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Abstract. To make predictions about the carbon cycling
consequences of rising global surface temperatures, Earth
system scientists rely on mathematical soil biogeochemi-
cal models (SBMs). However, it is not clear which mod-
els have better predictive accuracy, and a rigorous quan-
titative approach for comparing and validating the predic-
tions has yet to be established. In this study, we present a
Bayesian approach to SBM comparison that can be incorpo-
rated into a statistical model selection framework. We com-
pared the fits of linear and nonlinear SBMs to soil respira-
tion data compiled in a recent meta-analysis of soil warming
field experiments. Fit quality was quantified using Bayesian
goodness-of-fit metrics, including the widely applicable in-
formation criterion (WAIC) and leave-one-out cross valida-
tion (LOO). We found that the linear model generally outper-
formed the nonlinear model at fitting the meta-analysis data
set. Both WAIC and LOO computed higher overfitting risk
and effective numbers of parameters for the nonlinear model
compared to the linear model, conditional on the data set.
Goodness of fit for both models generally improved when
they were initialized with lower and more realistic steady-
state soil organic carbon densities. Still, testing whether lin-
ear models offer definitively superior predictive performance
over nonlinear models on a global scale will require compar-
isons with additional site-specific data sets of suitable size
and dimensionality. Such comparisons can build upon the
approach defined in this study to make more rigorous statis-
tical determinations about model accuracy while leveraging

emerging data sets, such as those from long-term ecological
research experiments.

1 Introduction

Coupled Earth system models (ESMs) and constituent soil
biogeochemical models (SBMs) are used to simulate global
soil organic carbon (SOC) dynamics and storage. As global
climate changes, some ESM and SBM simulations suggest
that substantial SOC losses could occur, resulting in greater
soil CO2 emissions (Crowther et al., 2016). However, there is
vast divergence between model predictions. For instance, one
ESM predicts a global SOC loss of 72 Pg C over the 21st cen-
tury, while another predicts a gain of 253 Pg C (Todd-Brown
et al., 2014).

Soil biogeochemical models vary greatly in structure
(Manzoni and Porporato, 2009) but can be broadly parti-
tioned into two categories: those that implicitly represent soil
C dynamics as first-order linear decay processes and those
that explicitly represent microbial control over C dynamics
with nonlinear Michaelis–Menten functions (Wieder et al.,
2015a). Explicit models typically include more parameters
than linear models because multiple microbial parameters are
needed for each decay process as opposed to a single rate
parameter. The additional parameters allow explicit models
to represent microbial mechanisms, but at the expense of
greater model complexity.
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Rigorous statistical approaches should be applied to inves-
tigate how explicit representation of microbial processes af-
fects predictive model performance. ESM and SBM compar-
isons involving empirical soil C data assimilations have been
conducted previously (Allison et al., 2010; Li et al., 2014)
but few standardized statistical methods for ESM and SBM
benchmarking and comparison have been developed that
would allow for rigorous model selection. Prior model com-
parisons have involved graphical qualitative comparisons or
use of basic fit metrics such as the coefficient of determi-
nation, R2, to judge fit quality. However, these simple ap-
proaches are insufficient for comparing an increasing num-
ber of complex models (Jiang et al., 2015; Luo et al., 2016;
Wieder et al., 2015a).

R2 on its own provides limited information about good-
ness of fit. In unmodified form, it quantifies the extent to
which the variation of just one chosen model outcome – for
instance the mean outcome for a range of parameter values
– corresponds to the variation in the data set (Gelman et al.,
2019). R2 does not capture model complexity, overfitting, or
parameter uncertainty, which is a reason why R2 by itself is
not sufficient for model evaluation (Kvålseth, 1985). With-
out accounting for model complexity and parameter count,
focusing on optimizing fit by R2 values alone can easily lead
to overfitting (Spiess and Neumeyer, 2010).

Encouragingly, a rich toolset to further inform quantita-
tive model evaluation and comparison can be drawn from
Bayesian statistics (Hararuk et al., 2014, 2018; Hararuk and
Luo, 2014). These tools include information criteria and ap-
proximate cross-validation, goodness-of-fit metrics designed
for the simultaneous comparison of multiple structurally di-
verse models. Like R2, information criteria and cross vali-
dation are quantitative measures that estimate the fit quality
of a model to a given data set. Differing from R2, informa-
tion criteria and cross validation are relative rather than abso-
lute measures. These metrics evaluate the extent to which the
data set supports particular distributions of parameter values
and, in turn, the uncertainty of parameter estimates. Conse-
quently, if the distribution of model A outcomes aligns more
closely to the data set than the distribution of model B out-
comes, we regard model A as being more likely to explain the
data compared to model B. Information criteria and cross-
validation metrics also typically include terms penalizing for
model complexity and overfitting as part of their computa-
tion (Gelman et al., 2014). Hence, information criteria and
approximate cross validation are useful tools for model eval-
uation because they present a comprehensive summary of
model fit to time series data and can estimate model predic-
tive accuracy for unmeasured and out-of-sample data points.

Examples of information criteria popularized by widely
used R packages such as lme4 and rjags include the Akaike
information criterion (AIC), Bayesian information criterion
(BIC), and deviance information criterion (DIC) (Vehtari and
Ojanen, 2012). However, these metrics have some limita-
tions. AIC, BIC, and DIC do not use full sampled posterior

distributions in their computational processes. AIC and BIC
both rely on a pointwise maximum likelihood estimate that
cannot be derived from nonuniform Bayesian prior distribu-
tions, including normal distributions. AIC and BIC (despite
BIC’s name) thereby have limited use in Bayesian statistics
settings. DIC can accommodate nonuniform priors but is cal-
culated from pointwise simplified posterior means. The com-
pression of full posteriors into pointwise means can prompt
DIC to compute an impossible negative effective model pa-
rameter count in select situations (Gelman et al., 2014). Con-
sequently, the original forms of AIC, BIC, and DIC are
no longer recommended for use in Bayesian model assess-
ment by some statisticians in light of superseding alternatives
(Gelman et al., 2014).

Three predictive goodness-of-fit metrics address the lim-
itations and stability issues of AIC, BIC, and DIC by in-
corporating full, nonuniform posterior distributions in their
calculations to better account for overfitting and model
size (Christensen et al., 2010; Gelman et al., 2014). These
metrics include the widely applicable information crite-
rion (WAIC), log pseudomarginal likelihood (LPML), and
Pareto-smoothed important sampling leave-one-out cross
validation (PSIS-LOO and hereby referred to as LOO).
WAIC, LPML, and LOO can estimate the ability of models to
fit unobserved measurements outside of the set of measured
data samples (Vehtari et al., 2017). Thus, WAIC, LPML, and
LOO can be considered as superior barometers for model
predictive accuracy compared to AIC, BIC, and DIC.

The overarching goal of this study was to develop a sta-
tistically rigorous and mathematically consistent data assim-
ilation framework for SBM comparison that uses predictive
Bayesian goodness-of-fit metrics. We pursued three specific
objectives as part of that goal. First, we compared the be-
haviors of two different SBMs, a linear microbial-implicit
model termed the conventional model (CON) and a nonlin-
ear microbial-explicit model called the Allison–Wallenstein–
Bradford model (AWB) (Fig. 1), following data assimilation
with soil respiration data sourced from a meta-analysis of
soil warming studies (Romero-Olivares et al., 2017). Sec-
ond, we characterized the parameter spaces of these models
using prior probability distributions of parameter values in-
formed by previous studies and expert judgment. Third, we
compared specific Bayesian predictive information criteria
in WAIC, LPML, and LOO to the coefficient of determina-
tion, R2, for quantifying goodness of fit to data. AIC, BIC,
and DIC were not analyzed due to their stability limitations,
our usage of nonuniform prior distributions, and redundancy
with WAIC.
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Figure 1. Diagrams of the pool structures of the (a) CON model and (b) AWB model drawn from Allison et al. (2010). Pools are shown
within circles including soil organic carbon (SOC), dissolved organic carbon (DOC), and microbial (MIC) pools. AWB has SOC, DOC,
and MIC pools as in CON but also an extra enzymatic (ENZ) pool. AWB additionally differs from CON in its nonlinear feedbacks and
assumption that MIC can influence SOC-to-DOC turnover through the ENZ pool.

2 Methods

2.1 Model structures

We compared two SBMs, the CON and AWB models (Al-
lison et al., 2010). The models were selected for this study
due to their relative equation simplicity, their tractable pa-
rameter count, and limited biological data input require-
ments (Sect. S1 in the Supplement). The CON system mod-
els three separate C pools as state variables including SOC,
dissolved organic C (DOC), and microbial biomass C (MIC)
pools, while AWB includes SOC, DOC, MIC, and extracel-
lular enzyme biomass C (ENZ) pools (Fig. 1). Additionally,
these models were chosen because they are C-only models
without nitrogen (N) pools. The increased complexity of N-
accounting SBMs will require future studies with coupled N
data sets (Manzoni and Porporato, 2009).

2.2 Meta-analysis data

The data set for model fitting was compiled from a recent
meta-analysis of 27 soil warming studies that measured CO2
fluxes (Romero-Olivares et al., 2017). The experiments re-
ported between 1 and 13 years of CO2 flux measurements
following warming perturbation. The elements of this data
set consisted of empirical response ratios calculated by di-
viding CO2 fluxes measured in the warming treatments by
time-paired CO2 fluxes measured in the control treatments.
We calculated an annual mean response ratio for each ex-
periment (if data were available for that year) after warming
treatment began. Using these annual means, we calculated
one overall mean response ratio for each year along with
pooled variances and standard deviations. Pooled data points
were assumed to be “collected” at the halfway point of each
year. Because the experiments had variable lengths, the sam-
ple size for the pooled annual mean declines with increasing
time since warming perturbation. The warming perturbation
was 3 ◦C on average across all the studies, and this average
was used as the magnitude of warming in the model simula-
tions.

Model-outputted response ratios were calculated by divid-
ing simulated CO2 flux following warming perturbation by
the CO2 flux at prewarming steady state. We fit models to
flux response ratios rather than raw flux measurements for
several reasons (Wieder et al., 2015b). First, we eliminate
the need to convert flux measurements from different experi-
ments into a common unit. Second, response ratios represent
a standardized metric for warming response across disparate
ecosystem types with varying climate, soil, and vegetation
properties. Finally, fitting a mean response ratio overcomes
data gaps present in individual experiments.

2.3 Hamiltonian Monte Carlo fitting of differential
equation models

CON and AWB ordinary differential equation systems
were simulated using the CVODE backward differentiation
method (Curtiss and Hirschfelder, 1952) from the SUNDI-
ALS library of equation solvers (Hindmarsh et al., 2005).
Differential equation models contain parameters that affect
state variables, and model fitting through Markov chain al-
gorithms involves iterating through parameter space one set
of parameters at a time. We performed model fitting using a
Markov chain algorithm called the Hamiltonian Monte Carlo
(HMC), using version 2.18.1 of the RStan interface to the
Stan statistical software (Carpenter et al., 2017; Stan Devel-
opment Team, 2020) and version 3.4.1 of R (R Core Team,
2017). HMC is not a random-walk algorithm and uses Hamil-
tonian mechanics to determine exploration steps in parameter
space. HMC has been theorized to offer more efficient explo-
ration of high-dimensional parameter space than traditional
random-walk Metropolis algorithms (Beskos et al., 2013).

Conditional on the meta-analysis data set, the HMC al-
gorithm computed posterior and posterior predictive distri-
butions, from which Bayesian statistical inferences on likely
ranges of parameter values were then made. Posterior distri-
butions are the distributions of more likely model parameter
values conditional on the data. Posterior predictive distribu-
tions are the distributions of more likely values for unob-
served data points from the data-generating process condi-
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tional on the observations. In the case of this study, the ex-
periments constituting the meta-analysis would be the data-
generating process.

For the sake of clarity, it is important to distinguish be-
tween the frequentist confidence intervals and Bayesian pos-
terior predictive intervals and distributions we describe in
our study. Confidence intervals are calculated from the sam-
ple means and standard errors at observed data points and
indicate ranges of values that are likely to contain the true
data values with repeated sample collections using the same
methodology. Posterior predictive intervals and distributions
are computed after estimation of the posterior parameter dis-
tributions and represent the likely distributions of unobserved
data values conditional on observed data values. Bayesian
credible intervals, which we will also discuss in this study,
are ranges of values that parameters are likely to take with
some probability that are conditional on the observed data.
Credible areas indicate the probability densities of parameter
values across credible intervals.

We ran four chains for 35 000 iterations each for our HMC
simulations, with the first 10 000 iterations being discarded
as burn-in for each chain. Hence, our posterior distributions
consisted of 100 000 posterior samples per HMC run. In
retrospect, because our credible areas displayed sufficient
smoothness (Fig. S2 in the Supplement) and Bayesian di-
agnostics indicated adequate posterior sampling (Table S5
in the Supplement), we could have reduced simulation time
without impairing posterior computation by running shorter
chains that consisted of 20 000 to 30 000 iterations. To mini-
mize the presence of divergent energy transitions, which in-
dicate issues with exploring the geometry of the parameter
space specified by the prior distributions, we set the adapta-
tion delta to 0.95, the initial step size to 0.1, and maximum
tree depth to 12. Those parameters determine how the HMC
algorithm proposes new sets of parameters at each step and
were set so that the HMC would begin with smaller explo-
ration steps. The algorithm varies the step size from its ini-
tial value throughout posterior sampling to maintain a de-
sired acceptance rate; the tuning sensitivity of the step size
is governed by the adaptation delta value, with higher values
indicating reduced sensitivity.

We further constrained our HMC runs to characterize pa-
rameter regimes corresponding to higher biological realism.
Normal informative priors were used to initiate the runs, and
the prior distribution parameters were chosen based on ex-
pert opinion and previous empirical observations (Allison et
al., 2010; Li et al., 2014). Prior distributions had noninfinite
supports; supports were truncated to prevent the HMC from
exploring parameter space that was unrealistic (Table S2).

2.4 Model steady-state initialization

Because we were mainly interested in testing model predic-
tions of soil warming response, the models were initiated at
steady-state prior to the introduction of warming perturbation

to isolate model warming responses from steady-state attrac-
tion. We fixed preperturbation steady-state soil C densities
to prevent HMC runs from exploring parameter regimes cor-
responding to biologically unrealistic C pool densities and
mass ratios.

To set prewarming steady-state soil C densities, we first
analytically derived steady-state solutions of the ordinary
differential equations of the models. Then, with the assis-
tance of Mathematica version 12, we rearranged the equa-
tions by moving the steady-state pool sizes to the left-hand
side (Sect. S2), such that we could determine the value of pa-
rameters dependent on pool sizes while allowing the rest of
the parameters to vary for the HMC. Consequently, we could
constrain the prewarming pool sizes from reaching unrealis-
tic values in the simulations.

2.5 Sensitivity analysis of C pool ratios

Sensitivity analyses examine how the distributions of model
input values influence the distributions of model outputs. In
our study, we considered prewarming C pool densities as a
model input. We performed a sensitivity analysis to observe
how the choice of prewarming C pool densities and C pool
ratios would affect the model fits and posterior predictive dis-
tribution of C pool ratios.

We compared the model outputs and postwarming re-
sponse behavior of AWB and CON at equivalent C pool
densities and ratios. The ratio of soil microbe biomass C
(MIC) density to SOC density has been observed to vary
approximately from 0.01 to 0.04 (Anderson and Domsch,
1989; Sparling, 1992), so we used those numbers as guide-
lines for establishing the ranges of the C pool densities and
density ratios explored in our simulations. One portion of
the analysis involved running HMC simulations in which
we set the prewarming MIC density at 2 mg C g−1 soil and
then varied the SOC density from 50 to 200 mg C g−1 soil
in increments of 25, stepping from 0.04 to 0.01 with respect
to the MIC-to-SOC ratio. A second portion of the analysis
involved observing the effect of varying prewarming MIC
from 1 to 8 mg C g−1 soil while holding prewarming SOC at
100 mg C g−1 soil.

For some combinations of the prior distributions and pre-
warming steady-state C pool densities (Table S2), AWB
HMC runs wandered into unstable parameter regimes that
would prevent the algorithm from reliably running to com-
pletion. Consequently, we do not compare simulation results
for AWB and CON with prewarming SOC densities below
50 mg C g−1 soil. Other combinations of prior distribution
and prewarming C pool density choices that were not nec-
essarily biologically realistic allowed stable AWB runs with
lower prewarming SOC densities.
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2.6 Information criteria and cross validation

In addition to R2, we used the WAIC, LPML, and LOO
Bayesian predictive goodness-of-fit metrics to evaluate mod-
els with the meta-analysis warming response data. LPML is
an example of cross validation that is calculated similarly to
LOO (Gelfand et al., 1992; Gelfand and Dey, 1994; Ibrahim
et al., 2001) but differs from LOO in how the importance
ratio sampling portion of its computation is handled. For fur-
ther explanation regarding importance ratios and their role
in evaluating approximate cross-validation metrics, refer to
the description of the LOO algorithm presented in Vehtari
and Ojanen (2012). LOO updates LPML by implementing
a smoothing process in which the largest importance ratios
are fitted with a Pareto distribution and then replaced by ex-
pected values from the distribution, which stabilizes the im-
portance ratio sampling.

Algorithmic differences between WAIC and LPML and
LOO render them appropriate for different statistical mod-
eling goals and make them complementary metrics. WAIC
is suitable for estimating the relative quality of model fits to
hypothetical repeated samples collected at existing experi-
mental time points, whereas LOO and LPML are suitable for
estimating the quality of fits to hypothetical measurements
taken between observed time points (Vehtari et al., 2017).

We used version 2.0.0 of the “loo” package available for R
to calculate our WAIC and LOO values (Vehtari et al., 2019).
A lower WAIC and LOO and a higher LPML indicate a more
likely model for a given data set. LPML can be multiplied by
a factor of −2 to occupy a similar scale to LOO.

3 Results

3.1 Parameter posterior distributions

We obtained distributions of posterior predictive fits to the
univariate response ratio data for both AWB and CON across
different prewarming MIC-to-SOC ratios. Posterior samples
totaled 100 000 for each simulation. Sampler diagnostics for
the HMC runs indicated that the statistical models were
valid at all prewarming steady-state values observed (Ta-
ble S6), that model parameter values converged across the
four Markov chains (Fig. S7), and that the posterior param-
eter space was effectively sampled and explored (Fig. S5) to
generate enough independent posterior samples for inference
(Fig. S6). The ratios of effective posterior parameter samples
to total samples for parameters were generally satisfactory;
across observed MIC-to-SOC ratios, they were all greater
than 0.25 and mostly greater than 0.5 (Table S5).

We also tracked divergent transitions, which mark points
in chains at which the HMC algorithm was inhibited in its
exploration and posterior sampling, potentially due to the
parameter space becoming geometrically confined and dif-
ficult to navigate. Divergent transitions occurred in the AWB

HMC runs (Fig. S9), though the ratios of divergent transi-
tions to sampled iterations were relatively low for all runs.
The highest divergent transition ratio observed was 0.0217,
corresponding to the simulation initiated with prewarming
SOC= 200 mg C g−1 soil. There were no divergent transi-
tions in the CON runs.

3.2 Model behaviors

The CON curve monotonically decreases in response ratio
over time, whereas the AWB curve displays changes in slope
sign (Fig. 2). The difference in curve shape (Fig. 3a, b) is in
line with CON’s linear status and AWB’s nonlinear formula-
tion with more parameters (Allison et al., 2010). By 50 years
after warming, mean fit curves for AWB and CON return
to 1.0 after their initial increase (Fig. 3c, d), consistent with
prior observations and expectations at steady state (van Ges-
tel et al., 2018; Romero-Olivares et al., 2017).

From a cursory visual evaluation, neither of the models
clearly outperforms the other across all prewarming steady
states. The 95 % confidence interval of the first data point
at t = 0.5 years does not include the AWB SOC100 poste-
rior predictive mean as it does for the CON SOC100 mean
(Fig. 2), which most likely impaired AWB’s quantitative
goodness-of-fit metrics. However, the 95 % response ratio
posterior predictive interval suggests that AWB is able to
replicate the response ratio increase in the data from 1.5 to
3.5 years following the warming perturbation, which CON
does not. The shape of the AWB posterior predictive interval
also fits the data points and confidence intervals occurring
8 years or more after the perturbation more closely than that
of CON (Fig. 3a, b).

For both AWB and CON, increasing the prewarming SOC
to higher densities from SOC= 50 to 200 mg C g−1 soil
(hereby labeled from SOC50 to SOC200) while holding pre-
warming MIC at 2 mg C g−1 soil, DOC at 0.2 mg C g−1 soil,
and ENZ at 0.1 mg C g−1 soil corresponded to lower initial
mean response ratios in the first year at the t = 0.5 year time
point, which certainly inhibited the quantitative goodness of
fit (Fig. 3a, b). For CON, increasing prewarming SOC also
reduced the magnitude of the mean fit slope. For AWB, in-
creasing prewarming SOC had no clear effect on the curve
slope, but the model needed more time to achieve peak mean
response ratio from a lower start, with the peak being reached
at t = 1.5 years in the SOC50 case and t = 3.5 years in the
SOC200 case (Fig. 3b). At higher prewarming SOC, CON’s
reduced slope magnitude and AWB’s lagging response ra-
tio peak caused both models to exhibit slower returns to the
steady-state response ratio of 1.0 (Fig. 3c, d). On their tra-
jectories back to steady state, the mean SOC200 CON curve
substantially overshoots the data means after t = 7.5 years
(Fig. 3a), whereas the SOC200 AWB curve exceeds the data
means at a more moderate extent through the t = 8.5, 9.5,
10.5, and 11.5 year time points (Fig. 3b).
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Figure 2. Distribution of fits of (a) CON and (b) AWB to the meta-analysis data from Romero-Olivares et al. (2017). Open circles show
the meta-analysis data points. Blue vertical lines mark the 95 % confidence interval for each data point calculated from the pooled standard
deviation. The black line indicates the mean model response ratio fit. The orange shading marks the 95 % posterior predictive interval for the
fit. For (a), prewarming steady-state soil C densities were set at SOC= 100 mg C g−1 soil, MIC= 2 mg C g−1 soil, and DOC= 0.2 mg C g−1

soil. For (b), prewarming steady-state soil C densities were set at SOC= 100 mg C g−1 soil, MIC= 2 mg C g−1 soil, DOC= 0.2 mg C g−1

soil, and ENZ= 0.1 mg C g−1 soil.

Figure 3. Intramodel comparisons of mean posterior predictive response ratio fits for AWB and CON across different MIC-to-SOC ratios.
Open circles show the meta-analysis data points for reference. The blue, black, and red lines indicate model mean fits corresponding to
different prewarming steady-state SOC values of 50, 100, and 200 mg C g−1 soil. The dashed gray line indicates the steady-state expectation
at the response ratio of 1.0. Mean fits are plotted in order of (a) CON and (b) AWB over the time span of the data and (c) CON and (d) AWB
over 57 years.

Changing the prewarming MIC-to-SOC steady-state pool
size ratio by increasing prewarming MIC from 1 to
8 mg C g−1 soil (hereby labeled from MIC1 to MIC8) while
holding prewarming SOC at 100 mg C g−1 soil had marginal
to moderate qualitative effects on the mean response ra-
tio curves for CON and AWB. The CON MIC1 and MIC8
curves are visually indistinguishable (Fig. S1a, b), while the

AWB MIC1 and MIC8 curves differ with the MIC8 curve
displaying more gradual changes in slope and lower slope
magnitudes (Fig. S1c, d).
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3.3 Sensitivity analysis of parameter distributions to
prewarming C pool densities and density ratios

In addition to response ratio fits, we observed the influence
of prewarming MIC-to-SOC ratios on model SOC stock re-
sponse ratios in AWB and CON simulations following warm-
ing. Similar to the model flux response ratios, SOC response
ratios were calculated by dividing evolved postwarming SOC
densities by prewarming densities. The SOC response ra-
tios at 12.5 years for CON and AWB increased as prewarm-
ing SOC was raised (and, hence, the MIC-to-SOC ratio de-
creased) with other prewarming C densities held constant,
indicating reduced proportional SOC loss when SOC stocks
were initiated at higher prewarming densities (Fig. S3a). For
CON, SOC loss decreased from 27.1 % at SOC50 to 9.2 %
at SOC200. In a similar trend for AWB, SOC loss decreased
from 17.2 % at SOC50 to 8.1 % at SOC200. In contrast, rais-
ing prewarming MIC densities (and, hence, increasing the
MIC-to-SOC ratio) with other prewarming C densities held
constant did not produce a shared trend for CON and AWB
(Fig. S3b). CON SOC loss decreased from 18.8 % at MIC1
to 17.4 % at MIC8, while AWB SOC loss increased from
11.3 % at MIC1 to 16.3 % at MIC8.

Truncation of prior supports, or distribution domains, gen-
erally did not prevent posterior densities from retaining nor-
mal distribution shapes. Deformation away from Gaussian
shapes for the densities of EaS from CON was observed at
SOC50 and SOC75. For AWB, deformation was observed
for the densities of EaV, EaK, and ECref . All CON and AWB
parameter posterior densities were otherwise observed to be
Gaussian from SOC100 to SOC200. Example posterior den-
sities and means for select model parameters at prewarming
SOC100 are presented in Figs. 4 and S2. Parameter posterior
means corresponding to other prewarming C pool densities
and ratios are presented in Table S3.

3.4 Sensitivity analysis of quantitative fit metrics to
prewarming C pool densities and density ratios

For both CON and AWB, LOO, WAIC, LPML, and R2

all worsened as prewarming steady-state SOC density was
increased from SOC50 to the less biologically realistic
SOC200 (Fig. 5). CON’s LOO and WAIC values increased
respectively from −15.704 and −15.818 at SOC50 to
−6.891 and −6.966 at SOC200, while AWB’s LOO and
WAIC values increased respectively from −11.028 and
−11.379 at SOC50 to −5.97 and −6.579 at SOC200 (Ta-
ble S4a, b). Compared to AWB’s metrics, CON’s goodness-
of-fit metrics deteriorated at a faster rate with the increase
in prewarming SOC. Nonetheless, CON outperformed AWB
in LOO, WAIC, and LPML across all observed prewarming
SOC densities. The Bayesian metrics accounted for AWB’s
larger model size and increased propensity for overfitting as
demonstrated by the consistently higher effective parameter
counts associated with AWB (Fig. S8a, b).

Figure 4. The 95 % probability density credible areas for
model parameters corresponding to prewarming steady-
state SOC= 100 mg C g−1 soil, DOC= 0.2 mg C g−1 soil,
MIC= 2 mg C g−1 soil, and (for AWB) ENZ= 0.1 mg C g−1 soil.
Yellow shaded regions represent the 80 % credible areas and
vertical purple lines indicate distribution mean. (a) CON activation
energy parameters EaS, EaD, and EaM; (b) CON C pool partition
fraction parameters aDS, aSD, aM, and aMS; (c) AWB activation
energy parameters EaV, EaVU, EaK, and EaKU; (d) AWB param-
eters Vref, ECref , and aMS. Vref is the SOC Vmax at the reference
temperature 283.15 K; ECref is the carbon use efficiency fraction
at the reference temperature; and, like its CON counterpart, the
AWB aMS parameter is the fraction parameter representing the
proportion of dead microbial biomass C transferred to the SOC
pool. Parameter units are displayed in Table S1. Credible areas for
AWB parameters VUref and mt are shown in Fig. S2 because of
differing horizontal axes scales.

Varying prewarming steady-state MIC from MIC1 to
MIC8 modestly impaired goodness of fit across the vari-
ous metrics (Fig. S4). CON’s LOO and WAIC values in-
creased respectively from −11.963 and −12.035 at MIC1
to −11.731 and −11.802 at MIC8, while AWB’s LOO and
WAIC values increased respectively from−8.63 and−9.302
at MIC1 to−8.181 and−8.711 at MIC8 (Table S4c, d). CON
did not deteriorate in goodness of fit at a faster rate than
AWB with respect to increasing prewarming MIC. Increas-
ing prewarming MIC has the opposite effect on the MIC-
to-SOC ratio compared to increasing prewarming SOC, but
both changes worsened goodness of fit across all metrics, in-
dicating that changes to the prewarming MIC-to-SOC ratio
did not produce consistent trends.
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Figure 5. Goodness-of-fit metrics plotted against initial steady-state SOC for AWB and CON models for (a) LOO, (b) WAIC cross validation,
(c) LPML, and (d) R2 values. Preperturbation steady-state MIC, DOC, and ENZ (for AWB) are held constant as preperturbation SOC is
varied.

4 Discussion

Our study develops a quantitative, data-driven framework
for model comparison that could be applied across differ-
ent research questions, ecosystems, and scales. We demon-
strated the novel deployment of WAIC and LOO, two more
recently developed Bayesian goodness-of-fit metrics that es-
timate model predictive accuracy, to evaluate SBMs using
data from longitudinal soil warming experiments. WAIC and
LOO improve upon older and more frequently used metrics,
such as AIC and DIC, by accounting for model complex-
ity and overfitting of data in a more comprehensive, stable,
and accurate fashion. The quantitative agreement between
WAIC, LOO, and LPML reinforces the reliability and va-
lidity of information criteria and cross-validation metrics to
complement use of frequentist R2.

We constrained the fitting of AWB and CON to bio-
logically reasonable parameter space by fixing prewarming
steady-state C pool densities and establishing prior distribu-
tions informed by expert judgment (Table S2). We observed
that, despite the qualitative difference in the shapes of their
mean posterior predictive fit curves, CON and AWB could
both potentially account for the soil warming response in
the meta-analysis data set. For both models, posterior pre-
dictive fit distributions overlapped with the confidence inter-
vals of the data points (Fig. 2). However, with respect to the
Bayesian goodness-of-fit metrics, CON quantitatively out-
performed AWB across all prewarming SOC and MIC densi-
ties observed (Figs. 5 and S4) because the Bayesian metrics
adjusted for AWB’s larger model size and consistently higher
effective parameter count (Fig. S8). For both models, lower

prewarming SOC densities corresponded to better warming
response fits (Fig. 5).

4.1 Model responses to warming over time

After fitting, the response ratio curves of CON and AWB
both trended toward the prewarming steady-state response
ratio of 1.0 following the soil warming perturbation (Fig. 3).
The settling of the curves to the prewarming model steady
states aligns with previous literature which demonstrated
that the magnitude of CO2 flux tends to fall after reaching
a postwarming maximum (Crowther et al., 2016; Romero-
Olivares et al., 2017). In the meta-analysis data set, this peak
is reached immediately at the first data point at t = 0.5 years
(Fig. 2). CON matched this data pattern in all of our ob-
served simulations in outputting maximum response ratios
at the first time point after warming (Figs. S3a, c and S1a,
b). AWB was unable to output maximum response ratios at
the first time point (Fig. 3b, d) and was therefore penalized
in quantitative goodness of fit. Examining AWB’s system of
equations (Sect. S1b), we surmise that one reason for the later
peak was due to the slower growth of MIC in the biologically
truncated parameter space that AWB was limited to. MIC is a
driving force for the increase in the CO2 flux as a numerator
term in the AWB flux equation (Sect. S1b, Eq. S11). Un-
like MIC biomass in CON (Sect. S1a, Eq. S3), MIC biomass
growth in AWB has two loss terms in its differential equation
(Sect. S1b, Eq. S8).

This is not to say that CON was clearly superior from
a qualitative standpoint. CON’s mean posterior predictive
curves were not able to match a subsequent local data max-
imum in the meta-analysis data set at t = 3.5 years, a trend
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which AWB’s curves were able to replicate. The mean CON
curves also substantially overshoot the data at later time
points following t = 7.5 years (Figs. 2a and 3a and c, as well
as Fig. S1a and b) because of the inability of first-order linear
models such as CON to display oscillatory dynamics (Hale
and LaSalle, 1963).

In contrast, AWB displays damped oscillations in its re-
sponse ratios following warming due to its nonlinear dynam-
ics (Figs. 2 and 3). AWB was able to match the points after
t = 7.5 years more closely than CON. The presence of respi-
ration oscillations has been observed in long-term warming
experiments, such as the one taking place at Harvard Forest
(Melillo et al., 2017). It is possible AWB would be quantita-
tively rewarded in goodness-of-fit metrics over CON for its
ability to replicate biologically realistic oscillations in larger,
site-specific data sets such as those from Harvard Forest.

4.2 Sensitivity analyses of C pool densities and density
ratios

We performed a goodness-of-fit sensitivity analysis to check
whether the response ratio trends stayed consistent, biologi-
cally realistic, and interpretable across a range of prewarm-
ing, steady-state soil C densities and pool-to-pool density
ratios. For instance, we imposed constraints to reflect that
MIC-to-SOC density ratios range between 0.01 and 0.04
across various soil types (Anderson and Domsch, 1989; Spar-
ling, 1992). CON and AWB response ratio curves exhibited
realistic values and qualitatively consistent shapes across all
prewarming SOC and MIC steady-state densities, even at
less realistic SOC densities above 100 mg C g−1 soil (Fig. 3).
There was enough uncertainty in the data that the 95 % pos-
terior predictive intervals for the model output always over-
lapped with the 95 % confidence intervals of each fitted data
point (Fig. 2). In most cases, the posterior mean response ra-
tio curve also fell within the 95 % data confidence interval.

We were unable to initiate our prewarming SOC steady-
state density below SOC50 with the priors and MIC-to-SOC
ratios used for AWB. Under SOC50, AWB HMC runs would
not reliably run to conclusion and would terminate due to
ODE instabilities. Even at SOC50, we saw a reduction in
independent and effective samples for certain parameters,
namely EaK and ECref (Table S5). We did not drop under
SOC50 for CON, as we sought to compare AWB and CON at
similar MIC-to-SOC ranges. Our experience underscores the
challenge of choosing realistic steady-state soil C densities,
density ratios, and prior distributions to obtain valid model
comparisons limited to biologically realistic regimes.

The information criteria and cross-validation fit metrics
generally indicated higher relative probability and predictive
performance at lower prewarming SOC values for AWB and
CON (Fig. 5). The fit results suggest that SOC density of
the soil at the sites included in the meta-analysis was likely
closer to the lower end of the SOC density ranges examined
in our sensitivity analysis. A less pronounced trend toward

better fits was observed as prewarming MIC density was de-
creased while prewarming SOC density was held constant
(Fig. S4). No clear relationship was observed between MIC-
to-SOC ratio and goodness of fit in the AWB and CON mod-
els.

The worsening IC and CV results at higher SOC densities
support the notion that prewarming steady-state SOC den-
sities should not be initialized over SOC100 in AWB and
CON when fitting to this meta-analysis data set. Prewarm-
ing SOC density was not observed to exceed 50 mg SOC g−1

soil at sites included in the meta-analysis, reaching a maxi-
mum of 45 mg SOC g−1 soil for the top 20 cm in one study
with alpine wetland soil (Zhang et al., 2014). The majority
of the CO2 respired by soil microbes is sourced from surface
soil (Fang and Moncrieff, 2005), and it is well documented
that SOC densities increase toward the soil surface (Jobbágy
and Jackson, 2000). 14C measurements of CO2 fluxes sug-
gest that SOC densities representing the source of most het-
erotrophic respiration range between 40 and 80 mg SOC g−1

soil (Trumbore, 2000), so the effective SOC densities asso-
ciated with soil respiration at some meta-analysis sites may
have been in this range.

Overall, the Bayesian metrics from the goodness-of-fit
sensitivity analysis suggest that CON is superior to AWB at
explaining the meta-analysis data set when accounting for
model parsimony, particularly when the models are initiated
in more realistic ranges of prewarming SOC densities under
SOC100. However, we caution against using these results to
conclude that CON is a comprehensively superior predictive
model over AWB without comparisons involving other lon-
gitudinal soil warming data sets. And other data aside, we ob-
serve that AWB has a useful advantage over CON conditional
on the meta-analysis data set alone: AWB was more tolerant
of changes in prewarming conditions, displaying less IC and
CV than CON as prewarming SOC is increased (Fig. 5a–c).
AWB’s compensatory ability stemming from its larger model
size could be more quantitatively rewarding in goodness-of-
fit sensitivity analyses conducted on data assimilations with
larger data sets.

For an additional check on the biological realism and
plausibility of our simulations, we conducted a sensitivity
analysis examining changes in model SOC stocks following
warming. The response ratios of postwarming SOC stocks
after 12.5 years, evaluated as the ratio of postwarming to pre-
warming SOC densities, was computed from observed CON
and AWB simulations at the posterior parameter means. SOC
losses indicated by the response ratios ranged from 8.13 % to
27.1 % across both models (Fig. S3). These results aligned
with a recent comprehensive meta-analysis of 143 soil warm-
ing studies (Fig. S10). The largest loss of 27.1 %, occurring
in CON at SOC50, is sizable, but the meta-analysis included
seven studies measuring losses greater than 20 %, with the
maximum loss observed at 54.4 % (van Gestel et al., 2018).

Raising prewarming SOC reduced SOC loss after
12.5 years of warming for both models (Fig. S3a). For
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CON, SOC loss decreased from 27.1 % at SOC50 to 9.2 %
at SOC200. For AWB, SOC loss decreased from 17.2 % at
SOC50 to 8.13 % at SOC200. Varying prewarming MIC af-
fected the SOC response ratio more substantially for AWB
than CON (Fig. S3b). For AWB, SOC loss increased from
11.4 % at MIC1 to 16.3 % at MIC8, while SOC loss de-
creased from 18.8 % at MIC1 to 17.4 % at MIC8 for CON.
The larger effect of increasing MIC on the SOC response ra-
tio in AWB is likely due to MIC influence on SOC-to-DOC
turnover, which is not a feedback accounted for in the equa-
tions of the CON model (Sect. S1a).

The posterior means for the Arrhenius activation energy
parameters Ea of CON and AWB returned by the HMC sim-
ulations across the observed prewarming C densities (Ta-
ble S3) differed somewhat from the parameter values used
in Allison et al. (2010) and Li et al. (2014), which were in
turn tuned based on activation energies estimated in a prior
empirical analysis of enzyme-catalyzed soil organic matter
decomposition processes (Trasar-Cepeda et al., 2007). In Al-
lison et al. (2010), CON parameters EaS, EaD, and EaM were
respectively set at 47, 40, and 40 kJ mol−1, and AWB param-
eters EaV and EaVU were both set at 47 kJ mol−1. The AWB
Michaelis–Menten KM terms were not parameterized to have
Arrhenius temperature dependence in Allison et al. (2010).
In Li et al. (2014), CON parameters EaS, EaD, and EaM were
set at 47, 47, and 20 kJ mol−1, and AWB parameters EaV,
EaVU, EaK, and EaKU were set at 47, 47, 30, and 30 kJ mol−1.
These values were in line with the activation energies calcu-
lated in Trasar-Cepeda et al. (2007), which ranged from 17.0
to 57.7 kJ mol−1, with the energies corresponding to the de-
composition of plant litter and protected organic matter being
on the higher end and the energies corresponding to micro-
bial biomass degradation being on the lower.

Our HMC simulations arrived at higher Ea values, with the
posterior means of EaS, EaD, and EaM respectively ranging
from 51.3 to 77.6, 50.1 to 50.3, and 51.8 to 52.6 kJ mol−1

in the prewarming SOC-varied simulations for CON, and the
posterior means of EaV, EaVU, EaK, and EaKU respectively
ranging from 58.5 to 74.8, 50.2 to 51.1, 25.8 to 42.4, and 49.0
to 49.8 kJ mol−1 for AWB. However, these values are still
within the ranges of organic matter decomposition activation
energies, which have been empirically estimated to exceed
100 kJ mol−1 at their highest in the A horizons of temperate
soils (Steinweg et al., 2013), suggesting that the Ea posterior
means, aided by prior truncation, effectively remained within
biologically realistic space across all observed prewarming
C densities. The presence of higher EaS posterior means also
agreed with the empirical trends of higher activation ener-
gies for the degradation of SOC-related organic compounds
and lower activation energies for the degradation of material
associated with microorganisms.

We found it less useful to compare the posterior means of
other fitted parameters including the C pool transfer coeffi-
cients, C use efficiency EC, and Vmax to empirical estimates
for biological benchmarking purposes. Unitless parameters

like transfer coefficients and EC defy straightforward in-
terpretation, measurement, and estimation from experiments
(Bradford and Crowther, 2013). Very different values can
be found based on whether substrate-specific or substrate-
nonspecific assumptions and methods are used (Geyer et al.,
2019; Hagerty et al., 2018). Vmax parameters are not unit-
less but display even higher variance than the bounded C
transfer and efficiency coefficients. The Vmax parameter cor-
responding to a specific enzyme can vary over orders of mag-
nitude when the sensitivity of the enzyme to an interval of
temperatures is considered (Nottingham et al., 2016). The
process of consolidating experimental substrate-specific and
substrate-nonspecific measurements into a single number to
correspond to a model Vmax value introduces further compli-
cations and uncertainty, rendering comparisons of potentially
drastically different Vmax values less informative regarding
model biological realism.

4.3 HMC parameter space exploration

Truncating prior and posterior parameter distributions proved
useful for establishing biological constraints and only mod-
estly deformed posterior densities for AWB and CON. From
SOC100 to SOC200, CON and AWB posterior densities
showed little or no deformation from typical normal distri-
bution shapes. Moderate posterior density deformation was
observed for some parameters in both models at SOC50 and
SOC75, namely EaS for CON and ECref for AWB (Fig. S11).
Even so, most of the other parameter posterior densities still
remained undeformed at those SOC values. Thus, prior trun-
cation generally did not prevent posterior means from falling
within biologically realistic intervals, suggesting that priors
were appropriately informed and chosen.

A small frequency of divergent transitions was detected
in the AWB HMC simulations. Divergent transitions can
be thought of as algorithm trajectory errors arising during
the HMC’s exploration of a convoluted region of parameter
space; a more thorough description of the theory, computa-
tion, and implications of divergent transitions can be found
in literature focusing on the Hamiltonian Monte Carlo al-
gorithm (Betancourt, 2016, 2017). The number of divergent
transitions generally increased as the prewarming MIC-to-
SOC steady-state ratio was reduced (Fig. S9). Prior trun-
cation and the fixing of select parameters to constrain the
prewarming steady-state mass values for biological realism
could have played a combined role in generating the Markov
chain divergences by hindering the smooth exploration of pa-
rameter space. We were unable to eliminate divergent transi-
tions by adjusting HMC parameter proposal step size, sug-
gesting that other methods, such as modification of the HMC
algorithm itself or introduction of auxiliary parameters to
AWB that reduce correlation between existing model param-
eters, may be more applicable in reducing divergent transi-
tions in our case (Betancourt and Girolami, 2015). Addition-
ally, the interaction between the ranges of values used for the
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prior distributions and the limited number of observations in
the data set could have contributed to the shaping of geomet-
ric inefficiencies (Betancourt, 2017).

It is possible that the instability that prevented consistent
solving and HMC exploration of AWB under SOC50 could
be traced to the forward Michaelis–Menten formulation of
decomposition and uptake kinetics used in the present ver-
sion of the AWB model (Sect. S1, Eqs. S7, S8). We initial-
ized the system with a small DOC density lower than that
of MIC at 0.1 mg C g−1 soil. Since DOC was in the denom-
inator of these decomposition and uptake expressions, those
expressions could become larger than tolerable for the sys-
tem in certain parameter regimes.

Some suggestions for the reparameterization of AWB to
improve model stability have been proposed that could re-
duce or even eliminate divergent transitions by facilitating a
smoother and steadier parameter space conducive for HMC
exploration. One intermediate possibility would be to mod-
ify AWB to use reverse Michaelis–Menten kinetics, which
would replace the DOC term in the denominators of the
decomposition and uptake expressions with the larger MIC
term. The use of reverse instead of Michaelis–Menten dy-
namics has been used to stabilize and constrain other SBMs
(Sulman et al., 2014; Wieder et al., 2015b). A more exten-
sive reformulation involves the replacement of Michaelis–
Menten expressions with equilibrium chemistry approxima-
tion (ECA) kinetics, which would increase the number of
denominator terms in decomposition expressions for further
stability. ECA equations have been shown to be more consis-
tent in behavior and robust to parameter regime variation than
their Michaelis–Menten counterparts, and they thus have
been encouraged as a wholesale replacement for Michaelis–
Menten formulations (Tang, 2015; Wang and Allison, 2019).
These reparameterizations should be implemented and exam-
ined in future work that involves sampling and computation
of AWB posteriors.

4.4 Outlook and conclusions

Recent SBM comparisons have been unable to demonstrate
the superiority of one model over another because the un-
certainty boundaries of the data were not sufficient for dis-
tinguishing model outcomes (Sulman et al., 2018; Wieder et
al., 2014, 2015b, 2018). Similar to these previous studies, our
results indicate that more data is needed to constrain and dif-
ferentiate between model posterior predictive distributions.
Conditional on the meta-analysis data set, CON demon-
strates superior quantitative goodness of fit over AWB, but
we are not confident that the relative model parsimony of
CON and other linear first-order models makes them univer-
sally more suitable for predictive use.

Consequently, future SBM comparisons would benefit
from additional data collection efforts sourced from long-
term ecological research experiments to globally verify the
strengths and limitations of linear versus nonlinear SBMs,

including CON and AWB, in Earth system modeling. The
limited number of longitudinal soil warming studies presents
a challenge for facilitating site-specific model comparisons.
We addressed this issue by using meta-analysis data to ag-
gregate warming responses across sites, but this approach
does not provide site-specific parameters. Additional data
from ongoing and future field warming studies in the vein
of the Harvard Forest and Tropical Responses to Altered Cli-
mate experiments that demonstrate more varied flux dynam-
ics over time than the meta-analysis data set will be of critical
importance for model testing (Melillo et al., 2017; Wood et
al., 2019). Model parameters could also be better constrained
through the use of multivariate data sets, for example micro-
bial biomass dynamics in addition to soil respiration.

Our approach can be expanded to compare the predictive
accuracies of linear microbial-implicit models to those of re-
cently developed nonlinear microbial-explicit SBMs that are
much larger than AWB, such as CORPSE (Sulman et al.,
2014) and MIMICS (Wieder et al., 2014). Such comparisons
will help broadly determine if inclusion of more detailed mi-
crobial dynamics in models offers predictive advantages that
can overcome the overfitting burdens associated with an in-
crease in parameter count. With the appropriate data sets,
our approach can also be applied to consider the predictive
performance of SBMs that describe the cycling of nitrogen
(N), phosphorus (P), and other limiting nutrients in addition
to C dynamics. Models that represent N and P mineraliza-
tion have yet to see extensive head-to-head statistical bench-
marking against C-only models with respect to predictive use
(Manzoni and Porporato, 2009). With models growing ever
larger in size and specificity, there is a need to verify whether
detailed representation of microbial processes and the cy-
cling of limiting nutrients are worth the increase in variable,
parameter, and equation counts. After all, “the tendency of
more recent models towards more sophisticated (and gener-
ally more mathematically complex) approaches is not always
paralleled by improved model performance or ability to inter-
pret observed patterns” (Manzoni and Porporato, 2009).

The data assimilation and posterior sampling of complex
models in future work comes with computing performance
challenges. Markov chain Monte Carlo algorithms are effec-
tive for exploring multidimensional parameter space but are
limited by temporal and computational expense, particularly
when it comes to fitting nonlinear differential equation mod-
els (Calderhead et al., 2009; Nemeth and Fearnhead, 2019).
Time per Markov chain iteration drastically increases with
number of parameters and data points. In fact, the present
speed limitations of the family of HMC algorithms make it
necessary to use a hybrid approach utilizing Monte Carlo
and deep learning algorithms for parameter estimation at a
global scale; Monte Carlo fitting is used to constrain param-
eter estimates at a site-based scale before those estimates
are tuned globally by deep learning using spatial informa-
tion derived from satellite maps (Tao et al., 2020). However,
Monte Carlo algorithms are still the optimal methods for
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posterior computation (Duan et al., 2018) and are necessary
for Bayesian model comparisons conditional on site-based
data. Consequently, recent Monte Carlo algorithm innova-
tions and developments that offer theoretical speed improve-
ments by trading thorough posterior sampling for numerical
efficiency have been encouraging and are ripe to be tested
in future SBM comparisons involving more complex mod-
els and larger data sets. These developments include stochas-
tic gradient Monte Carlo sampling methods, a class of tech-
niques in which a posterior is approximated by fitting to a
small subset of data at each iteration rather than estimated
through exhaustive sampling (Ma et al., 2015), and Gaussian
process acceleration, in which a smooth distribution of likely
solutions for a differential equation system is specified and
sampled in place of explicitly solving for the state variables
during every Markov chain iteration (Calderhead et al., 2009;
Dondelinger et al., 2013; Wang and Barber, 2014).

Alongside advances in Monte Carlo algorithms, additional
developments in Bayesian cross-validation and information
criteria measures are also available for practical trialing in
soil biogeochemical data assimilation. Gelman et al. (2019)
have proposed a stable Bayesian counterpart of frequentist
R2 defined as “the variance of the predicted values divided by
the variance of predicted values plus the expected variance of
the errors” that allows for more intuitive and direct compari-
son to R2 (Gelman et al., 2019). A Bayesian R2 distribution
provides a signal about the absolute rather than relative good-
ness of fit of an associated posterior predictive distribution to
the data. Bürkner et al. (2019) have proposed a leave-future-
out (LFO) cross-validation metric which is formulated to es-
timate relative model predictive accuracy for hypothetical
time series data occurring after existing experiment observa-
tions. LFO and LOO are computed similarly, and LOO can
also be used for time series data, as we demonstrated in this
study. However, the algorithmic differences between LFO
and LOO make them better suited for different goals. LOO
does not inform about the quality of model fits for hypothet-
ical samples collected after final reported measurements and
is more appropriate for estimating out-of-sample model pre-
dictive accuracy for hypothetical data samples taken between
the interval of observed measurement times (Vehtari et al.,
2017).

The development of our formalized, statistically rigorous
approach for model comparison and evaluation is a critical
step toward the goal of projecting global SOC levels and
soil emissions throughout the 21st century. Our initial results
indicate promise in continued refinement and expansion of
our approach to evaluate the predictive performance of lin-
ear and nonlinear SBMs. The future integration of updated
Markov chain algorithms and Bayesian predictive accuracy
metrics into our framework will expand the ability to effi-
ciently and thoroughly compare differential equation models,
even if they vary widely in structure and complexity.

Code and data availability. The R scripts, Stan code, and res-
piration data set used for HMC model fitting along with
the original soil respiration meta-analysis data set (Romero-
Olivares et al., 2017) are available from the directory located at
https://doi.org/10.17605/OSF.IO/7MEY8 (Xie et al., 2020).

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/bg-17-4043-2020-supplement.

Author contributions. SDA and HWX designed the study with as-
sistance from MG. HWX and ALRO performed the data cleaning
and analysis. HWX wrote the necessary code for the study with
assistance from SDA. SDA and HWX prepared the paper with sug-
gestions from MG.

Competing interests. The authors declare that they have no conflict
of interest.

Acknowledgements. We would like to thank Stan development
team members Aki Vehtari (Aalto University), Michael Betan-
court (Symplectomorphic, LLC), Bob Carpenter (Flatiron Institute),
Ben Bales (Columbia University), Charles Margossian (Columbia
University), and Sebastian Weber (Novartis) for their patient help
with Stan code implementation and troubleshooting. We would also
like to thank both anonymous reviewers for their valuable and con-
structive comments, which not only aided in the revision of the
manuscript but also provided valuable insights to guide future work.

Financial support. This research has been supported by the Na-
tional Science Foundation (grant no. DEB-1900885), the U.S. De-
partment of Energy Office of Science BER-TES program under
grant DESC0014374, and the National Institutes of Health T32
Training Program (National Institute of Biomedical Imaging and
Bioengineering, grant no. EB009418).

Review statement. This paper was edited by Trevor Keenan and re-
viewed by two anonymous referees.

References

Allison, S. D., Wallenstein, M. D., and Bradford, M. A.: Soil-carbon
response to warming dependent on microbial physiology, Nat.
Geosci., 3, 336–340, https://doi.org/10.1038/ngeo846, 2010.

Anderson, T.-H. and Domsch, K. H.: Ratios of microbial
biomass carbon to total organic carbon in arable soils, Soil
Biol. Biochem., 21, 471–479, https://doi.org/10.1016/0038-
0717(89)90117-X, 1989.

Beskos, A., Pillai, N., Roberts, G., Sanz-Serna, J. M., and Stuart, A.:
Optimal tuning of the hybrid Monte Carlo algorithm, Bernoulli,
19, 1501–1534, https://doi.org/10.3150/12-BEJ414, 2013.

Biogeosciences, 17, 4043–4057, 2020 https://doi.org/10.5194/bg-17-4043-2020

https://doi.org/10.17605/OSF.IO/7MEY8
https://doi.org/10.5194/bg-17-4043-2020-supplement
https://doi.org/10.1038/ngeo846
https://doi.org/10.1016/0038-0717(89)90117-X
https://doi.org/10.1016/0038-0717(89)90117-X
https://doi.org/10.3150/12-BEJ414


H. W. Xie et al.: A Bayesian approach to evaluation of soil biogeochemical models 4055

Betancourt, M.: Diagnosing Suboptimal Cotangent Disinte-
grations in Hamiltonian Monte Carlo, arXiv [preprint],
arXiv:1604.00695, 3 April 2016.

Betancourt, M.: A Conceptual Introduction to Hamiltonian Monte
Carlo, arXiv [preprint], arXiv:1701.02434, 10 January 2017.

Betancourt, M. and Girolami, M.: Hamiltonian Monte Carlo for Hi-
erarchical Models, Curr. Trends Bayesian Methodol. with Appl.,
79–101, https://doi.org/10.1201/b18502, 2015.

Bradford, M. A. and Crowther, T. W.: Carbon use efficiency
and storage in terrestrial ecosystems, New Phytol., 199, 7–9,
https://doi.org/10.1111/nph.12334, 2013.

Bürkner, P.-C., Gabry, J., and Vehtari, A.: Approximate leave-
future-out cross-validation for Bayesian time series models,
arXiv [preprint], arXiv:1902.06281, 17 February 2019.

Calderhead, B., Girolami, M., and Lawrence, N. D.: Accelerating
Bayesian Inference over Nonlinear Differential Equations
with Gaussian Processes, in: Advances in Neural Information
Processing Systems 21, edited by: Koller, D., Schuurmans,
D., Bengio, Y., and Bottou, L., 217–224, Curran Associates,
Inc., available at: http://papers.nips.cc/paper/3497-accelerating-
bayesian-inference-over-nonlinear-differential-equations-with-
gaussian-processes.pdf (last access: 5 August 2020), 2009.

Carpenter, B., Gelman, A., Hoffman, M. D., Lee, D., Goodrich, B.,
Betancourt, M., Brubaker, M. A., Guo, J., Li, P., and Riddell, A.:
Stan: A probabilistic programming language, J. Stat. Softw., 76,
1–32 https://doi.org/10.18637/jss.v076.i01, 2017.

Christensen, R., Johnson, W., Branscum, A., and Hanson, T. E.:
Bayesian Ideas and Data Analysis: An Introduction for Scientists
and Statisticians, 1st Edn., CRC Press, Boca Raton, FL, USA,
2010.

Crowther, T. W., Todd-Brown, K. E. O., Rowe, C. W., Wieder, W.
R., Carey, J. C., MacHmuller, M. B., Snoek, B. L., Fang, S.,
Zhou, G., Allison, S. D., Blair, J. M., Bridgham, S. D., Burton,
A. J., Carrillo, Y., Reich, P. B., Clark, J. S., Classen, A. T., Di-
jkstra, F. A., Elberling, B., Emmett, B. A., Estiarte, M., Frey, S.
D., Guo, J., Harte, J., Jiang, L., Johnson, B. R., Kroël-Dulay, G.,
Larsen, K. S., Laudon, H., Lavallee, J. M., Luo, Y., Lupascu, M.,
Ma, L. N., Marhan, S., Michelsen, A., Mohan, J., Niu, S., Pen-
dall, E., Peñuelas, J., Pfeifer-Meister, L., Poll, C., Reinsch, S.,
Reynolds, L. L., Schmidt, I. K., Sistla, S., Sokol, N. W., Templer,
P. H., Treseder, K. K., Welker, J. M., and Bradford, M. A.: Quan-
tifying global soil carbon losses in response to warming, Nature,
540, 104–108, https://doi.org/10.1038/nature20150, 2016.

Curtiss, C. F. and Hirschfelder, J. O.: Integration of Stiff
Equations, P. Natl. Acad. Sci. USA, 38, 235–243,
https://doi.org/10.1073/pnas.38.3.235, 1952.

Dondelinger, F., Husmeier, D., Rogers, S., and Filippone, M.: ODE
parameter inference using adaptive gradient matching with Gaus-
sian processes, in Proceedings of the Sixteenth International
Conference on Artificial Intelligence and Statistics, Vol. 31,
edited by: Carvalho, C. M. and Ravikumar, P., 216–228, PMLR,
Scottsdale, Arizona, USA, available at: http://proceedings.mlr.
press/v31/dondelinger13a.html (last access: 5 August 2020),
2013.

Duan, L. L., Johndrow, J. E., and Dunson, D. B.: Scaling up Data
Augmentation MCMC via Calibration, J. Mach. Learn. Res., 19,
2575–2608, 2018.

Fang, C. and Moncrieff, J. B.: The variation of soil microbial res-
piration with depth in relation to soil carbon composition, Plant

Soil, 268, 243–253, https://doi.org/10.1007/s11104-004-0278-4,
2005.

Gelfand, A. E. and Dey, D. K.: Bayesian Model Choice?: Asymp-
totics and Exact Calculations, J. R. Stat. Soc. Ser. B, 56, 501–
514, 1994.

Gelfand, A. E., Dey, D. K., and Chang, H.: Model determination us-
ing predictive distributions, with implementation via sampling-
based methods (with discussion), in: Bayesian Statistics 4, edited
by: Bernardo, J. M., Berger, J. O., Dawid, A. P., and Smith, A.
F., 147–167, Oxford University Press, 1992.

Gelman, A., Hwang, J., and Vehtari, A.: Understanding predic-
tive information criteria for Bayesian models, Stat. Comput., 24,
997–1016, https://doi.org/10.1007/s11222-013-9416-2, 2014.

Gelman, A., Goodrich, B., Gabry, J., and Vehtari, A.: R-squared
for Bayesian Regression Models, Am. Stat., 73, 307–309,
https://doi.org/10.1080/00031305.2018.1549100, 2019.

Geyer, K. M., Dijkstra, P., Sinsabaugh, R., and Frey, S. D.:
Clarifying the interpretation of carbon use efficiency in soil
through methods comparison, Soil Biol. Biochem., 128, 79–88,
https://doi.org/10.1016/j.soilbio.2018.09.036, 2019.

Hagerty, S. B., Allison, S. D., and Schimel, J. P.: Evaluating
soil microbial carbon use efficiency explicitly as a function of
cellular processes: implications for measurements and models,
Biogeochemistry, 140, 269–283, https://doi.org/10.1007/s10533-
018-0489-z, 2018.

Hale, J. K. and LaSalle, J. P.: Differential Equations:
Linearity vs. Nonlinearity, SIAM Rev., 5, 249–272,
https://doi.org/10.1137/1005068, 1963.

Hararuk, O. and Luo, Y.: Improvement of global litter turnover rate
predictions using a Bayesian MCMC approach, Ecosphere, 5,
art163, https://doi.org/10.1890/ES14-00092.1, 2014.

Hararuk, O., Xia, J., and Luo, Y.: Evaluation and improvement of
a global land model against soil carbon data using a Bayesian
Markov chain Monte Carlo method, J. Geophys. Res.-Biogeo.,
119, 403–417, https://doi.org/10.1002/2013JG002535, 2014.

Hararuk, O., Zwart, J. A., Jones, S. E., Prairie, Y., and
Solomon, C. T.: Model-Data Fusion to Test Hypothesized
Drivers of Lake Carbon Cycling Reveals Importance of Phys-
ical Controls, J. Geophys. Res.-Biogeo., 123, 1130–1142,
https://doi.org/10.1002/2017JG004084, 2018.

Hindmarsh, A. C., Brown, P. N., Grant, K. E., Lee, S.
L., Serban, R., Shumaker, D. E., and Woodward, C. S.:
SUNDIALS: Suite of nonlinear and differential/algebraic
equation solvers, ACM T. Math. Software, 31, 363–396,
https://doi.org/10.1145/1089014.1089020, 2005.

Ibrahim, J. G., Chen, M.-H., and Sinha, D.: Bayesian Survival Anal-
ysis, 1st Edn., Springer-Verlag New York, New York City, New
York, 2001.

Jiang, L., Yan, Y., Hararuk, O., Mikle, N., Xia, J., Shi, Z., Tjiputra,
J., Wu, T., and Luo, Y.: Scale-dependent performance of CMIP5
earth system models in simulating terrestrial vegetation carbon,
J. Climate, 28, 5217–5232, https://doi.org/10.1175/JCLI-D-14-
00270.1, 2015.

Jobbágy, E. and Jackson, R. B.: The Vertical Distribution of Soil
Organic Carbon and Its Relation to Climate and Vegetation, Ecol.
Appl., 10, 423–436, https://doi.org/10.2307/2641104, 2000.

Kvålseth, T. O.: Cautionary Note about R2, Am. Stat., 39, 279–285,
https://doi.org/10.1080/00031305.1985.10479448, 1985.

https://doi.org/10.5194/bg-17-4043-2020 Biogeosciences, 17, 4043–4057, 2020

https://arxiv.org/abs/1604.00695
https://arxiv.org/abs/1701.02434
https://doi.org/10.1201/b18502
https://doi.org/10.1111/nph.12334
https://arxiv.org/abs/1902.06281
http://papers.nips.cc/paper/3497-accelerating-bayesian-inference-over-nonlinear-differential-equations-with-gaussian-processes.pdf
http://papers.nips.cc/paper/3497-accelerating-bayesian-inference-over-nonlinear-differential-equations-with-gaussian-processes.pdf
http://papers.nips.cc/paper/3497-accelerating-bayesian-inference-over-nonlinear-differential-equations-with-gaussian-processes.pdf
https://doi.org/10.18637/jss.v076.i01
https://doi.org/10.1038/nature20150
https://doi.org/10.1073/pnas.38.3.235
http://proceedings.mlr.press/v31/dondelinger13a.html
http://proceedings.mlr.press/v31/dondelinger13a.html
https://doi.org/10.1007/s11104-004-0278-4
https://doi.org/10.1007/s11222-013-9416-2
https://doi.org/10.1080/00031305.2018.1549100
https://doi.org/10.1016/j.soilbio.2018.09.036
https://doi.org/10.1007/s10533-018-0489-z
https://doi.org/10.1007/s10533-018-0489-z
https://doi.org/10.1137/1005068
https://doi.org/10.1890/ES14-00092.1
https://doi.org/10.1002/2013JG002535
https://doi.org/10.1002/2017JG004084
https://doi.org/10.1145/1089014.1089020
https://doi.org/10.1175/JCLI-D-14-00270.1
https://doi.org/10.1175/JCLI-D-14-00270.1
https://doi.org/10.2307/2641104
https://doi.org/10.1080/00031305.1985.10479448


4056 H. W. Xie et al.: A Bayesian approach to evaluation of soil biogeochemical models

Li, J., Wang, G., Allison, S. D., Mayes, M. A., and Luo, Y.: Soil
carbon sensitivity to temperature and carbon use efficiency com-
pared across microbial-ecosystem models of varying complexity,
Biogeochemistry, 119, 67–84, https://doi.org/10.1007/s10533-
013-9948-8, 2014.

Luo, Y., Ahlström, A., Allison, S. D., Batjes, N. H., Brovkin, V.,
Carvalhais, N., Chappell, A., Ciais, P., Davidson, E. A., Finzi,
A., Georgiou, K., Guenet, B., Hararuk, O., Harden, J. W., He,
Y., Hopkins, F., Jiang, L., Koven, C., Jackson, R. B., Jones, C.
D., Lara, M. J., Liang, J., McGuire, A. D., Parton, W., Peng, C.,
Randerson, J. T., Salazar, A., Sierra, C. A., Smith, M. J., Tian, H.,
Todd-Brown, K. E. O., Torn, M., van Groenigen, K. J., Wang, Y.
P., West, T. O., Wei, Y., Wieder, W. R., Xia, J., Xu, X., Xu, X.,
and Zhou, T.: Toward more realistic projections of soil carbon
dynamics by Earth system models, Global Biogeochem. Cy., 30,
40–56, https://doi.org/10.1002/2015GB005239, 2016.

Ma, Y.-A., Chen, T., and Fox, E. B.: A Complete Recipe for
Stochastic Gradient MCMC, in: Proceedings of the 28th Inter-
national Conference on Neural Information Processing Systems
– Vol. 2, 2917–2925, MIT Press, Cambridge, MA, USA, 2015.

Manzoni, S. and Porporato, A.: Soil carbon and nitrogen mineral-
ization: Theory and models across scales, Soil Biol. Biochem.,
41, 1355–1379, https://doi.org/10.1016/j.soilbio.2009.02.031,
2009.

Melillo, J. M., Frey, S. D., DeAngelis, K. M., Werner, W. J.,
Bernard, M. J., Bowles, F. P., Pold, G., Knorr, M. A., and Grandy,
A. S.: Long-term pattern and magnitude of soil carbon feedback
to the climate system in a warming world, Science, 358, 101–
105, https://doi.org/10.1126/science.aan2874, 2017.

Nemeth, C. and Fearnhead, P.: Stochastic gradient Markov chain
Monte Carlo, arXiv [preprint], arXiv:1907.06986, 16 July 2019.

Nottingham, A. T., Turner, B. L., Whitaker, J., Ostle, N., Bard-
gett, R. D., McNamara, N. P., Salinas, N., and Meir, P.: Tem-
perature sensitivity of soil enzymes along an elevation gradi-
ent in the Peruvian Andes, Biogeochemistry, 127, 217–230,
https://doi.org/10.1007/s10533-015-0176-2, 2016.

R Core Team: R: A Language and Environment for Statistical Com-
puting, available at: http://www.r-project.org (last access: 4 Au-
gust 2020), 2017.

Romero-Olivares, A. L., Allison, S. D., and Treseder, K. K.: Soil
microbes and their response to experimental warming over time:
A meta-analysis of field studies, Soil Biol. Biochem., 107, 32–
40, https://doi.org/10.1016/j.soilbio.2016.12.026, 2017.

Sparling, G. P.: Ratio of microbial biomass carbon to soil
organic carbon as a sensitive indicator of changes in
soil organic matter, Aust. J. Soil Res., 30, 195–207,
https://doi.org/10.1071/SR9920195, 1992.

Spiess, A. N. and Neumeyer, N.: An evaluation of R2 as an inade-
quate measure for nonlinear models in pharmacological and bio-
chemical research: A Monte Carlo approach, BMC Pharmacol.,
10, 6, https://doi.org/10.1186/1471-2210-10-6, 2010.

Stan Development Team: RStan: the R interface to Stan, available
at: https://mc-stan.org, last access: 5 August 2020.

Steinweg, J. M., Jagadamma, S., Frerichs, J., and Mayes,
M. A.: Activation Energy of Extracellular Enzymes
in Soils from Different Biomes, PLoS One, 8, 1–7,
https://doi.org/10.1371/journal.pone.0059943, 2013.

Sulman, B. N., Phillips, R. P., Oishi, A. C., Shevliakova, E., and
Pacala, S. W.: Microbe-driven turnover offsets mineral-mediated

storage of soil carbon under elevated CO2, Nat. Clim. Change, 4,
1099–1102, https://doi.org/10.1038/nclimate2436, 2014.

Sulman, B. N., Moore, J. A. M., Abramoff, R., Averill, C., Kivlin,
S., Georgiou, K., Sridhar, B., Hartman, M. D., Wang, G., Wieder,
W. R., Bradford, M. A., Luo, Y., Mayes, M. A., Morrison, E.,
Riley, W. J., Salazar, A., Schimel, J. P., Tang, J., and Classen,
A. T.: Multiple models and experiments underscore large uncer-
tainty in soil carbon dynamics, Biogeochemistry, 141, 109–123,
https://doi.org/10.1007/s10533-018-0509-z, 2018.

Tang, J. Y.: On the relationships between the Michaelis–Menten
kinetics, reverse Michaelis–Menten kinetics, equilibrium chem-
istry approximation kinetics, and quadratic kinetics, Geosci.
Model Dev., 8, 3823–3835, https://doi.org/10.5194/gmd-8-3823-
2015, 2015.

Tao, F., Zhou, Z., Huang, Y., Li, Q., Lu, X., Ma, S., Huang,
X., Liang, Y., Hugelius, G., Jiang, L., Doughty, R., Ren, Z.,
and Luo, Y.: Deep Learning Optimizes Data-Driven Represen-
tation of Soil Organic Carbon in Earth System Model Over
the Conterminous United States, Front. Big Data, 3, 1–17,
https://doi.org/10.3389/fdata.2020.00017, 2020.

Todd-Brown, K. E. O., Randerson, J. T., Hopkins, F., Arora, V.,
Hajima, T., Jones, C., Shevliakova, E., Tjiputra, J., Volodin,
E., Wu, T., Zhang, Q., and Allison, S. D.: Changes in
soil organic carbon storage predicted by Earth system mod-
els during the 21st century, Biogeosciences, 11, 2341–2356,
https://doi.org/10.5194/bg-11-2341-2014, 2014.

Trasar-Cepeda, C., Gil-Sotres, F., and Leirós, M. C.: Ther-
modynamic parameters of enzymes in grassland soils from
Galicia, NW Spain, Soil Biol. Biochem., 39, 311–319,
https://doi.org/10.1016/j.soilbio.2006.08.002, 2007.

Trumbore, S.: Age of soil organic matter and soil respi-
ration: Radiocarbon constraints on belowground C dynam-
ics, Ecol. Appl., 10, 399–411, https://doi.org/10.1890/1051-
0761(2000)010[0399:AOSOMA]2.0.CO;2, 2000.

van Gestel, N., Shi, Z., van Groenigen, K. J., Osenberg, C. W., An-
dresen, L. C., Dukes, J. S., Hovenden, M. J., Luo, Y., Michelsen,
A., Pendall, E., Reich, P. B., Schuur, E. A. G., and Hungate, B.
A.: Predicting soil carbon loss with warming, Nature, 554, E4–
E5, https://doi.org/10.1038/nature25745, 2018.

Vehtari, A. and Ojanen, J.: A survey of Bayesian predictive methods
for model assessment, selection and comparison, Stat. Surv., 6,
142–228, https://doi.org/10.1214/12-ss102, 2012.

Vehtari, A., Gelman, A., and Gabry, J.: Practical Bayesian model
evaluation using leave-one-out cross-validation and WAIC, Stat.
Comput., 27, 1413–1432, https://doi.org/10.1007/s11222-016-
9696-4, 2017.

Vehtari, A., Gabry, J., Magnusson, M., Yao, Y., and Gelman,
A.: loo: Efficient leave-one-out cross-validation and WAIC for
Bayesian models, available at: https://mc-stan.org/loo (last ac-
cess: 3 July 2020), 2019.

Wang, B. and Allison, S. D.: Emergent properties of organic mat-
ter decomposition by soil enzymes, Soil Biol. Biochem., 136,
107522, https://doi.org/10.1016/j.soilbio.2019.107522, 2019.

Wang, Y. and Barber, D.: Gaussian Processes for Bayesian Esti-
mation in Ordinary Differential Equations, in: Proceedings of
the 31st International Conference on International Conference
on Machine Learning – Vol. 32, 1485–1493, JMLR.org, Beijing,
China, 2014.

Biogeosciences, 17, 4043–4057, 2020 https://doi.org/10.5194/bg-17-4043-2020

https://doi.org/10.1007/s10533-013-9948-8
https://doi.org/10.1007/s10533-013-9948-8
https://doi.org/10.1002/2015GB005239
https://doi.org/10.1016/j.soilbio.2009.02.031
https://doi.org/10.1126/science.aan2874
https://arxiv.org/abs/1907.06986
https://doi.org/10.1007/s10533-015-0176-2
http://www.r-project.org
https://doi.org/10.1016/j.soilbio.2016.12.026
https://doi.org/10.1071/SR9920195
https://doi.org/10.1186/1471-2210-10-6
https://mc-stan.org
https://doi.org/10.1371/journal.pone.0059943
https://doi.org/10.1038/nclimate2436
https://doi.org/10.1007/s10533-018-0509-z
https://doi.org/10.5194/gmd-8-3823-2015
https://doi.org/10.5194/gmd-8-3823-2015
https://doi.org/10.3389/fdata.2020.00017
https://doi.org/10.5194/bg-11-2341-2014
https://doi.org/10.1016/j.soilbio.2006.08.002
https://doi.org/10.1890/1051-0761(2000)010[0399:AOSOMA]2.0.CO;2
https://doi.org/10.1890/1051-0761(2000)010[0399:AOSOMA]2.0.CO;2
https://doi.org/10.1038/nature25745
https://doi.org/10.1214/12-ss102
https://doi.org/10.1007/s11222-016-9696-4
https://doi.org/10.1007/s11222-016-9696-4
https://mc-stan.org/loo
https://doi.org/10.1016/j.soilbio.2019.107522


H. W. Xie et al.: A Bayesian approach to evaluation of soil biogeochemical models 4057

Wieder, W. R., Grandy, A. S., Kallenbach, C. M., and Bonan,
G. B.: Integrating microbial physiology and physio-chemical
principles in soils with the MIcrobial-MIneral Carbon Sta-
bilization (MIMICS) model, Biogeosciences, 11, 3899–3917,
https://doi.org/10.5194/bg-11-3899-2014, 2014.

Wieder, W. R., Allison, S. D., Davidson, E. A., Georgiou,
K., Hararuk, O., He, Y., Hopkins, F., Luo, Y., Smith, M.
J., Sulman, B., Todd-Brown, K., Wang, Y. P., Xia, J., and
Xu, X.: Explicitly representing soil microbial processes in
Earth system models, Global Biogeochem. Cy., 29, 1782–1800,
https://doi.org/10.1002/2015GB005188, 2015a.

Wieder, W. R., Grandy, A. S., Kallenbach, C. M., Taylor, P. G., and
Bonan, G. B.: Representing life in the Earth system with soil mi-
crobial functional traits in the MIMICS model, Geosci. Model
Dev., 8, 1789–1808, https://doi.org/10.5194/gmd-8-1789-2015,
2015b.

Wieder, W. R., Hartman, M. D., Sulman, B. N., Wang, Y.
P., Koven, C. D., and Bonan, G. B.: Carbon cycle confi-
dence and uncertainty: Exploring variation among soil bio-
geochemical models, Global Change Biol., 24, 1563–1579,
https://doi.org/10.1111/gcb.13979, 2018.

Wood, T. E., González, G., Silver, W. L., Reed, S. C., and Cava-
leri, M. A.: On the shoulders of giants: Continuing the legacy of
large-scale ecosystem manipulation experiments in Puerto Rico,
Forests, 10, 1–18, https://doi.org/10.3390/f10030210, 2019.

Xie, H. W., Romero-Olivares, A. L., Treseder, K. K., and Allison,
S. D.: A Bayesian Approach to Evaluation of Soil Biogeochem-
ical Models R And Stan Code, available at: https://osf.io/7mey8/
?view_only=af1d54f858c34c41ab4854551d015896 (last access:
4 August 2020), 2020.

Zhang, B., Chen, S., He, X., Liu, W., Zhao, Q., Zhao, L., and Tian,
C.: Responses of soil microbial communities to experimental
warming in alpine grasslands on the Qinghai-Tibet Plateau, PLoS
One, 9, e103859, https://doi.org/10.1371/journal.pone.0103859,
2014.

https://doi.org/10.5194/bg-17-4043-2020 Biogeosciences, 17, 4043–4057, 2020

https://doi.org/10.5194/bg-11-3899-2014
https://doi.org/10.1002/2015GB005188
https://doi.org/10.5194/gmd-8-1789-2015
https://doi.org/10.1111/gcb.13979
https://doi.org/10.3390/f10030210
https://osf.io/7mey8/?view_only=af1d54f858c34c41ab4854551d015896
https://osf.io/7mey8/?view_only=af1d54f858c34c41ab4854551d015896
https://doi.org/10.1371/journal.pone.0103859

	Abstract
	Introduction
	Methods
	Model structures
	Meta-analysis data
	Hamiltonian Monte Carlo fitting of differential equation models
	Model steady-state initialization
	Sensitivity analysis of C pool ratios
	Information criteria and cross validation

	Results
	Parameter posterior distributions
	Model behaviors
	Sensitivity analysis of parameter distributions to prewarming C pool densities and density ratios
	Sensitivity analysis of quantitative fit metrics to prewarming C pool densities and density ratios

	Discussion
	Model responses to warming over time
	Sensitivity analyses of C pool densities and density ratios
	HMC parameter space exploration
	Outlook and conclusions

	Code and data availability
	Supplement
	Author contributions
	Competing interests
	Acknowledgements
	Financial support
	Review statement
	References

