water column, where it is treated as
regular detritus. The global annual burial of organic phos-
phorus and nitrogen is resupplied in the next year via river
runoff (when simulated with MIT28 or ECCO TMs) or at the
ocean surface (TMs derived from UVic). We note that in un-
calibrated models (e.g. Kriest and Oschlies, 2015) this cre-
ates differences of a few percent in the global inventory of
nitrate and oxygen. Differences in the regional distribution
of nutrients and oxygen are largely comparable in magnitude
to those caused by the numerical sinking scheme of detri-
tus (Kriest and Oschlies, 2011). The effect of this process is
subject to further research.

2.5 Optimisation algorithm

Optimisation of n= 6 biogeochemical model parameters
(see Sect. 2.7 for choice of parameters to be optimised) is car-
ried out using an estimation of distribution algorithm, namely
the covariance matrix adaption evolution strategy (CMA-ES;
Hansen and Ostermeier, 2001; Hansen, 2006). The applica-
tion of this algorithm to the coupled biogeochemistry–TMM
framework has been presented in detail in Kriest et al. (2017),
and we here only give a brief overview. In each iteration
(“generation”) the algorithm defines a population of 10 indi-
viduals (biogeochemical parameter vectors of length n), sam-
pled from a multivariate normal distribution in Rn. Follow-
ing the simulation of these 10 model setups over 3000 years
to near-steady state, after which, for example, global oxygen
and nitrate inventory change only by a small amount (see
Fig. 2 by Kriest and Oschlies, 2015), the misfit (cost) func-
tion (presented in Sect. 2.6) is evaluated, and information of
the current as well as previous generations is used to update
the probability distribution in Rn such that the likelihood to
sample solutions resulting in a good fit to observations in-
creases. Therefore, the population (the number of model sim-
ulations per generation) in CMA-ES is smaller and of lower
computational demand than in classical evolutionary algo-
rithms, making the algorithm applicable to this computation-
ally expensive problem. On the other hand, with its quasi-
stochastic sampling CMA-ES can still to a certain degree
perform well with misfit functions characterised by a rough
topography (i.e. many local optima; Kriest et al., 2017; Kri-
est, 2017).

2.6 Misfit (cost) function

As in Kriest et al. (2017) and Kriest (2017) the standard mis-
fit to observations J is defined as the root-mean-square er-
ror (RMSE) between simulated and observed annual mean
phosphate, nitrate and oxygen concentrations (Garcia et al.,
2006a, b), mapped onto the respective three-dimensional
model geometry. Deviations between model and observa-
tions are weighted by the volume of each individual grid
box, Vi , expressed as the fraction of total ocean volume, VT.

The resulting sum of weighted deviations is then normalised
to the global mean concentration of the respective observed
tracer.

JRMSE =

3∑
j=1

J (j)=

3∑
j=1

1
oj

√√√√ N∑
i=1
(mi,j − oi,j )2

Vi

VT
(1)

j = 1,2,3 indicates the tracer type (phosphate, nitrate, oxy-
gen) and i = 1, . . .,N represents the model locations of N
model grid boxes. oj is the global average observed con-
centration of the respective tracer. mi,j and oi,j are simu-
lated and observed concentrations, respectively. By weight-
ing each individual misfit with volume, JRMSE serves as
a long-timescale geochemical estimator in contrast to a mis-
fit function focusing on (rather fast) turnover in the surface
layer or resolving the seasonal cycle.

2.7 Parameter optimisations and cross-validation
experiments

The optimisations presented here are based upon two succes-
sive optimisations presented by Kriest et al. (2017) and Kri-
est (2017). Both studies applied MOPS coupled to TMs de-
rived from MIT28. The cost function, as presented in Eq. (1),
was calculated after a spinup of 3000 years, as also used in
the present study.

In the first optimisation, Kriest et al. (2017) optimised four
parameters related to plankton growth and loss terms, to-
gether with b and R−O2 :P. The optimal parameters of this
first calibration led to a better agreement of simulated global
biogeochemical fluxes to observations of primary and export
production, zooplankton grazing, particle flux at 2000 m and
organic matter burial at the sea floor (Kriest et al., 2017). In
a subsequent optimisation Kriest (2017) kept the four opti-
mal plankton parameters fixed and calibrated four parame-
ters related to remineralisation and nitrogen fixation (namely
KO2 , KDIN, DINmin and µNFix described in Sect. 2.4), to-
gether with b and R−O2 :P (see Table 1). This second optimi-
sation by Kriest (2017) led to a better match to independent
estimates of pelagic denitrification, without deteriorating the
matches to observed primary and export production, zoo-
plankton grazing, particle flux at 2000 m, and organic matter
burial at the sea floor. It is hereafter referred to as MIT28∗

and serves as the starting point for the four additional opti-
misations presented in this paper.

In particular, we repeated optimisation MIT28∗ against
Eq. (1) in circulations ECCO, UHigh, U20 and U17.5 de-
scribed above. In the following we refer to these four addi-
tional optimisations and optimal parameter sets as ECCO∗,
UHigh∗, U20∗ and U17.5∗. To test the portability of op-
timised parameters to different physical settings, we then
transferred the parameter sets of MIT28∗, ECCO∗, UHigh∗,
U20∗ and U17.5∗ to the other four circulations, again simu-
lating each coupled model for 3000 years. Thus, we present
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results from 25 different model simulations with five differ-
ent parameter sets and five different circulations.

3 Results

3.1 Performance of optimised models

When optimised for different circulations the coupled mod-
els show similar values of the misfit function J ∗ (Table 1).
The misfit decreases with more realistic circulation and
physics (according to the criteria described in Sect. 2.2) and
is lowest for ECCO∗. Global mean phosphate profiles are
quite similar and vary less then 10 % of the observed con-
centrations at depths below 500 m (Figs. 4a and S3, black
lines). The low variation in phosphate might be explained
by the fixed phosphorus inventory of the model. Only at the
surface, where nutrient concentrations become low, is rela-
tive variation larger. However, despite optimisation some re-
gional mismatches remain: for example, the model when op-
timised for the three UVic circulations shows a considerable
overestimate of deep (> 3000 m) phosphate in the Atlantic
(Fig. S4). All optimal models further underestimate phos-
phate in the mesopelagic layer of the northern North Pacific.

Vertical nitrate profiles are also quite similar to each other
(Figs. 4b and S3, red lines), although the nitrate inventory is
allowed to adjust dynamically to the loss of fixed nitrogen
during denitrification and its balance through nitrogen fixa-
tion at the sea surface. Because optimisation also attempts to
match nitrate observations, the differences between the mod-
els are nevertheless quite small and result in deviations of
1 %–2 % of observed global mean nitrate (see Table 1). The
global pattern of nitrate residuals (Fig. S5) generally corre-
sponds to that of phosphate. However, the spatial distribution
of fixed-nitrogen gain and loss causes variations in the global
distribution of the nitrate deficit in relation to phosphate, as
expressed as N∗ = NO3− 16×PO4 (Fig. 5).

In agreement with observations, all optimised models
show a large nitrate deficit in the Pacific Ocean, manifest in
strongly negative N∗ (Fig. 5). This lack of nitrate is caused
by denitrification in the ETP and is balanced by nitrogen fix-
ation in the tropics and subtropics (see Fig. S6). In the At-
lantic Ocean, where denitrification is largely absent, simu-
lated N∗ is far less negative than in other areas, but it is never
positive as suggested by the observations. This mismatch
can be explained by the prerequisites of the biogeochem-
ical model applied. In MOPS, nitrogen fixation relaxes ni-
trate to 16× phosphate with a time constant defined by µNFix
whenever N∗ is negative; otherwise it does not occur. Be-
cause of this process parameterisation, N∗ is restricted to val-
ues ≤ 0. Finally, the Southern Ocean has moderate values of
N∗, owing to the mixing of water masses of different origin.
Thus, although global average nutrient profiles match obser-
vations well, with little differences among optimal models,
some regional biases remain, which differ among the models.

Also, because of the different processes involved in nutrient
turnover, phosphate and nitrate distributions are not exactly
the same, with consequences for the nitrate deficit in differ-
ent oceanic domains.

Global mean oxygen profiles of optimised models
vary more strongly than those of nutrients, up to
≈ 40 mmolO2 m−3 in the deep ocean, and thus more than
20 % the observed value (Figs. 4c and S3, blue lines). Over-
all, a finer resolution and a more realistic circulation improve
the representation of this tracer, reducing the global oxygen
bias, which ranges from 5.3 mmolO2 m−3 (U17.5∗) to almost
zero (ECCO∗; Table 1). On a regional scale all models show
some common biases: south of 40◦ S all optimised models
overestimate zonal mean oxygen in subsurface waters above
≈ 1500 m (MIT28∗) to ≈ 2000 m (ECCO∗), or even further
downward (UVic simulations; Fig. S7). In the Pacific Ocean
these too high oxygen concentrations propagate northward.
Finally, in mesopelagic waters of the northern North Pacific
all models overestimate oxygen, especially above 1000 m.
Common to all models is further an underestimate of oxy-
gen in subsurface waters (down to ≈ 1000 m) in the sub-
tropics and tropics of the Southern Hemisphere. The Atlantic
Ocean is generally characterised by too low oxygen concen-
trations at greater depths. Here, the five optimal models dif-
fer: ECCO∗ exhibits too low mesopelagic oxygen in the trop-
ical and subtropical Atlantic. MIT28∗ underestimates oxygen
in particular in deep waters of the Southern Hemisphere and
north of 60◦ N. The optimal UVic configurations are biased
low in deep waters of the Northern Hemisphere. These low
oxygen concentrations of the UVic configurations are accom-
panied by too high phosphate and nitrate in the deep North
Atlantic (Fig. S5) and indicate too high remineralisation of
organic matter in these depths. Together with circulation, this
too high remineralisation results in a too strong accumulated
signal of remineralisation.

Thus, while there are common features among the five op-
timal models, there are also some striking differences, espe-
cially in the Atlantic. These differences can be explained by
the large impact of the Pacific on the misfit function. Ow-
ing to its large volume, and the comparatively large impact
of oxygen on the misfit function (see Kriest et al., 2017),
optimisation will attempt to minimise in particular oxygen
misfits in this region and tune the biogeochemical model pa-
rameters to compensate for potential errors of the respective
circulation. These different parameters affect the oxygen dis-
tribution in the Atlantic, which does not contribute so much
to the global misfit. Different physical properties of the cir-
culations then cause divergent patterns in the oxygen distri-
bution of this region.

3.2 Best parameters of optimisations in different
circulations differ

As presented and discussed by Kriest (2017), optimisation
of MOPS in the circulation of MIT28 reduces the parti-
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Figure 4. Global mean vertical profiles of phosphate (a), nitrate (b) and oxygen (c). Thin lines denote range across all 25 model experiments,
shaded areas the range across the five optimal model experiments and the thick lines the average of optimal model experiments. Stars denote
observed profiles. Prior to averaging, all models have been regridded onto the ECCO grid, using nearest-neighbour filling in the vertical and
linear interpolation horizontally.

cle flux length scale by increasing b from a “default” value
of ≈ 1.1 (Kriest and Oschlies, 2015) to 1.39. It further
results in a high nitrate threshold for the onset of deni-
trification (DINmin = 15.8 mmolm−3, compared to the de-
fault value of 4 mmolm−3 applied by Kriest and Oschlies,
2015), a low affinity of denitrification to nitrate (KDIN =

32 mmolm−3) and a low maximum nitrogen fixation rate
(µNFix = 1.19µmol m−3 d−1; Table 1), which is only about
half of the default value applied by Kriest and Oschlies
(2015). The optimised oxygen affinity of remineralisation
is very high, as indicated by a low value of KO2 (the half-
saturation constant for oxygen). We note that KO2 also reg-
ulates the inhibition of denitrification by oxygen; when this
parameter becomes very low, denitrification is more strongly
inhibited by oxygen. Hence, the optimal model configuration
MIT28∗ induces only moderate denitrification and prevents
a decline of the global nitrate inventory through this process
(see also Kriest and Oschlies, 2015). The oxygen demand
of remineralisation, R−O2 :P, remains close to the value de-
rived from observations (170±10 mmolO2 :mmolP; Ander-
son and Sarmiento, 1994). Finally, as noted by Kriest (2017),
some parameters are only weakly constrained by the misfit
function: for example, an almost 10-fold increase in KO2 re-
sults in a misfit function not larger than 1 % of the optimal
misfit (see also Table 1). One reason for this low sensitivity of
the misfit to a variation in KO2 , KDIN or DINmin is the small
volume occupied by suboxic zones, where these parameters
can play a role in dissolved inorganic tracer concentrations
(Kriest, 2017).

Optimising the same set of parameters in either the three
different UVic circulations or the ECCO circulation also
results in a high threshold for the onset of denitrification,
DINmin (Table 1). As for MIT28∗ the dependencies of oxic
and suboxic remineralisation on oxygen or nitrate, expressed
through KO2 and KDIN, may vary largely within the parame-
ter space without having a large impact on the misfit function.

In contrast, R−O2 :P and b are constrained very well by the
misfit function, as indicated by the narrow range of param-

eters that result in a good fit to observations. For example,
all solutions of the ECCO∗, which result in a misfit within
1 % of the optimal fit, require a b value between 1.4 and
1.5 and a stoichiometric demand for oxygen between 150
and 154 molO2 :molP (Table 1). Optimal R−O2 :P decreases
from 170 molO2 :molP (MIT28∗) over 162 molO2 :molP
(UHigh∗) to 151 molO2 :molP (ECCO∗). The exponent de-
termining the shape of the particle flux curve, b, also varies
among the five optimisations, between 1.27 (UHigh∗) and
1.46 (ECCO∗). The range of good (within 1 % of the opti-
mal fit) values for b differs between ECCO∗ and UHigh∗ (b
between 1.2 and 1.3). Also, the range for good values for
R−O2 :P of ECCO∗ does not overlap with that of the other
optimisations.

Optimal µNFix also varies considerably among the differ-
ent optimisations, from 1 to 3 µmolm−3 d−1. Here, the range
of good parameter values for U20∗ (1.0–1.4 µmolm−3 d−1)
does not overlap with that of ECCO∗, UHigh∗ and U17.5∗

(all between 1.5 and 3 µmolm−3 d−1). Overall, MIT28∗

and U20∗ benefit from a low maximum nitrogen fixation
rate around 1 µmolm−3 d−1, while the other models require
a larger rate between 2 and 3 µmolm−3 d−1.

Therefore, to achieve a good fit to observations, differ-
ent circulations seem to require markedly different parame-
ters for the oxygen utilisation by remineralisation, (R−O2 :P),
the exponent determining the particle flux curve (b) and the
potential rate of nitrogen fixation (µNFix). Other parameters
vary little (DINmin), or (as indicated by overlapping ranges of
good parameters) the differences among them might not be
relevant (KO2 and KDIN) for a misfit function targeting the
global scale. It is important to note that the relevant param-
eters do not seem to be correlated with each other (Fig. S8).
Apparently, different characteristics of each circulation influ-
ence the choice of the optimisation algorithm for the optimal
values of R−O2 :P, b and µNFix.

To investigate the potential dependence of optimal pa-
rameters on circulation, we examined the area of dense-
water outcrop and deep mixing in two different regions (see
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Figure 5. Excess nitrate N∗ (N∗ = NO3− 16×PO4) of optimal model configurations, averaged over the euphotic zone (left panels) and of
zonal mean nitrate and phosphate in the Atlantic and Pacific (middle panels and right panels, respectively). Lines denote density of σθ = 27
and σθ = 27.5.

Sect. 2.3 for definition). Together with average age of four
different regions or water masses, we investigate 12 different
diagnostics for each circulation for their influence on opti-
mal biogeochemical parameter estimates. In most cases the
optimal parameters are not correlated with physical proper-
ties (Table 2). However, the oxygen demand of remineral-
isation, R−O2 :P, is significantly correlated with the area of
deep mixing in the northern North Atlantic for maximum
mixed-layer depths of 200 and 400 m (p < 0.05). For both
criteria R−O2 :P increases with increasing area of deep mix-
ing (Fig. 6). In addition, R−O2 :P also correlates with a deep
mixing area defined by > 200 m in the Southern Ocean, al-
beit not significantly (Table 2). In other words, more vigorous

mixing in areas of deep, intermediate or mode water forma-
tion allows for a higher oxygen utilisation by remineralisa-
tion. Parameter b describing the particle flux curve correlates
significantly with the ideal age of NADW (Table 2) and in-
creases with increasing age of this water mass (Fig. 6). Fi-
nally, the maximum potential rate of nitrogen fixation µNFix
correlates with the outcrop area of waters with moderate den-
sity (26.5≤ σθ < 27.5) waters in the Southern Ocean. An in-
crease in the outcrop area of these waters – which correspond
roughly to the sum of AAIW and SAMW – results in an in-
crease in optimal maximum nitrogen fixation rate (Fig. 6).
The age of mesopelagic waters in the ETP seems to play
a small role, despite the fact that it is an important area in
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Figure 6. Optimal parameters for which the correlation of Table 2 is significant at p < 0.05, plotted against physical diagnostics. Symbols
indicate the different model optimisations. Small squares: MIT28∗. Large squares: ECCO∗. Circles: UHigh∗. Triangles: U20∗. Inverted
triangles: U17.5∗. Lines denote the regression of optimal parameters against the respective circulation diagnostic. Vertical bars at the upper
plot boundary indicate observed diagnostics.

Table 2. Correlation coefficient r for the regression of three optimal model parameters against physical diagnostics. The outcrop area of
dense waters in the Northern Hemisphere (> 40◦ N) and Southern Hemisphere (> 40◦ S) is given for two different density intervals. Outcrop
area for deep mixing in the North Atlantic (> 40◦ N) and Southern Ocean (> 40◦ S) is given for two different criteria of maximum deep
mixing (200 and 400 m). Mean water mass age is given for four different water masses. See text for further details. Significant correlations
(p < 0.05) are denoted in bold.

Parameter Physical diagnostic

Area MLD North Atlantic Area MLD Southern Ocean

200 m 400 m 200 m 400 m

R−O2 :P 0.916 0.950 0.875 0.465
µNFix −0.492 −0.405 −0.332 −0.263
b −0.280 −0.425 −0.499 −0.210

Area outcrop north Area outcrop south

26.5–27.5 > 27.5 26.5–27.5 > 27.5

R−O2 :P −0.329 0.460 −0.641 0.792
µNFix 0.449 −0.361 0.890 −0.746
b −0.287 0.050 −0.538 0.202

Ideal ages

NADW CDW NPDW ETP

R−O2 :P −0.358 0.273 0.787 −0.266
µNFix −0.083 −0.380 −0.857 −0.070
b 0.914 0.136 0.069 0.334

the global nitrogen budget (Fig. S6). Possible reasons for the
dependence of these three parameters on physical diagnostics
will be discussed in Sect. 4.1.

3.3 Cross-validation experiments: can we transfer
parameters optimal for one circulation to another
circulation?

Given that three optimal parameters differ among the model
circulations, we investigate model performance and dynam-
ics when these parameter sets are swapped among circula-

tions. Of course, every coupled model performs best (with
respect to J ∗ of Eq. 1) when simulated with parameters opti-
mal for the respective circulation, as indicated by the lowest
relative misfit along the main diagonal in panel (a) of Fig. 7.
When exchanging the biogeochemical parameters optimal
for ECCO or MIT28 circulation with parameters optimised
in any other circulation, the model performance with respect
to J ∗ deteriorates. The misfit function changes less when the
optimal parameters are swapped among the different UVic
circulations.
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Figure 7. Three different model diagnostics for all cross-validation experiments with parameter set i and circulation j : (a) normalised misfit
Ji,j /J

∗
j
− 1, where J ∗

j
is the lowest misfit for each circulation j . (b) Oxygen bias (model minus observation, mmolm−3). (c) OMZ volume

(as percent of total ocean volume) bias. OMZs are defined by 50 mmolm−3. The x axis denotes the optimal parameter sets of MIT28∗,
ECCO∗, UHigh∗, U20∗ and U17.5∗ and the y axis the circulation. Pluses along the main diagonal indicate the optimal model simulation for
each circulation (i = j ), i.e. MIT28∗, ECCO∗, UHigh∗, U20∗ and U17.5∗.

In the model the global oxygen inventory adjusts dynami-
cally to the combined effects of circulation and biogeochem-
ical parameters, causing a large impact of this tracer on the
misfit function (Kriest et al., 2017). Therefore, optimisation
attempts to reduce the global oxygen bias, which is low for
each optimal model configuration, indicated by the low val-
ues along the main diagonal of Fig. 7b. The oxygen bias in-
duced by the changes in parameter set and circulation de-
pends on the combination of these two. For example, the low
value for R−O2 :P and the high value for b of ECCO∗ causes
a large overestimate of the oxygen inventory in any other
circulation (indicated by warm colours in the second col-
umn of Fig. 7b). Vice versa, applying optimal parameter sets
from MIT28∗, UHigh∗, U20∗ or U17.5∗ to the ECCO cir-
culation results in a too low oxygen inventory (indicated by
cold colours in the second row from the bottom of Fig. 7b).
When swapping parameter sets among the different configu-
rations of the UVic circulation, the effect is much less pro-
nounced. Apparently, despite their different overturning and
mixing, the UVic circulations are more similar to each other
than those of MIT28 and ECCO. We note that these large
differences in oxygen inventory arise mainly from deeper
(27.5≤ σθ ) layers, while the oxygen inventories of waters
lighter than σθ = 27.5 are quite similar (Fig. S9).

OMZ volume is biased low for the parameter set of
ECCO∗ and in the MIT28 circulation (Fig. 7c). This under-
estimate is likely caused by the very low R−O2 :P and high b
of ECCO∗, or the vigorous mixing in the MIT28 circulation,
which both tend to increase subsurface oxygen concentra-
tions. Otherwise, OMZ volume does not seem to be closely
related to the parameter set or circulation, likely because this
diagnostic is largely independent of the applied misfit func-
tion and depends on the local circulation pattern (see discus-
sion by Sauerland et al., 2019).

Thus, because of different physical model properties, the
biogeochemical model MOPS, when coupled to the MIT28

and ECCO circulation, requires unique and different sets of
parameters for optimal model performance. In the UVic cir-
culations the model is more flexible with regard to parame-
ters; yet, when aiming for independent diagnostics such as
OMZ volume, there is no clear relationship between OMZ
volume and changes in parameter set or circulation.

3.4 Effect of parameters and circulation on phosphate
and oxygen concentrations in different water
masses

Because of the regional biases of nutrients and oxygen in
the North Atlantic, North Pacific and Southern Ocean (see
Sect. 3.1), and because the values ofR−O2 :P and b selected in
the calibration process correlate significantly on water mass
properties of the NADW, NPDW and CDW (Sect. 3.2), we
here examine more closely how these parameters affect the
large-scale distribution of phosphate (as a conserved nutri-
ent) and oxygen, which can adjust dynamically at the model’s
air–sea interface and is thus a non-conservative tracer.

Kriest et al. (2012) showed that b, the parameter deter-
mining the particle flux length scale, has a large influence
on the distribution of phosphate along the “conveyor belt”
(i.e. along waters of different age), in agreement with the
results obtained by Bacastow and Maier-Reimer (1991) and
Kwon and Primeau (2006). We here carry out an analysis
similar to that by Kriest et al. (2012) and evaluate average
phosphate and oxygen within the NADW, NPDW and CDW,
with region definitions as described above for water mass age
(Sect. 2.3).

Within each circulation a smaller value of b (correspond-
ing to faster sinking particles) increases phosphate in the
NPDW and decreases it in the NADW (Fig. 8a), confirming
the pattern found by Kriest et al. (2012). When plotting aver-
age phosphate in the NPDW against average phosphate in the
CDW, there is no such relationship, but the average value in
the CDW varies only little (Fig. 8b) and is near the observed
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Figure 8. Average phosphate in the northern North Pacific Deep Water (NPDW; between 0 and 60◦ N at 1500–5000 m; see Sect. 2.3) plotted
against average phosphate in the northern North Atlantic Deep Water (NADW; between 0 and 60◦ N at 1500–2500 m; a) or Circumpolar
Deep Water (CDW; south of 45◦ S, 1500–5000 m; b), of all 25 model experiments. Small squares: MIT28 circulation. Large squares: ECCO
circulation. Circles: UHigh circulation. Triangles: U20 circulation. Inverted triangles: U17.5 circulation. (See also symbol legend in Fig. 6.)
The colour indicates the value of parameter b. Pluses indicate the optimal parameter set. Stars indicate observed values. Thin black lines
extending from the stars denote the distance between observation and each optimal model configuration.

value of 2.26 mmol m−3. The spread of phosphate concen-
trations caused by different parameter sets (same symbol
with different colours) is about the same (between 0.1 and
0.15 mmolm−3) as the spread caused by different circula-
tions (different symbols of the same colour). Thus, both bio-
geochemistry and circulation seem to play an equally large
role in the distribution of phosphate between NADW and
NPDW. The variation caused by biogeochemical parameters
is smaller for CDW, indicating that in this region physical
processes play a larger role.

In contrast to phosphorus, the oxygen inventory is not
fixed but regulated by the interplay of circulation, air–sea
gas exchange and biogeochemical turnover. Because of this
we find a pattern that is very different from that of phos-
phate when examining the distribution of average oxygen in
different water masses. Now, within each circulation aver-
age oxygen in the NPDW increases almost linearly with av-
erage oxygen in the CDW and NADW (Fig. 9), highlight-
ing the role of these waters in the ventilation of the deep
North Pacific. In most circulations, a large value of R−O2 :P
results in a low oxygen content in all water masses. All op-
timised coupled model configurations suggest average oxy-
gen between 220 and 250 mmolm−3 in the NADW. For the
NPDW all optimised models simulate average oxygen con-
centrations around 150 mmolm−3 and thereby overestimate
the observed value of 125 mmolm−3 by one-fifth. Average
oxygen in the CDW of optimal model simulations varies be-
tween≈ 210 and 240 mmolm−3, encompassing the observed
value of 215 mmol m−3. Thus, given the quite wide range of
potential parameter values, optimisation improves the global
oxygen bias (see Table 1), but some residual regional bias in
particular in the NPDW remains.

3.5 Effect of parameters and circulation on global
oxygen inventory and OMZ volume

A declining trend of global average oxygen with increasing
R−O2 :P is also reflected in panel (a) of Fig. 10, but circula-
tion also plays a role in the oxygen inventory, with the ECCO
circulation showing the lowest values. To have a closer look
at the individual contributions of circulation and biogeo-
chemistry to the overall variability of oxygen inventory and
OMZ volume, we have calculated their maximum spread
caused by varying only the circulation (keeping the biogeo-
chemical parameter set constant,1Circ) and by varying only
the biogeochemical parameters (keeping the circulation con-
stant,1Par). For example, to determine1Circ for global av-
erage oxygen or OMZ volume (here denoted as X), for each
parameter set i simulated with the five different circulations
j = 1. . .5 we compute the difference between the maximum
and minimum value1Xi =max(Xi,j=1...5)−min(Xi,j=1...5)

and then determine the maximum of these differences:
1Circ=max(1Xi). The computation of 1Par is done anal-
ogously. We also compute the maximum across all optimal
model configurations 1Opt=max(Xi=j )−min(Xi=j ) and
across all 25 experiments presented in this study: 1All=
max(Xi,j )−min(Xi,j ). Using this approach, a value for1Par
close to 1All indicates that the model variability is mainly
induced by the biogeochemical parameter set, whereas a rel-
atively large value for 1Circ indicates a major impact of cir-
culation. Table 3 and Fig. 11 show the results of this compari-
son, and Fig. 12 illustrates the variability for each circulation
or parameter set, normalised by the average over all optimal
models. Note that the longest horizontal or vertical line in
Fig. 12 corresponds to 1Par and 1Circ in Table 3, while the
width of the grey shaded square corresponds to 1All.
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Figure 9. As Fig. 8, but for average oxygen and parameter R−O2 :P (colour scale).

Figure 10. Normalised biogeochemical diagnostics plotted against parameter b: (a) global average oxygen, (b) OMZ volume defined by
concentrations < 50 mmolm−3, (c) global fixed N loss, (d) global primary production, (e) export production and (f) organic particle flux at
2000 m. All diagnostics X expressed as relative deviation to the mean of the five optimal model simulations (Xi,j /X∗i − 1), where j and i
denote different combinations of circulation j and parameter set i, and X∗

j
is the average of all optimal model configurations (see Table 3 for

values). Colour denotes the value of parameterR−O2 :P. Symbols denote circulation. Small squares: parameter set of MIT28∗. Large squares:
ECCO∗. Circles: UHigh∗. Triangles: U20∗. Inverted triangles: U17.5∗. (See also symbol legend in Fig. 6.) Optimal model configurations are
indicated by pluses.

Firstly, biogeochemical parameters (1Par) as well as cir-
culation (1Circ) play an about equally large role for the
global average oxygen, which varies by≈ 24 mmolm−3 (Ta-
ble 3 and Fig. 11), or about ±15 % of the average optimal
value (see also Fig. 12). The variation decreases to less than

one-fourth of this value if we restrict our analysis to only op-
timal models (1Opt); as noted above, this strong decrease
arises because all optimal models have adjusted R−O2 :P to
account for different ventilation in the high latitudes. Con-
sidering all 25 experiments, i.e. accounting for variation in-
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Figure 11. Effect of variation in biogeochemical parameters (1Par), circulation (1Circ) and across all model experiments (1Circ) on
(a) global average oxygen, (b) OMZ volume defined by a concentration of< 50 mmolm−3, (c) global fixed-nitrogen loss, (d) global primary
production, (e) export production and (f) organic particle flux at 2000 m, as listed in Table 3. Symbols denote values from Bopp et al. (2013,
large squares), Schmittner et al. (2005, small squares), Séférian et al. (2013, circles), Najjar et al. (2007, diamonds), Somes et al. (2013, plus)
and Kwon et al. (2009, cross).

Figure 12. Effect of variation in circulation and biogeochemical parameters on normalised diagnostics. (a) Global average oxygen, (b) OMZ
volume defined by a concentration of < 50 mmolm−3, (c) global fixed-nitrogen loss, (d) global primary production, (e) export production
and (f) organic particle flux at 2000 m. All diagnostics X are expressed as relative deviation from mean of the five optimal model simulations
(Xi,j /X∗j − 1), where j and i denote different combinations of circulation j and parameter set i, and X∗

j
is the average of all optimal model

configurations (see Table 3 for values). Each panel shows the range of the normalised diagnostic when the parameter set is kept constant and
circulation varied (vertical lines) and when circulation is kept constant and the parameter set is varied (horizontal lines). Symbols denote the
optimal model configuration. Colour denotes circulation and optimal parameter set. Black: circulation MIT28 or parameter set of MIT28∗.
Thick blue: UHigh and UHigh∗. Medium blue: U20 and U20∗. Thin blue: U17.5 and U17.5∗. Red: ECCO and ECCO∗. Symbols denote
optimal model configurations (see also symbol legend in Fig. 6). The grey shaded area shows total variation across all 25 model experiments,
corresponding to 1All in Table 3. Note that the maximum variation due to the parameter within each circulation (1Par of Table 3) is given
by the longest horizontal line in each panel. Likewise, the maximum variation due to circulation within each parameter set (1Circ of Table 3)
is given by the longest vertical line.
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Table 3. Mean (across all experiments and optimal models) and range of variation in global biogeochemical model properties and fluxes
across different parameter sets (circulation constant; 1Par), and different circulations (parameters constant; 1Circ), as well as across the
five different optimal models MIT28∗, ECCO∗, uHigh∗, U20∗ and U17.5∗ (1Opt). 1Mod shows the difference between MIT28∗ of this
study and the model RetroMOPS of Kriest (2017). Observed oxygen and OMZ volume from Garcia et al. (2006b, mapped onto ECCO grid);
observed global flux ranges derived from estimates by Carr et al. (2006, primary production), Dunne et al. (2007, export production), Lutz
et al. (2007, export production, radiogen. calib.), Honjo et al. (2008, mean particle flux), Guidi et al. (2015, particle flux), Eugster and Gruber
(2012, median fixed-nitrogen loss), and Somes et al. (2013, fixed-nitrogen loss of best data-constrained model).

Mean (All) Mean (Opt) 1Mod 1Par 1Circ 1Opt 1All

Global mean O2 (observed: 174.17 mmolm−3)

This study 177.2 177.6 0.1 24.1 24.3 6.8 43.0
Bopp et al. (2013) 95.0

OMZ volume (50 mmolm−3; observed: 57.0× 1015 m3)

This study 54.9 52.1 0.7 39.4 55.4 39.0 67.2
Bopp et al. (2013) 212.5

OMZ volume (80 mmolm−3; observed: 119.1× 1015 m3)

This study 122.3 112.8 0.6 112.0 119.8 73.3 145.9
Bopp et al. (2013) 328.9

Fixed N loss (observed estimates: 52–76 TgNyr−1)

This study 67.7 67.4 1.9 35.1 33.8 17.4 44.9
Somes et al. (2013) a 53.6

Primary production (observed estimates: 40–60 PgCyr−1)

This study 47.4 47.2 9.1 8.17 12.27 5.65 18.95
Schmittner et al. (2005) b 20.1 24.5 48.5
Séférian et al. (2013) 8.64
Bopp et al. (2013) 47.8

Export production (observed estimates: 4.6–9.6 PgCyr−1)

This study 6.86 6.86 0.23 0.49 1.08 1.05 1.20
Schmittner et al. (2005) b 2.2 8.4 11.2
Najjar et al. (2007) 10
Kwon et al. (2009) c

≈ 5
Séférian et al. (2013) 3.0
Bopp et al. (2013) 3.2

Sedimentation (2000 m) (observed estimates: 0.33–0.43 PgCyr−1)

This study 0.36 0.36 0.02 0.16 0.06 0.16 0.19
Najjar et al. (2007) d 0.52

a Experiments 1–3. b For 1Circ we have omitted the experiment with Kb = 0 of the study by Schmittner et al. (2005) and refer only to
experiments 2, 8 and 12. For 1Par we report the difference between experiments 12 and 13 and for 1All the maximum spread across
experiments 2 to 13. c We refer to Fig. 2b of Kwon et al. (2009) but consider only a range of 1.1≤ b ≤ 1.4 for 1Par, to be comparable
to our range of b. d Calculated from export production ×(75/2000)0.9 = 0.052.

duced by both biogeochemical and physical configurations
(1All), leads to a variation 6 times as large as for the opti-
mal configurations (1Opt).

The variability is much more pronounced when consid-
ering the OMZ volume as defined by two criteria, 50 and
80 mmolm−3. Again, both circulation and parameter set play
an about equally large role; but the impact of changes in
parameters or circulation varies across the different models

(Fig. 12). For example, applying the parameter set of MIT28∗

to a different circulation causes a very strong increase in
OMZ volume (vertical black lines in Fig. 12), while model
MOPS coupled to the circulation of MIT28 is quite robust
with respect to different parameters (horizontal black lines
in Fig. 12). On the other hand, when coupled to the ECCO
circulation the biogeochemical model is quite sensitive to
the biogeochemical parameter set (horizontal red lines in
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Fig. 12), but its optimal parameter set ECCO∗ has a smaller
effect when applied to other circulations (vertical red lines in
Fig. 12). This diverging effect of parameters and circulation
among the different models eventually causes a large spread
of 67.2× 1015 m3 of global OMZ volume across all model
experiments (1All in Table 3 and Fig. 11), i.e. more than
100 % the observed volume. The effects are even more pro-
nounced when considering a criterion of 80 mmolm−3 for
OMZ definition (Table 3). The OMZ volume does not show
any consistent trend with b, R−O2 :P or circulation (Fig. 10b),
although models with high b and low R−O2 :P tend to result
in a smaller OMZ volume. The circulation of MIT28 shows
the lowest OMZ volume.

To summarise, oxygen inventory and OMZ volume are
almost equally influenced by physics and biogeochemistry.
Optimisation reduces the spread induced by either biogeo-
chemistry or physics to about 30 % for average oxygen, but
less for OMZ volume, which varies strongly across all model
experiments. We note that the individual contributions of
1Par and 1Circ for both diagnostics do not add up to 1All
(Table 3), indicating that the effects of biogeochemical pa-
rameters and circulation are not linear and additive.

3.6 Effect of parameters and circulation on global
biogeochemical fluxes

Oxygen and nutrient distributions are influenced by the pro-
duction of organic matter in the euphotic zone and its subse-
quent transport to the ocean interior by physical and biogeo-
chemical processes. In addition, denitrification in combina-
tion with nitrogen fixation can affect the global nitrogen in-
ventory and the spatial distribution of the nitrate deficit (see
Sect. 3.1). Here we finally investigate how these fluxes are
affected by the two parameters R−O2 :P and b.

In our model experiments, simulated global primary pro-
duction depends slightly more on circulation (1Circ) than on
biogeochemical parameters (1Par; Table 3, Figs. 11 and 12).
An increase in b (corresponding to slowly sinking particles)
causes primary production to increase (Fig. 10d), likely be-
cause of the higher nutrient retention in the euphotic zone,
shallow remineralisation and enhanced entrainment of nutri-
ents into the surface layers. Because the last process depends
on physical dynamics, we also find an influence of the circu-
lation model on global primary production. Further, our op-
timisations did not include parameters relevant for plankton
dynamics at the surface, which can also explain the compar-
atively large impact of circulation. The variation across all
optimal models of our study (1Opt) is much smaller (about
one-third) than the variation across all model experiments
(1All).

Circulation also plays a large role in export production
(particle flux through 100–130 m, depending on model grid),
as it supplies new nutrients to the well-lit upper ocean which
will, under steady-state conditions, be exported again. Some-
how, surprisingly, export production is not strongly deter-

mined by b (Fig. 10e). This parameter directly affects the
sinking of organic matter out of the euphotic zone. On the
other hand, it determines the subsurface concentration of nu-
trients, as a source for upwelling and entrainment of nutri-
ents. A large b, corresponding to slow sinking and shallow
remineralisation, increases nutrients within and below the
euphotic zone and thus primary production as the ultimate
source of export production; on the other hand, it prevents
fast settling of organic particles out of the euphotic zone. Be-
cause the plankton parameters were not changed during opti-
misation, global grazing almost linearly follows primary pro-
duction (r = 0.95), and the statements and conclusions made
with respect to the former flux largely apply to grazing (no
figure). Therefore, the combined antagonistic effects of b on
surface (and subsurface) nutrient turnover, subsurface nutri-
ent concentrations (as a source of nutrient entrainment and
mixing) and direct organic particle flux in the upper few hun-
dred metres explain the relatively small variation caused by
biogeochemical parameters on export production (1Par; Ta-
ble 3 and Figs. 11 and 12), which is only about half as much
the variation due to circulation (1Circ).

Deep particle flux, on the other hand, is almost entirely
determined by b, and circulation plays a negligible role in
this flux (Fig. 10f). The large influence of this parameter is
also reflected in its range over all model simulations, which
is only slightly larger than the range of flux in optimally con-
figured models (Table 3). Therefore, simulated organic mat-
ter supply to the deep ocean and deep nutrient concentrations
will, to a large extent, depend on the prescribed particle flux
profile, with potential effects on the long-term storage of car-
bon dioxide.

The loss of fixed nitrogen through pelagic denitrification
is tightly related to the extent of OMZs and thus varies quite
strongly among the different experiments, with no clear trend
for b, R−O2 :P (Fig. 10c) or µNFix (no figure). The range of
variation due to parameters and circulation is about equally
large (about 50 % of the average optimal global flux; Table 3
and Fig. 11). Overall, this global flux is affected by both cir-
culation and changes in biogeochemical parameters, which
induce changes of about ±30 % around the mean optimal
flux for each model circulation or parameter set (Fig. 12).
Global fixed-nitrogen loss of the optimised models varies
much less, likely because optimisation adjusts the parame-
ters to match observed nitrate profiles.

To summarise, at least for this particular biogeochemical
model, circulation and biogeochemistry affect global bio-
geochemical fluxes in different ways. While primary pro-
duction and fixed-nitrogen loss are almost equally influ-
enced by physics and biogeochemistry, export production de-
pends mainly on physics. Deep particle flux, on the other
hand, is affected to a large extent by b. Optimisation reduces
the spread induced by changing either biogeochemistry or
physics to about 50 % percent for fixed-nitrogen loss and for
primary production (compare 1Opt with 1Circ or 1Par). In
contrast, there is no such reduction in model variability for
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export production (which is mainly determined by circula-
tion) or deep particle flux (which is mainly determined by
b).

4 Discussion

4.1 Why do different circulations require different
parameters?

As we have seen in Sect. 3.2, three optimal parameters de-
pend significantly on three unique diagnostics that result
from different features of the circulation model. These di-
agnostics are related to the northern North Atlantic and the
Southern Ocean; the ETP seems to play a lesser role.

The strong correlation of R−O2 :P with the area of deep
mixing clearly confirms that these two model properties
(physics and biogeochemistry) regulate global ocean oxy-
gen distribution and inventory in concert. The larger the
area of deep mixing, the more oxygen can – or should –
be respired in the model, in order to match observed oxy-
gen concentrations. Despite optimisation, the optimal models
show an average oxygen concentration of ≈ 145 mmolm−3

in the NPDW (Fig. 9), which is higher than the observed
value of 125 mmol m−3. Given that the models differ strongly
in their physical properties, this residual mismatch of all op-
timal models, especially in the NPDW, may point towards
a deficiency of the biogeochemical model. For example, the
spatially homogeneous, and thus inflexible, particle flux pro-
file may not be adequate to simulate the very dynamic re-
sponse of ecosystem dynamics and particle size structure to
regionally variable mixing and nutrient supply (e.g. Guidi
et al., 2015; Marsay et al., 2015). Here, a more flexible
model resulting in variable sinking speeds of particles (e.g.
Gehlen et al., 2006; Niemeyer et al., 2019), or, more gen-
erally, spatially flexible remineralisation length scales (e.g.
Weber et al., 2016), might be an advantage.

The parameter determining particle flux, b, correlates with
the ideal age of NADW (Fig. 6). This physical diagnostic
comprises several aspects of circulation: a large area of deep
mixing in the northern North Atlantic supplies this region
with “young” waters. At the same time, a strong Atlantic
Meridional Overturning Circulation (AMOC) and/or con-
fined Deep Western Boundary Current (DWBC) can more
quickly export the preformed properties to the southern parts
of the basin. Depending on the parameterisation of mixing
and other physical processes, biogeochemical tracers are dis-
tributed more efficiently in the west–east direction or mixed
with deeper waters. When these combined properties of
a model cause a long residence time of waters in the NADW,
the resulting age of this water mass will be quite high and
vice versa.

The circulations applied in our study vary with regard to
several aspects in this region: in contrast to all other models
the circulation of MIT28 has a large area of deep mixing in

the north, including the Labrador Sea (see Fig. 2). There is
also a quite strong and wide transport of young waters in the
western part of the North Atlantic via the DWBC, as indi-
cated by the southward propagation of relatively young wa-
ters between 1500 and 2500 m in the western part of the basin
(Fig. 3). At the same time there is a strong lateral spread-
ing of these young waters from the western part (see also
Dutay et al., 2002). All processes combined lead to a rel-
atively young average age of NADW in MIT28. ECCO, in
contrast, shows only comparatively shallow mixing in the
northern North Atlantic (Fig. 2), little southward transport
of these waters in the DWBC (Wunsch and Heimbach, 2006)
and a large extent of older waters in the eastern tropical At-
lantic (Fig. 3). This circulation is characterised by the oldest
average age of NADW.

Our optimisations suggest that models with old NADW
adjust to a large b or slow particle sinking (for example,
b = 1.46 of ECCO∗). As ideal age becomes younger, optimal
b decreases. Why is this the case? So far, we can not attribute
this exclusively to the area of deep mixing (Table 2) or, for
example, to the overturning circulation, which is quite low
in ECCO (between 13 and 14 Sv; Wunsch and Heimbach,
2006), moderate (17.5 and 18.5 Sv) in U17.5 and UHigh,
and high (20 Sv) in U20. Instead, the average age of NADW,
and resulting optimal b, likely reflects the combined effects
of various model physical and biogeochemical parameterisa-
tions: the adjustment of b to smaller values decreases shal-
low production and remineralisation (see Fig. 10). It also in-
creases export of phosphorus to deep waters and finally to the
NPDW (see Fig. 8). Circulation models with high physical
turnover in the NADW (e.g. UHigh), as indicated by young
NADW, can more easily resupply nutrients to surface waters
and therefore balance the loss due to particle sinking in this
region.

As shown in Fig. 6, the maximum potential rate of nitrogen
fixation µNFix increases with area of surface waters defined
as 26.5≤ σθ < 27.5 in the Southern Ocean, i.e. waters re-
flecting the formation and ventilation of AAIW and SAMW.
A broad view of large-scale circulation and the spatial sep-
aration of fixed-nitrogen loss and gain helps to understand
the adjustment of maximum nitrogen fixation rate to physi-
cal processes in the Southern Ocean. Denitrification is a very
localised process, occurring mainly in the eastern tropical Pa-
cific (ETP) (Fig. S6). On the other hand, simulated nitrogen
fixation takes place throughout large parts of the tropical and
subtropical regions of the Pacific, Atlantic and Indian oceans.
Even though nitrogen fixation in the Atlantic accounts only
for a fraction of global fixed N gain (see also Marconi et al.,
2017, for evidence from observations), in our models it nev-
ertheless contributes to the stabilisation of the global fixed-
nitrogen budget. A very negative N∗, as arises from denitrifi-
cation in the ETP, has to arrive in the Atlantic for nitrogen fix-
ation to trigger a competitive advantage of nitrogen fixation.
These two regions in the Atlantic and Pacific oceans are con-
nected through large-scale circulation, which transports N∗
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on centennial to millennial timescales from areas of fixed-
nitrogen loss to areas of fixed-nitrogen gain. When passing
the CDW of the Southern Ocean, these waters can act as a
“mixer of deep waters with distinct isotopic signatures and
nutrient stoichiometry” (Tuerena et al., 2015); the resulting
mixed properties provide the source of AAIW and SAMW.
The subsequent transport via AAIW and SAMW can then
trigger nitrogen fixation, e.g. in the Atlantic, and balance the
nitrate deficit arising mainly in the Pacific Ocean.

As shown in Fig. 5, the nitrate deficit N∗ differs among the
different models. For example, MIT28∗ exports water with
an N deficit of ≈ 3 mmolm−3 from the Southern Ocean to
the low latitudes (promoting nitrogen fixation). This model
adjusts to a low rate of maximum potential nitrogen fixa-
tion of 1.19 µmolm−3 d−1. On the other hand, UHigh∗ sim-
ulates SAMW and AAIW that contain a lower N deficit of
≈ 2 mmolm−3, which – depending on phosphate availabil-
ity – will result in lower nitrogen fixation. The optimal high
parameter of UHigh∗ of almost 3 µmolm−3 d−1 can partially
compensate for this. The effect of N∗ is, however, not con-
sistent across all optimal models: U17.5∗ also shows a small
nitrate deficit in this region but has a still relatively low
maximum nitrogen fixation rate. Here, other effects might
play a role, such as a stronger ventilation and consequently
younger waters in the ETP (Fig. S2), which induce a smaller
OMZ (Table 1), less denitrification in this region (Fig. S6)
and thus a lower nitrate deficit in this area, which will even-
tually be balanced by nitrogen fixation.

In our analysis we have combined the outcrop area of two
water masses, SAMW and AAIW, into one single diagnos-
tic. Separating the impact of the two water masses on this
parameter, we find that the correlation of µNFix with SAMW
outcrop area (when defined as 26.5≤ σθ < 27.0) is less sig-
nificant (r = 0.81) than that with AAIW (27.0≤ σθ < 27.5;
r = 0.88), which is somehow in contrast to the findings by
Palter et al. (2010). Their model experiments showed that
the largest fraction (between 45 % and 68 %, depending on
model configuration) of water volume at the surface between
30◦ S and 30◦ N stems from SAMW, highlighting the role
of this water mass in nutrient supply in the tropics and sub-
tropics. A possible explanation for this difference between
our results and the results by Palter et al. (2010) could be
the slightly different definition of water masses. Further, in
our models waters denser than σθ = 26.5 are influenced by
the small nitrate deficit of surface waters in the subtropical
Southern Hemisphere (Fig. 5), which moderates the signal
arising from denitrification in the Pacific.

4.2 Can optimisation help to improve model
performance?

As shown in Sect. 3.2, each circulation requires its own set of
parameters for an optimal fit to dissolved inorganic tracers.
Optimisation facilitates the identification of these constants;
on the other hand, it requires many model evaluations, so this

approach is prohibitive for models of high resolution because
of computational constraints. It would be desirable to opti-
mise a biogeochemical model in a computationally cheaper
circulation and then transfer the optimal parameters to a dif-
ferent model that includes more physical details but is com-
putationally more expensive. However, as shown in Sect. 3.3,
3.5 and 3.6, model performance can deteriorate when simu-
lated with non-optimal parameters and result in a consider-
able spread of the independent diagnostics. Is there any ad-
vantage of calibrating biogeochemical models in these rather
coarse-scale, simplified circulations, if the parameters are to
be transferred to a different circulation? To answer this ques-
tion, here we discuss the model variability with the back-
ground of earlier model studies and observed estimates.

The mean diagnostic across all 25 model experiments
(Mean(All) of Table 3) differs only slightly from the mean
across only the optimal model configurations (Mean(Opt))
and is close to observed quantities (Table 3), in agreement
with Kriest et al. (2017) and Kriest (2017), who found that
optimisation against global nutrients and oxygen can help to
improve global model performance. Further, the overall max-
imum variation across all 25 experiments (1All of Table 3)
is usually less than 50 % of that found by Bopp et al. (2013),
who examined seven global models of different biogeochem-
ical structure and circulation for their global average oxygen,
OMZ volume, and primary and export production. This in-
dicates that optimisation can help to improve model perfor-
mance and reduce its uncertainty, even if parameters were
optimised in a different circulation.

4.2.1 Model uncertainty, oxygen inventory and OMZ
volume

As shown in Sect. 3.5, changes in circulation and biogeo-
chemical parameters affect model performance with respect
to global average oxygen about equally, resulting in an over-
all variation that is less than 25 % of the observed value
(1All of Table 3). In contrast, the global OMZ volume shows
a large response to variations in circulation and model pa-
rameters and varies by more than 100 % (1All of Table 3)
to 200 % (Bopp et al., 2013) of the observed volume. To our
knowledge, no global model study exists so far that system-
atically distinguishes between the effects of circulation and
biogeochemistry on global OMZ volume; our study suggests
that both are equally important. Even the range across op-
timal models (1Opt) is still quite large, which can be ex-
plained by the fact that the target of optimisation (the RMSE
to nutrients and oxygen, as of Eq. 1) is only weakly corre-
lated to the fit to OMZs (Sauerland et al., 2019). Application
of a revised misfit function, or multi-objective optimisation
as presented by Sauerland et al. (2019), can help to better
constrain the relevant model parameters and better represent
OMZs. Nevertheless, the mean of all models in our study de-
viates by less than 5 % from the observed mean. Obviously,
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a good representation of nutrients and oxygen can improve
the fit to OMZs to some extent.

However, many global circulation models suffer from a de-
ficient representation of physical processes in the tropics and
subtropics, for example in their representation of the equato-
rial undercurrent (Dietze and Loeptien, 2013), or from inade-
quate ventilation from the Southern Ocean and North Pacific
(see Cabre et al., 2015, and citations therein). The first prob-
lem can possibly be cured by a higher resolution, which leads
to a more realistic OMZ ventilation by equatorial and off-
equatorial undercurrents (Duteil et al., 2014). Parameterisa-
tion of intermediate jets (Getzlaff and Dietze, 2013) can also
lead to a better agreement of the models. Tuning of biogeo-
chemistry with the background of inadequate physics could
compensate for the physical errors but also results in mis-
leading model parameterisations (“overtuning”), with poten-
tial consequences for future projections (Löptien and Dietze,
2019). Given the yet unexplored structural and parameter
sensitivity of models employed in global assessments, and
the large error with respect to OMZ volume and expansion
(Table 3; Cocco et al., 2013; Bopp et al., 2013; Cabre et al.,
2015), a careful analysis of different error sources (physi-
cal and biogeochemical) can help to determine the reasons
for model divergence. The study presented here can serve as
a first step towards this.

4.2.2 Model uncertainty and global biogeochemical
fluxes

The loss of fixed nitrogen through pelagic denitrification is
tightly linked to OMZs and therefore also almost equally in-
fluenced by circulation and biogeochemical parameters. Our
average optimal model estimates are in agreement with re-
cent estimates by Eugster and Gruber (2012) and Somes et al.
(2013). The variation due to biogeochemical parameters is
lower than found by Somes et al. (2013), who varied the ni-
trate threshold for denitrification from 20 to 32 mmolm−3,
i.e. a wider range than identified by our objective parameter
calibration (see Table 1).

Average global primary production of the models lies well
within the range of observed estimates (Carr et al., 2006) and
depends slightly more on circulation than on biogeochemical
parameters, similar to the results obtained in the sensitivity
study by Schmittner et al. (2005). That study included a wide
range of sinking and mixing parameterisations, which might
explain the larger variation compared to our results. Apply-
ing three different circulations to one biogeochemical model,
Séférian et al. (2013) found a spread of primary production
which is comparable to our experiments.

Many global model studies analysed the impact of cir-
culation on global export production. Najjar et al. (2007)
found an effect of circulation more than 10 times larger than
in the present study, which can likely be explained by the
nutrient-restoring approach applied in their simple model.
Using a more complex biogeochemical model, export pro-

duction in the study by Séférian et al. (2013) varied only by
≈ 3 PgCyr−1, which is closer to the effects of circulation
found in our study. The large effects observed by Schmittner
et al. (2005) can again likely be ascribed to the wide range of
parameterisations tested.

Using a biogeochemical model similar to the one applied
by Najjar et al. (2007), Kwon et al. (2009) found an in-
crease in export production of≈ 5 PgCyr−1 when increasing
b from 1.1 to 1.4 (about the range tested in our study). Again,
this can possibly be explained by the nutrient-restoring ap-
proach, which does not account for the interplay between
particle export and remineralisation in surface and subsur-
face layers.

Therefore, our model experiments show a lower sensitiv-
ity of global export production on biogeochemical parame-
ters or circulation than the previous studies. Some part of this
difference could be explained by the large variation in phys-
ical model setup (in the study by Schmittner et al., 2005) or
by the very different structure of the biogeochemical model
applied (Najjar et al., 2007; Kwon et al., 2009). The large
sensitivity of export production in the study by Najjar et al.
(2007) also reflects the range of deep particle flux (as diag-
nosed from export production times 0.052), which is almost
10 times higher than in the present study.

Our experiments suggest that even though circulation does
play a large role in export production, deep particle flux is
mainly determined by the parameter b. As a consequence, the
sensitivity of export production to circulation noted by Najjar
et al. (2007) and in the present study does not necessarily
imply an equally large sensitivity of deep particle flux (and
resulting remineralisation and deep oxygen consumption) on
physical model features, which is somehow in contrast to the
conclusions drawn by Najjar et al. (2007).

4.3 The effect of model complexity

To summarise, in all cases studied here biogeochemical pa-
rameter optimisation can help to narrow down the model un-
certainty induced by circulation and biogeochemical parame-
ters. Even if parameters optimised in one circulation are later
transferred to a different circulation, the resulting spread is
mostly around 50 % that of the model intercomparison pre-
sented by Bopp et al. (2013). However, that study included
models that diverged not only in physics but also in the bio-
geochemical structure, which might introduce another source
of variability. To have a closer look at this we finally con-
trast the results of MOPS, which we consider to be a model
of intermediate complexity, with an equivalent optimisation
of a much simpler model “RetroMOPS” presented by Kriest
(2017).

RetroMOPS is a four-component model that simulates
only phosphate, nitrate, oxygen and dissolved organic phos-
phorus, but it includes the same structural form for parti-
cle flux and remineralisation as MOPS. When coupled to
MIT28, and optimised against the same data set and misfit
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Figure 13. Cartoon depicting the simplified large-scale circulation pattern of the Atlantic and Pacific oceans and the dependence of the three
biogeochemical parameters R−O2 :P, b and µNFix on physical properties.

function presented above, the performance and global fluxes
of RetroMOPS are very similar to MOPS (in the same cir-
culation; Table 3 and Kriest, 2017). For primary production
the difference between RetroMOPS and MOPS is about as
large as when MOPS is simulated with different parameter
sets within a given circulation. One reason for this is the fact
that the optimisation of RetroMOPS by Kriest (2017) aimed
only at the parameters related to particle sinking and rem-
ineralisation but not at parameters related to phytoplankton
growth and loss terms; an additional optimisation of these
parameters may likely have produced smaller differences.

Therefore, after optimisation a simple model can perform
quite well with respect to large-scale biogeochemical quan-
tities, in agreement with earlier findings (Kriest et al., 2012;
Kwiatkowski et al., 2014; Galbraith et al., 2015), illustrating
the benefit of parameter optimisation: optimisation allows for
a “fair” comparison of models of different complexity (after
each model has been tuned to match some desired quantity
best); it can therefore also help to decide about the necessary
level of model complexity.

5 Conclusions

Optimisation of a global biogeochemical ocean model cou-
pled to five different circulations achieved a good fit to ob-
served nutrients and oxygen with partly different biogeo-
chemical parameters. We identified three parameters that de-
pend significantly on characteristic features of circulation,
as summarised in Fig. 13. Areas of deep ventilation in the
North Atlantic and in the Southern Ocean determine how
much oxygen is supplied to the ocean via air–sea gas ex-
change and subsequent mixing. As a consequence, optimi-

sation of the model in circulations with vigorous ventilation
triggers a high oxygen demand of remineralisation during op-
timisation. Fast turnover and mixing of NADW, as expressed
through low ideal age, affect the parameter responsible for
the timescale and vertical extent of remineralisation of sink-
ing particles. Here, models characterised by relatively young
waters in the NADW adjust to deeper sinking and reminer-
alisation, with consequences for the large-scale distribution
of phosphate. Finally, the combined outcrop area of SAMW
and AAIW determines the optimal maximum rate of nitrogen
fixation. This may be explained with the role of the South-
ern Ocean as a “mixer of” waters of different origin and ni-
trogen deficit (Tuerena et al., 2015). The extent and proper-
ties of waters originating from this region (and their fixed-
nitrogen deficit), in conjunction with denitrification within
the OMZs, then set the stage for the competitive advantage
of cyanobacteria in tropical and subtropical waters. Models
with a small outcrop area of these waters benefit from a low
maximum rate of nitrogen fixation and vice versa. In conclu-
sion, when aiming for a good fit to large-scale biogeochem-
ical quantities, key properties of the underlying circulation
model should be considered; depending on region and tracer
of interest, these key properties may, however, be different
from those of our study.

Cross-validation experiments showed that the optimal pa-
rameters could be swapped between the different circulations
to a limited extent. Parameters affect biogeochemical model
performance in different ways: while the stoichiometric de-
mand of oxygen during remineralisation affects, for exam-
ple, the ocean oxygen inventory, the particle flux parame-
ter b determines the large-scale distribution of nutrients, in
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line with earlier studies (Bacastow and Maier-Reimer, 1991;
Kwon and Primeau, 2006; Kriest et al., 2012).

Compared to other intercomparisons of global coupled
models tuned more subjectively, our overall variation in bio-
geochemical key properties is at least 50 % smaller, with dif-
ferent contributions from circulation and biogeochemical pa-
rameters. For example, export production seems to be mainly
determined by circulation, while deep particle flux is deter-
mined almost entirely by the particle flux parameter b. Other
biogeochemical diagnostics are affected more or less equally
by circulation and biogeochemical parameters. Finally, OMZ
volume is very sensitive to changes in circulation and bio-
geochemical parameters and varies most strongly across all
model experiments.

However, models considered in global intercomparisons
usually also differ in their biogeochemical structure and com-
plexity. Our experiments suggest that after optimisation the
differences due to model structure are much smaller than
those due to model parameters or circulation. This indicates
that a simpler model can perform as well as a more com-
plex model (with respect to the metrics and diagnostics ap-
plied here), similar to the results obtained by Kriest et al.
(2012), Kwiatkowski et al. (2014) and Galbraith et al. (2015).
It also illustrates how biogeochemical parameter optimisa-
tion can aid model development: whenever new components
or parameterisations are introduced to a global model, this
new model has to be tuned in order to match observations
on global or regional scales. Often, the choice of appropriate
parameters is not easy and requires extensive testing and sen-
sitivity analysis. Automatic (algorithmic) optimisation can
make calibration more efficient, simplifying the search for
a good model match to observed quantities. For a given mis-
fit function it can also support decisions about the necessary
level of model complexity.

Therefore, our experiments suggest that global biogeo-
chemical ocean models benefit from optimisation, even if this
was carried out in a circulation differing from that of the “tar-
get” circulation. However, to date there is no guarantee that
a model showing a good fit to observed quantities in steady
state (i.e. when simulated in a pre-industrial or present-day
climatological physical forcing) will exhibit the correct re-
sponse when applied to transient scenarios reflecting future
climate change. As shown here and in earlier studies (Cocco
et al., 2013; Cabre et al., 2015; Löptien and Dietze, 2019),
OMZs seem to be particularly sensitive to both biogeochem-
ical and physical parameters. Accounting for the match be-
tween simulated and observed OMZs during optimisation
can reduce the model spread in steady state (Sauerland et al.,
2019). Extending the simulation of optimal models to future
states could then inform us about their sensitivity to changes
in circulation and forcing and may provide a better constraint
on their uncertainties. Thus, the study presented here serves
as a first step to unravel the uncertainties associated with the
divergence of global biogeochemical model performance and
uncertainty.
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