

Supplement of

Leaf-scale quantification of the effect of photosynthetic gas exchange on $\Delta^{17} {\rm O}$ of atmospheric ${\rm CO}_2$

Getachew Agmuas Adnew et al.

Correspondence to: Getachew Agmuas Adnew (g.a.adnew@uu.nl)

The copyright of individual parts of the supplement might differ from the CC BY 4.0 License.

Gas exchange parameters

Leaf exchange parameters are calculated following von Caemmerer and Farquhar (1981). The transpiration rate (E) is calculated from the air flowrate, leaf area and concentration of water vapor entering and leaving the cuvette as:

$$\mathbf{E} = \frac{\mathbf{u}_e}{s} \times \left(\frac{w_a - w_e}{1 - w_a}\right) \tag{S1}$$

where w_e , w_a are the mole fractions of water entering (e) and leaving (a) the cuvette, u_e is the flowrate of air entering the cuvette and s is the leaf surface area. The assimilation rate (A_N) is calculated as:

$$A_n = \frac{u_e}{s} \times \left(c_e - c_a \times \left(\frac{1 - w_e}{1 - w_a} \right) \right)$$
(S2)

20 where c_e and c_a are the mole fractions of CO₂ leaving and entering the cuvette. The total conductance for water vapor (g_{wa}) is calculated as:

$$g_{wa}^{t} = E \times \left(\frac{1 - \left(\frac{w_i + w_a}{2}\right)}{w_i - w_a} \right)$$
(S3)

where w_i is the water vapor mole fraction in the intercellular air space (calculated assuming saturation at ambient temperature) and w_a is the mole fraction of water vapor leaving the cuvette. The mole fraction of CO₂ in the intercellular air space is calculated as:

25

$$c_{i} = \frac{\left(g_{ac}^{t} - \frac{E}{2}\right) \times c_{a} - A_{n}}{\left(g_{ac}^{t} + \frac{E}{2}\right)}$$
(S4)

where g_{ca}^{t} is the total conductance for CO₂. For a detailed derivation of the leaf exchange parameters, the reader is referred to von Caemmerer and Farquhar (1981).

Isotopic composition of water at the evaporation site

30 Using mass balance for the air entering and leaving the cuvette, the δ^{18} O of the transpired ($\delta^{18}O_{\text{trans}}$) water is calculated according to (Harwood et al., 1998):

$$\delta^{18} O_{\text{trans}} = \left(\frac{W_a}{W_a - W_e}\right) \times \left(\delta^{18} O_{\text{wa}} - \delta^{18} O_{\text{we}}\right) + \delta^{18} O_{\text{we}}$$
(S5)

where $\delta^{18}O_{we}$ and $\delta^{18}O_{wa}$ are $\delta^{18}O$ values of water vapor entering and leaving the cuvette and w_a and w_e are the mole fractions of water vapor entering and leaving the cuvette. $\delta^{17}O$ is calculated based on the triple isotope relationship for transpiration, $\alpha^{17} = (\alpha^{18})^{\lambda_{trans}}$ where $\lambda_{trans} = 0.522 - 0.008 \times h$ (Landais et al., 2006). *h* is the relative humidity, $0.3 \le h \le 1$, which is calculated as $h = \frac{w_a}{w_i}$; w_i is the saturation mole fraction of water vapor in the intercellular air space.

- 40 Leaf water at the site of evaporation becomes enriched during evaporation and/or transpiration since the heavier isotopologues diffuse slower than the lighter ones (Flanagan et al., 1991; Flanagan, 1993; Yakir and Sternberg, 2000). The degree isotopic enrichment due to the phase change from water to vapor (evaporation) and diffusion is described by the modified Craig and Gordon model (Craig and Gordon, 1965), including resistance to boundary layer and stomata diffusion as described by (Farquhar et al., 1989; Flanagan et al., 1991; Flanagan, 1993). Measurement of the isotopic composition of air entering and
- Finagan et al., 1991; Fianagan, 1993). Measurement of the isotopic composition of air entering and leaving the cuvette allows determining the isotopic composition of water at the evaporation site even if it is not in steady state as described in (Farquhar et al., 1989; Flanagan et al., 1991; Harwood et al., 1998). The δ^{18} O of leaf water at the site of evaporation (δ^{18} O_{wes}) is:

$$\delta^{18} O_{\text{wes}} = \delta^{18} O_{\text{trans}} + \epsilon^{18}{}_{k} + \epsilon^{18}{}_{equ} + \frac{W_{a}}{W_{i}} \times (\delta^{18} O_{\text{wa}} - \epsilon^{18}{}_{k} + \delta^{18} O_{\text{trans}})$$
(S6)

50 where ε^{18}_{k} and ε^{18}_{equ} are the kinetic fractionation of water vapor in air and the equilibrium fractionation between liquid and gas phase water, respectively. The equilibrium fractionation is temperature dependent (Bottinga and Craig, 1968) and calculated as:

$$\epsilon^{18}_{equ} = 2.644 - 3.206 \times (\frac{10^3}{T}) + 1.534 \times (\frac{10^6}{T})$$
 (S7)

where *T* is the temperature in Kelvin. H₂¹⁸O has a lower vapor pressure and diffuses slower than H₂¹⁶O (Farquhar and Lloyd, 1993). The kinetic isotope effect due to diffusion ϵ_k , is the weighted sum of the fractionations of water isotopologues during diffusion through the stomata in the air (ϵ_{ks}) and through the boundary layer (ϵ_{kb}) (Farquhar and Lloyd, 1993). According to Merlivat (1978) and (Barkan and Luz, 2007) the fractionation factor for H₂¹⁸O as it diffuses through stomata is 28 ‰ (ϵ^{18}_{ks}). According to (Farquhar and Lloyd, 1993) $\epsilon_{kb} = (\epsilon_{ks})^{\frac{2}{3}}$, i.e, the fractionation factor as H₂¹⁸O diffuses through the boundary layer is 19 ‰ (ϵ^{18}_{kb}). The kinetic fractionation of H₂¹⁸O as it diffuses through stomata and

60 boundary layer is 19 ‰ (ε^{18}_{kb}). The kinetic fractionation of H₂¹⁸O as it diffuses through stomata and boundary layer is given by equation S8 (Farquhar and Lloyd, 1993).

$$\varepsilon^{18}_{k} = \frac{28 \times g_{b} + 19 \times g_{s}}{g_{b} + g_{s}}$$
(S8)

where g_b and g_s are boundary layer conductance and stomatal conductance respectively. The fractionation

65 factors for H₂¹⁷O for diffusion through stomata and boundary layer are 14.6 ‰ and 9.7 ‰, respectively (Barkan and Luz, 2007). $\delta^{17}O_{wes}$ can be calculated using a similar equation as $\delta^{18}O_{wes}$ if $\delta^{17}O_{wa}$ and $\delta^{17}O_{we}$ are known, for this study we calculated $\delta^{17}O_{wes}$ assuming that the irrigation water (IRW) is the same as soil water.

$$\delta^{17} O_{wes} = \left(\frac{\delta^{18} O_{wes} + 1}{\delta^{18} O_{IRW} + 1}\right)^{\lambda_{trans}} \times (\delta^{17} O_{IRW} + 1) - 1$$
(S9)

70

Mole fraction of CO₂ at the site of CO₂-H₂O exchange

The CO₂ mole fraction at the site of CO₂-H₂O exchange is calculated as shown in equation S10 following (Farquhar and Cernusak, 2012; Osborn et al., 2017; Barbour et al., 2016).

$$c_m = c_i \left(\frac{\delta^{18} O_i - a_{18w} - \delta^{18} O_A \times (1 + a_{18w})}{\delta^{18} O_m - a_{18w} - \delta^{18} O_A \times (1 + a_{18w})} \right)$$
(S10)

where $\delta^{18}O_i$ is $\delta^{18}O$ of CO₂ in the intercellular airspace (Farquhar and Cernusak, 2012),

80

$$\delta^{18} O_{i} = \frac{\delta^{18} O_{io} + t^{18} \times \left(\delta^{18} O_{A} \times \left(\frac{c_{a}}{c_{i}} + 1\right) - \delta^{18} O_{a} \times \frac{c_{a}}{c_{i}}\right)}{1 + t^{18}}$$
(S11)

The ternary correction factor t^{18} is calculated as:

$$t^{18} = \frac{(1 + a_{18bs}) \times E}{2g_{ac}}$$
(S12)

 g_{ac} is the conductance as CO₂ diffuses through the boundary layer and stomata, a_{18bs} is the weighted ¹⁸O fractionation for CO₂ diffusion across the boundary layer and stomata in series.

$$a_{18bs} = \frac{(c_a - c_s) \times a_{18b} + (c_s - c_i) \times a_{18s}}{c_a - c_i}$$
(S13)

 $\delta^{18}O_{i0}$ is the $\delta^{18}O$ of CO_2 in the intercellular air spaces ignoring the ternary correction and it is given by (Farquhar and Cernusak, 2012).

$$\delta^{18}O_{io} = \delta^{18}O_A \times \left(1 - \frac{c_a}{c_i}\right) \times (1 + a_{18bs}) + \frac{c_a}{c_i} \times \left(\delta^{18}O_a - a_{18bs}\right) + a_{18bs}$$
(S14)

90

95

where a_{18w} is the ¹⁸O fractionation of CO₂ for dissolution and diffusion in water (0.8 ‰) and a_{18s} and a_{18b} are the ¹⁸O fractionation of CO₂ as it diffuses through stomata (8.8 ‰) and the boundary layer (5.8 ‰), respectively (Farquhar et al., 1982; Farquhar and Lloyd, 1993). The oxygen isotope composition of the assimilated CO₂ is calculated from a mass balance using the mole fraction and isotope composition of CO₂ entering and leaving the cuvette:

$$\delta^{18} O_A = \frac{\delta^{18} O_a - \Delta_A^{18} O}{\Delta_A^{18} O + 1}$$
(S15)

 a_{18w} is the fractionation of δ^{18} O of CO₂ during diffusion and dissolution in water (0.8 ‰) (Farquhar and Lloyd, 1993), δ^{18} O_A is the δ^{18} O of the assimilated CO₂ and δ^{18} O_m is the δ^{18} O of CO₂ in equilibrium with leaf water at the CO₂-H₂O exchange site. Assuming that the isotopic composition of leaf water at the CO₂-

 H_2O exchange site is the same as the $\delta^{18}O$ of leaf water at the evaporation site, $\delta^{18}O_m$ can be calculated as:

$$\delta^{18}O_{\rm m} = \left(\delta^{18}O_{\rm wes} + 1\right) \times (1 + \varepsilon_{\rm w}^{18}) - 1 \tag{S16}$$

The equilibrium fractionation between CO₂ and water (ε_w^{18}) is temperature dependent and is calculated after Brenninkmeijer et al. (1983) as:

$$\varepsilon_{\rm w}^{18} = \frac{17604}{\rm T} - 17.93 \tag{S17}$$

where *T* is leaf temperature. Analogous to δ^{18} O, the mole fraction of CO₂ in the mesophyll cell can be calculated using δ^{17} O values. The ¹⁸O fractionation (α^{18} -1) for dissolution is -0.8 ‰ (Vogel.J.C. et al., 1970). The corresponding ¹⁷O fractionation is -0.418 ‰, calculated from the ¹⁸O fractionation due to

- 110 equilibrium dissolution using $\lambda_{CO2-H2O} = 0.5229$ (Barkan and Luz, 2012). We assume that the ¹⁷O fractionation during diffusion in water is the same as the fractionation against ¹³CO₂ (Farquhar and Lloyd, 1993) and use the average fractionation determined for ¹³CO₂ of 0.8 ‰ (average of 0.7 ‰ (O'Leary, 1984) and 0.9 ‰ (Jähne et al., 1987)). The ¹⁷O fractionation due to the sum of the equilibrium dissolution and diffusion in water is then $a_{17w} = 0.382$ ‰. Similar to (Farquhar and Lloyd, 1993), using the principle of
- binary diffusivities (Mason and Marrero, 1970), a_{17s} and a_{17b} are 4.4 ‰ and 2.9 ‰ using the power of 2/3 relationship between the boundary layer and stomatal conductance fractionation ($\alpha_b = \alpha_s^{2/3}$) obtained by Farquhar and Lloyd (1993).

For calculating the isotopic composition at the site of oxygen isotope exchange, we assume that the 120 isotopic composition of CO₂ is fully equilibrated with water at the evaporation site. This includes the implicit assumption that the isotopic composition of the leaf water at the CO₂-H₂O exchange site is the same as at the site of evaporation. The δ^{17} O of CO₂ at the CO₂-H₂O exchange site (δ^{17} O_m) is then calculated using the triple oxygen isotope ratio relationship, $\alpha^{17} = (\alpha^{18})^{\lambda_{CO_2}-H_2O}$.

$$\delta^{17} O_{\rm m} = \left(\frac{\delta^{18} O_{\rm m} + 1}{\delta^{18} O_{\rm wes} + 1}\right)^{\lambda_{\rm CO_2 - H_2 O}} \times (\delta^{17} O_{\rm wes} + 1) - 1 \tag{S18}$$

125

where $\lambda_{CO2-H2O}$ is 0.5229 (Barkan and Luz, 2012).

Mole fraction of CO₂ at the site of assimilation

130 For the C₃ plants, c_c is calculated following (Farquhar and Cernusak, 2012) as:

$$c_{c} = c_{i} - \left(\frac{1 - t^{13}}{1 + t^{13}}\right) \left(\frac{\left(\Delta_{A}^{13}C_{i} - \Delta_{A}^{13}C_{obs}\right)Pc_{a}}{\left(b - a_{m} - \frac{\alpha_{b}}{\alpha_{e}}e\frac{R_{d}}{R_{d} + A}\right)}\right)$$
(S19)

where $\Delta_A^{13}C_{obs}$ is the observed discrimination against ${}^{13}C$ and $\Delta_A^{13}C_i$ is the discrimination that can be calculated for infinite mesophyll conductance (no mesophyll resistance). t^{13} is a ternary correction factor

(considers the collisions between air and CO₂, air and H₂O, CO₂ and H₂O), *b* is the fractionation due to uptake by Rubisco, and a_m is the sum of the fractionations associated with ¹³CO₂ dissolution in and diffusion through water, respectively. *e*, R_d , α_e , α_b and *P* are the fractionations during day respiration (decarboxylation), the day respiration rate, the fractionation factor for day respiration with respect to net

140 assimilation, the fractionation factor for C_3 carboxylation, and the pressure of the air surrounding the leaf, respectively. A detailed description of the equations, best fit parameters and definitions of discrimination factors are given in Table 3.

Derivation of the ¹⁸O- and ¹⁷O-photosynthetic discrimination

145

The assimilation rate for $C^{16}O^{16}O$ is calculated as:

$$A_n = \frac{c_a - c_m}{r_m} \tag{S20}$$

where A_n , r_m , c_a , c_m are the assimilation rate, the resistance as CO₂ diffuses from the air surrounding the leaf to the CO₂-H₂O exchange site, the mole fraction of CO₂ in the air surrounding the leaf and at the CO₂-H₂O exchange site, respectively (Farquhar and Lloyd; 1993). The assimilation rate for C¹⁸O¹⁶O is calculated as:

$${}^{n}\mathbf{R}_{A} \times \mathbf{A}_{n} = \frac{{}^{n}\mathbf{R}_{a} \times \mathbf{c}_{a} - {}^{n}\mathbf{R}_{m} \times \mathbf{c}_{m}}{\alpha^{n}_{m} \times \mathbf{r}_{m}} \text{ where } n \text{ is } 17 \text{ or } 18$$
(S21)

155 $\alpha^{n_{m}}$ is the fractionation factor as C¹⁸O¹⁶O or C¹⁷O¹⁶O diffuse from the air surrounding the leaf to the CO₂-H₂O exchange site. Dividing equation S22 by equation S29 leads to:

$${}^{n}R_{A} = \frac{{}^{n}R_{a} \times c_{a} - {}^{n}R_{m} \times c_{m}}{\alpha^{n}_{m} \times (c_{a} - c_{m})}$$
(S22)

$$\frac{{}^{n}R_{A}}{{}^{n}R_{a}} = \frac{c_{a} - \frac{{}^{n}R_{m}}{{}^{n}R_{a}} \times c_{m}}{\alpha^{n}{}_{m} \times (c_{a} - c_{m})}$$
(S23)

$$\frac{{}^{n}R_{a}}{{}^{n}R_{A}} = \frac{\alpha^{n}{}_{m} \times (c_{a} - c_{m})}{c_{a} - \frac{{}^{n}R_{m}}{{}^{n}R_{ma}} \times c_{m}}$$
(S24)

$$\frac{{}^{n}R_{a}}{{}^{n}R_{A}} - 1 = \frac{\alpha^{n}{}_{m} \times (c_{a} - c_{m})}{c_{a} - \frac{{}^{n}R_{m}}{{}^{n}R_{a}} \times c_{m}} - 1$$
(S25)

Using the definitions

$$\Delta_{A}{}^{n}O_{FM} = \frac{{}^{n}R_{a}}{{}^{n}R_{A}} - 1$$
(S26)

165 and

$$\delta^{n} O_{ma} = \frac{{}^{n} R_{m}}{{}^{n} R_{a}} - 1 \tag{S27}$$

this can be rewritten as

$$\Delta_{A}{}^{n}O_{FM} = \frac{\alpha^{n}{}_{m} \times (c_{a} - c_{m})}{c_{a} - c_{m} \times (\delta^{n}O_{ma} + 1)} - 1$$
(S28)

$$\Delta_{A}{}^{n}O_{FM} = \frac{\overline{a}_{n} + \frac{c_{m}}{c_{a} - c_{m}} \times \delta^{n}O_{ma}}{1 - \frac{c_{m}}{c_{a} - c_{m}} \times \delta^{n}O_{ma}}$$
(S29)

Comparison of equations used in global models and in this study to calculate Δ^{17} O-photosynthtic discrimination

175 The discrimination against Δ^{17} O associated with assimilation in global models, assuming complete equilibration between CO₂ and H₂O, is calculated from equation S30 (Hofmann et al., 2017; Liang et al., 2017; Koren et al., 2019).

$$\Delta_{A}\Delta^{17}O = \left(\lambda_{diffusion} - \lambda_{RL}\right) \times \ln(\overline{a}_{18} + 1) + \left(\Delta^{17}O_{m} - \Delta^{17}O_{a}\right)\frac{c_{m}}{c_{a} - c_{m}}$$
(S30)

- 180 \overline{a}_{18} , is the weighted mean discrimination occurring during the diffusion of ${}^{12}C^{18}O^{16}O$ from the ambient air to the CO₂-H₂O exchange site and it is estimated to be 7.4 ‰ (Farquhar et al., 1993). This value has been adopted in several global studies of $\delta^{18}O(CO_2)$ (Ciais et al., 1997a; 1997b; Cuntz et al., 2003a; 2003b) and the global $\Delta^{17}O$ studies (Hofmann et al., 2017; Liang et al., 2017; Koren et al., 2019). $\lambda_{diffusion}=0.509$ is the three-isotope coefficient associated with fractionation of C¹⁷OO as it diffuses
- 185 through air relative to C¹⁸OO (Young et al., 2002) and λ_{RL} =0.528 (the reference slope used in this study). Δ^{17} Om and c_m are the oxygen isotope anomaly and mole fraction of CO₂ at the CO₂-H₂O exchange site, respectively.

A good approximation for the observed ¹⁸O-discrimination can be derived from the leaf exchange parameters (Farquhar and Lloyd, 1993):

$$\Delta_{A}{}^{18}O_{FM} = \frac{\overline{a}_{18} + \frac{c_{m}}{c_{a} - c_{m}} \times \delta^{18}O_{ma}}{1 - \frac{c_{m}}{c_{a} - c_{m}} \times \delta^{18}O_{ma}} \approx \overline{a}_{18} + \frac{c_{m}}{c_{a} - c_{m}} \times \left(\delta^{18}O_{m} - \delta^{18}O_{a}\right)$$
(S31)

The subscript *FM* stands for Farquhar model. $\delta^{18}O_{ma}$ is the enrichment in $\delta^{18}O$ of CO₂ in full isotopic equilibrium with water at the exchange site relative to the CO₂ in the surrounding air, calculated as:

$$\delta^{18} O_{ma} = \frac{\delta^{18} O_m - \delta^{18} O_a}{1 + \delta^{18} O_a}$$
(S32)

 $\delta^{18}O_m$ is the isotope composition of CO₂ in equilibrium with leaf water at the CO₂-H₂O exchange site (equation S16). In the global models (Hofmann et al., 2017; Liang et al., 2017; Koren et al., 2019), $\Delta^{17}O$ -

photosynthetic discrimination shown in equation S30 is derived from $\Delta_A^{17}O_{FM}$ and $\Delta_A^{18}O_{FM}$ as shown from equation S33.

$$\begin{split} \Delta_{A}\Delta^{17}0 &= \left(\overline{a}_{17} + \frac{c_{m}}{c_{a} - c_{m}} \left(\delta^{17}0_{m} - \delta^{17}0_{a}\right)\right) - \lambda_{RL} \times \left(\overline{a}_{18} + \frac{c_{m}}{c_{a} - c_{m}} \left(\delta^{18}0_{m} - \delta^{18}0_{a}\right)\right) \quad (S33) \\ &= \left(\overline{a}_{17} - \lambda_{RL} \times \overline{a}_{18}\right) + \left[\left(\delta^{17}0_{m} - \lambda_{RL}\delta^{18}0_{m}\right) - \left(\delta^{17}0_{a} - \lambda_{RL}\delta^{18}0_{a}\right)\right] \frac{c_{m}}{c_{a} - c_{m}} \\ &= \left(\overline{a}_{17} - \lambda_{RL} \times \overline{a}_{18}\right) + \left[\Delta^{17}0_{m} - \Delta^{17}0_{a}\right] \frac{c_{m}}{c_{a} - c_{m}} \end{split}$$

200 Note that, $\ln(\overline{a}_{18} + 1) \approx \overline{a}_{18}$ and $(\overline{a}_{17} - \lambda_{RL} \times \overline{a}_{18}) = (\lambda_{diffusion} - \lambda_{RL}) \times \ln(\overline{a}_{18} + 1)$.

Calibration and characterization of the water vapor isotope analyzer (WVIA)

Based on the calibration using five water standards, a working standard was prepared to correct for shortterm variability and to determine the non-linearity (dependency of δD and $\delta^{18}O$ on the water vapor mole fraction). Each day the WVIA was calibrated with 3 standards that cover the isotopic composition of the samples measured ($\delta^{18}O$ value of -24.777 ‰, -8.640 ‰ and 0.11 ‰, provided by IAEA (Wassenaar et al., 2018)), see Figure S2. Figure S3, shows the results of the non-linearity tests. All three isotope signatures of water vapor showed a different dependence on the mole fraction of water vapor measured. The $\delta^{18}O$ is independent of the mole fraction above 11000 ppm but decreases at lower mole fraction until

- 210 4000 ppm, and then increases again. δ^{17} O is relatively stable for mole fractions higher than 17000 ppm, but increases strongly and in a non-linear manner below. Similarly, δ D is independent of the mole fraction of water vapor above 10000 ppm but increases non-linearly below. δ^{18} O, δ^{17} O and δ D values measured with the WVIS are dependent on the type of carrier gas used when measuring liquid samples as shown for pure N₂ and zero air used as a carrier gas, Figure S3 (Johnson and Rella, 2017). To investigate how
- 215 the precision of the isotope values depends on the averaging time, Allan deviation (square root of Allan variance) curves are shown in Figure S4. All three isotope signatures of water vapor show a similar pattern. The optimum precision is reached at averaging times of 16.7 minutes for δ^{18} O and δ D and 15 minutes for δ^{17} O (Figure S4). Note that the δ^{17} O measurements of water vapor are not calibrated to an international isotope scale for our experiments.

220 Water extraction and analysis

The vial containing the leaf was frozen using a liquid nitrogen bath and connected to another empty vial by glass tubing. The system was then evacuated using a membrane pump (KNF Neuberger, Germany), (Figure S5). The pressure was monitored with a Dual pressure sensor (DualTrans transducer, MKS, USA).

225 After the target vacuum was reached (1mbar or below) the extraction system was isolated from the pump. The vial containing the leaf was placed into a heater block (ORI BLOCK DB-1, Techne, England) while the empty vial was kept at liquid nitrogen temperature for 4 hr (Figure S5). The extracted leaf water, \sim 0.7 ml (determined based on weight by measuring the leaf weight before and after extraction), was collected in a 2 ml vial (Autosampler vials, National Scientific, the Netherlands) using a pipette and kept in the freezer at -20°C before isotopic analysis.

230

 Δ^{17} O of leaf water is measured using a fluorination method. The water was converted to O₂ using CoF₃ as fluorinating reagent and the O₂ was collected in a sample tube immersed in liquid Helium (-270°C). Finally, δ^{17} O and δ^{18} O of O₂ were measured with an isotope ratio mass spectrometer (ThermoQuest MAT 253 Finnigan, Germany) in dual inlet mode. The measurement reproducibility for two replicates is 0.015 235 %, 0.010 % and 0.005 % for δ^{17} O, δ^{18} O and Δ^{17} O, respectively.

Leaf cuvette model

- In the simple leaf cuvette model, we partitioned the leaf into three different compartments: the 240 intercellular air space, the mesophyll cell, and the chloroplast, as shown in Figure S7. For this model, we assumed an infinite boundary conductance. The conductance from the intercellular air space to the chloroplast, where assimilation takes place (mainly for the C₃ plants), is represented by g_{m13} . The conductance from the intercellular air space to the mesophyll, where the CO₂-H₂O exchange occurs is
- 245 expressed as g_{m18} .

260

CO₂ balance

First, we solve for the CO₂ mole fractions in the atmosphere (c_a) , the intercellular air space (c_i) , the mesophyll cell (c_m) and the chloroplast (c_c) . The main assumptions in the leaf cuvette model are: 250

- The system is in steady state $\left(\frac{dc_i}{dt} = 0 = g_s c_a + g_{m18} c_m g_i c_i g_{m18} c_i\right)$
- The mixing in the cuvette is perfect (i.e. $c_a = c_o$) _
- Boundary layer resistance can be neglected
- The conductance between intercellular space and mesophyll is assumed to be 3 times higher than the conductance _
- 255 between intercellular space and chloroplast (i.e. $g_{m18} = 3 \times g_{m13}$).

We modeled a 100 ppm downdraw of CO_2 for each photosynthesis experiment. The mole fractions of CO₂ entering and leaving the cuvette are 500 ppm and 400 ppm, respectively. The leaf area, flowrate and assimilation rate used in the model are 30 cm², 0.7 L min⁻¹ and 20.0 mol m⁻²s⁻¹, respectively. The CO₂ mole fractions in all leaf reservoirs are calculated for each given c_m/c_a ratio, by assuming $g_{m18} = 0.3$ mol $m^{-2}s^{-1}$).

Next, we assume an initial value for the $C^{18}OO$ mole fraction inside the cuvette ($c_{a,C18OO}$). From the mole fractions $c_{a,C1800}$ and $c_{m,C1800}$ and the conductance $g_{s,C1800}$ and $g_{m18,C1800}$ we can calculate the inflow of

265 $C^{18}OO$ into the intercellular air space. Since the system is in steady state, the inflow and outflow of $C^{18}OO$ for the intercellular air space are equal and hence we can determine the mole fraction c_{i C1800}. The ingoing $C^{18}OO$ is known from the airflow rate and $c_{e,C18OO}$, the outgoing $C^{18}OO$ depends on the airflow rate and $c_{a,C1800}$ and the plant uptake of $C^{18}OO$ is $A_{n,C1800} = g_{s,C1800} \times (c_{a,C1800} - c_{i,C1800})$. By using an iterative procedure we can improve our estimate for $c_{a,C1800}$. Note that for each update in $c_{a,C1800}$, we also update

 $270 \quad the \ corresponding \ c_{i,C1800}$

¹³CO₂ balance

Next, we calculate the steady state ${}^{13}CO_2$ mole fractions in the different model reservoirs and subsequently, we determine the discrimination $\Delta^{13}C$. The additional assumptions used are:

- For the fractionation factors we use $a_{13s} = 4.4$, $a_m = 1.8$ ‰ and b = 29 ‰
- The uptake of CO₂ scales linearly with the CO₂ mole fraction in the chloroplast ($A_n = k \times c_c$). Similarly for ¹³CO₂ we have: $A_{n,13CO2} = k \times (1 - b) \times C_{c,13CO2}$
- We solve the steady state ${}^{13}CO_2$ balance by performing 2 nested iterations. We start with an initial guess for the atmospheric ${}^{13}CO_2$ mole fraction (C_{a,13CO2}) and for the photosynthetic uptake of ${}^{13}CO_2$ (A_{n,13CO2}). In the 'inner' iteration loop we use c_{a13,CO2} and A_{n,13CO2} to calculate the ${}^{13}CO_2$ mole fractions in all leaf reservoirs. From the ${}^{13}CO_2$ mole fraction in the chloroplast (c_{c,13CO2}) and the linear assimilation factor (k × (1 - b)) we can calculate the corresponding A_{n,13CO2} and compare this to our initial guess. Using an
- 285 iterative procedure, we can find the $A_{n,13CO2}$ that corresponds to the assumed $c_{a,13CO2}$. The 'outer' iteration loop is aimed at finding the steady state atmospheric ¹³CO₂ mole fraction ($c_{a,13CO2}$) using a mass balance for ¹³CO₂. We know the ¹³CO₂ mole fraction of the ingoing air ($c_{in,13CO2}$), we have assumed value for outgoing air ($c_{a,13CO2}$) and have calculated the corresponding photosynthetic uptake ($A_{n,13CO2}$). From the resulting imbalance, we can come up with a new guess for $c_{a,13CO2}$. After each update
- 290 of our estimate for $c_{a,13CO2}$, we repeat the 'inner' iteration loop to update $A_{n13,CO2}$.

C¹⁸OO balance

The additional assumptions for solving the C¹⁸OO balance are:

- 295 For the fractionation of $C^{18}OO$ for diffusion through stomata and diffusion into the mesophyll cell, we used $a_{18s} = 8.8$ ‰ and $a_{18w} = 0.8$ ‰, respectively
 - The isotopic exchange between CO₂ and water in the mesophyll is fast enough to reach complete equilibration, which is a function of temperature
 - Isotopic equilibration between CO₂ and water does not occur in the intercellular air space
- We set the leaf water signature to δ¹⁸O_{leaf} = 10.467 ‰ VSMOW and the leaf water temperature to T_{leaf} = 22°C, from which we can calculate the δ¹⁸O signature and therefore (using c_m from above) the C¹⁸OO mole fraction in the mesophyll (c_{m, C1800}). Next, we assume a starting value for the C¹⁸OO mole fraction inside the cuvette (c_{a, C1800}). From the steady state mass balance, we can then determine the mole fraction c_i, c₁₈₀₀ (c_i = (g₃c_a+g_{m18}c_m)). The ingoing C¹⁸OO is known from the airflow rate and c_e, c₁₈₀₀, the outgoing 305 C¹⁸OO depends on the airflow rate and c_a, c₁₈₀₀ and the plant uptake of C¹⁸OO is A_n, c₁₈₀₀ = g₅, c₁₈₀₀ ×
 - $(c_{a,C1800} c_{i,C1800}).$

A similar mass balance is implemented for C¹⁷OO, the fractionation of C¹⁷OO for diffusion through stomata is $a_{17s} = 4.4$ ‰ and for diffusion into the mesophyll cell we used and $a_{18w} = 0.382$ ‰, respectively. We set the leaf water signature to $\delta^{18}O_{\text{leaf}} = 5.39$ ‰ VSMOW.

¹³C-photostnthetic discrimination

310

The isotope discrimination against ¹³C (Δ_A^{13} C) associated with photosynthesis for the three-plant species 315 is shown in Figure S8 a) and b) as a function of c_c/c_a and c_i/c_a for C₃ and C₄ plants, respectively. Experiments at different light intensities are shown in different colors, blue for LL and yellow for HL. For ivy and sunflower, Δ_A^{13} C and c_c/c_a are linearly correlated. As irradiance increases, c_c/c_a and Δ_A^{13} C decrease. Δ_A^{13} C for ivy increases from 13 ‰ to 16 ‰ when c_c/c_a increases from 0.34 to 0.55 while for sunflower Δ_A^{13} C ranges from 13 ‰ to 25 ‰ for c_c/c_a ratios of 0.37 to 0.8. This is due to the lower 320 assimilation rate and generally higher back-diffusion flux at a higher c_c/c_a ratio. When irradiance increases, the assimilation rate increases, c_c/c_a decreases, and less of the CO₂ that has entered the stomata diffuses back to the atmosphere. As a result, Δ_A^{13} C decreases with an increase in light intensity. For maize, Δ_A^{13} C is much smaller than for the C₃ plants, ranging from 2.4 ‰ to 3.5 ‰ for c_i/c_a ratios of 0.42 to 0.55, and we did not observe a strong correlation between Δ_A^{13} C and c_i/c_a . Δ_A^{13} C vs c_i/c_a is shown in Figure S9

325 of the for both C₃ plants (sunflower and ivy) and a C₄ plant (maize).

330 Figure S1 Illustration of the changes in Δ^{17} O for mixing of two different gases when the Δ^{17} O values are calculated in logarithmic form, as a function of the fraction of CO₂ gas b. The blue and black circles show the Δ^{17} O values of the mixing end members and the different colors show mixing lines for differences in δ^{18} O.

Figure S2 Calibration of the LGR water isotope analyser for the measurement of $\delta^{18}O$ and δD of water vapor. a) $\delta^{18}O_{IAEA}$ is the value assigned by IAEA while $\delta^{18}O_{LGR}$ is the value reported by the LGR instrument. b) δD_{IAEA} , is the value assigned by IAEA while δD_{LGR} is the value reported by the LGR instrument.

Figure S3 Dependency of isotope composition of water vapour on the water vapor concentration and the carrier gas used for the water vapor standard source for $\delta^{18}O$, $\delta^{17}O$, $\Delta^{17}O$ and δD .

Figure S4 Allan variance curves of δD , $\delta^{17}O$ and $\delta^{18}O$ for measurement at 20000 ppm water vapor concentration.

Figure S5 Schematic drawing of the setup used for the extraction of leaf water. The vial containing the leaf is heated to 60°C while the other vial is immersed in the liquid nitrogen to collect the water vapor.

Figure S6 Schematic diagram of the system used for the extraction of carbon dioxide from air samples. The moisture trap is cooled by a dry ice-ethanol mixture while the CO₂ trap is cooled by liquid nitrogen.

405 Figure S7 Schematic diagram of the conceptual leaf-cuvette model. δ and c are the oxygen isotope composition and mixing ratio of CO₂. The subscripts *e*, *a*, *i*, *m*, *c* represents CO₂ entering the cuvette, leaving the cuvette, in the intercellular air space, the mesophyll and the chloroplast, respectively.

Figure S8. $\Delta_A^{13}C$ of carbon dioxide during photosynthesis. a) The $\Delta_A^{13}C$ of the two C₃ plants sunflower (circles) and ivy (triangles) at two different irradiances. b) The $\Delta_A^{13}C$ of maize at two different irradiances. The measurement error in $\Delta_A^{13}C_{obs}$ is 0.15 ‰ (SD), calculated using error propagation.

Figure S9. Δ_A^{13} C of carbon dioxide during photosynthesis for the two C₃ plants sunflower (circles) and 420 ivy (triangles) and a C₄ plant maize (stars).

425 Figure S10. Relative difference in δ^{13} C of CO₂ leaving (index a) and entering (index e) the leaf cuvette during experiments with two C₃ plants, sunflower (circles) and ivy (triangles) (panel a) as a function of the c_c/c_a ratio and a C₄ plant maize (stars) (panel b) as a function of the c_i/c_a ratio. The experiments were performed under low light (300 µmol m⁻²s⁻¹, purple) and high light (1200 µmol m⁻²s⁻¹, yellow) conditions.

Figure S11 Relative difference in δ^{17} O (a) and δ^{18} O (b) of CO₂ leaving (index a) and entering (index e) the leaf cuvette during experiments with two C₃ plants, sunflower (circles) and ivy (triangles) and a C₄ plant maize (stars) as a function of the c_m/c_a ratio. The experiments were performed under low light (300 µmol m⁻²s⁻¹, purple) and high light (1200 µmol m⁻²s⁻¹, yellow) conditions.

Figure S12 Difference in Δ^{17} O of the CO₂ leaving (index a) and entering (index e) the cuvette as a function of c_m/c_a for sunflower (circles), ivy (triangles) and maize (stars).

Figure S13. 3D model result for the global average seasonal cycle of Δ^{17} O of atmospheric CO₂ for the years 2012 and 2013 (Koren et al., 2019). Note that the Δ^{17} O value was calculated in Koren et al. (2019). with $\lambda = 0.5229$. To convert to the $\lambda = 0.528$, we use $\Delta^{17}O(CO_2)_{\lambda=0.528} = \Delta^{17}O(CO_2)_{\lambda=0.5229} + (0.5229 - 0.528) \times \ln(\delta^{18}O(CO_2) + 1)$. In the 3D global model, $\delta^{18}O(CO_2)$ is 41.5‰.

Figure S14. 3D model result for the seasonal cycle of the global average Δ^{17} O value of leaf water for the year 2012 (Koren et al., 2019). Note that Δ^{17} O value is reported here with $\lambda = 0.5229$. To convert to $\lambda = 0.528$, we use Δ^{17} O(leaf)_{$\lambda=0.528$} = Δ^{17} O(leaf)_{$\lambda=0.5229$}+(0.5229-0.528)×ln α_{trans} . α_{trans} =1/0.9917 (Koren et al., 2019;Hofmann et al., 2017).

Figure S15 Annual variability of the c_i/c_a ratio for C₄ and C₃ plants from the SiBCASA model (Schaefer et al., 2008;Koren et al., 2019).

470 Table S1 Reproducibility of the extraction system and the CO₂-O₂ exchange system. Extraction reproducibility experiments were performed using compressed air. To establish the reproducibility of the CO₂-O₂ isotope exchange system we used pure CO₂ (SCOTT, Air Products, Germany). *SE* and *SD* stand for standard error and standard deviation. All the isotope values given in the table are in per mill [‰].

Extraction system reproducibility					
Extraction	$\delta^{18}O$	SE	$\delta^{13}C$	SE	
03/03/2019	41.411	0.005	-8.636	0.004	
03/03/2019	41.352	0.006	-8.642	0.003	
03/03/2019	41.355	0.020	-8.636	0.005	
04/03/2019	41.314	0.008	-8.647	0.007	
04/03/2019	41.359	0.007	-8.651	0.004	
05/03/2019	41.297	0.006	-8.648	0.004	
05/03/2019	41.330	0.008	-8.652	0.004	
05/03/2019	41.387	0.005	-8.648	0.004	

06/03/2019 41.368		0.010		-8.660 (0.0	0.004			
06/03/201	06/03/2019 41.369		0.007	0.007		-8.653		0.0	0.004	
06/03/201	5/03/2019 41.329		0.008	0.008		-8.652 (0.0)03	
07/03/201	/2019 41.373		0.007	0.007		-8.646 0		0.0	004	
07/03/201	19 41.324		0.007	0.007		-8.646 (0.0)04	
07/03/201	19	41.352		0.007		-8.643 (0.0	002	
Mean \pm SD 41.351 \pm 0.030		30			-8.647 ± 0.007					
CO ₂ -O ₂ exchange system reproducibility										
EXP	EXP Pre-exchange O ₂ Post-exchange		nge O ₂	Pre	e-exchange CO ₂					
	$\delta^{17}O_i$	$\delta^{18}O_i$	$\delta^{17}O_f$	$\delta^{18}O_f$	δ^{18}	³ O _i	$\delta^{17}O_i$		$\Delta^{17}O_i$	
1	9.254	18.542	10.949	21.591	25	.803	13.3967		-0.143	
2	9.254	18.542	10.986	21.649	25	.803	13.4066		-0.134	
3	9.254	18.542	10.972	21.638	25	.803	13.3907		-0.149	
4	9.254	18.542	10.967	21.637	25	.803	13.3823		-0.158	
5	9.254	18.542	10.934	21.571	25	.803	13.3894		-0.151	
6	9.254	18.542	10.942	21.575	25	.803	13.4006		-0.140	
7	9.254	18.542	11.080	21.818	25	.803	13.4061		-0.134	
8	9.254	18.542	11.038	21.760	25	.803	13.3868		-0.153	
9	-20.85	-38.2	-4.373	-7.288	25	.803	13.401		-0.139	
10	-20.85	-38.2	-4.210	-6.9804	25	.803	13.3978		-0.142	
11	-20.85	-38.2	-4.497	-7.520	25	.803	13.4003		-0.140	
12	-20.85	-38.2	-3.987	-6.573	25	.803	13.4103		-0.130	
Mean \pm SD					13.398±0.00)9	-0.142±0.008			

Table S2: The ratio of stomatal conductance to mesophyll conductance and weighted mean fractionation of ${}^{12}C^{18}O^{16}O$ as it diffuses from the CO₂-H₂O exchange site (\overline{a}_{18}) for numerous species determined in previous investigations.

g_s/g_m	\overline{a}_{18}	Plant type	Reference
1.56	3.93	S. viridis (C ₄)	(Osborn et al., 2017)
1.26	4.33	S. viridis (C ₄)	(Osborn et al., 2017)
0.22	7.37	Tobacco (C ₃)	(Gillon and Yakir, 2000)
0.16	7.71	Soya (C ₃)	(Gillon and Yakir, 2000)
0.47	6.23	Oak (C ₃)	(Gillon and Yakir, 2000)
0.17	7.76	Tobacco (C ₃)	(Barbour et al., 2016)
0.06	8.32	Cotton (C ₃)	(Barbour et al., 2016)
0.32	7.04	Wheat (C ₃)	(Barbour et al., 2016)
0.06	8.27	Maize (C ₄)	(Barbour et al., 2016)
0.24	7.29	S. Vidrids (C ₄)	(Barbour et al., 2016)
0.29	7.21	<i>F. bindentis</i> (C ₄)	(Barbour et al., 2016)
0.88	5.05	Sunflower (C ₃)	This study
0.55	5.96	Ivy (C ₃)	This study

0.27	7.12	Maize (C ₄)	This study
1.2	4.18	A. edulis (C ₄)	(Cousins et al., 2006)
2.1	3.74	A. edulis (C ₄)	(Cousins et al., 2006)
0.13	7.90	A. edulis (C ₄)	(Cousins et al., 2007)

References

Barbour, M. M., Evans, J. R., Simonin, K. A., and von Caemmerer, S.: Online CO₂ and H₂O oxygen isotope fractionation allows estimation of mesophyll conductance in C₄ plants, and reveals that mesophyll conductance decreases as leaves age in both C₄ and C₃ plants, New Phytol., 14, 2016.

- 485 mesophyll conductance decreases as leaves age in both C₄ and C₃ plants, New Phytol., 14, 2016. Barkan, E., and Luz, B.: Diffusivity fractionations of H₂¹⁶O/H₂¹⁷O and H₂¹⁶O/H₂¹⁸O in air and their implications for isotope hydrology, Rapid Commun. Mass. Sp., 21, 6, 2007. Barkan, E., and Luz, B.: High-precision measurements of ¹⁷O/¹⁶O and ¹⁸O/¹⁶O ratios in CO₂, Rapid Commun. Mass. Sp., 26, 2733-2738, 10.1002/rcm.6400, 2012.
- Bottinga, Y., and Craig, H.: Oxygen isotope fractionation between CO₂ and water, and the isotopic composition of marine atmospheric CO₂, Earth Planet Sc. Lett., 5, 10, 1968.
 Brenninkmeijer, C. A. M., Kraft, P., and Mook, W. G.: Oxygen isotope fractionation between CO₂ and H₂O, Chem. Geol., 41, 8, 1983.
 von Caemmerer, S., and Farquhar, G. D.: Some relationships between the biochemistry of
- photosynthesis and the gas exchange of leaves, Planta, 153, 11, 1981.
 Ciais, P., Denning, A. S., Tans, P. P., Berry, J. A., Randall, D. A., Collatz, G. J., Sellers, P. J., White, J. W. C., Trolier, M., Meijer, H. A. J., Francey, R. J., Monfray, P., and Heimann, M.: A three-dimensional synthesis study of δ¹⁸O in atmospheric CO₂: 1. Surface fluxes, J. Geophys. Res. Atmos., 102, 5857-5872, 10.1029/96jd02360, 1997a.
- 500 Ciais, P., Tans, P. P., Denning, A. S., Francey, R. J., Trolier, M., Meijer, H. A. J., White, J. W. C., Berry, J. A., Randall, D. A., and Collatz, G. J.: A three-dimensional synthesis study of δ¹⁸O in atmospheric CO₂: 2. Simulations with the TM2 transport model, J. Geophys. Res. Atmos., 102, 10, 1997b.

Cousins, A. B., Badger, M. R., and von Caemmerer, S.: A transgenic approach to understanding the

- 505 influence of carbonic anhydrase on C¹⁸OO discrimination during C₄ photosynthesis, Plant Physiol., 142, 662-672, 10.1104/pp.106.085167, 2006.
 Cousins, A. B., Baroli, I., Badger, M. R., Ivakov, A., Lea, P. J., Leegood, R. C., and von Caemmerer,
 - S.: The role of phosphoenolpyruvate carboxylase during C₄ photosynthetic isotope exchange and stomatal conductance, Plant Physiol., 145, 11, 2007.
- 510 Craig, H., and Gordon, L. I.: Deuterium and oxygen 18 variations in the ocean and the marine atmosphere, Consiglio nazionale delle richerche, Laboratorio de geologia nucleare Pisa, 1965. Cuntz, M., Ciais, P., Hoffmann, G., Allison, C. E., Francey, R. J., Knorr, W., Tans, P. P., White, J. W. C., and Levin, I.: A comprehensive global three-dimensional model of δ¹⁸O in atmospheric CO₂: 2. Mapping the atmospheric signal J. Geophys. Res. Atmos., 108, 2003a.
- 515 Cuntz, M., Ciais, P., Hoffmann, G., and Knorr, W.: A comprehensive global three-dimensional model of δ^{18} O in atmospheric CO₂: 1. Validation of surface processes, J. Geophys. Res. Atmos., 108, 24, 2003b.

Farquhar, D. G., O'Leary.M.H, and J.A.Berry: On the relationship between carbon isotope discrimination and intercellular carbon dioxide concentration in leaves Aust. J. Plant Physiol., 9, 16, 1092

520 1982.

- Farquhar, D. G., and Lloyd, J.: Carbon and oxygen isotope effects in the exchange of carbon dioxide between terrestrial plants and the atmosphere, Stable isotopes and plant carbon-water relations, Acadamic Press Inc., London, 47 pp., 1993.
- Farquhar, G. D., Hubick, K. T., Condon, A. G., and Richards, R. A.: Carbon isotope fractionation and
 plant water-use efficiency. In Stable isotopes in ecological research, edited by: Billings, W. D., Golley,
 F., Lange, O. L., Olson, J. S., and Remmert, H., Springer, New York, NY, 19 pp., 1989.
 Farquhar, G. D., Lloyd, J., Taylor, J. A., Flanagan, L. B., Syvertsen, J. P., Hubick, K. T., Wong, S. C.,
 and Ehleringer, J. R.: Vegetation effects on the isotope composition of oxygen in atmospheric CO₂,
 Nature, 363, 4, 1993.
- Farquhar, G. D., and Cernusak, L. A.: Ternary effects on the gas exchange of isotopologues of carbon dioxide, Plant Cell Environ, 35, 1221-1231, 10.1111/j.1365-3040.2012.02484.x, 2012.
 Flanagan, L. B., Comstock, J. P., and Ehleringer, J. R.: Comparison of modeled and observed environmental influences on the stable oxygen and hydrogen isotope composition of leaf water in Phaseolus vulgaris L, Plant Physiol., 96, 8, 1991.
- Flanagan, L. B.: Environmental and biological influences on the stable oxygen and hydrogen isotopic composition of leaf water, in: Stable isotopes and plant carbon-water relations, Elsevier, 1993.
 Gillon, J. S., and Yakir, D.: Internal conductance to CO₂ diffusion and C¹⁸OO discrimination in C₃ leaves, Plant Physiol., 123, 11, 2000.
- Harwood, K. G., Gillon, J. S., Griffiths, H., and Broadmeadow, M. S. J.: Diurnal variation of Δ^{13} CO₂,
- 540 ΔC¹⁸O¹⁶O and evaporative site enrichment of δH₂¹⁸O in Piper aduncum under field conditions in Trinidad Plant Cell Environ., 21, 14, 1998.
 Hofmann, M. E. G., Horváth, B., Schneider, L., Peters, W., Schützenmeister, K., and Pack, A.: Atmospheric measurements of Δ¹⁷O in CO₂ in Göttingen, Germany reveal a seasonal cycle driven by biospheric uptake, Geochim, Cosmochim, Ac., 199, 143-163, 10.1016/j.gca.2016.11.019, 2017.
- Jähne, B., Münnich, K. O., Bösinger, R., Dutzi, A., Huber, W., and Libner, P.: Jähne, Bernd, et al. "On the parameters influencing air-water gas exchange, J. Geophys. Res. Oceans, 92(C2), 12, 10.1029/JC092iC02p01937, 1987.
 Johnson, J. E., and Rella, C. W.: Effects of variation in background mixing ratios of N₂, O₂, and Ar on

the measurement of δ^{18} O–H₂O and δ^{2} H–H₂O values by cavity ring-down spectroscopy, Atmos. Meas. 550 Tech., 10, 18, 2017.

- Koren, G., Schneider, L., Velde, I. R. v. d., Schaik, E. v., Gromov, S. S., Adnew, G. A., D.J.Mrozek, Hofmann, M. E. D., Liang, M.-C., Mahata, S., Bergamaschi, P., Laan-Luijkx, I. T. v. d., Krol, M. C., Röckmann, T., and Peters, W.: Global 3-D Simulations of the Triple Oxygen Isotope Signature Δ^{17} O in Atmospheric CO₂ J. Geophys. Res. Atmos.
- 555 , 124, 28, 2019.

Landais, A., Barkan, E., Yakir, D., and Luz, B.: The triple isotopic composition of oxygen in leaf water, Geochim. Cosmochim. Ac., 70, 4105-4115, 10.1016/j.gca.2006.06.1545, 2006.

Liang, M.-C., Mahata, S., Laskar, A. H., Thiemens, M. H., and Newman, S.: Oxygen isotope anomaly in tropospheric CO₂ and implications for CO₂ residence time in the atmosphere and gross primary productivity, Sci. Rep., 7, 13180, 2017.

productivity, Sci. Rep., 7, 13180, 2017.
Mason, E. A., and Marrero, T. R.: The diffusion of atoms and molecules, Adv. Atom. Mol. Phys., 6, 77, 10.1016/S0065-2199(08)60205-5, 1970.
Merlivat, L.: Molecular diffusivities of H2¹⁶O, HD¹⁶O, and H2¹⁸O in gases, J. Chem. Phys., 69, 7, 1978.
O'Leary, M. H.: Measurement of the isotope fractionation associated with diffusion of carbon dioxide in

aqueous solution, J. Phys. Chem., 88, 2, 1984.
Osborn, H. L., Alonso-Cantabrana, H., Sharwood, R. E., Covshoff, S., Evans, J. R., Furbank, R. T., and von Caemmerer, S.: Effects of reduced carbonic anhydrase activity on CO₂ assimilation rates in Setaria viridis: a transgenic analysis, J. Exp. Bot., 68, 11, 2017.
Schaefer, K., Collatz, G. J., Tans, P., Denning, A. S., Baker, I., Berry, J., Prihodko, L., Suits, N., and

570 Philpott, A.: Combined simple biosphere/Carnegie-Ames-Stanford approach terrestrial carbon cycle model, J. Geophys. Res-Biogeo. , 113, 2008.

Vogel.J.C., Grootes.P.M., and Mook.W.G.: Isotopic fractionation between gaseous and dissolved carbon dioxide, Z.Physik, 230, 13, 1970.

575 Wassenaar, L. I., Terzer-Wassmuth, S., Douence, C., Araguas-Araguas, L., Aggarwal, P. K., and Coplen, T. B.: Seeking excellence: An evaluation of 235 international laboratories conducting water isotope analyses by isotope-ratio and laser-absorption spectrometry, Rapid Commun. Mass Spectrom., 32, 393-406, 10.1002/rcm.8052, 2018.

Yakir, D., and Sternberg, L. S. L.: The use of stable isotopes to study ecosystem gas exchange,

580 Oecologia, 123, 4, 2000.

Young, E. D., Galy, A., and Nagahara, H.: Kinetic and equilibrium mass-dependent isotope fractionation laws in nature and their geochemical and cosmochemical significance, Geochim. Cosmochim. Ac., 66, 9, 2002.