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Abstract. Biogeochemical ocean models are useful tools but
subject to uncertainties arising from simplifications, inaccu-
rate parameterization of processes, and poorly known model
parameters. Parameter optimization is a standard method
for addressing the latter but typically cannot constrain all
biogeochemical parameters because of insufficient observa-
tions. Here we assess the trade-offs between satellite obser-
vations of ocean color and biogeochemical (BGC) Argo pro-
files and the benefits of combining both observation types
for optimizing biogeochemical parameters in a model of
the Gulf of Mexico. A suite of optimization experiments is
carried out using different combinations of satellite chloro-
phyll and profile measurements of chlorophyll, phytoplank-
ton biomass, and particulate organic carbon (POC) from au-
tonomous floats. As parameter optimization in 3D models
is computationally expensive, we optimize the parameters in
a 1D model version and then perform 3D simulations using
these parameters. We show first that the use of optimal 1D pa-
rameters, with a few modifications, improves the skill of the
3D model. Parameters that are only optimized with respect
to surface chlorophyll cannot reproduce subsurface distribu-
tions of biological fields. Adding profiles of chlorophyll in
the parameter optimization yields significant improvements
for surface and subsurface chlorophyll but does not accu-
rately capture subsurface phytoplankton and POC distribu-
tions because the parameter for the maximum ratio of chloro-
phyll to phytoplankton carbon is not well constrained in that
case. Using all available observations leads to significant im-
provements of both observed (chlorophyll, phytoplankton,
and POC) and unobserved (e.g., primary production) vari-

ables. Our results highlight the significant benefits of BGC-
Argo measurements for biogeochemical parameter optimiza-
tion and model calibration.

1 Introduction

Oceanic primary production forms the basis of the marine
food web and fuels the biological pump, which contributes
to the sequestration of atmospheric CO2 in the ocean’s in-
terior, thus mitigating global warming. An accurate quantifi-
cation of primary production and biological carbon export is
therefore important for our understanding of the marine car-
bon cycle and for predicting how carbon cycling and marine
ecosystems will interact with climate change.

Direct observations of primary production and export flux
are relatively sparse because of the cost and effort involved in
measuring these fluxes. Numerical models can complement
sparse observations. Well-validated and calibrated models
are useful tools for hindcasting and nowcasting past and
present biogeochemical fluxes and are the most common tool
for projecting future changes.

In recent years, many biogeochemical models with differ-
ent complexities have been developed to study ocean bio-
geochemical processes. Regardless of their complexities, the
performance of these models is highly dependent on the
appropriate choice of model parameter values (e.g., maxi-
mum growth, grazing, and mortality rates), most of which are
poorly known. A standard method for choosing these param-
eters is optimization, a process by which the misfit between
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model results and available observations is minimized by it-
eratively varying parameters (Matear, 1995; Prunet et al.,
1996b, a; Fennel et al., 2011; Friedrichs et al., 2007; Kuhn
et al., 2015, 2018). However, even formal optimization typ-
ically cannot constrain all biogeochemical parameters (i.e.,
provide optimal parameter estimates with relatively small un-
certainties) because of insufficient information in the avail-
able observations (Matear, 1995; Fennel et al., 2001; Ward
et al., 2010; Bagniewski et al., 2011). For example, Matear
(1995) used a so-called simulated annealing algorithm to op-
timize three different ecosystem models and found that, even
for the simplest nutrient–phytoplankton–zooplankton model,
not all independent parameters could be constrained well,
leaving the others with large uncertainty ranges. A more re-
cent study reported that the lack of zooplankton observations
led to poor accuracy of the optimized zooplankton-related
parameters when using a suite of Lagrangian-based obser-
vations during the North Atlantic spring bloom (Bagniewski
et al., 2011). A broader suite of observation types should be
favorable to parameter optimization although complications
can arise. For example, when optimizing a suite of 1D mod-
els for the Mid-Atlantic Bight, the use of satellite particu-
late organic carbon (POC) observations in addition to satel-
lite chlorophyll did not yield further improvements in model–
data fit but degraded the representation of chlorophyll (Xiao
and Friedrichs, 2014a).

Typically surface ocean chlorophyll from satellite is the
main source of observations for model validation (e.g.,
Doney et al., 2009; Gomez et al., 2018; Lehmann et al.,
2009) and parameter optimization (Prunet et al., 1996b; Xiao
and Friedrichs, 2014a, b), supplemented by other observa-
tion types as available. However, satellites only see the ocean
surface and do not resolve the vertical distribution of chloro-
phyll. This is especially problematic in oligotrophic regions
where the deep chlorophyll maximum (DCM) is relatively
deep and hardly observed by the satellite (Cullen, 2015;
Fennel and Boss, 2003). In addition, although chlorophyll
has long been used as a proxy of phytoplankton biomass
and to estimate primary production based on some assump-
tions (Behrenfeld and Falkowski, 1997), it is not a direct
measure of carbon-based phytoplankton biomass. The ra-
tio of chlorophyll-to-phytoplankton carbon varies by at least
an order of magnitude due to physiological responses of
phytoplankton to their ambient environment (e.g., nutrients,
light, and temperature) (Cullen, 2015; Fennel and Boss,
2003; Geider, 1987). Changes in chlorophyll may result from
physiologically induced modifications of the chlorophyll-
to-phytoplankton ratio rather than actual changes in phyto-
plankton biomass (Pasqueron de Fommervault et al., 2017;
Mignot et al., 2014). Satellite surface chlorophyll alone is
therefore likely insufficient for model validation and for con-
straining biogeochemical models via parameter optimiza-
tion.

Recent advances in autonomous platforms and sensors
have opened opportunities for simultaneous measurement of

Figure 1. Model bathymetry (unit: m) with trajectories of six bio-
optical floats (small colored dots and lines) which were operated
in the Gulf of Mexico from 2011 to 2015. The location of the 1D
model is denoted by the large orange dot. The north and south black
boxes represent the Mississippi Delta and the central gulf, respec-
tively, to show comparisons of surface chlorophyll in Fig. S5.

several biological and chemical properties throughout the up-
per ocean with high resolution, over broad spatial scales and
for sustained periods (Roemmich et al., 2019). In particular,
the biogeochemical (BGC) Argo program (Roemmich et al.,
2019; Group, 2016) will provide temporally evolving 3D in-
formation on biogeochemical variability at previously unob-
served scales. Here we assess to what degree observations of
chlorophyll fluorescence and particle backscatter from Argo
profiles improve the prospects of optimizing a biogeochemi-
cal model for the Gulf of Mexico.

Since the high computational cost and storage demands of
3D models make direct application of most parameter opti-
mization techniques difficult (but see Mattern et al., 2012;
Mattern and Edwards, 2017; Tjiputra et al., 2007, for excep-
tions), they are typically applied in computationally efficient
1D models before using the resulting parameters in the 3D
version (e.g., Hoshiba et al., 2018; Kane et al., 2011; Kuhn
and Fennel, 2019; Schartau and Oschlies, 2003). We follow
the latter approach here.

The main objective of this study is to assess the added
value of bio-optical profile information from Argo floats for
biogeochemical model optimization in the Gulf of Mexico.
We first examine the feasibility of improving the 3D model
by applying the optimal parameters from 1D model optimiza-
tions with some minor manual modifications. We find that
the gains from the 1D optimizations transfer to the 3D ver-
sion. Then, by using different combinations of satellite and
float observations, we show that parameters optimized with
respect to satellite data cannot reproduce subsurface distri-
butions unless the float observations (i.e., chlorophyll, phy-
toplankton, and POC) are also used.
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2 Study region

The Gulf of Mexico (GOM) is a semienclosed marginal sea
(Fig. 1) which is characterized by eutrophic coastal waters
on the northern shelf and an oligotrophic deep ocean. The
high productivity in the northern coastal region is fueled by
large nutrient and freshwater inputs from the Mississippi and
Atchafalaya rivers. The large nutrient load and strong strat-
ification driven by Mississippi and Atchafalaya River inputs
lead to summer hypoxia and ocean acidification in bottom
waters on the northern shelf (Laurent et al., 2017; Yu et al.,
2015), but nutrient export across the shelf break into the open
gulf is minor (Xue et al., 2013).

The deep ocean of the GOM is oligotrophic. Previous
satellite-based studies have revealed a clear seasonal cycle in
surface chlorophyll, with the highest concentrations in win-
ter and the lowest in summer (Martínez-López and Zavala-
Hidalgo, 2009; Muller-Karger et al., 1991, 2015). Thanks to
advances in autonomous profiling technology, recent studies
based on simultaneous measurements of subsurface chloro-
phyll and backscatter have demonstrated that the seasonal
variability of surface chlorophyll might be a result of the ver-
tical redistribution of subsurface chlorophyll and/or physi-
ological response to solar radiation of phytoplankton (Pas-
queron de Fommervault et al., 2017; Green et al., 2014).

3 Methods

3.1 Biological observations

Monthly averaged satellite chlorophyll from the Ocean
Colour Climate Change Initiative project (OC-CCI, http:
//www.oceancolour.com/, last access: 25 April 2017) with
a spatial resolution of 4 km from 2010 to 2015 was used
for model validation and parameter optimization. These data
were provided by the European Space Agency (ESA), which
produced a set of validated and error-characterized global
ocean color products by merging SeaWiFS (Sea-viewing
Wide Field-of-view Sensor), MODIS (Moderate Resolution
Imaging Spectroradiometer), MERIS (Medium Resolution
Imaging Spectrometer), and VIIRS (Visible Infrared Imag-
ing Radiometer Suite) products.

In addition to the satellite-based measurements, bio-
optical measurements from six autonomous profiling floats
were used (Fig. 1), which were deployed by the Bureau of
Ocean Energy Management (BOEM) and operated in the
deep GOM from 2011 to 2015. These floats were equipped
with a CTD and bio-optical sensors to collect biweekly pro-
files of temperature, salinity, chlorophyll, and backscatter at
700 nm (bbp700 (m−1)) from the surface to 1000 m depth
(see Pasqueron de Fommervault et al., 2017; Green et al.,
2014, for more details). Chlorophyll was derived from fluo-
rescence based on the sensor manufacturer’s calibrations and
compared with the satellite estimates of surface chlorophyll.

While the surface chlorophyll measurements from the floats
and the satellite estimates both showed a typical seasonal cy-
cle and were highly correlated (R2

= 0.74; see Figs. S1 and
S2a in the Supplement), the satellite underestimated the float-
measured chlorophyll concentrations in winter (Fig. S1c).
Satellite estimates were therefore corrected following the re-
gression equation shown in Fig. S2a.

The backscatter sensor carried by the floats provided the
volume scattering function at a centroid angle of 140◦ and a
wavelength of 700 nm (β(140◦, 700 nm) m−1 sr−1). The pro-
files were filtered (Briggs et al., 2011) to remove spikes and
then converted into bbp700 following Green et al. (2014).
After that, profiles of bbp700 were converted into bbp470
based on a power law (Boss and Haëntjens, 2016) to obtain
the phytoplankton (mmol N m−3) and POC (mg C m−3) esti-
mates:

bbp(λ1)=
(λ1
λ2

)−γ
bbp(λ2), (1)

Phy= 30100×
bbp470− 76× 10−5

12× 6.625
, (2)

log10(POC)= 1.22× log10(bbp470)+ 5.15, (3)

where λ1 and λ2 represented the measured wavelength, and
γ was estimated as 0.78 based on the global measurements.
The relationships for phytoplankton (Martinez-Vicente et al.,
2013, Eq. 2) and POC (Rasse et al., 2017, Eq. 3) were ob-
tained from a dataset for the Atlantic Ocean that covered a
wide range of oceanographic regimes from eutrophic to olig-
otrophic ecosystems. The scale factors of 12 and 6.625 in
Eq. (2) represented the molecular weight of carbon and the
Redfield ratio to convert phytoplankton concentrations from
mg C m−3 to mmol N m−3. The intercept 76×10−5 in Eq. (2)
represented the background backscatter of nonalgal detritus,
which based on Behrenfeld et al. (2005) was the backscat-
ter value when chlorophyll was zero. However, in this study,
the majority (87 %) of bbp470 in the upper 200 m was below
the intercept, and the resulting phytoplankton concentrations
were therefore close to zero, which is unrealistic in the Gulf
of Mexico. Therefore, the satellite estimate of bbp670 from
OC-CCI was converted into bbp700 and compared with the
float measurements. Compared to surface chlorophyll, sur-
face bbp700 has a less distinct seasonal cycle (Fig. S3). For
example, the coefficient of variation, defined as the ratio be-
tween standard deviation and mean to show the extent of
variability, is much lower for bbp700 (0.09 and 0.07 for floats
and satellite, respectively) than for chlorophyll (0.31 and
0.26 for floats and satellite, respectively). The float bbp700
is weakly correlated with the satellite estimates (R2

= 0.11)
and generally lower by a factor of∼ 0.45 than the satellite es-
timates (Fig. S2b). The bbp700 profiles were therefore mul-
tiplied by 2.2 before being converted to bbp470. As a result,
the mean value of the bbp470 (88×10−5 m−1) is close to the
intercept in Eq. (2) when chlorophyll went to zero. Further-
more, the resulting concentrations of phytoplankton biomass
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Table 1. Initial values and ranges of biogeochemical model parameters.

Descriptions (unit) Symbol Value Range

Radiation threshold for nitrification (W m−2) I0 0.0095a 0.005b–0.01b

Half-saturation radiation for nitrification (W m−2) kI 0.1a 0.01b–0.5b

Maximum nitrification rate (d−1) nmax 0.2c 0.01b–0.35b

Phytoplankton growth at 0 ◦C (dimensionless) µ0 0.69a 0.1b–3.0b

Initial slope of P -I curve (mg C (mg Chl W m−2 d)−1) α 0.125a 0.007a–0.13a

Half saturation for NO3 uptake (mmol N m−3) kNO3 0.5a 0.007a–1.5a

Half saturation for NH4 uptake (mmol N m−3) kNH4 0.5a 0.007a–1.5a

Phytoplankton mortality (d−1) mp 0.075 0.01b–0.2b

Aggregation parameter (d−1) τ 0.1 0.01b–25b

Maximum chlorophyll-to-carbon ratio (mg Chl mg C−1) θmax 0.0535c 0.005a–0.15b

Phytoplankton sinking velocity (m d−1) wPhy 0.1a 0.009a–25a

Maximum grazing rate (d−1) gmax 0.6a 0.1b–4b

Half saturation for phytoplankton ingestion ((mmol N m−3)2) kp 0.5 0.01b–3.5a

Zooplankton assimilation efficiency (dimensionless) β 0.75a 0.25b–0.75b

Zooplankton basal metabolism (d−1) lBM 0.01 0.01b–0.15b

Zooplankton specific excretion (d−1) lE 0.1a 0.05b–0.35b

Zooplankton mortality (d−1) mZ 0.2 0.02b–0.35b

Small detritus remineralization (d−1) rSD 0.3c 0.005b–0.25a

Large detritus remineralization (d−1) rLD 0.1 0.005b–0.25a

Small detritus sinking velocity (m d−1) wSDet 0.1a 0.009a–25a

Large detritus sinking velocity (m d−1) wLDet 1a 0.009a–25a

a Fennel et al. (2006). b Kuhn et al. (2018). c Yu et al. (2015).

and POC as well as the ratio of chlorophyll to phytoplankton
biomass are reasonable (please see Figs. 4 and 10). This gave
us confidence in our conversion process for float backscatter
and our choice of empirical equations relating backscatter to
phytoplankton and POC.

3.2 Three-dimensional model description

The physical model was configured based on the Regional
Ocean Modeling System (Haidvogel et al., 2008, ROMS,
https://www.myroms.org, last access: 16 June 2016) for the
Gulf of Mexico (Fig. 1). The model has a horizontal res-
olution of ∼ 5 km and 36 terrain-following sigma layers
with refined resolution near the surface and bottom as in
Yu et al. (2019). The model solved the horizontal and ver-
tical advection of tracers using the multidimensional pos-
itive definitive advection transport algorithm (MPDATA,
Smolarkiewicz and Margolin, 1998). Horizontal viscosity
and diffusivity were parameterized by a Smagorinsky-type
formula (Smagorinsky, 1963), and vertical turbulent mix-
ing was calculated by the Mellor–Yamada 2.5-level closure
scheme (Mellor and Yamada, 1982). Bottom friction was
specified by a logarithmic drag formulation with a bottom
roughness of 0.02 m. The model was forced by 3-hourly
surface heat and freshwater fluxes; 6-hourly air tempera-
ture, sea level pressure, and relative humidity; and 10 m
winds from the European Centre for Medium-Range Weather

Forecast ERA-Interim product with a horizontal resolu-
tion of 0.125◦ (ECMWF reanalysis, https://www.ecmwf.int/
en/forecasts/datasets/reanalysis-datasets/era-interim, last ac-
cess: 17 August 2018). A bulk parameterization was applied
to calculate the surface net heat fluxes and wind stress. The
model was one-way nested inside the 1/12◦ data-assimilative
global HYCOM/NCODA (https://www.hycom.org, last ac-
cess: 2 November 2017). Tidal constitutes were neglected in
the model.

The biogeochemical model used a seven-component
model (Fennel et al., 2006) to simulate the nitrogen cycle
in the water column. The model described the dynamics of
two species of dissolved inorganic nitrogen (nitrate, NO3,
and ammonium, NH4), one function of phytoplankton (Phy),
chlorophyll (Chl) as a separate state variable which allowed
photo-acclimation based on the model of Geider et al. (1997),
one function of zooplankton (Zoo), and two pools of detritus
(i.e., small suspended detritus, SDeN, and large fast-sinking
detritus, LDeN). Water–sediment interactions were simpli-
fied by an instantaneous remineralization parameterization,
where detritus sinking out of the water column immediately
resulted in a corresponding influx of ammonium into the bot-
tom layer. Detailed descriptions of the model equations can
be found in Fennel et al. (2006) and Laurent et al. (2017).
The biological model parameters are listed in Table 1.

The model received freshwater, nutrients (NO3 and NH4),
and organic matter inputs from major rivers along the Gulf
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Coast. Freshwater and nutrients from the Mississippi and
Atchafalaya rivers were prescribed based on the daily mea-
surements by the US Geological Survey river gauges. River
particulate organic nitrogen (PON) was assigned to the small
detritus pool and determined as the difference between to-
tal Kjeldahl nitrogen and ammonium (Fennel et al., 2011).
Other rivers utilized the climatological estimates of freshwa-
ter, nutrients, and PON as in Xue et al. (2013).

Initial and open boundary conditions for NO3 were speci-
fied by applying an empirical relationship between NO3 and
temperature, derived from the World Ocean Atlas (WOA;
Fig. S4a), that was applied to the temperature fields from
HYCOM/NCODA. Analogously, empirical relationships be-
tween chlorophyll and density (Fig. S4b), phytoplankton and
density (Fig. S4c), and POC and density (Fig. S4d) were
obtained from the median profiles of the bio-optical floats
and used to derive initial and boundary conditions for these
variables. Zooplankton and small detritus were assumed to
amount to 10 % of phytoplankton biomass and the remaining
fractions of POC attributed to large detritus. Sensitivity tests
showed that changing these allocations had little impact on
our model results.

A 6-year (5 January 2010–31 December 2015) hindcast
was performed that included the period of operation of the
bio-optical floats. The first year was considered model spin-
up and the next 5 years are discussed.

3.3 One-dimensional model description

As optimizing a 3D biogeochemical model is computation-
ally expensive, it was more practical to perform the opti-
mization using a reduced-order model surrogate. A surro-
gate can be a coarser-resolution model, a simplified model,
or a reduced-dimension model. In this study, a 1D model
was used to optimize the biological parameters of the 3D
model. This approach has been successfully used previously
(Hoshiba et al., 2018; Kane et al., 2011; Oschlies and Schar-
tau, 2005).

The 1D model, which is similar to that used by Lagman
et al. (2014) and Kuhn et al. (2015), covered the upper 200 m
of the ocean with a vertical resolution of 5 m and was con-
figured at one location in the open gulf (see Fig. 1). This
relatively fine vertical resolution was used because it was
close to that of our BGC-Argo floats (4–6 m in upper 200 m)
and was much higher than the 3D model whose vertical res-
olution varies from a few meters near the surface to about
50 m near at 200 m depth around the 1D station. In the verti-
cal direction, the water column was divided into two layers:
the turbulent surface layer and a quiescent layer below. A
higher diffusion coefficient (KZ1 =max(H 2

MLD/400,10), in
unit of m2 d−1) was applied in the turbulent surface layer,
and a lower diffusion coefficient (KZ2 =KZ1/2) was as-
signed to the quiescent bottom layer. The interface between
these two layers was determined by the mixed layer depth
(HMLD, in unit of m), defined as the depth where the temper-

ature was 5 ◦C lower than at the surface, and was obtained
from daily outputs of the 3D model. The model was inte-
grated in time using the Crank–Nicolson scheme for vertical
turbulent mixing and an implicit time-stepping scheme for
the biogeochemical tracers, which were treated identically
to the 3D model. Some of the biogeochemical parameteriza-
tions required input of temperature and solar radiation, which
were also taken from the 3D model. As the 1D model did
not consider horizontal and vertical advection, NO3 below
100 m was nudged to that from the 3D base simulation with
a nudging timescale of 20 d. The 1D model was run for the
year 2010 repeatedly for three cycles, with the first two being
model spin-up and the last annual cycle used to calculate the
misfit between the model and observations.

3.4 Parameter optimization method

The evolutionary algorithm described by Kuhn et al. (2015,
2018) was used to search for optimal model parameters by
minimizing the misfit between the model and observations.
The misfit was measured by the following cost function:

F(
−→
p )=

V∑
v=1

Fv
(−→
p
)
, (4)

Fv
(−→
p
)
=

1
Nvσ 2

v

Nv∑
i=1

(
ŷi,v − yi,v

(−→
p
))2
, (5)

where−→p represented the parameters vector, V was the num-
ber of different observation types, Nv was the number of ob-
servations for each variable, and Fv(

−→
p ) was the misfit for

observation type v measured as the mean-square difference
between observations (ŷ) and corresponding model estimates
(y(−→p )). The cost function Fv(

−→
p ) was normalized by the

standard deviation of each variable type (σv) in order to re-
move the effect of different units.

The algorithm is inspired by the rules of natural selection.
Following Kuhn et al. (2015), an initial parameter popula-
tion of 30 parameter vectors was randomly generated within
a predefined range of parameters (see Table 1). The model
was evaluated for each parameter vector and the resulting
cost function was calculated. For this initial generation and
each of the following generations, the half of the population
with the lower misfit survived into the next generation. The
other half was regenerated through a recombination of sur-
vivors in a process analogous to genetic crossover. In addi-
tion, each newly generated population was subject to ran-
dom mutations by multiplying the parameter values by a ran-
dom value between 0 and 2. Parameter values exceeding the
predefined range were replaced by their corresponding min-
imum or maximum limits to avoid unrealistic values. The
above procedure was performed iteratively for 300 genera-
tions to reach the minimum of the cost function, which cor-
responded to the optimal parameter set.

Previous parameter optimization studies have shown that
it is difficult to constrain all model parameters even for very

https://doi.org/10.5194/bg-17-4059-2020 Biogeosciences, 17, 4059–4074, 2020



4064 B. Wang et al.: Values of biogeochemical Argo profiles for biogeochemical model optimization

Figure 2. Parameter sensitivities (unit: dimensionless) with respect
to (a) chlorophyll and (b) the sum of chlorophyll, phytoplankton,
and POC.

simple ecosystem models because the information content of
available observations is typically insufficient (Matear, 1995;
Fennel et al., 2001; Ward et al., 2010). Here we conducted
sensitivity tests to identify the parameters that were most sen-
sitive to the available observations and chose a subset of these
to be optimized. In the base case, all parameters were at their
initial guess values obtained from the previous literature and
some initial tuning (Table 1). Then the test cases were run
multiple times by incrementally changing one parameter at
a time to be the minimum; the first, second, and third quar-
tile; and the maximum of its corresponding range while set-
ting the other parameters to their initial guess value (Table 1).
The sensitivity was measured as the sum of a normalized ab-
solute difference between the base case (yBase) and the test
case (yTest):

Q
(
y,
−→
p
)
=

1
m

m∑
i=1

1
n

n∑
j=1

|yBase− yTest|

yBase
, (6)

where m is the number of parameter increments (here 5) and
n is the number of base–test pairs consisting of all 1D model
grid cells throughout the whole simulation period for all vari-
ables to be compared.

Results of the sensitivity analysis are shown in Fig. 2,
where parameters are ranked by sensitivity with respect to
chlorophyll (Fig. 2a) and the sum of chlorophyll, phytoplank-
ton, and POC (Fig. 2b). POC is the sum of phytoplankton,
zooplankton, and small and large detritus.

3.5 Parameter optimization experiments

For the parameter optimization of the 1D model, satellite
chlorophyll within a 3 pixel× 3 pixel (12 km× 12 km) area
around the 1D station and monthly climatological profiles

from the BGC-Argo floats were used. For the climatologi-
cal profiles, all float profiles in the gulf were averaged be-
cause the deep Gulf of Mexico is homogenous horizontally
and only few profiles were available in the immediate vicin-
ity of the 1D station.

To assess the effects of the optimization with respect to
the different observation types, we conducted three groups of
experiments in which (A) surface satellite chlorophyll only,
(B) surface satellite chlorophyll and float profiles of chloro-
phyll, and (C) surface satellite chlorophyll and float profiles
of chlorophyll, phytoplankton, and POC were used. For each
of these three groups, four to five optimizations were con-
ducted, starting with the three most sensitive parameters and
then adding one more parameter at a time (Table 2) guided
by the sensitivity analysis with respect to the observed vari-
ables they used. Specifically, groups A and B were based
on the sensitivity analysis with respect to chlorophyll, while
group C was based on the sensitivity analysis with respect to
the sum of chlorophyll, phytoplankton, and POC. Each op-
timization was replicated four times. The optimization with
the smallest model–data misfit within each group was then
used. Prior tests have shown that the available observations
cannot simultaneously constrain the sinking rates of small
and large detritus (wSDet and wLDet) because an increase in
one parameter can be counteracted by a decrease in the other.
Therefore, a constant ratio of 0.1 between these two parame-
ters (wSDet = 0.1×wLDet) was imposed based on their prior
values, and only one of the two was optimized. In groups
A and B, the aggregation parameter τ was fixed at 0.05 be-
cause prior tests generated unreasonably high values for this
parameter.

We report two different metrics of misfits for these groups
of experiments. The first metric, which we refer to as the
case-specific cost function value, is based on the optimized
observations in a given experiment and was minimized by
the optimization algorithm, i.e.,

FA
(−→
p
)
= FsurfCHL

(−→
p
)
, (7)

FB
(−→
p
)
= FsurfCHL

(−→
p
)
+FChl

(−→
p
)
, (8)

FC
(−→
p
)
=FsurfCHL

(−→
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)
+FChl

(−→
p
)
+ . . .

FPhy
(−→
p
)
+FPOC

(−→
p
)
. (9)

However, the models with lower case-specific misfit do not
necessarily have better predictive skill in reproducing the un-
optimized observations because of the so-called overfitting
problem; e.g., the model might be tuned to reproduce opti-
mized observations through wrong mechanisms (Friedrichs
et al., 2006). To account for this, a second metric referred to
as the total misfit is given by Eq. (9). For group C, the sec-
ond metric is the same as the case-specific cost function. For
groups A and B, the total misfit metric allows us to assess
improvements in the model’s predictive skill to represent un-
optimized fields.
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Table 2. The best fit of parameter set for each optimization experiment. Dashed lines represent that these parameters are not included in the
parameter optimization and use their prior values. The optimal optimization A4, B2, and C4 which are further discussed and are denoted
simply as experiment A, B, and C are highlighted as bold.

wPhy mP kNH4 τ θmax α wLDet

1D model

Base 0.1000 0.0750 0.5000 0.1000 0.0535 0.1250 1.000
A1 0.0608 0.0100 1.5000 – – – –
A2 0.6863 0.0100 0.0195 – 0.0169 – –
A3 1.6567 0.1978 0.1004 – 0.0250 0.0219 –
A4 0.9468 0.0737 0.2454 – 0.0191 0.0101 4.9694

3D model A 0.9468 0.0737 0.0100 – 0.0191 0.0101 4.9694

1D model

B1 0.2863 0.0983 1.5000 – – – –
B2 0.4217 0.0130 0.0300 – 0.0158 – –
B3 2.1016 0.0176 1.5000 – 0.0346 0.0079 –
B4 0.0009 0.0100 1.5000 – 0.0361 0.0405 8.3514

3D model B 0.4217 0.0130 0.0100 – 0.0158 – –

wPhy rLD mP τ kNH4 wLDet θmax

1D model

Base 0.1000 0.1000 0.0750 0.1000 0.5000 1.0000 0.0535
C1 1.9231 0.2500 0.1805 – – – –
C2 0.9755 0.2500 0.0100 1.1402 – – –
C3 0.4071 0.0630 0.0100 1.8531 0.0070 – –
C4 0.0090 0.0050 0.0634 0.0995 0.0431 5.6623 –
C5 0.0090 0.2245 0.0100 0.6451 1.5000 2.5202 0.0614

3D model C 0.0090 0.0050 0.0634 0.0500 0.0100 5.6623 –

Figure 3. Annual cycle of surface chlorophyll (a), vertically inte-
grated chlorophyll (b), vertically integrated phytoplankton (c), ver-
tically integrated POC (d), and the depth (e) and magnitude (a)
of the DCM from observations (black dots with error bars); the
base case (black lines); and experiment A (orange lines; only satel-
lite surface chlorophyll is used), B (yellow lines; satellite surface
chlorophyll and float profiles of chlorophyll are used), and C (blue
lines; all available observations are used). Chlorophyll, phytoplank-
ton, and POC are integrated over the top 200 m. Black error bars
represent the interquartile range of observations.

4 Optimization of 1D models

4.1 Observations and base case

To provide context for the evaluation of our optimization ex-
periments, the observations and the base case will be de-
scribed first. As shown in Fig. 3a, the observed surface
chlorophyll shows a clear seasonality with the high concen-
trations in winter and low concentrations in summer. In the
base case, the simulated surface chlorophyll fits observations
well. Unlike the surface chlorophyll, the observed integrated
chlorophyll as well as the phytoplankton and POC over the
upper 200 m tend to be more constant with much less sea-
sonality (Fig. 3b–d). This has been reported by Pasqueron
de Fommervault et al. (2017), who attributed the seasonality
of surface chlorophyll to the vertical redistributions of sub-
surface chlorophyll and/or photoacclimation rather than real
changes in biomass.

The DCM is a ubiquitous phenomenon in the oligotrophic
regions and can form independently of the biomass maxi-
mum (Cullen, 2015; Fennel and Boss, 2003). In this study,
we define the DCM depth as where the maximum of subsur-
face chlorophyll is. Observations detect a predominant DCM
at around 60–100 m depth throughout the whole year, with
a sharp deepening in June and gradual shoaling after July
(Fig. 3e), reflecting the seasonality of the solar radiation. Un-
like the large variability in the depth of the DCM, its magni-
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Figure 4. Observed (black dots with error bars) and simulated (col-
ored lines) vertical profiles of chlorophyll, phytoplankton, and POC.
Black errors represent the interquartile range of observations. The
solid and dashed black lines in (a) represent the median values of
mixed layer depth from July and December.

tude is relatively constant at around 0.62 mg m−3 (Fig. 3f). In
the annually averaged profiles, the observed DCM is located
at about 80 m depth with a concentration of 0.52 mg m−3

(Fig. 4a). The base case succeeds in reproducing the DCM
at 65± 7 m depth. However, it fails to reproduce the deep-
ening of the DCM in June, and the simulated annually av-
eraged depth of DCM is shallower by about 15 m than the
observed. The simulated magnitude of the DCM is about 2-
fold larger than the observed (Figs. 3f and 4a), and hence
the base case generally overestimates vertically integrated
chlorophyll (Fig. 3b).

With respect to phytoplankton and POC, the observed
maximum concentration occurs at about 60 m depth, which is
20 m above the DCM (Fig. 4b–c). The observed vertical dis-
tributions of phytoplankton and POC are not well captured
by the base case. For example, phytoplankton and POC in the
upper layer are overestimated with the model–data discrep-
ancies exceeding the variability of the observations (Fig. 4b–
c). As a result, the base case yields an overall overestimation
of the vertically integrated phytoplankton and POC (Fig. 3c–
d).

Figure 4b also shows that both observed and simulated
phytoplankton approach zero at about 160 m depth. Unlike
phytoplankton, the observations show that the POC concen-
trations are 19 mg C m−3 at about 200 m depth because of
the existence of detritus, or zooplankton, or both (Fig. 4b, c).
However, the base case fails to reproduce these nonzero POC
concentrations, indicating that the model might be underesti-
mating the carbon export fluxes at 200 m.

4.2 Results of the optimizations

4.2.1 Model–data misfits

The case-specific cost function values and total misfits for
the different 1D optimizations are shown in Fig. 5. Not sur-
prisingly, all optimizations result in a reduction of the case-
specific cost function values. The extent of the reductions
depends on the specific subset of parameters that were op-
timized. However, the total misfits are not reduced in all op-
timizations. Optimizations A1 and A2 lead to slightly larger
total misfits than the base case, and optimization B2 leads to
a significantly larger total misfit. The smallest total cost func-
tion values are achieved in A4, B4, and C4, i.e., in the exper-
iments where a larger subset of parameters was optimized
(six parameters). The optimal parameter sets (A4, B2, and
C4), which are selected based on case-specific misfit from
these three groups, will be used in subsequent analyses and
hereafter are denoted simply as experiment A, experiment B,
and experiment C. Further comparisons are presented below
to assess the impact of the different combinations of obser-
vations.

4.2.2 Experiment A: satellite chlorophyll only

The optimal parameters (Table 2) from experiment A yield a
58 % reduction in the misfit for surface chlorophyll (Fig. 5d).
However, the vertical structure of chlorophyll deteriorates
relative to the base case (Fig. 4a) because of inappropriate es-
timates of the initial slope (α = 0.0101; see Table 2) and the
maximum ratio of chlorophyll to carbon (θmax = 0.0191; see
Table 2). The annually averaged depth of the DCM is lifted
up to around 30±10 m, and the magnitude of DCM strongly
decreases (Figs. 3a, 4b). Similar to chlorophyll, these deteri-
orations also manifest in the vertical phytoplankton and POC
distributions (Fig. 4b–c). As a result, experiment A underes-
timates vertically integrated chlorophyll, phytoplankton, and
POC (Fig. 3b–d).

4.2.3 Experiment B: satellite chlorophyll and
chlorophyll profiles

Due to the addition of observed chlorophyll profiles to the
optimization in experiment B, the misfits for surface and
subsurface chlorophyll decrease relative to the base case
(Fig. 5d), but the reduction in the misfit for surface chloro-
phyll (38 %) is smaller than that in experiment A (58 %).
A straightforward interpretation is that the addition of sub-
surface observations reduces the model’s degrees of freedom
to fit one single observation type (surface chlorophyll). The
vertical profile of chlorophyll is reproduced better in exper-
iment B than in the base case and experiment A in that the
magnitude of the DCM is closer to the observations, although
the DCM depth is still too shallow, on average by about 20 m
(Fig. 4a). The improvement in the vertical chlorophyll struc-
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Figure 5. The case-specific cost function values (a–c) and total mis-
fits (d) of the base case and the different optimizations.

ture results in a better model–data fit of vertically integrated
chlorophyll (Fig. 3b).

Despite the improvements in chlorophyll, the vertical pro-
files of phytoplankton and POC exhibit a marked deteriora-
tion relative to the base case and experiment A (Fig. 4b–c)
because the parameter optimization underestimates the max-
imum chlorophyll-to-carbon ratio (θmax = 0.0158; see Ta-
ble 2). Experiment B leads to an overestimation of phy-
toplankton and POC relative to the base case with misfits
roughly 2.7 and 1.6 times larger than those of the base case,
respectively (Fig. 5d). Although experiment B reproduces the
non-zero POC concentrations at about 200 m depth, the pro-
portion of phytoplankton in the POC pool is incorrect. In
contrast to the observations where the phytoplankton’s con-
tribution is negligible (Fig. 4), the simulated POC at 200 m is
dominated by phytoplankton (49 %).

4.2.4 Experiment C: all available observations

Incorporating all observations (i.e., surface chlorophyll and
profiles of chlorophyll, phytoplankton, and POC) in exper-
iment C improves the model–data misfits for almost all as-
pects except for surface chlorophyll (Fig. 3). Although a
slight increase in the misfit occurs for the surface chloro-
phyll (∼ 5 %), the total misfit is reduced by 75 % compared
to the base case. As shown in Fig. 4a, the annually averaged
depth of DCM of 80 m coincides with the observed DCM,
primarily because experiment C reproduces the deepening
of the DCM in summer. The magnitude of the DCM is also
decreased relative to the base case but remains higher than
the observed. Phytoplankton and POC profiles exhibit only
minor deviations from the observations (Fig. 4b–c). Impor-
tantly, experiment C reproduces the non-zero POC concen-
trations at 200 m. In contrast to experiment B, phytoplankton
in experiment C drops to zero at about 160 m and POC is
dominated by detritus (85 %), which is more consistent with
the observations.

4.3 Simulated carbon fluxes

Annually averaged carbon fluxes within the upper 200 m are
shown for each experiment in Fig. 6. The primary produc-
tion in the base case amounts to 0.78 g C m−2 d−1, of which
37 % is consumed by zooplankton, and the remaining 63 %
flows into detritus pools through sloppy feeding, mortality,
and aggregation of phytoplankton. As for the production of
detritus, contributions from the phytoplankton and zooplank-
ton pools account for 70 % and 30 %, respectively. Most of
the produced detritus is recycled into the nutrient pool fu-
eling recycled primary production, and only a small frac-
tion is removed from the upper layer through gravitational
sinking. As a result, carbon export, which is estimated as
the sum of sinking fluxes by phytoplankton and detritus, is
only 0.00032 g C m−2 d−1 and accounts for 0.04 % of pri-
mary production.

Due to the underestimation of phytoplankton in experi-
ment A, primary production is reduced to 0.21 g C m−2 d−1

in that case. All other fluxes in the top 200 m decrease rela-
tive to the base case as well, except for the export flux which
increases to about 0.8 % of primary production. This rela-
tive increase in export is the result of larger sinking rates of
phytoplankton and detritus (wPhy = 0.95, wLDet = 4.97; see
Table 2) than those used in the base case.

In contrast to experiment A, experiment B yields an in-
crease in primary production relative to the base case. The
proportion of the grazing flux to primary production and
the contribution of zooplankton to the production of detritus
also increase to about 59 % and 52 %, respectively. Unlike in
the other three experiments, carbon export in experiment B
is dominated by the sinking of phytoplankton, reflecting its
large contribution to POC at 200 m. Although the simulated
POC concentration at 200 m is very close to the observations,
the relative contributions of phytoplankton, zooplankton, and
detritus are problematic and likely do not result in a better
estimation of carbon export (in this case 0.3 % of primary
production).

In experiment C, primary production is 0.30 g C m−2 d−1,
with 24% flowing to zooplankton. The mortality of zoo-
plankton causes a flux of 0.047 g C m−2 d−1 to detritus,
which accounts for 17 % of the production of detritus. Fi-
nally, about 24 % of primary production is removed from the
upper 200 m through gravitational sinking. The simulated ex-
port ratio of 24 % is within the wide range of reported ex-
port ratios, from 6 % to 43 %, at 120 m depth in the Gulf of
Mexico (see Table 3 of Hung et al., 2010). Despite the high
degree of uncertainty that exists when estimating export ra-
tios (e.g., the global mean export ratio varies from ∼ 10 %
Henson et al., 2012; Lima et al., 2014; Siegel et al., 2014
to ∼ 20 % Henson et al., 2015; Laws et al., 2000), it is ob-
vious that only experiment C reproduced an export ratio of
a reasonable magnitude. A more detailed validation of pri-
mary production and export fluxes will be presented in the
following sections.
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Figure 6. Annually averaged carbon fluxes integrated over the up-
per 200 m (unit: g C m−2 d−1) for the base case (a) and optimized
experiments A, B, and C. The N, P, Z, and D stand for the pools
of nutrient, phytoplankton, zooplankton, and the sum of small and
large detritus, respectively. The thickness of arrows scales with the
magnitude of fluxes. Dashed arrows represent fluxes lower than
0.01 g C m−2 d−1.

5 Three-dimensional biogeochemical model

The optimal parameter sets from the 1D optimizations of A,
B, and C were applied in the 3D model for the whole GOM
for 5 years (2011–2015). The performance of the 3D model
can be regarded as a cross validation of the parameters op-
timized in 1D at different times and locations. It is possi-
ble that the optimization algorithm has modified parameters
to compensate for biases between 1D and 3D simulations,
e.g., the absence of advection in 1D model as well as the
differences in the model domain, model period, and model
resolution, that degrade the 3D model performance (Kane
et al., 2011). Indeed, directly applying the optimal param-
eter sets from the 1D version to the 3D model yields lower
model–data agreement than the 1D counterpart but preserves
the most important features well. For instance, when the re-
sulting parameters were used in experiment C, chlorophyll
concentrations in the upper layer were lower in the 3D model
and farther away from the observations. However, the DCM
depth and the non-zero POC concentrations at 200 m with
appropriate contributions from each component are well re-
produced in the 3D model. We therefore performed a few
manual tests and made the following modifications to the op-
timized parameters to bring the model–data agreement of the
3D model in better alignment with that of the 1D version
(Table 2): the half saturation for NH4 uptake (kNH4 ) was de-
creased to 0.01 in experiment B and C, and the aggregation
parameter (τ ) was decreased to 0.05 in experiment C.

5.1 Spatial patterns of surface chlorophyll

First, the annual climatological surface chlorophyll from the
satellite and model are compared from 2011 to 2015. The

Figure 7. Spatial distributions of the annual mean chlorophyll in
the surface layer from the satellite (OC-CCI) climatology (2011–
2015) and the different model versions. The gray contours mark the
bathymetric depths of 200 and 1000 m.

satellite estimates show high chlorophyll in the coastal re-
gions and low chlorophyll in the deep ocean (Fig. 7a). This
spatial pattern of surface chlorophyll is well reproduced in all
simulations except in experiment A, which even fails to re-
produce the relatively high chlorophyll near the Mississippi–
Atchafalaya River systems because of the high sinking rate
of phytoplankton (wPhy = 0.95; see Table 2). The largest
model–data differences occur in the coastal regions, where
all simulations underestimate the observed surface chloro-
phyll. Since all BGC-Argo floats operated in the deep ocean
(Fig. 1) and the parameter optimization is performed at one
central station without any influence from coastal environ-
ments, only the model results in the deep ocean (depth >
1000 m) will be considered in the following discussion.

5.2 Subsurface distributions

Figure 8 shows the seasonal cycles of surface chlorophyll as
well as the vertically integrated chlorophyll, phytoplankton,
and POC within the deep ocean (depth > 1000 m). Analo-
gous to the 1D models, chlorophyll, phytoplankton, and POC
were integrated over the upper 200 m. Here again the whole
deep ocean was averaged because it is homogenous horizon-
tally. In addition, we compare surface chlorophyll with satel-
lite estimates in two subregions from the Mississippi Delta
and the central gulf in Fig. S5.

Comparisons of vertical profiles between observations and
model results are given in Fig. 9. In general, the main features
in the 3D models are very similar to those in 1D. Experi-
ment A cannot constrain the vertical profiles of chlorophyll
because of the inappropriate estimation of initial slope (α),
experiment B overestimates phytoplankton and its contribu-
tion to POC since the maximum ratio of chlorophyll to car-
bon (θmax) is weakly constrained, and experiment C shows
significant improvements in the model–data agreement.

Additional comparisons of the chlorophyll-to-carbon ra-
tio, primary production, and carbon export fluxes from 1D
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Figure 8. Observed and simulated seasonal cycles of surface
chlorophyll (a), vertically integrated chlorophyll (b), vertically in-
tegrated phytoplankton (c), and vertically integrated POC (d) from
each 3D model. Solid lines represent the median values over the
deep ocean of GOM (depth > 1000 m). Error bars and shades show
the 25 % and 75 % percentiles. Chlorophyll, phytoplankton, and
POC are integrated over the top 200m.

and 3D models with observations are given in Fig. 10. The
chlorophyll-to-carbon ratio is estimated as the vertically in-
tegrated chlorophyll divided by phytoplankton in the up-
per 200 m (Fig. 10a). As an important indicator of phyto-
plankton physiological status (Geider, 1987), the observed
chlorophyll-to-carbon ratio varies considerably in response
to the ambient environment. In general, the ratios derived
from the 3D models are lower than their corresponding 1D
values, but the differences are still within the range of vari-
ability. Without utilizing the observations of phytoplankton
and POC, experiments A and B in both the 1D and the
3D versions underestimate the chlorophyll-to-carbon ratio.
In experiment C, the simulated chlorophyll-to-carbon ratios
from 1D and 3D are in good agreement with the observations
although the observed variability is underestimated.

For reference, satellite-based primary production (PP) is
provided by two algorithms, the Vertically Generalized Pro-
duction Model (VGPM, Behrenfeld and Falkowski, 1997)
and the Carbon-based Productivity Model (CbPM, Westberry
et al., 2008). As shown in Fig. 10b, satellite-based PP differs
depending on the algorithm applied. PP results from all 3D
simulations which were integrated down to 200 m are quali-

Figure 9. Observed and simulated vertical profiles of chlorophyll,
phytoplankton, and POC from each 3D model.

tatively similar to the 1D simulations. Experiment C provides
the best estimates of PP when compared to satellite-based es-
timates from VGPM and CbPM, both in 1D and 3D.

The base case and experiments A and B yield carbon ex-
port fluxes smaller by 1 to 2 orders of magnitude than exper-
iment C. Thus, only experiment C from the 1D and 3D mod-
els are shown in Fig. 10c in comparison to observations from
sediment traps (see Supplement). The carbon export fluxes
at 200 m from the 1D and 3D are similar in magnitude al-
though the 1D model yields higher fluxes and larger variabil-
ity. Despite the scarcity of carbon export observations in the
GOM, the model estimates are within the range of observa-
tions down to ∼ 1600 m and capture the observed declining
trend of carbon export with depth.

In summary, all the results above demonstrate the feasibil-
ities of using the locally optimized parameters from the 1D
model to improve the 3D simulation. In addition, by incor-
porating all available observations (i.e., surface chlorophyll
from satellite estimates, profiles of chlorophyll, phytoplank-
ton, and POC from bio-optical floats), experiment C cannot
only simulate the biogeochemical processes well in the up-
per 200 m, but also reproduce the carbon export flux and its
associated attenuation in the deep ocean (200–1600 m) of the
GOM.

6 Discussion

6.1 Trade-offs between different observations for
parameter optimization

The results of the optimization experiments vary dramati-
cally depending on how many observation types are used.
Using only satellite surface chlorophyll in experiment A suc-
ceeds in reducing the misfits of surface chlorophyll, but at
the expense of the vertical structure since the predominant
DCM disappears in experiment A. Satellite surface chloro-
phyll alone cannot constrain several vital parameters, includ-
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ing the initial slope of the productivity–irradiance curve (α)
and the maximum ratio of chlorophyll to carbon (θmax), with
confidence. This result highlights the importance of subsur-
face observations for parameter optimization and similarly
for model validation.

The floats provide valuable subsurface observations, but
chlorophyll profiles alone are not sufficient for parameter
optimization. In experiment B, the addition of chlorophyll
profiles leads to significant improvements in vertical chloro-
phyll distributions; however, the profiles of phytoplankton
and POC deteriorate largely because the maximum ratio of
chlorophyll to carbon (θmax) is poorly constrained. Using
estimates of phytoplankton biomass and POC derived from
backscatter measurements in experiment C yields the best es-
timation of plankton-related state variables and carbon fluxes
(i.e., primary production and carbon export). Only in this ex-
periment do the improvements obtained from observations in
the upper 200 m extend to the deep ocean as reflected in the
improved carbon export estimates below 1000 m.

It should be noted, however, that degradation of unopti-
mized variables did not occur in all optimizations within ex-
periments A and B. In some cases, the unoptimized fields
were improved. For example, the A2 optimization yields
a 69 % reduction in the misfit for subsurface chlorophyll
(Fig. 5d) and large improvements of chlorophyll profiles
(Fig. S6a) even though no observations of subsurface chloro-
phyll are used. Another example is that B1 optimization
improves simulations of phytoplankton and POC (Figs. 5d
and S6b–c) through the correlations between the observed
chlorophyll and phytoplankton (R2

= 0.69) and POC (R2
=

0.69). Similar findings have been reported in Prunet et al.
(1996a), where the improvements of chlorophyll profiles
within the mixed layer were obtained by using surface
chlorophyll in a 1D model. In a more recent study by Xiao
and Friedrichs (2014a), where satellite data were used, sub-
surface fields were improved in addition to surface fields.

In optimizations A2 and B1, the improvement in unop-
timized fields occurred because the poorly constrained pa-
rameters were not optimized but well defined coincidently
(α = 0.125 in the optimization A2 and θmax = 0.0535 in the
optimization B1; see Table 2). Including the poorly con-
strained parameters into the parameter optimization can re-
turn a lower misfit with respect to the observations used in
optimization but increases the risk of overfitting and reduces
the model’s predictive skill, i.e., the ability to simulate un-
optimized observations and those collected at different lo-
cations and times. This is consistent with previous studies
(Friedrichs et al., 2006, 2007; Ward et al., 2010). For exam-
ple, Friedrichs et al. (2006) optimized three ecosystem mod-
els of different complexities against three seasons of obser-
vations, and the resulting parameters were used to quantify
the predictive skill for the fourth season. Cross validation
showed that exclusion of the poorly constrained parameters
from the optimization increased the predictive skill.

Although prior knowledge of the parameters allows one to
exclude those poorly constrained ones from the optimization
and thus can prevent degradation in unoptimized variables,
most parameters are poorly known. Thus, the ultimate reso-
lution of this issue should be to increase availability of ob-
servations so that more parameters can be constrained with
confidence. In addition, even if the poorly constrained pa-
rameters are well known, a lack of observations hampers our
ability to recognize improvements in the model’s predictive
skill and hence may prevent us from identifying the optimal
solutions. For example, without the observations of phyto-
plankton and POC, we could not have known that optimiza-
tion B1 improved simulations of phytoplankton and POC, let
alone that the optimization B1 was a better solution than the
optimization B2 (experiment B) in terms of the lower total
misfit as shown in Fig. 5d.

It has been suggested that when performing a parame-
ter optimization not only parameter values but also param-
eter uncertainties should be taken into account (Fennel et al.,
2001; Ward et al., 2010; Bagniewski et al., 2011). The pa-
rameter uncertainties can be assessed by performing an un-
certainty analysis (Fennel et al., 2001; Prunet et al., 1996b,
a), replicating the parameter optimization (Ward et al., 2010),
and cross validating the resulting parameters (Xiao and
Friedrichs, 2014a). In this study, a cross validation of the pa-
rameters was conducted by evaluating the model’s predictive
skill with respect to different variables, times, and locations.
However, even when cross validation at different times and
locations produces large misfits, we cannot conclude that the
models reproduce observations through wrong mechanisms.
This is because the large misfit can be a result of intrinsic het-
erogeneity of biological parameters at different times (Mat-
tern et al., 2012) and locations (Kidston et al., 2011). There-
fore, it is important to evaluate the predictive skill of unopti-
mized variables.

Collectively, the discussion above highlights the values of
BGC float data for parameter optimization and model valida-
tion, not only because of their high spatiotemporal coverage
but also their ability to measure multiple properties simulta-
neously.

6.2 Feasibilities of applying the local optimized
parameters to 3D models

As the high computational cost makes direct optimization for
a 3D biogeochemical model impractical, we performed pa-
rameter optimizations first in a 1D surrogate model with the
same biogeochemical component as the 3D model. However,
there are some difficulties in porting the locally optimized
parameters to the basin-scale model.

Firstly, the 1D model necessarily neglects advection and
inevitably differs from the 3D model, e.g., in model domain
and model resolution. The optimized parameters from the 1D
model may have been adjusted to compensate for biases be-
tween 1D and 3D models, and, as a result, this may degrade
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Figure 10. Comparisons of the chlorophyll-to-carbon ratio (a), primary production (b), and carbon export fluxes (c) between the 1D and 3D
models.

the 3D simulations (Kane et al., 2011). Although counter ex-
amples also exist where the 3D simulations outperform the
1D models with respect to vertical profiles of phytoplankton
and nitrate (Hoshiba et al., 2018), some manual modifica-
tions might be necessary before the optimal 1D parameters
can be applied in the 3D model. In this study, despite some
degradations in 3D simulations, the benefits of the 1D opti-
mization were mostly preserved in the 3D simulations. This
greatly simplified the following subjective tuning of the 3D
model by limiting the number of parameters that needed to
be adjusted and confirmed the feasibility of improving the
3D model by optimizing a 1D surrogate.

Secondly, the spatial heterogeneity of parameters (e.g.,
Kuhn and Fennel, 2019) is another issue that influences the
portability of parameters from 1D to 3D models. For exam-
ple, the underestimation of surface chlorophyll in the coastal
regions may result from the contrasting ecosystem function-
ing between coastal regions and deep ocean, whereby the
highly productive continental shelf in the northern GOM is
fueled by the large nutrient load from the Mississippi and
Atchafalaya River systems with primary production being as
high as 4 g C m−2 d−1 near the Mississippi River delta (Fen-
nel et al., 2011), while the deep ocean is oligotrophic and nu-
trient limited with the primary production ranging from 0.2
to 0.5 g C m−2 d−1 (see Fig. 10). In some studies, the param-
eter optimization has been performed at several contrasting
stations with a goal of using different parameter sets in differ-
ent regions of the 3D model (Hoshiba et al., 2018). In other
studies different stations were optimized simultaneously to
obtain one single optimized parameter set (Kane et al., 2011;
Oschlies and Schartau, 2005; Schartau and Oschlies, 2003).
Such parameters compromise the misfit in each single station
but take into account all stations and can often yield an over-
all better simulation of all these stations as shown by, e.g.,
Kuhn and Fennel (2019).

7 Conclusions

In this study, we have performed parameter optimization for
a 1D biogeochemical model and then used the resulting pa-
rameters with a few modifications to generate simulations
with a corresponding 3D model in the GOM. Three exper-
iments have been conducted by using different combinations
of observations (surface chlorophyll from satellite estimates,
vertical profiles of chlorophyll, phytoplankton biomass and
POC from BGC-Argo floats) in order to examine the trade-
offs between the different observations for parameter opti-
mization. Two misfit metrics have been defined using the
case-specific misfit and the total misfit to measure the mod-
els’ abilities to reproduce the optimized and unoptimized ob-
servations.

Model results show that satellite surface chlorophyll alone
cannot reproduce well the vertical structures in a biogeo-
chemical model unless profile observations are used in ad-
dition. BGC-Argo floats are an excellent platform for ob-
taining such observations at high spatiotemporal coverage
and for a relatively broad suite of parameters. Only adding
chlorophyll profiles is not sufficient because they fail to con-
strain the ratio of chlorophyll to phytoplankton, but the addi-
tion of backscatter, which allows estimation of phytoplank-
ton biomass and POC, enables us to constrain the subsurface
carbon state variables and reproduce PP and carbon export
fluxes to below 1000 m depth well. Finally, our 3D model
was improved and reproduced similar results to the 1D ver-
sion, which is promising for the application of parameter op-
timization.

Code and data availability. The ROMS model code can be ac-
cessed at http://www.myroms.com (last access: 16 June 2016,
Haidvogel et al., 2008). HYCOM data can be downloaded at
http://tds.hycom.org/thredds/dodsC/datasets (last access: 16 Au-
gust 2018, Chassignet et al., 2009.). Profiling data from the
BGC-Argo floats are available at the National Oceanographic
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Data Center (NOAA), https://data.nodc.noaa.gov/cgi-bin/iso?id=
gov.noaa.nodc:159562 (Hamilton and Leidos, 2017).
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