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Abstract. Emissions from land use and land cover change
are a key component of the global carbon cycle. However,
models are required to disentangle these emissions from the
land carbon sink, as only the sum of both can be physically
observed. Their assessment within the yearly community-
wide effort known as the “Global Carbon Budget” remains
a major difficulty, because it combines two lines of evidence
that are inherently inconsistent: bookkeeping models and dy-
namic global vegetation models. Here, we propose a unifying
approach that relies on a bookkeeping model, which embeds
processes and parameters calibrated on dynamic global veg-
etation models, and the use of an empirical constraint. We
estimate that the global CO2 emissions from land use and
land cover change were 1.36± 0.42 PgC yr−1 (1σ range) on
average over the 2009–2018 period and reached a cumula-
tive total of 206± 57 PgC over the 1750–2018 period. We
also estimate that land cover change induced a global loss
of additional sink capacity – that is, a foregone carbon re-
moval, not part of the emissions – of 0.68± 0.57 PgC yr−1

and 32± 23 PgC over the same periods, respectively. Addi-
tionally, we provide a breakdown of our results’ uncertainty,
including aspects such as the land use and land cover change
data sets used as input and the model’s biogeochemical pa-
rameters. We find that the biogeochemical uncertainty domi-
nates our global and regional estimates with the exception of
tropical regions in which the input data dominates. Our anal-
ysis further identifies key sources of uncertainty and suggests

ways to strengthen the robustness of future Global Carbon
Budget estimates.

1 Introduction

The annual flux of carbon dioxide (CO2) to the atmosphere
caused by land use and land cover change (LULCC) is a
key part of the Global Carbon Budget (GCB; Friedlingstein
et al., 2019). It is one of the two historical anthropogenic
sources of CO2 (along with fossil fuel burning and indus-
try emissions), and when added to the land carbon sink it
gives the net land-to-atmosphere carbon exchange. In fact, it
is so closely connected to the land carbon sink that choos-
ing incompatible definitions for these two fluxes can lead to
double counting or missing part of the budget (Gasser and
Ciais, 2013). Thus, models are required to disentangle these
emissions from the land carbon sink, because only the sum of
both can be physically observed. The Global Carbon Budget
2019 (GCB2019) assessment (Friedlingstein et al., 2019) es-
timated that LULCC emissions were 1.5± 0.7 PgC yr−1 (1σ
range) on average over the 2009–2018 period. This value
relied on two lines of evidence: dynamic global vegetation
models (DGVMs), which are complex process-based and
spatially explicit models of the terrestrial carbon cycle (and
related processes), and bookkeeping models, which are para-
metric models that convolute time series of LULCC areal

Published by Copernicus Publications on behalf of the European Geosciences Union.



4076 T. Gasser et al.: Historical CO2 emissions from land use and land cover

perturbations with empirical response functions describing
changes in ecosystem carbon stocks after these perturbations.

The strengths and weaknesses of those two types of mod-
els are contrasting: DGVMs are developed to precisely de-
scribe the biogeochemistry of plants and ecosystems, albeit
without overly focusing on LULCC, whereas bookkeeping
models are specifically designed to evaluate LULCC emis-
sions, although without any explicit representation of biogeo-
chemical processes. Any comparison between those mod-
els is rendered even more difficult by two factors. First,
DGVMs and bookkeeping models do not naturally follow
the same definition of LULCC emissions, as DGVMs tend
to include the “loss of additional sink capacity” (LASC) in
their estimate (Gasser and Ciais, 2013; Pongratz et al., 2014).
The LASC is defined as the difference between the actual
land sink under changing land cover and the counterfac-
tual (stronger) land sink under preindustrial land cover. The
LASC, however, is not an actual physical flux: it is a foregone
carbon removal. (A few DGVMs are now capable of provid-
ing LULCC emissions that are consistent with the bookkeep-
ing definition; however, these estimates are not used to estab-
lish the best-guess estimates for the GCB (Friedlingstein et
al., 2019).) The second source of discrepancy is the differ-
ent historical LULCC data sets used to drive the models. In
the GCB2019, the DGVMs and one of the two bookkeeping
models (Hansis et al., 2015) used spatially explicit LULCC
drivers from the “Land-Use Harmonization” (LUH) project
(Hurtt et al., 2006, 2011). The second bookkeeping model
(Houghton and Nassikas, 2017), however, used independent
driving data compiled from national statistics of the United
Nation’s Food and Agriculture Organization (FAO), espe-
cially from its Global Forest Resources Assessment 2015
(FRA2015; FAO, 2015).

Here, using the OSCAR reduced-form Earth system
model, we bridge the gap between these approaches and es-
timates. OSCAR embeds a bookkeeping module as well as
simplified biogeochemical processes calibrated on DGVMs;
this makes it a valuable tool to consistently bridge across the
different estimates used in the GCB, as illustrated in Table 1.
Thus, the goal of this paper is threefold: first, it is to provide
another bookkeeping estimate of global and regional LULCC
emissions – that will hopefully be used in the future GCB –
obtained with an original model; second, it is to revise and
further investigate the LASC estimates that we provided in
an earlier version of the GCB (Le Quéré et al., 2018b); and,
third, it is to investigate the uncertainty range in both these
fluxes along the three axes of analysis shown in Table 1: the
inclusion of the LASC, the driving LULCC data sets, and the
biogeochemical parameterization.

2 Overview of the methodology

OSCAR is a reduced-complexity model built to emulate the
behavior of more complex (typically three-dimensional and

process-based) models at the yearly timescale (although it
cannot generate inter-annual variability by itself). Its land
carbon cycle is calibrated on DGVMs; it is not spatially re-
solved, but it is subdivided into 10 broad world regions and
5 biomes (see Appendix A1 for a more detailed descrip-
tion). The model’s preindustrial steady state is calibrated on
the exact same simulations made for the GCB (also called
the TRENDY exercise), and it does not require any spin-up.
The transient responses of net primary productivity, wild-
fires, and heterotrophic respiration to changes in atmospheric
CO2 and climate are calibrated on Coupled Model Intercom-
parison Project 5 (CMIP5) simulations (Arora et al., 2013).
Its bookkeeping module keeps track of ecosystems affected
by LULCC separately, offering a consistent and easy way
to isolate LULCC emissions from the land sink (Gasser and
Ciais, 2013; Gasser et al., 2017). The LULCC activities ac-
counted for are gross land cover change transitions, wood
harvest (without land cover change), and shifting cultivation
(i.e., rapid rotations between young natural ecosystems and
cropland). OSCAR does not include fire as a land manage-
ment tool (Houghton et al., 2012), the emissions caused by
the draining and burning of peatlands (Carlson et al., 2015;
Guillaume et al., 2018; Houghton and Nassikas, 2017), or
the impact of LULCC on the export of terrestrial organic
carbon to the ocean via the land–ocean aquatic continuum
(Regnier et al., 2013). Here, we use OSCAR v3.1: an iter-
ation over v3.0 in which the land carbon cycle’s structure
was slightly altered and its preindustrial steady state was re-
calibrated. Both changes are described in Appendix A2, and
older changes that led from v2.2 to v3.0 are summed up in
Appendix A3. OSCAR v2.2 has been comprehensively de-
scribed by Gasser et al. (2017). These and earlier versions
have been used in the past to investigate LULCC emissions
(Arneth et al., 2017; Bastos et al., 2016; Eglin et al., 2010;
Gasser and Ciais, 2013; Gitz and Ciais, 2003).

We follow an experimental protocol similar to that used
in the recent GCBs (and fully described in Appendix A4).
The model is driven with observed changes in environmen-
tal conditions (global atmospheric CO2, regional tempera-
ture, and precipitation) and with specific LULCC driving
data. Thanks to the model’s flexibility and low computing
requirements, we also run different LULCC data sets, sen-
sitivity experiments in which either changes in environmen-
tal conditions or LULCC are turned off, and a Monte Carlo
ensemble of 10 000 different biogeochemical parameteriza-
tions. These parameterizations are drawn randomly and with
equiprobability from a pool of potential sets of parameters.
This main pool is obtained by combining smaller pools of
available parameterizations for separate processes (or groups
of processes), as described by Gasser et al. (2017). For in-
stance, recalibration of the preindustrial steady state led to
11 possible parameterizations for preindustrial net primary
productivity and turnover times, 4 for preindustrial wildfire
rates, 5 for preindustrial export fractions from crop harvest-
ing, and 2 for those from animal grazing. This is already a
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Table 1. Availability of LULCC emissions estimates in the GCB2019 and this study. This follows our three main axes of analysis: the
definition of LULCC emissions (i), the driving data sets (ii), and the biogeochemical parameterization (iii).

GCB2019 (Friedlingstein et al., 2019) OSCAR (this study)

(i) Definition (→) Excl. LASC Incl. LASC Excl. LASC Incl. LASC

(ii) LULCC data set (→) LUH FRA LUH FRA LUH FRA LUH FRA
(iii) Biogeochemical parametersa (↓)

BLUE X
H&N X

CABLE-POP X X X X X
CLASS-CTEM X X X X X
CLM5.0b X
DLEM X X X X X
ISAM X X X X X
JSBACH X X X X X
JULES X X X X X
LPJb X
LPJ-GUESS X X X X X
LPX-Bernb X
OCN X X X X X
ORCHIDEE X X X X X
ORCHIDEE-CNP X X X X X
SDGVMb X
SURFEXb X
VISIT X X X X X

a BLUE (Hansis et al., 2015) and H&N (Houghton and Nassikas, 2017) are bookkeeping models, whereas the others are DGVMs. b OSCAR could
not be calibrated on these DGVMs due to insufficient data.

total of 11× 4× 5× 2= 440 parameterizations. These are
further combined with available parameterizations for other
elements such as the transient response of the land carbon cy-
cle to atmospheric CO2 and climate change or the handling
of harvested wood products, which leads to a main pool of
∼ 1.5 million sets of parameters.

Our best-guess estimate is derived by combining the re-
sults obtained with two LULCC data sets: the latest iteration
of the LUH2 data set used for the GCB2019 (Friedlingstein et
al., 2019) and the FRA2015 data set used by Houghton and
Nassikas (2017). However, the latter data set ends in 2015;
therefore, we extended its results with constant values over
the 2016–2018 period equal to the average of the 2011–2015
period. To constrain this best-guess ensemble, each of the
20 000 elements is given a weight based on how well it com-
pares to a reference value. All results presented in this study
are the ensuing weighted averages and weighted standard de-
viations (see Appendix A5). The chosen constraining value
is the net change in the land carbon stock between 1850 and
2018, which is estimated to be −25± 30 PgC. It is calcu-
lated via the carbon balance over the chosen period using the
GCB2019 estimates of cumulative fossil fuel emissions and
changes in atmospheric and oceanic carbon stocks as well as
standard uncertainty propagation.

3 Results and comparison with existing estimates

3.1 Global LULCC emissions and LASC

Our primary results are shown in Table 2 and Fig. 1. We
find global LULCC emissions of 1.36± 0.42 PgC yr−1 on
average over the 2009–2018 period, which is consistent
with the GCB2019 estimate (Friedlingstein et al., 2019) of
1.5± 0.7 PgC yr−1. Our reported value follows a bookkeep-
ing definition (Gasser and Ciais, 2013; Pongratz et al., 2014)
and is therefore comparable to that of the GCB. We sim-
ulate that historical LULCC emissions peaked at a value
of 1.61± 0.55 PgC yr−1 in 1959. Since then, they have re-
mained roughly steady, but they reached a local minimum
of 1.14± 0.52 PgC yr−1 in 1999. Overall, we estimate that a
total of 206± 57 PgC was emitted between 1750 and 2018,
and a total of 178± 50 PgC was emitted between 1850 and
2018. These values are also consistent with the GCB2019 es-
timates of 235±75 and 205±60 PgC over the same periods,
respectively.

We estimate a global LASC of 0.68± 0.57 PgC yr−1 on
average over the 2009–2018 period. This amounted to a cu-
mulative total of 32± 23 PgC between 1750 and 2018 and
to 31± 22 PgC between 1850 and 2018. This extremely low
difference between the two periods is explained by the na-
ture of the LASC. It is a foregone land carbon sink – a

https://doi.org/10.5194/bg-17-4075-2020 Biogeosciences, 17, 4075–4101, 2020



4078 T. Gasser et al.: Historical CO2 emissions from land use and land cover

Figure 1. Our best-guess estimates of bookkeeping LULCC emissions and LASC. Panel (a) shows annual fluxes, and panel (b) shows
cumulative fluxes. The net land-to-atmosphere flux is also shown in panel (b) and compared with the constraint (red). Shaded areas show the
1σ uncertainty range. Panel (c) shows the detailed probability distributions of the cumulative net land flux, land sink, and LULCC emissions
in the unconstrained (dotted histograms) and constrained (plain histograms) output ensemble (20 000 Monte Carlo elements) compared with
the constraint (red) and the GCB estimates (dashed black).

product of both land cover change and environmental condi-
tion changes. Since environmental conditions only changed
marginally during the early 1750–1850 period, the land sink
and the LASC were extremely low. As the change in envi-
ronmental conditions became more intense in the recent past,
both fluxes increased in intensity. Our new estimates of the
LASC are larger than those we reported in a past GCB (Le
Quéré et al., 2018b) owing to the change in the empirical con-
straint. Table 2 shows that we indeed obtain estimates similar
to prior estimated values by reverting back to the old con-
straint (which was the cumulative land sink over the 1850–
2018 period without LULCC simulated by DGVMs). The
performance of this alternative constraint is further discussed
later in this paper and is shown in Fig. A1 in the Appendix.

The effect of the constraint is further detailed in Fig. 1c.
Since the constraint is applied to the cumulative net land-
to-atmosphere flux over the 1850–2018 period, it corrected
the overestimate and substantially reduced the spread of this
value: from an unconstrained −4± 84 PgC to −22± 29 PgC
(compared with the constraining value of−25±30 PgC). Ap-
plying the constraint essentially resulted in the exclusion of
aberrant values of the land carbon sink without significantly
affecting LULCC emissions. The cumulative LULCC emis-
sions over the 1850–2018 period were indeed 176± 48 PgC
before the constraint was applied (and 178± 50 PgC after).
As similar processes drive the LASC and the land sink, the
stronger constraining effect on the land sink is also logically
visible on the LASC: the unconstrained cumulative LASC
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over the 1850–2018 period was 25± 23 PgC (and the con-
strained value was 32± 23 PgC).

3.2 Comparison with GCB models

Comparability between our best-guess estimates and those
of the GCB2019 is limited (due to the differing definitions or
driving data); therefore, we dedicate this section to compar-
ing like to like. Figure 2a compares the annual land sink over
the 1959–2018 period in the absence of the LULCC perturba-
tion (i.e., with a preindustrial land cover). OSCAR simulates
a slightly larger land sink by the end of the period than the
DGVMs, although it remains within their uncertainty range.
It also reproduces the inter-annual variability of the complex
models fairly well. Note that this specific simulation is used
by the GCB to define the land sink. This implies that their
land sink is not comparable to ours (except in this figure),
as theirs does not include the LASC. Figure 2b compares
LULCC emissions calculated using the DGVMs’ definition
(Gasser and Ciais, 2013; Pongratz et al., 2014; i.e., includ-
ing the LASC) over the 1959–2018 period. OSCAR is in line
with the DGVMs, although it estimates a slightly larger flux
over the beginning of the period. More importantly, it dis-
plays a much lower uncertainty range than the spread among
DGVMs. Since OSCAR emulates the carbon densities of the
DGVMs well (Table A1 in the Appendix), we attribute this
difference in spread to the large variance in the land cover
map used by the DGVMs (Table A2) and their processing of
the input LULCC data set.

Figure 2c compares OSCAR and BLUE estimates of the
bookkeeping LULCC emissions (i.e., without the LASC).
BLUE is one of the two bookkeeping models used in
the GCB2019, and both models are driven by the LUH2-
GCB2019 data set. OSCAR and BLUE display similar an-
nual variations in their LULCC emissions, but BLUE is sys-
tematically higher than OSCAR, and it is above the 1σ range
of our estimates by the end of the simulation. Figure 2d com-
pares OSCAR and H&N estimates (also without the LASC).
H&N is the second bookkeeping model of the GCB2019, and
this time both models are driven by the FRA2015 data set.
Again, both models display similar annual variations, except
near the end of the simulation, and this time H&N is sys-
tematically lower than OSCAR, although it remains mostly
within its 1σ range. Given that BLUE and H&N are parame-
terized with the same carbon densities, one would expect that
OSCAR’s estimates would systematically be either higher or
lower. The fact that this is not the case suggests that part of
the differences between the three bookkeeping models pos-
sibly stems from other factors such as structural assumptions
or ways of processing and implementing the LULCC data
sets.

3.3 Uncertainty analysis

Although we cannot investigate the aforementioned struc-
tural differences between bookkeeping models, our exper-
imental setup allows for the investigation of several fac-
tors within OSCAR that affect the spread in our global re-
sults. Figure 3 and Table 3 summarize this. The first fac-
tor is whether the LASC is included in the estimate of the
LULCC emissions, as this is usually the case when they
are calculated with DGVMs, which is illustrated in Fig. 3a.
Over the last decade, the difference between including and
excluding the LASC corresponds to a debiased 1σ range of
±0.43 PgC yr−1 and a coefficient of variation (CV) of±25 %
(see Appendix A6). This rather substantial value is in line
with previous studies that quantified this discrepancy (Gasser
and Ciais, 2013; Stocker and Joos, 2015). Because the LASC
only became non-negligible in the recent past, the effect of
its inclusion or exclusion on cumulative LULCC emissions
is smaller than for recent annual emissions: we estimate that
it is only±20 PgC (±9 %) over the 1750–2018 period. How-
ever, it is crucial to understand that the intensity of this dis-
crepancy will keep increasing and accumulating as long as
changes in environmental conditions do not stabilize (Gasser
and Ciais, 2013). This is illustrated by the positive trend in
the CV in Fig. 3a. In our view, this ever-growing discrep-
ancy strongly pleads in favor of choosing, retaining, and con-
sistently applying one clear definition of LULCC emissions.
In the following, we exclude the LASC from LULCC emis-
sions; therefore, we discuss it separately.

The second factor of uncertainty is the driving LULCC
data set. Figure 3b shows the difference between the average
bookkeeping emission estimates based on LUH2-GCB2019
and those based on FRA2015. We find that the annual emis-
sions from the two data sets are in particularly good agree-
ment on average over the last decade (Table 3), although
this is purely fortuitous as the discrepancy is±0.30 PgC yr−1

(±24 %) over the 1995–2004 period and even peaks at
±0.39 PgC yr−1 (±34 %) in 1999. More worrying, perhaps,
is the two data sets’ disagreement on the trend in emis-
sions after 1990. This discrepancy is hidden in our best-
guess emissions that are rather even over the last 30 years. In
terms of cumulative emissions over the 1750–2018 period,
however, results from the two data sets are in good agree-
ment, with only a ±8 PgC (±4 %) discrepancy. Addition-
ally, Fig. 3c and d display the same source of uncertainty but
among different versions of each of the two main data sets.
This variation, which is caused by updating the data sets, is
visible, for instance, when comparing older versions of the
GCB with one another. We find that the difference among
several versions of the same data set is of the same order of
magnitude as the difference between our two main data sets.
For the LUH data set, this is explained by several factors,
from the simple update of the historical land cover data used
as input (Klein Goldewijk et al., 2017; Klein Goldewijk et al.,
2011) to the complete overhaul of how shifting cultivation is
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Table 2. Estimates of the global net land-to-atmosphere flux, LULCC emissions, land sink, and LASC. Estimates following our default (i.e.,
best-guess) and alternative constraints are provided. The land sink includes the LASC; therefore, the net land-to-atmosphere flux is strictly
equal to the LULCC emissions minus the land sink.

Annual flux (PgC yr−1) Cumulative flux (PgC)

2018 2009–2018 1850–2018 1750–2018

Default constraint (net land flux as residual from fossil emissions, atmospheric growth, and the ocean sink)

Net land-to-atmosphere flux∗ −1.85± 0.75 −1.62± 0.79 −27± 26 −22± 29
Bookkeeping LULCC emissions 1.39± 0.43 1.36± 0.42 178± 50 206± 57
Land carbon sink 3.24± 1.02 2.98± 1.02 205± 53 228± 59
Loss of additional sink capacity 0.78± 0.62 0.68± 0.57 31± 22 32± 23

Alternative constraint (land sink without LULCC perturbation as estimated by the DGVMs)

Net land-to-atmosphere flux∗ −1.51± 0.66 −1.33± 0.71 −16± 47 −9± 54
Bookkeeping LULCC emissions 1.27± 0.36 1.26± 0.36 166± 44 192± 51
Land carbon sink 2.78± 0.68 2.58± 0.73 181± 36 201± 40
Loss of additional sink capacity 0.51± 0.33 0.44± 0.32 21± 11 22± 11

∗ Counted algebraically: negative values denote carbon removal from the atmosphere.

Figure 2. Comparison of our results with the GCB2019. (a) The annual terrestrial carbon sink in the absence of the LULCC perturbation
simulated by OSCAR (color), the individual GCB DGVMs (light gray), and their multi-model mean (dashed black). (b) The annual LULCC
emissions deduced from the GCB DGVMs (i.e., including the LASC). (c) Bookkeeping LULCC emissions when the model is driven by the
LUH2-GCB2019 data set compared with BLUE estimates reported by the GCB2019. The dotted line shows the same emissions but when
carbon densities are kept at their preindustrial level throughout the simulation (shown without uncertainty for legibility). (d) Bookkeeping
LULCC emissions when the model is driven by the FRA2015 data set compared with the H&N estimates from which emissions from
peatlands were subtracted. All shaded areas show the 1σ uncertainty range. “Idem” stands for “same as above”.
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Table 3. Uncertainty sources in our estimates of bookkeeping LULCC emissions and LASC expressed as the debiased standard deviation
(1σ ) and the coefficient of variation (CV; in parentheses).

Annual flux (PgC yr−1) Cumulative flux (PgC)

1995–2004 2009–2018 1850–2004 1750–2018

Uncertainty breakdown of bookkeeping LULCC emissions

(i) Definition ±0.31 (21 %) ±0.43 (25 %) ±14 (8 %) ±20 (9 %)
(ii) LULCC data set ±0.30 (24 %) ±0.03 (2 %) ±8 (5 %) ±8 (4 %)
– LUH data set version ±0.14 (14 %) – ±14 (8 %) –
– FRA data set version∗ ±0.25 (21 %) – ±15 (10 %) –
(iii) Biogeochemical parameters ±0.40 (32 %) ±0.40 (29 %) ±43 (27 %) ±55 (27 %)
– only HWP-related parameters ±0.03 (2 %) ±0.02 (2 %) ±4 (2 %) ±5 (3 %)

Uncertainty breakdown of the loss of additional sink capacity

(ii) LULCC data set ±0.14 (28 %) ±0.21 (31 %) ±7 (31 %) ±10 (31 %)
(iii) Biogeochemical parameters ±0.35 (75 %) ±0.50 (77 %) ±13 (62 %) ±19 (63 %)

∗ These values were taken directly from Houghton and Nassikas (2017); therefore, they were not computed with OSCAR. They
include some biogeochemical uncertainty, although to a lesser but unknown degree.

estimated (Heinimann et al., 2017). Among the FRA-based
data set’s versions, this difference is found to be somewhat
larger. This is likely due to the concomitant update of some
biogeochemical parameters of the H&N model (Houghton
and Nassikas, 2017) that we cannot separate here, because
the results shown in Fig. 3d are not based on OSCAR.

The third and last factor of uncertainty is the parameteri-
zation of the model (for biogeochemistry). Using our Monte
Carlo ensemble, we find a weighted standard deviation of
±0.40 PgC yr−1 (±29 %) for annual emissions averaged over
the 2009–2018 period and of ±55 PgC (±27 %) for emis-
sions cumulated over the 1750–2018 period. Except in some
specific years, this source of uncertainty in annual emissions
is the largest of the three we studied, and it dominates without
exception in cumulative emissions. Carbon densities (and the
parameters determining them) are the key modeling factors
explaining this spread (Gasser and Ciais, 2013). Figure 3f
and Table 3 show the spread in our results when looking only
at the variation caused by the parameters that relate to har-
vest wood products (HWPs). It is found to be one order of
magnitude smaller than the total uncertainty caused by all
parameters, confirming that biogeochemical parameters ex-
plain most of the uncertainty. However, we acknowledge that
OSCAR likely underestimates the HWP-related uncertainty,
because there is only one option to choose from (in the Monte
Carlo setup) regarding how HWPs are split between pools
with different decay timescales (Appendix A7).

Finally, a similar uncertainty breakdown for the LASC is
reported in Table 3. We find that the uncertainty in the aver-
age annual LASC between our two main LULCC data sets
over the last decade is ±0.21 PgC yr−1 (±31 %), and it is
±10 PgC (±31 %) for the cumulative LASC since the year
1750. The much higher CV in the cumulative LASC com-
pared with that in the cumulative LULCC emissions sug-

gests that the latter is kept relatively low thanks to compen-
sation effects that do not come into play in the former. We
also find that the biogeochemical uncertainty in the LASC is
high: ±0.50 PgC yr−1 (±77 %) for the annual flux over the
2009–2018 period and ±19 PgC (±63 %) for the cumulative
flux over the 1750–2018 period. These values reflect the large
uncertainty in the ecosystems’ response to transiently chang-
ing environmental conditions, despite our constraints (uncon-
strained CVs are ±98 % and ±86 % for the abovementioned
time periods, respectively).

3.4 Breakdown by region

Figure 4 and Table 4 provide our best-guess estimates of the
bookkeeping LULCC emissions in our 10 broad world re-
gions. Unsurprisingly, tropical regions (Latin America, sub-
Saharan Africa, and South and Southeast Asia, in decreasing
order) are found to be the main LULCC emitters over the
last decade, with a positive trend over the last 50 years. Con-
versely, North America, Europe, the former Soviet Union,
and China are all found to have a decreasing trend over the
last 50 years – to the point of North America, Europe, and
China being net carbon absorbers over the last decade. Look-
ing at a larger historical period, Latin America and South and
Southeast Asia were the top two emitters over the 1750–2018
period, with North America being the third-highest emitter.
It must be noted, however, that this ranking is not statistically
significant due to uncertainties. When the subset of our sim-
ulations driven by the FRA2015 data set is isolated, our esti-
mates compare very well to the estimates of H&N (Houghton
and Nassikas, 2017; see Table A3 in Appendix).

The uncertainty in our regional bookkeeping LULCC
emissions can be attributed to the LULCC data sets and the
biogeochemical parameters using Fig. 4 and Table 4. For
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Figure 3. Variations and uncertainties in the time series of global annual LULCC emissions. (a) The effect of adding the LASC to LULCC
emissions. (b) The effect of the LULCC driving data sets (only the two data sets used to estimate our best guess). (c) The effect of the data set
version among the LUH variants (not used for our best guess). (d) The effect of the data set version among FRA variants. These emissions
were not simulated by OSCAR; they were reported by Houghton and Nassikas (2017; their Fig. 8). (e) The effect of all of the parameters
of OSCAR (using the weighted Monte Carlo ensemble). (f) The effect of the subset of parameters of OSCAR that are related to harvested
wood products (i.e., the parameters that are not derived from DGVMs). All panels show bookkeeping LULCC emissions with the obvious
exception of panel (a). Thick colored lines show the values obtained by averaging over all axes of analysis apart from the one investigated
in the panel. The dashed gray lines with markers show the debiased coefficients of variation (CVs), i.e., the ratios of the debiased standard
deviation over the average, and refer to the y axis on the right-hand side of each panel.

North America, the former Soviet Union, and, to a lesser ex-
tent, Europe, the two LULCC data sets lead to emissions that
are in rather good agreement; this implies that the regional
uncertainty is dominated by the biogeochemical parameteri-
zation. In tropical regions, however, the two data sets show
substantial disagreement – to the point of being the main
source of uncertainty in sub-Saharan Africa and in South and
Southeast Asia. Remarkably, the disagreement in the emis-
sions of Latin America is shown in Fig. 4, but the inverse
global trends is shown in Fig.3b. China is another region in
which the discrepancy between the two data sets leads to a
substantial uncertainty range. On the one hand, FRA2015
exhibits large-scale forest plantation in China based on na-
tional declarations, which leads to a significant atmospheric
carbon removal; on the other hand, the LUH2-GCB2019 ig-

nores those declarations and considers that China lost a large
amount of forest over the same period. Ultimately, it is not
the goal of this paper to provide a detailed analysis of the re-
gional discrepancies between the two data sets nor to recom-
mend one over the other. Nevertheless, we produced Fig. A2,
which shows regional LULCC drivers, to offer a starting
point for such an endeavor.

Our estimate of the LASC is also broken down regionally
in Fig. 4. The annual LASC of most regions follows a sim-
ilar trend to the global one. However, in North Africa and
the Middle East as well as in Oceania, the noise produced
by the inter-annual variability appears to dominate over the
trend. It is unclear what exactly causes this noise, but the
fact that both regions include large non-vegetated areas sug-
gests that the parameterization of OSCAR is not very robust
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Figure 4. Regional breakdown of our best-guess estimates. Annual bookkeeping LULCC emissions (in brown) and LASC (in green) are
shown, except in the last two panels where the regional cumulative bookkeeping LULCC emissions (ELUC) and LASC over the 1750–2018
period are shown. Shaded areas and uncertainty bars represent the 1σ uncertainty range. To help identify regional discrepancies between
LULCC driving data sets, we also separate the average estimates for the LUH2-GCB2019 (dashed black line) and FRA2015 (dotted black
line) data sets (which are shown without their own uncertainty for legibility).

in such a case. The noise intensity in Oceania is even larger
than the signal in any other region, suggesting that some of
the uncertainty in our LASC estimates could be an artifact of
this weakness in our modeling approach. As to the regional
split of the cumulative LASC over the 1750–2018 period, it
roughly follows that of the cumulative LULCC emissions, al-
though it is modulated by the land sink’s relative efficiency in
each region. Latin America is the region in which the largest
part of this loss of sink capacity occurred (almost one-third),
followed by North America, South and Southeast Asia, and
sub-Saharan Africa. However, uncertainties in the LASC are
too high for this ranking to be determined with good statisti-
cal confidence.

3.5 Breakdown by transition

Figure 5 and Table 5 show a breakdown of our global book-
keeping LULCC emissions and LASC following seven cate-
gories of LULCC activities. These categories are essentially
a subdivision of the main three LULCC activities mentioned
previously in the short description of OSCAR. Category 1
corresponds to land cover change (LCC) where forest is re-
placed by cropland. Category 2 is LCC where forest is re-
placed by anything else (but forest). Category 3 is the oppo-
site of 1 and 2: LCC where any type of land but forest is re-
placed by forest. Category 4 is LCC where non-forested nat-
ural land is replaced by any anthropogenic land. Category 5
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Table 4. Regional breakdown of bookkeeping LULCC emissions and LASC. This is provided for our best-guess estimates and the two main
LULCC data sets (LUH2-GCB2019 and FRA2015) separately. The regions are defined in Houghton and Nassikas (2017).

Annual flux 2009–2018 (PgC yr−1) Cumulative flux 1750–2018 (PgC)

Best guess LUH FRA Best guess LUH FRA

Bookkeeping LULCC emissions (ELUC)

Sub–Saharan Africa 0.46± 0.24 0.29± 0.11 0.66± 0.20 28± 13 25± 14 31± 9
Latin America 0.63± 0.23 0.52± 0.14 0.76± 0.24 63± 18 67± 18 59± 17
South and Southeast Asia 0.32± 0.11 0.35± 0.09 0.29± 0.12 39± 12 36± 8 42± 14
North America 0.00± 0.04 0.02± 0.03 −0.02± 0.03 34± 13 34± 14 35± 13
Europe −0.03± 0.03 −0.02± 0.02 −0.05± 0.03 2± 3 4± 2 −1± 2
Former Soviet Union 0.01± 0.05 0.03± 0.03 −0.02± 0.05 20± 12 20± 12 20± 12
China −0.05± 0.21 0.14± 0.07 −0.27± 0.05 13± 13 23± 8 1± 5
North Africa and the Middle East −0.01± 0.01 0.00± 0.01 −0.01± 0.01 −1± 2 −1± 2 0± 2
East Asia 0.00± 0.05 0.01± 0.04 −0.01± 0.01 3± 2 4± 2 ∼ 1
Oceania 0.03± 0.06 0.00± 0.04 0.07± 0.07 6± 10 1± 8 11± 10

Loss of additional sink capacity (LASC)

Sub–Saharan Africa 0.12± 0.13 0.16± 0.17 0.08± 0.04 5± 6 7± 7 2± 1
Latin America 0.18± 0.18 0.21± 0.21 0.15± 0.14 9± 5 10± 6 7± 4
South and Southeast Asia 0.11± 0.08 0.11± 0.08 0.11± 0.07 4± 2 4± 3 4± 2
North America 0.10± 0.08 0.11± 0.09 0.08± 0.07 5± 4 6± 5 5± 4
Europe 0.01± 0.02 0.03± 0.02 0.00± 0.01 1± 1 2± 1 ∼ 0
Former Soviet Union 0.06± 0.06 0.06± 0.06 0.05± 0.05 2± 3 3± 3 2± 2
China 0.07± 0.10 0.12± 0.10 0.02± 0.07 4± 4 5± 4 2± 3
North Africa and the Middle East 0.00± 0.01 0.00± 0.01 0.00± 0.01 ∼ 0 ∼ 0 ∼ 0
East Asia 0.01± 0.01 0.02± 0.01 ∼ 0.00 1± 1 1± 1 ∼ 0
Oceania 0.02± 0.11 0.02± 0.14 0.03± 0.05 1± 2 1± 3 1± 2

Table 5. Breakdown of bookkeeping LULCC emissions and LASC by LULCC activity. This is provided for our best-guess estimates and the
two main LULCC data sets (LUH2-GCB2019 and FRA2015) separately.

Annual flux 2009–2018 (PgC yr−1) Cumulative flux 1750–2018 (PgC)

Best guess LUH FRA Best guess LUH FRA

Bookkeeping LULCC emissions (ELUC)

Deforestation for cropland 1.86± 0.57 2.20± 0.48 1.47± 0.37 213± 93 285± 62 131± 38
Other deforestation 0.55± 0.26 0.41± 0.14 0.70± 0.27 77± 27 88± 26 64± 24
Reforestation and afforestation −1.36± 0.49 −1.70± 0.38 −0.96± 0.22 −144± 99 −230± 48 −45± 11
Other natural land appropriation 0.42± 0.31 0.63± 0.26 0.17± 0.08 60± 33 82± 30 35± 12
Other natural land (re)establishment −0.21± 0.18 −0.33± 0.15 −0.07± 0.08 −20± 18 −34± 11 −3± 2
Conversions among anthrop. biomes 0.02± 0.02 0.03± 0.02 0.01± 0.01 1± 1 1± 1 ∼ 0
Wood harvest 0.09± 0.04 0.10± 0.04 0.07± 0.03 19± 6 21± 5 16± 6

Loss of additional sink capacity (LASC)

Deforestation for cropland 0.29± 0.16 0.31± 0.17 0.27± 0.15 14± 6 16± 7 12± 5
Other deforestation 0.24± 0.15 0.30± 0.15 0.17± 0.10 12± 6 15± 6 7± 3
Reforestation and afforestation −0.15± 0.10 −0.21± 0.10 −0.09± 0.04 −7± 5 −10± 4 −3± 1
Other natural land appropriation 0.39± 0.53 0.57± 0.63 0.19± 0.24 16± 21 24± 25 8± 9
Other natural land (re)establishment −0.09± 0.12 −0.14± 0.14 −0.03± 0.06 −3± 4 −5± 5 −1± 1
Conversions among anthrop. biomes 0.00± 0.01 0.00± 0.01 ∼ 0.00 ∼ 0 ∼ 0 ∼ 0
Wood harvest 0.00 0.00 0.00 0 0 0
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Figure 5. Breakdown of our best-guess estimates by LULCC activities. Annual bookkeeping LULCC emissions (in brown) and LASC
(in green) are shown, except in the last two panels that show the regional cumulative bookkeeping LULCC emissions (ELUC) and LASC
over the 1750–2018 period. Shaded areas and uncertainty bars represent the 1σ uncertainty range. Similarly to Fig. 3, we also separate the
average estimates for the LUH2-GCB2019 (dashed black line) and FRA2015 (dotted black line) data sets (which are shown without their
own uncertainty for legibility).

is the opposite of 4. Category 6 is any LCC occurring among
anthropogenic land (e.g., pasture to cropland). Category 7 is
the sum of wood harvest and LCC occurring from any type
of natural land to the same type of natural land (e.g., for-
est to forest). Note that the effects of shifting cultivation are
included in their corresponding LCC categories due to the
model’s structure.

Forest-related land cover change dominates historical
bookkeeping emissions. Over the last decade, we estimate
that an average of 1.86± 0.57 PgC yr−1 was emitted due to
deforestation in order to establish cropland, an additional
0.55± 0.26 PgC yr−1 was from other types of deforestation
(e.g., deforestation for pastoral land or simply due to forest
degradation), and a capture of −1.36± 0.49 PgC yr−1 was
due to reforestation and afforestation. These estimates in-
clude the effect of our shifting cultivation driver that en-
compasses traditional activities such as “slash-and-burn”,
which leads to large but counteracting gross carbon fluxes
caused by back-and-forth deforestation/reforestation activi-
ties (Houghton et al., 2012; Li et al., 2018; Yue et al., 2018).
The cumulative emission over the 1750–2018 period was

213±93 PgC due to deforestation for cropland, 77±27 PgC
due to other types of deforestation, and 60± 33 PgC due to
the loss of other natural land. This was partly compensated
for by−144±99 PgC from reforestation and afforestation as
well as −20±18 PgC when other natural land was regained.

The uncertainty in the bookkeeping LULCC emissions is
largely dominated by the discrepancy between the two main
LULCC data sets. For annual emissions, this is even rein-
forced by the fact that shifting cultivation is included in our
estimates. Figure A2 indeed shows that both data sets have
a very different level of shifting cultivation area, although
this is somewhat artificial as it is caused by the difference in
the data sets’ starting year. Therefore, our uncertainty ranges
for the deforestation and reforestation categories are over-
estimated. For cumulative emissions, however, this overesti-
mation is much lower, as shifting cultivation has a long-term
effect of zero net emissions in OSCAR (Appendix A7). How-
ever, a few other clear differences between the two data sets
remain, such as the opposite trend in 1990 in the “other de-
forestation” category or the difference in wood harvest.
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When we split the LASC between these transitions types,
we obtain a slightly different picture. Our three categories of
natural land appropriation caused roughly similar amounts of
cumulative LASC: 14± 6 PgC from deforestation for crop-
land, 15± 6 PgC from other deforestation, and 24± 25 PgC
from loss of other natural land. This was partially compen-
sated for by a negative LASC (i.e., an increase in the sink ca-
pacity) of −7± 5 PgC caused by reforestation and afforesta-
tion and−3±4 PgC caused by other natural land gain. Other
types of LULCC led to a negligible LASC. Regarding the
uncertainty in the LASC, the noise we identified in the pre-
vious section can be attributed to the “other natural land”
biome. Combined with the diagnosis from the previous sec-
tion, this suggests that OSCAR may benefit from separating
desert areas (i.e., bare soils) from the non-forest biome. How-
ever, this would make processing the LULCC data sets more
difficult, as new assumptions should then be made regarding
how much of this new biome is affected by LULCC.

3.6 Breakdown by carbon pool

A final axis of analysis that OSCAR can provide is a break-
down of the model’s carbon pools, thereby indirectly fol-
lowing its biogeochemical processes. Figure 6 shows such
a breakdown into our three main carbon pools: vegetation
carbon, soil carbon, and HWPs. Bookkeeping LULCC emis-
sions over the last decade have consisted of a combina-
tion of −3.66± 0.96 PgC yr−1 of vegetation carbon (i.e.,
biomass) regrowth, 2.84± 0.85 PgC yr−1 emitted by equili-
brating soils, and 2.18± 0.65 PgC yr−1 emitted by HWP ox-
idization. Here, the equilibration of soils includes both the
heterotrophic respiration in originally carbon-rich soils that
is not compensated for by enough primary productivity (e.g.,
when deforesting to establish cropland) and the oxidation
of slash products (i.e., dead biomass left on site after land
cover change). The three sub-fluxes have been steadily in-
creasing over the past century or so. Cumulated over the
1750–2018 period, these three pool-specific values amount
to −443± 155, 373± 137, and 276± 84 PgC, respectively.

For the LASC, this pool-based decomposition only con-
cerns the vegetation and soil pools, as no HWPs are involved
in the processes driving the land sink. Both components of
the annual LASC are positive, with notable inter-annual vari-
ability and positive trend, reaching 0.33± 0.25 PgC yr−1 for
the vegetation and 0.35±0.36 PgC yr−1 for soils, on average
over the 2009–2018 period. Over the 1750–2018 period, the
cumulative component fluxes are 16± 7 PgC for vegetation
and 16±16 PgC for soils. These positive values must be inter-
preted as a storage of carbon that did not occur because the
preindustrial land cover was modified and the new ecosys-
tems could not provide as strong a land sink as the prein-
dustrial ecosystems. The breakdown shows how this storage
would have been split between vegetation and soil carbon
pools, had it occurred. Since it is implicitly determined by
the model’s processes, this breakdown is heavily model de-

pendent and is largely dominated by the biogeochemical un-
certainty.

4 Discussion

4.1 The constraint

Table 2 shows that the choice of constraint does not drasti-
cally impact our results, as there is a large overlap between
the estimates obtained with both the old and new constraints.
More precisely, LULCC emissions do not show a large im-
pact, whereas the land sink and the LASC do. However, this
is somewhat artificial, as both our constraints are aimed at
constraining the processes that dictate the land sink (such as
the fertilization effect), which is visible in Fig. 1c where the
unconstrained distribution of the land sink exhibits a large
spread that is reduced after the application of constraints.
Other (or additional) constraints focused on LULCC emis-
sions, such as constraints on carbon densities, could be envi-
sioned – although we deemed this unnecessary for this study.
Because the constraint is applied after the simulations are
actually run, it is indeed possible to decide on the best con-
straint (or combination thereof) ex post, depending on one’s
ultimate goal. Our choice of constraint was driven by our
will to make our estimates of LULCC emissions compati-
ble with the overall GCB2019, our scientific conviction that
it is preferable to use physical (i.e., observable) variables as
constraints, and our own expert judgement as to which parts
of the GCB are the most robust. Our choice can be debated,
however, and we invite the community to download our raw
estimates and apply their own constraints if they so wish (see
the “Data availability” section). Ultimately, a Bayesian syn-
thesis framework could be used at the GCB scale (Li et al.,
2016) to avoid having to make such an arbitrary choice.

4.2 The OSCAR model

OSCAR satisfactorily emulates the carbon densities and
stocks of DGVMs (Table A1), but these stocks are in the
lower end of existing assessments. The DGVMs we cal-
ibrated OSCAR upon have global preindustrial pools of
457± 77 PgC for vegetation and 1140± 336 PgC for soil,
whereas the IPCC Fifth Assessment Report (Ciais et al.,
2013) gives values of 450–650 and 1500–2400 PgC, respec-
tively. Some of the difference in soil carbon comes from the
absence of peatland in DGVMs (Nichols and Peteet, 2019),
and some may be explained by the existence of “passive” soil
carbon that is not mobilized under the timescales we con-
sider here (Barré et al., 2010; He et al., 2016). Nevertheless,
the relatively low carbon pools suggest that our bookkeeping
LULCC emissions could be underestimated. Alternatively,
our preindustrial land cover taken from the LULCC data sets
could be inaccurate (Table A2). We ran the LUH2 data set
starting in 850, and did not find substantial carbon loss be-
tween 850 and 1750 (23± 15 PgC in total). Other studies
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Figure 6. Breakdown of our best-guess estimates by carbon pools: vegetation (green), soils (brown), and HWPs (red). Shaded areas and
uncertainty bars represent the 1σ uncertainty range.

that specifically focused on the more distant past have found
much higher carbon loss over this early period (Erb et al.,
2018; Kaplan et al., 2011; Pongratz et al., 2008), again sug-
gesting this part of our results could be underestimated.

A key feature of OSCAR is that the model’s carbon den-
sities transiently change as a response to changes in en-
vironmental conditions. This change in carbon densities is
fully coupled to the bookkeeping module and, therefore, im-
pacts bookkeeping LULCC emissions. This feature contrasts
with the fixed carbon densities of other bookkeeping mod-
els and makes it possible to account for processes such as
CO2 fertilization, wildfire changes, and climate feedbacks.
Without any change in environmental conditions, we find
that annual bookkeeping LULCC emissions would have been
1.11±0.35 PgC yr−1 on average over the last decade, and cu-
mulative emissions would have been 191± 52 PgC over the
1750–2018 period. This is 19 % and 7 % less than our best
guesses with environmental changes for the abovementioned
periods, respectively, and is primarily driven by the lower
carbon densities that are caused by the absence of the fertil-
ization effect. The effect on the cumulative emissions is in
line with a previous estimate (Gasser and Ciais, 2013). The
effect on annual emissions, however, is higher. This suggests
that this effect increases with time and will keep increasing
in the future as environmental conditions change and move
further away from preindustrial conditions. This underscores
the importance of building hybrid bookkeeping models such
as OSCAR that are capable of capturing such an effect. A
structural limitation of this version of OSCAR is the ab-
sence of any age-specific process. This means that none of

the model’s parameters depend on the time elapsed since a
given LULCC perturbation (i.e., it has no age classes). For
instance, 5-year-old forests grow and die at the same rate
as 50-year-old forests. This, by construction, means that the
biomass regrowth of disturbed ecosystems follows an expo-
nential response curve, which we acknowledge is unrealistic.
The impact of this structural choice is difficult to estimate;
however, as it affects only dynamics and not carbon densities,
we can speculate that annual emissions are more impacted
than cumulative emissions. Other regrowth curves could be
introduced (Fekedulegn et al., 1999), although this would
require the introduction of age-dependent functions in the
model’s formulation, which, in turn, would make it heavier
and slower. Actually, when OSCAR v2.4 was developed, the
only process that had been age dependent until then, namely
the decay of HWPs (Gasser et al., 2017), was reformulated
to be age independent. The reason for this simplification is
that, beyond being a carbon cycle model, OSCAR is also an
Earth system model, and the complexity of each of its mod-
ules has to be kept in check. However, it is not excluded that
future variants of the model will see implementation of such
a feature.

A final structural element that we find worth mention-
ing is the biome aggregation of our model. The final list
of five biomes in OSCAR is a trade-off between the plant
functional types (PFTs) of the DGVMs and the land cover
classes of the LULCC data sets. Typically, DGVMs tend to
focus on natural ecosystems (i.e., they have many types of
forests), whereas LULCC data sets focus on anthropogenic
ecosystems (i.e., more types of croplands and pastures). Our
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list of biomes aimed at limiting the number of assumptions
made when processing both types of data for implementa-
tion within OSCAR, but some were necessary nonetheless.
Qualitatively, we see two important caveats caused by our
biome aggregation. First, as we only have one natural biome
to cover all natural land but forests, we average actual natu-
ral ecosystems with relatively high carbon densities such as
shrubland with almost carbon-free ecosystems like deserts.
We saw in previous sections that this may explain part of the
large uncertainty in our LASC estimates, but it likely also af-
fects our bookkeeping LULCC emissions. Second, we do not
distinguish between primary and secondary natural land. In
other words, pristine and disturbed natural ecosystems are as-
sumed to have the same steady-state carbon densities. How-
ever, this does not mean that the actual carbon densities are
the same. It means that it is assumed that, if left undisturbed,
previously disturbed ecosystems will grow back to the exact
same steady state as those that have never been disturbed.
Because they relate to carbon densities, these structural as-
pects are likely to have the largest impact on our estimates.
Quantifying this impact would require a significant amount
of work; however, it would undoubtedly require making new
assumptions that, in turn, would introduce additional uncer-
tainty and potential biases.

5 Conclusions

In spite of those caveats, this study has introduced an in-
novative method to estimate historical LULCC emissions
and LASC, whereby a bookkeeping approach, data from
processed-based models, several LULCC data sets, and an
empirical constraint are consistently combined. We have also
identified key sources of uncertainty that must be reduced
to improve future GCBs. One easy improvement is to de-
cide on where to account for the LASC. We argued else-
where (Gasser and Ciais, 2013) that it is ill-advised to in-
clude the LASC in LULCC emissions, as it is a theoreti-
cal flux that cannot be observed and that does not tend to
zero after LULCC activities cease. However, reducing the
other sources of uncertainty is a more challenging endeavor.
Although satellite data (Hansen et al., 2013) and crowd-
sourcing (Fritz et al., 2019) are currently promising ways of
establishing more accurate land cover maps, these must be
backcast over the past to be relevant for the long-term dy-
namic of the global carbon cycle. Such backcasting gener-
ates new uncertainty (Peng et al., 2017), and additional data,
perhaps in the form of historical records (Bastos et al., 2017;
Houghton and Nassikas, 2017), are required to mitigate the
lack of direct observations. We found that the biogeochem-
ical uncertainty dominated, although that is a reflection of
the uncertainty in the DGVMs’ own parameterization, and
not the uncertainty stemming from direct observations of
real-life carbon densities. Improving the DGVMs’ calibra-
tion (e.g., by assimilating observational data) is an obvious

albeit resource-intensive way of reducing this source of un-
certainty. Posterior evaluation and weighting of the DGVMs
is another approach, be it through a specifically designed pro-
tocol such as the International Land Model Benchmarking
(ILAMB) project (Collier et al., 2018) or a synthesis setup
like ours.
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Appendix A

A1 A brief description of the land carbon cycle module

The land carbon cycle module of OSCAR v3.1 is used in “of-
fline” mode: it is not coupled to the rest of the Earth system
and, in particular, permafrost carbon release (Gasser et al.,
2018) is not accounted for. The global terrestrial biosphere is
divided into pairs of regions and biomes, noted (i, b), repre-
senting the “average” biome b of the ith region with assumed
homogeneous biogeochemical characteristics. Therefore, the
module is not spatially explicit, and the regional aggregation
for this study follows the 10 regions defined in Houghton
and Nassikas (2017; their Table 2) and 5 biomes (forests,
other natural lands, croplands, pastures, and urban lands). A
detailed analytical description of the module is provided in
Appendix A7.

The first part of the module describes the evolution of veg-
etation, litter, and soil carbon densities (i.e., carbon stocks
per unit area) as well as the areal carbon exchanges be-
tween these pools and/or the atmosphere, within each set (i,
b) and in the absence of LULCC. The preindustrial steady-
state values of these carbon densities and areal fluxes are cal-
ibrated on DGVMs. During a transient simulation, these val-
ues are affected by environmental conditions: changes in at-
mospheric CO2 concentration impact net primary productiv-
ity (NPP) – the “fertilization” effect – and wildfire intensity,
while changes in regional yearly temperature and precipita-
tion alter NPP, wildfire intensity, and heterotrophic respira-
tion rate.

The second part of the module describes the effect of
LULCC using a bookkeeping approach. When a LULCC
perturbation occurs, carbon from the originally undisturbed
(i, b) pools is redistributed to other pools, including an an-
thropogenic pool of harvested wood products (HWPs). The
new pools can also be within another biome b′ in the case of
land cover change. This displaced carbon follows the biogeo-
chemical properties of the new pools, thereby slowly tending
toward a new steady state. Following the discussion and rec-
ommendation of Gasser and Ciais (2013), the carbon fluxes
and pools of these transitioning ecosystems are defined as a
difference to their expected but yet to be reached new steady
state; thus, the effect of any LULCC perturbation tends to-
ward zero in the long run. This bookkeeping approach cor-
responds to “definition 3” introduced by Gasser and Ciais
(2013) and to “definition B” of Pongratz et al. (2014).

A2 Recalibration of the preindustrial land carbon
cycle

The carbon cycle in each combination of region and biome (i,
b) is represented by a three-box model, illustrated in Fig. A3.
In OSCAR v3.1, the three-box model was slightly altered but
remains very close to that of earlier versions (Gasser et al.,
2017). Concretely, a flux going directly from the vegetation

carbon pool to the soil carbon pool (and therefore bypassing
the litter carbon pool) was added (“fmort2” in Fig. A3). This
simple change enables one to use the three-box model as a
two-box model without changing its structure or equations.
In turn, this enables complex models that do not provide
enough information to be emulated with a two-box model
but using the three-box model’s equations. In addition to this
increased flexibility, the model was extended using two new
fluxes: emissions from harvested crop products (“eharv”) and
emissions caused by pasture grazing (“egraz”).

In OSCAR v3.1, the parameters describing the preindus-
trial steady state of the land carbon cycle module were re-
calibrated on outputs of the DGVMs that took part in the
GCB2018 (Le Quéré et al., 2018a), i.e., the TRENDYv7
models. We used outputs from the control experiment
(named “S0” in their protocol), in which no LULCC occurs
and environmental conditions such as atmospheric CO2 and
climate are maintained at their preindustrial level, to calibrate
the parameters of the natural biomes (“forest” and “non-
forest”). However, because it follows preindustrial (here,
1700) land cover data, the areal extent of anthropogenic
biomes (“cropland”, “pasture”, and “urban”) is very low in
the S0 experiment. For these anthropogenic biomes, in order
to avoid any bias in their parameters potentially caused by
this low land cover fraction, we decided to use the last years
of another experiment instead (namely, “S4”), in which his-
torical LULCC occurs but environmental conditions are still
maintained at preindustrial levels. We acknowledge that the
existence of LULCC in S4 is not in line with our aim of cal-
ibrating a steady state, but it is a necessary compromise in
order to have a large enough areal extent of anthropogenic
biomes for proper calibration. Note that some DGVMs did
not provide enough data and could, therefore, not be used for
calibration at all, which led to a total of 11 models used out of
the 16 original DGVMs (see Table 1). A detailed calibration
protocol is given in Appendix A8.

Table A1 shows a comparison of the global net primary
productivity and carbon pools in the OSCAR v3.1 and in the
original DGVMs. The emulation is not perfect, and the prein-
dustrial global (and regional) carbon pools of OSCAR do not
exactly match those of the emulated DGVMs. There are three
main reasons for this. First, since we average and homoge-
nize biogeochemical properties over large world regions, we
lose some accuracy, as unevenly distributed carbon pools are
not explicitly represented in OSCAR. This bias is somewhat
reduced by defining regions that show a certain bioclimatic
consistency (e.g., separated tropical regions). Second, OS-
CAR works with clearly defined biomes; therefore, we have
to map the DGVMs’ plant functional types (PFTs) onto the
biomes of our model. Since few DGVMs provide detailed
fluxes and pools on a PFT basis, we further have to use an ad
hoc method to distribute aggregated variables between our
biomes (see the detailed calibration protocol). Third, we cal-
ibrate carbon densities and not stocks, and some discrepancy
is introduced by the fact that we do not use the DGVMs’
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Table A1. Preindustrial NPP and carbon stocks in GCB2018 DGVMs and in their emulation by OSCAR. The “DGVM” columns show the
carbon fluxes or stocks we extracted for the calibration of OSCAR. Because we used our own land area map and regional mask to process
the original DGVM outputs and then aggregated regional values into global values, these values may slightly differ from a direct extraction
of the DGVM outputs. The GCB2018 protocol did not require the DGVM teams to provide their own land area map.

NPP (PgC yr−1) Cveg (PgC) Csoil (PgC)

Carbon densities: OSCAR DGVM OSCAR DGVM OSCAR DGVM

Land cover (1700): LUH2 DGVM DGVM LUH2 DGVM DGVM LUH2 DGVM DGVM

CABLE-POP 43.0 43.0 43.0 456 474 506 1441 1456 1541
CLASS-CTEM 45.4 45.5 45.9 384 402 410 1050 1049 1068
DLEM 51.4 54.4 54.4 412 457 486 1047 1105 1151
ISAM 50.4 46.4 46.9 598 505 558 958 954 1042
JSBACH 50.4 45.9 46.6 416 380 365 714 662 670
JULES 56.2 53.1 53.2 580 529 561 1341 1269 1350
LPJ-GUESS 50.9 49.1 49.3 422 396 404 1385 1337 1332
OCN 55.5 57.3 57.6 471 531 566 1619 1665 1754
ORCHIDEE 41.5 43.3 43.6 316 348 360 627 647 671
ORCHIDEE-CNP 42.2 43.4 43.8 329 356 380 690 699 740
VISIT 45.4 46.7 46.4 415 434 435 1208 1244 1218

Mean 48.4 48.0 48.2 436 437 457 1098 1099 1140
SD 4.9 4.7 4.6 85 63 77 317 321 336

Figure A1. The effect of the alternative constraint and comparison to the GCB2019. (a) Probability distributions in the unconstrained (dotted
histograms) and constrained (plain histograms) OSCAR ensembles of the cumulative terrestrial carbon sink over the 1850–2018 period
in the absence of LULCC perturbation compared with the constraint (red). (b) The annual terrestrial carbon sink in the absence of the
LULCC perturbation simulated by OSCAR (color), the individual GCB DGVMs (light gray), and their multi-model mean (dashed black).
(c) The annual LULCC emissions deduced from the GCB DGVMs (i.e., including the LASC). (d) Probability distributions of our best-guess
estimate of the cumulative LULCC emissions over the 1850–2018 period compared with the GCB estimate (dashed black). (e) Bookkeeping
LULCC emissions when the model is driven by the LUH2-GCB2019 data set compared with BLUE estimates reported by the GCB2019.
(f) Bookkeeping LULCC emissions when the model is driven by the FRA2015 data set compared with H&N estimates from which emissions
from peatlands were subtracted. All shaded areas show the 1σ uncertainty range.
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Table A2. Global preindustrial (1700) land cover (in Mha) in the GCB2018 DGVMs compared with that from our two main LULCC data
sets.

Forest Non-forest Cropland Pasture Urban

CABLE-POP 4876 7619 – – –
CLASS-CTEM 5465 6579 276 – –
DLEM 5129 7435 278 141 1
ISAM 3205 8824 257 455 –
JSBACH 4144 7555 267 236 –
JULES 3809 9026 – – 18
LPJ-GUESS 3769 8511 279 432 –
OCN 5982 6488 296 – –
ORCHIDEE 5224 7374 387 – –
ORCHIDEE-CNP 5224 7020 387 361 –
VISIT 5278 7176 275 – –

Mean 4737 7601 300 325 9
SD 826 811 47 119 8

LUH2-GCB2019 4620 7256 357 756 1
FRA2015 5013 6074 574 1756 –

preindustrial land cover map (Table A2). Despite these three
caveats, Table A1 demonstrates that the emulation remains
largely satisfactory.

A3 Changes between OSCAR v2.2 and v3.1

The following points outline the changes between OSCAR
v2.2 and v3.1:

– v3.1. Changes to the land carbon cycle are described
hereinabove (Appendix A2). The new structure made it
necessary to adapt the wetlands module, so that CH4
emissions from wetlands now scale with the relative
change in total heterotrophic respiration (and not the
change in litter respiration).

– v3.0.1. An error in the overlap function for the radiative
forcing of CH4 and N2O was corrected. This error ap-
peared during the rewriting of v3.0 and did not affect
earlier versions.

– v3.0. OSCARv3 was completely recoded from scratch
in Python 3 (instead of Python 2), with an entirely
new structure and solving scheme. This version heav-
ily relies on the “xarray” Python library (Hoyer and
Hamman, 2017) to parallelize Monte Carlo simula-
tions and/or scenarios. The default solving scheme was
changed to a forward-Eulerian exponential integrator.
All underpinning physical equations and parameter val-
ues remain the same as in v2.4. Both versions were com-
pared, and no significant difference was found beyond
the effect of the new solving scheme.

– v2.4. This version was developed as a bridge version be-
tween v2 and v3. Our goal was that v2.4 be as close to

v3.0 as possible (without changing the overall structure
of the model) at this point. The preindustrial land cover
map was changed to being that of the LULCC data set
used to drive the model. The dependency of the frac-
tional area of wetlands to the preindustrial land cover
map was removed and was taken as the average of all
previous parameterizations. The possibility of having
HWPs follow a non-exponential decay was removed.
To compensate for this, in addition to the original pa-
rameterization of the HWP lifetimes (called “normal”),
two new options were added in which these lifetimes
are rescaled by 0.5 (“fast”) or by 1.25 (“slow”). Finally,
the biome aggregation was fixed to that of v3: the five
biomes described in this paper.

– v2.3.1. A number of minor errors were fixed, and ad-
ditional adjustments were made. Land carbon cycle pa-
rameters for the urban biome were corrected. So were
one parameterization for the radiative efficiency of tro-
pospheric O3 and one parameterization for the semi-
direct effect of black carbon (BC) aerosols. One param-
eterization for the effect of N2O on stratospheric O3 and
one parameterization for the fractional release factor of
ozone-depleting substances were removed. One param-
eterization for the radiative efficiency of tropospheric
O3 was added. All of these changes had almost no im-
pact on the model’s performance. However, two addi-
tional changes had more impact: first, the discretiza-
tion of the response functions for HWPs was corrected,
which led to higher LULCC emissions after correction;
and, second, a new parameter was introduced to account
for the fact that too much of the HWPs were assumed to
be burned. This amount was reduced by half, leading to
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Figure A2. Summary of LULCC drivers in LUH2-GCB2019 (dashed black lines) and FRA2015 (dotted gray lines). For each region (rows),
the first five columns show net changes in our five biomes (in order: forest, non-forest, cropland, pasture, and urban), the second-to-last
column shows wood harvest, and the final column shows total area under shifting cultivation.

better endogenous non-CO2 biomass burning emissions
but having no impact on the CO2 budget.

– v2.3. The permafrost carbon model described by Gasser
et al. (2018) was implemented in the model’s main
branch.

– v2.2.2. A minor error in one parameterization for the
lifetimes of primary organic aerosols (POAs) and BC
was fixed. This had very little impact on the overall per-
formance of the model.

– v2.2.1. Two errors in the code were fixed. The first was
in the function linking the surface ocean carbon pool to
the surface ocean partial pressure in CO2, which was
leading to an overly efficient ocean carbon sink under
high warming and high atmospheric CO2. However, the
effect was negligible under historical conditions. The
second was in the function linking atmospheric CO2
and surface ocean pH change. This function was not de-
scribed by Gasser et al. (2017); it was taken from Bernie
et al. (2010) but was incorrectly implemented.
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– v2.2. This version was comprehensively described by
Gasser et al. (2017).

A4 Experimental setup

The land carbon cycle module of OSCAR is driven by
(i) global atmospheric CO2 concentrations over the 1700–
2018 period created for the GCB2019 exercise (Friedling-
stein et al., 2019), (ii) observation-based reconstructions of
regional air temperature and precipitation over the 1901–
2018 period from the CRU-TS v4.03 (Harris et al., 2014),
and (iii) several LULCC data sets detailed hereafter. Atmo-
spheric CO2 before 1700 is assumed to be constant and equal
to the preindustrial value used in OSCAR (Gasser et al.,
2017), which is a very slight deviation from the GCB pro-
tocol, as our model’s preindustrial reference year is 1750 and
not 1700. Climate variables are offset by their average over
the 1901–1920 period, assuming that this corresponds to a
preindustrial climate that is further extended backward be-
fore 1901. This is similar to the GCB protocol with the ex-
ception of the fact that we use the average of 1901–1930,
whereas the GCB recycles the individual years of this period
(leading to a 30-year cycle). This difference was tested, and
we found only a negligible effect on our results (not shown).

Our best-guess estimates are based on two significantly
differing LULCC data sets. The first one is an update of the
LUH2 data set made for the GCB2019 exercise, in which
only the years after 1950 differ slightly from the original
data set. The second one is the data set used and created
by Houghton and Nassikas (2017) on the basis of FAO and
FRA2015 data. Although these two data sets have several
data sources in common, they remain mostly independent
given the way that they internally process these input data.
Additionally, for Fig. 3, we ran simulations with older vari-
ants of the LUH data set. These variants are as follows: the
first Land-Use Harmonization (LUH1) data set (Hurtt et al.,
2011), originally produced for the CMIP5 modeling exer-
cise; an updated version of LUH1 made for the GCB2015
exercise, which was based on then-preliminary HYDE3.2
data (Klein Goldewijk et al., 2017) instead of HYDE3.1 data
(Klein Goldewijk et al., 2011); and the original LUH2 data
set produced for CMIP6, as well as its two “Low” and “High”
variants (Lawrence et al., 2016). All of these data sets re-
quired some slight processing, as described in Appendix A9.
Our simulations start in the earliest year of the LULCC data
sets: in 850 for LUH2 variants, in 1500 for LUH1 variants,
and in 1700 for FRA2015. This significantly differs from the
GCB protocol that starts in 1700.

A5 Constrained Monte Carlo ensemble

All of those simulations were made following a probabilistic
Monte Carlo setup in which 10 000 sets of the model’s pa-
rameters were drawn randomly (with equiprobability). Note
that these parameters include the nine parameters introduced

in Appendix A7 (multiplied by the number of (i, b) pairs)
as well as additional parameters described by Gasser et al.
(2017) for a total of more than 1300 parameters. The com-
bination of Monte Carlo elements, LULCC data sets, and
variant runs led to a total of 140 000 simulations and about
100 million simulated years. We constrained this large en-
semble to limit the bias and spread that typically results from
using OSCAR in such a probabilistic fashion (Gasser et al.,
2017). This is done in a way similar to what we did for
the GCB2017 (Le Quéré et al., 2018b). Each element of the
Monte Carlo ensemble is given a weight (w) equal to

w(x)=
1

σ
√

2π
exp

(
−
(x−µ)2

2σ 2

)
, (A1)

where µ and σ are the mean and standard deviation of the
constraint, respectively, and x is the value of the correspond-
ing variable for this element of the ensemble. The constraint
we use in this study is the cumulative net land-to-atmosphere
flux over the 1850–2018 period, calculated as the residual of
the carbon emitted by fossil fuel burning and industry minus
the carbon stored in the atmosphere and the ocean. These
values were taken from the GCB2019 (Friedlingstein et al.,
2019; their Table 8), leading to µ=−25 and σ = 30 PgC.
See Fig. 1 and Sect. 4 in the paper for more on the effect of
the constraint.

A6 Debiased uncertainty

To analyze and separate each uncertainty factor, we average
our simulations ensemble over all uncertainty axes except
the one investigated and then quantify the absolute (stan-
dard deviation) and relative (coefficient of variation; CV) un-
certainty along the remaining axes. Because the size of the
remaining ensemble can be as small as only two elements,
both values are debiased by multiplying them by a factor κσ
(Brugger, 1969):

κσ =

√
N − 1

2
0

(
N − 1

2

)
/0

(
N

2

)
, (A2)

where N is the size of the remaining ensemble, and 0 is the
gamma function. This approach differs from a proper vari-
ance decomposition, but it is simpler to handle given the
number of simulations we performed, and it provides a rela-
tive ranking of the importance of each uncertainty factor.

A7 Analytical description of the land carbon cycle
module

Following Fig. A3, the evolution of vegetation (cveg), litter
(csoil1), and soil (csoil2) carbon densities is determined by a
number areal fluxes: net primary productivity (npp), emis-
sion from wildfire (efire), emission from harvested crop prod-
ucts (eharv), emission from grazing (egraz), mortality to litter
(fmort1) and to soil (fmort2), metabolization from litter to soil
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Table A3. Comparison of regional bookkeeping LULCC emissions with H&N estimates. H&N values are taken directly from Houghton
and Nassikas (2017): their annual flux is calculated over the 2006–2015 period, and their cumulative flux is calculated over the 1850–2015
period.

Best guess LUH2-GCB2019 FRA2015 H&N

Annual flux 2009–2018 (TgC yr−1)

Sub−Saharan Africa 460± 243 290± 110 656± 201 437± 55
Latin America 632± 227 518± 136 762± 238 527± 114
South and Southeast Asia 321± 111 349± 89 290± 120 441± 141
North America 1± 37 20± 26 −22± 34 −73± 79
Europe −34± 30 −17± 21 −54± 25 −102± 46
Former Soviet Union 8± 48 33± 34 −20± 46 −60± 55
China −53± 213 138± 71 −271± 53 −58± 112
North Africa and the Middle East −8± 9 −3± 6 −13± 8 −3± 55
East Asia 0± 48 11± 41 −11± 8 −3
Oceania 34± 64 4± 36 69± 71 8

Cumulative flux 1850–2018 (PgC)

Sub-Saharan Africa 26.8± 11.8 23.1± 12.6 31.0± 9.3 24.1± 3.0
Latin America 60.6± 17.3 64.0± 17.4 56.6± 16.3 37.5± 3.4
South and Southeast Asia 34.3± 11.3 30.1± 7.2 39.3± 13.1 40.5± 7.8
North America 29.0± 11.4 30.3± 12.1 27.5± 10.3 22.7± 6.3
Europe −1.0± 3.7 2.0± 1.5 −4.4± 2.2 −5.2± 3.7
Former Soviet Union 15.2± 10.1 15.5± 10.1 15.0± 10.0 10.7± 4.3
China 7.4± 9.9 15.5± 5.5 −1.8± 4.1 7.3± 7.0
North Africa and the Middle East −0.9± 1.4 −1.2± 1.6 −0.6± 1.2 2.7± 6.6
East Asia 1.9± 1.5 3.0± 1.2 0.6± 0.4 1.4
Oceania 5.1± 9.2 1.0± 7.4 9.7± 8.9 3.9

Figure A3. Diagram of the three-box model describing the intensive
land carbon cycle in each (region, biome) set. The three boxes corre-
spond to carbon pools in the vegetation (cveg), the litter (csoil1), and
the soil (csoil2). Detailed definitions and formulations of the fluxes
(gray arrows) are provided in Appendix A7.

(fmet), and heterotrophic respiration from litter (rh1) and soil
(rh2). Using the superscripts i and b to denote regions and
biomes, respectively, and a dot on top of a variable to denote
its first time differential, the associated differential system
for all (i, b) is as follows:

ċi,bveg = nppi,b− ei,bfire− e
i,b
harv− e

i,b
graz− f

i,b
mort1− f

i,b
mort2 (A3)

ċ
i,b
soil1 = f

i,b
mort1− f

i,b
met− rhi,b1 (A4)

ċ
i,b
soil2 = f

i,b
mort2+ f

i,b
met− rhi,b2 (A5)

Each of these fluxes is then formulated as

nppi,b = ηi,b F i,bnpp

(
CO2,T

i, P i
)

(A6)

e
i,b
fire = ι

i,b F
i,b
fire

(
CO2, T

i, P i
)
ci,bveg (A7)

e
i,b
harv = ε

i,b
harv c

i,b
veg (A8)

ei,bgraz = ε
i,b
graz c

i,b
veg (A9)

f
i,b
mort1 = µ

i,b
1 ci,bveg (A10)

f
i,b
mort2 = µ

i,b
2 ci,bveg (A11)

f
i,b
met = µ

i,b
metF

i,b
rh

(
T i, P i

)
c
i,b
soil1 (A12)

rhi,b1 = ρ
i,b
1 F

i,b
rh

(
T i, P i

)
c
i,b
soil1 (A13)
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rhi,b2 = ρ
i,b
2 F

i,b
rh

(
T i, P i

)
c
i,b
soil2 (A14)

Here, the three functions noted with script F are sensitiv-
ity functions to atmospheric CO2, regional air temperature
(T i), and precipitation (P i), all calibrated on CMIP5 models
(Arora et al., 2013) (on the 1pctCO2, esmFdbk1, and esm-
FixClim1 experiments) and described in earnest by Gasser et
al. (2017).

The Greek letters introduced in Eqs. (6)–(14) are the pa-
rameters of the system: η is the preindustrial NPP; ι is the
preindustrial wildfire intensity; εharv and εgraz are the export
fractions from crop harvesting and animal grazing, respec-
tively; µ1 and µ2 are the mortality rates to litter and soil,
respectively; µmet is the metabolization rate; and ρ1 and ρ2
are the preindustrial heterotrophic respiration rates of litter
and soil, respectively. Mathematically, these nine parameters
are sufficient to define the preindustrial steady state of the
system, noted with the subscript 0:

c
i,b
veg,0 = η

i,b/
(
ιi,b+ ε

i,b
harv+ ε

i,b
graz+µ

i,b
1 +µ

i,b
2

)
(A15)

c
i,b
soil1,0 =

(
µ
i,b
1 c

i,b
veg,0

)
/
(
ρ
i,b
1 +µ

i,b
met

)
(A16)

c
i,b
soil2,0 =

(
µ
i,b
2 c

i,b
veg,0+µ

i,b
met c

i,b
soil1,0

)
/ρ

i,b
2 (A17)

These nine parameters are the ones recalibrated on the
GCB2018 models.

In OSCAR, the LULCC perturbation is represented by
three anthropogenic forcings: land cover change (δAcover),
wood harvest (δHwood), and shifting cultivation (δAshift). The
first forcing describes area transitions from one biome to an-
other; therefore, it is defined along two biome axes b and b′

representing the initial and final biomes of the transition. It
is the only forcing that actually alters the areal extent (Aland)
of the different biomes, following

Ȧ
i,b
land =

∑
b′
δAi,b

′
→b

cover −
∑

b′
δAi,b→b

′

cover (A18)

The second forcing describes biomass harvested from woody
biomes that then regrow, and it is defined along only one
biome axis. The third forcing describes reciprocal area transi-
tions between one natural biome and another anthropogenic
biome, typical of practices such as slash-and-burn. It is de-
fined along two axes, but its matrix representation in the (b,
b′) space is symmetrical, which implies a net zero land cover
change. To account for this last forcing in a computation-
ally efficient way, one key simplification is made in OSCAR:
shifting cultivation is assumed to be equivalent to harvesting
the biomass of ecosystems that are τshift years old (Gasser et
al., 2017). The τshift value is taken from Hurtt et al. (2006).
This amount of harvested biomass is calculated as the vege-
tation carbon density multiplied by the δAshift driver and by
a reduction factor (pshift) based on the (exponential) growth
of the biomass described in Eq. (3):

p
i,b
shift = 1− exp

(
−

(
ηi,b/c

i,b
veg,0

)
τshift

)
(A19)

To manage the bookkeeping itself, OSCAR keeps track of
LULCC-perturbed extensive variables as the difference from
the steady state they would reach after a long enough time pe-
riod (which is described by Eqs. A3–A14). These variables
use uppercase letters (in opposition to the lowercase letters of
the previous section) and have the subscript “bk” to denote
that they are under bookkeeping. It is also necessary to intro-
duce a new carbon pool for harvested wood products (Chwp)
that is itself split into several sub-pools denoted using the su-
perscript w. The differential system describing this part of
the model is as follows:

Ċ
i,b
bk,veg = NPPi,bbk −E

i,b
bk,fire−E

i,b
bk,harv−E

i,b
bk,graz

−F
i,b
bk,mort1−F

i,b
bk,mort2+ δC

i,b
bk,veg (A20)

Ċ
i,b
bk,soil1 = F

i,b
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i,b
bk,met−Rhi,bbk,1

+ δC
i,b
bk,soil1+Fslash1 (A21)

Ċ
i,b
bk,soil2 = F

i,b
bk,mort2+F

i,b
bk,met−Rhi,bbk,2

+ δC
i,b
bk,soil2+Fslash2 (A22)

Ċ
i,b,w
hwp = F

i,b,w
hwp −E

i,b,w
hwp (A23)

Equations (20)–(23) introduce new fluxes that correspond to
the initialization step of the bookkeeping. δCbk,veg, δCbk,soil1,
and δCbk,soil2 represent the initial carbon in the vegetation,
litter, and soil pools, respectively, as a difference from their
respective future steady state. For the vegetation pool, it is
assumed that the new ecosystems start without any biomass:

δC
i,b
bk,veg =−

∑
b′
ci,bveg δA

i,b′→b
cover

− δH
i,b
wood

−

∑
b′
ci,bvegp
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shift δA
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shift (A24)

For the litter and soil pools, it is assumed that they start with
the carbon of the old ecosystems:

δC
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∑
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soil1 δA
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cover

−
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−
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From the old ecosystems, the aboveground biomass fraction
(πagb) is partly harvested and allocated to harvest wood prod-
uct pools (Fhwp), following pool-specific allocation coeffi-
cients (πhwp):

F
i,b
hwp =

∑
b′
π
i,b′,w
hwp π

i,b′

agb c
i,b′

veg δA
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cover
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i,b′,w
hwp π
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shift (A27)
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The fraction of biomass of the old ecosystem that is left
on site (pslash) is comprised of the rest of the aboveground
biomass and the belowground biomass:

p
i,b
slash =

(
1−π i,bagb

)
+

(
1−

∑
w
π
i,b,w
hwp

)
(A28)

This defines the so-called “slash” fluxes to the litter (Fslash1)
and soil (Fslash2) pools:
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The slash is not accounted for separately in OSCAR. There-
fore, slash fluxes only appear at the initialization step (as this
carbon is added to the litter and soil pools and then follow
the biogeochemistry of these pools). It should also be noted
that this initialization step is carbon neutral with respect to
the atmosphere:∑

b

(
δC

i,b
bk,veg

+ δC
i,b
bk,soil1+ δC

i,b
bk,soil2+F

i,b
hwp

+F
i,b
slash1+F

i,b
slash2

)
= 0 (A31)

Notwithstanding the initialization fluxes, there is a clear sim-
ilarity between Eqs. (20)–(22) and Eqs. (3)–(5). With the ex-
ception of NPPbk, all of the natural fluxes then follow a sim-
ilar formulation to that of Eqs. (6)–(14) for the intensive cy-
cle:

NPPi,bbk = 0 (A32)

E
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i,b F
i,b
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i, P i
)
C
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E
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harvC

i,b
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E
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i,b
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Rhi,bbk,1 = ρ
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1 F

i,b
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(
T i, P i

)
C
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bk,soil1 (A39)

Rhi,bbk,2 = ρ
i,b
2 F

i,b
rh

(
T i, P i

)
C
i,b
bk,soil2 (A40)

Recall that the extensive cycle is formulated as a difference
from the steady state that the perturbed ecosystems would
reach in an infinite amount of time. Therefore, Eq. (32)
means that there is no difference in the NPP between undis-
turbed and disturbed ecosystems in OSCAR. See the dis-
cussion of this model feature in Sect. 4.2. Finally, harvested
wood products decay following a product-specific timescale
(τhwp), which leads to carbon emission (Ehwp):

E
i,b,w
hwp = C

i,b,w
hwp /τ

i,b,w
hwp (A41)

All of the parameters introduced specifically for the extensive
cycle follow the definitions and values of earlier versions of
OSCAR (Gasser et al., 2017) with two exceptions: first, the
aboveground biomass fractions (πagb) were recalibrated on
the DGVMs, along with the intensive cycle parameters; and,
second, change from v2.3 to v2.4 simplified the treatment
of harvested wood products but also introduced more uncer-
tainty in their lifetime (τhwp).

The global land carbon sink (Fland) is defined as

Fland =
∑

i,b

((
nppi,b− ei,bfire− e

i,b
harv− e

i,b
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− rhi,b1 − rhi,b2

)
A
i,b
land

)
, (A42)

and the emissions caused by land use and land cover change
(Eluc) are defined as

Eluc =
∑

i,b
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)
(A43)

The combination of both equals the net land-to-atmosphere
flux, as demonstrated in Gasser and Ciais (2013). In OSCAR,
the LASC (FLASC) is naturally a subcomponent of the land
carbon sink. It is deduced from Eq. (42) as the difference
from a case without transient land cover change (i.e., with
fixed preindustrial land cover, denoted as Aland,0):

FLASC =
∑

i,b

((
nppi,b− ei,bfire− e

i,b
harv

− ei,bgraz− rhi,b1 − rhi,b2

)(
A
i,b
land−A

i,b
land,0

))
(A44)

A8 Detailed calibration protocol

In this section, we explicitly define the link between our
model’s parameters and DGVMs’ carbon fluxes and pools
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using the standardized CMIP variable names . These vari-
ables are as follows: “cLitter” (litter pool), “cRoot” (biomass
in root), “cSoil” (soil pool), “cVeg” (vegetation pool), “gpp”
(gross primary productivity), “fDOC” (flux of dissolved
organic carbon), “fFire” (wildfire emissions), “fGrazing”
(emission from grazing), “fHarvest” (emission from har-
vested crop products, “fLitterSoil” (flux from litter to soil),
“fVegLitter” (flux from vegetation to litter), “fVegSoil” (flux
from vegetation to soil), “landCoverFrac” (land cover frac-
tions), “npp” (net primary productivity), “ra” (autotrophic
respiration), and “rh” (heterotrophic respiration).

First, a given DGVM is considered good for emulation if
and only if it provides at least the following key variables:
npp (or gpp and ra), rh, cVeg, cSoil, and landCoverFrac. Sec-
ond, the calibration on that model will follow the three-box
model if and only if cLitter, cSoil, and fLitterSoil are all
provided; it will follow the two-box model otherwise (see
Sect. 2.2). Third, an extra variable “grid” is created for each
model, corresponding to the area of land in each of the model
grid cell, using the land mask provided with the LUH2 land
use and land cover change data set. Fourth, for each vari-
able and each GCB simulation, the model’s spatially explicit
data are aggregated into regional and biome-specific time se-
ries (i.e., defined on the i and b axes) using a regional mask
(“mask”) adapted to the model’s resolution and its own land-
CoverFrac data aggregated onto OSCAR’s biomes. The lat-
ter is used to split a variable’s value in a given grid cell (g)
among the model’s biomes. For any variable “Var”, the re-
sulting time series (along the t axis) follows

Var(t, i,b)=∑
gmask(g, i) Var(t,g) grid(g) landCoverFrac(t,g,b)3∑

g landCoverFrac(t,g,b)3
(A45)

In a given region, the biome area fraction map is taken to the
power 3 to give more importance to the grid cells in which
biomes are purer, without risking the exclusion any of those
grid cells (e.g., by setting a threshold of biome area fraction
instead). This processing is also done with Var being an array
full of ones, in which case we obtain the “area” variable cor-
responding to the area of each biome in each region. Fifth,
to correspond with our assumption of a steady state, the ob-
tained time series are averaged over the whole simulation for
S0 and over the 1990–2010 period for S4.

In the second-to-last step, intermediate variables are de-
fined, with fallback definitions to overcome the unavailabil-
ity of some DGVMs’ outputs:

npp′ =
{

npp, if npp exists
gpp− ra, otherwise (A46)

fMort=


fVegLitter + fVegSoil,
if fVegLitter or fVegSoil exists
npp′ − fFire − fHarvest − fGrazing,
otherwise

(A47)

rh′ =

 rh, if rh exists
npp′− fFire − fHarvest
− fGrazing − fDOC, otherwise

(A48)

Moreover, assuming any other variables’ value is zero if it
was not reported in the GCB2018 data base, we determine
OSCAR’s parameters over each pair (i, b) as follows:

η = npp′/area (A49)
ι= fFire/cVeg (A50)
εharv = fHarvest/cVeg (A51)
εgraz = fGrazing/cVeg (A52)

µ1 =

{
fVegLitter/cVeg, if three boxes
0, otherwise (A53)

µ2 =

{
fVegSoil/cVeg, if three boxes
fMort/cVeg, otherwise (A54)

µmet =

{
fLitterSoil/cLitter, if three boxes
0, otherwise (A55)

ρ1 =

 (fVegLitter− fLitterSoil)/cLitter, if
three boxes
0, otherwise

(A56)

ρ2 =

 (fVegSoil+ fLitterSoil)/cSoil, if
three boxes
rh′/(cLitter+ cSoil) , otherwise

(A57)

πagb = 1− cRoot/cVeg (A58)

Finally, two ultimate adjustments are made after this entire
processing procedure. First, if a DGVM lacks a given biome
(such as cropland, pasture, or urban), all parameters but εharv
and εgraz are assumed to be the same as those of the non-
forest biome, with the exception of urban η that is then zero.
Second, ι is set to zero in the urban biome, and εharv and
εgraz are set to zero in all biomes except cropland and pasture,
respectively.

A9 Processing of the LULCC data sets for OSCAR

The “natural land” biome of LUH1 variants had to be split
between forest and non-forest. We did so on the data set’s
own grid, following the potential biomass map provided with
the LUH1 data set, and using a threshold value of 2 kgC m−2

given by Hurtt et al. (2006) above which a grid cell’s natu-
ral land was considered 100 % forest and below which it was
split between forest and non-forest. This split was made such
that the proportion of forest equaled the potential biomass di-
vided by the threshold value. In addition, shifting cultivation
transitions were calculated by isolating all reciprocal transi-
tions between natural land and anthropogenic biomes within
the shifting cultivation mask provided with the LUH1 data
set. Note that the LUH1-GCB2015 data set does not include
urban land.

The natural biomes of the LUH2 variants match those of
OSCAR. However, the anthropogenic biomes are more finely
defined than in our model (i.e., more cropland and pasture
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types). Therefore, we aggregated all of the cropland types
into one unique cropland biome; a similar process was also
undertaken for pasture biome types. It is worth noting that we
assume rangeland to be pastures, which may explain some
of the differences shown in Fig. A2. Additionally, following
information provided by the LUH team, shifting cultivation
transitions were calculated by isolating reciprocal transitions
between any of the two natural biomes and cropland, and
only between the latitudes of 33◦ N and 33◦ S.

The FRA2015 data as used by the H&N model of
Houghton and Nassikas (2017) demanded little processing
to be compatible with OSCAR. As stated in Sect. 4, forest
plantations were assimilated to be natural forests. The two
types of harvested wood (fuel and industrial) were summed
together, which by construction leads to a split between HWP
pools that is different from that of H&N. We created our
shifting cultivation driver by calculating the cumulative sum
of the yearly transitions towards what they identified as being
newly established shifting cultivation areas. This was taken
in tropical countries only and was divided by 15 years to as-
sume a 15-year rotation time following Hurtt et al. (2011).
No urban biome is included in this data set.
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