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Abstract. Thermokarst features are widespread in ice-rich
regions of the circumpolar Arctic. The rate of thermokarst
lake formation and drainage is anticipated to accelerate as
the climate warms. However, it is uncertain how these dy-
namic features impact the terrestrial Arctic carbon cycle.
Methane (CH4) and carbon dioxide (CO2) fluxes were mea-
sured during peak growing season using eddy covariance
and chambers at Illisarvik, a 0.16 km2 thermokarst lake basin
that was experimentally drained in 1978 on Richards Island,
Northwest Territories, Canada. Vegetation in the basin dif-
fers markedly from the surrounding dwarf-shrub tundra and
included patches of tall shrubs, grasses, and sedges with
some bare ground and a small pond in the centre. Dur-
ing the peak growing season, temperature and wind con-
ditions were highly variable, and soil water content de-
creased steadily. Basin-scaled net ecosystem CO2 exchange
(NEE) measured by eddy covariance was −1.5 [CI95 %±

0.2] g C−CO2 m−2 d−1; NEE followed a marked diurnal pat-
tern with no day-to-day trend during the study period. Vari-
ations in half-hourly NEE were primarily controlled by pho-
tosynthetic photon flux density and influenced by vapour
pressure deficit, volumetric water content, and the pres-
ence of shrubs within the flux tower footprint, which varied
with wind direction. Net methane exchange (NME) was low
(8.7 [CI95 %±0.4] mgCH4 m−2 d−1) and had little impact on
the growing season carbon balance of the basin. NME dis-
played high spatial variability, and sedge areas in the basin
were the strongest source of CH4 while upland areas outside
the basin were a net sink. Soil moisture and temperature were

the main environmental factors influencing NME. Presently,
Illisarvik is a carbon sink during the peak growing season.
However, these results suggest that rates of growing season
CO2 and CH4 exchange rates may change as the basin’s veg-
etation community continues to evolve.

1 Introduction

The northern permafrost region stores approximately 50 %
of global organic soil carbon in 16 % of the terrestrial land
area (Tarnocai et al., 2009). Thermokarst landscapes ac-
count for approximately 20 % of the land area in this re-
gion and hold about half of its organic soil carbon (Olefeldt
et al., 2013). Lake thermokarst landscapes are widespread
in poorly drained, sedimentary permafrost lowlands with
excess ground ice volume and constitute about a third of
all thermokarst area (French, 2017; Olefeldt et al., 2013).
Thermokarst lakes are a prominent landscape feature of
the western Canadian Arctic (Mackay, 1999; Marsh et al.
2009; Lantz and Turner, 2015). These lakes drain, sometimes
catastrophically, forming drained thermokarst lake basins
(DTLBs) via bank overflow, ice wedge erosion, coastal ero-
sion, and stream migration (Billings and Peterson, 1980;
Mackay, 1999). Lake formation and drainage are a natural
part of the thaw lake cycle, but it is anticipated that climate
change will accelerate or disturb this cycle, potentially alter-
ing the regional carbon balance (Jones et al., 2018).
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Net ecosystem exchange (NEE), ecosystem respiration
(ER), and gross primary productivity (GPP), where NEE=
ER−GPP, are lower in the Arctic than warmer regions but
have significant seasonal cycles and variability between veg-
etation types (Virkkala et al., 2018). Future trajectories in
NEE will in large part be governed by ER (Biasi et al.,
2008; Cahoon et al., 2012). Dominant vegetation types in
the western Canadian Arctic are erect-shrub tundra and wet-
lands (Walker et al., 2005). Growing season NEE is typi-
cally negative across these units throughout the Arctic, in-
dicating a net CO2 sink as GPP exceeds ER in part due
to cold and/or anoxic soil conditions (Virkkala et al., 2018;
Lafleur et al., 2012). Annual NEE can be positive or neg-
ative with large variation in GPP linked to annual weather
variability (Virkkala et al., 2018, McGuire et al., 2009). Arc-
tic net methane exchange (NME) is positive because wetland
areas are strong methane (CH4) sources while upland areas
with better drainage can be net sinks (Whalen and Reeburgh,
1990; McGuire et al., 2009; Sturtevant and Oechel, 2013).

Thermokarst lakes are well-recognized sources of CH4
(Walter et al., 2007), which is 28 times as potent as car-
bon dioxide (CO2) on a 100-year timescale (IPCC, 2014).
Thermokarst lake formation and expansion is expected to
exert a positive feedback on climate change and accelerate
Arctic warming in the near term, but modelling suggests that
drainage may limit expansion and result in decreased lake
area by the end of the century (van Huissteden et al., 2011).
Post drainage, DTLBs undergo rapid ecological succession.
In colder tundra environments, wet meadows or polygonal
landscapes dominated by sedges, grasses, and rushes will
form (Lara et al., 2015). In slightly warmer boreal and tran-
sitional regions, DTLBs often become dominated by willows
and other shrubs (Lantz and Turner, 2015).

Carbon exchange in DTLBs of various ages has been ex-
amined in a few studies, almost exclusively focused on the
Barrow Peninsula in northern Alaska. DTLB NEE during the
growing season is negative with the greatest CO2 uptake in
younger basins and decreasing net uptake as basins age in
this region (Zona et al., 2010; Zulueta et al., 2011; Sturte-
vant and Oechel, 2013; Lara et al., 2015). DTLB source–
sink strength of CH4 was found to be highly variable de-
pending on vegetation and ground conditions (Lara et al.,
2015). NME is highest in wet meadows and remnant ponds
but considerably reduced in areas with better drainage (Zona
et al., 2009, 2012; Lara et al., 2015). There may be regional
variations in the carbon balance of DTLBs. For example, a
shrub-dominated ancient DTLB known as Katyk in the Indi-
girka lowlands of Siberia shows considerably higher growing
season carbon uptake than young Alaskan DTLBs with com-
parable NME (van der Molen et al., 2007; Parmentier et al.,
2011). Similarly, DTLBs in the western Canadian Arctic may
have different carbon fluxes than Alaskan DTLBs due to dif-
ferences in climate and vegetation composition.

In this study, fluxes of CO2 and CH4 were measured at
Illisarvik, an experimentally drained thermokarst lake basin

on Richards Island in the western Canadian Arctic, North-
west Territories, Canada. Fluxes of CO2 and CH4 were mea-
sured during the peak growing season using a combination
of closed chamber and eddy covariance (EC) measurements.
NEE was calculated from fluxes, and storage change and was
separated into ER and GPP. Here we report on (1) the spa-
tial and temporal variability of the NEE and NME during the
growing season, (2) the vegetation and environmental fac-
tors influencing NEE and NME, (3) how the growing season
carbon balance at Illisarvik compares to other DTLBs, and
(4) potential future carbon balance trajectories as Illisarvik’s
vegetation communities continue to evolve.

2 Methods

2.1 Study site and data collection

The study took place at Illisarvik, a DTLB on Richards Island
(69◦28′47.5′′ N, 134◦35′18.7′′W), which was drained exper-
imentally in 1978 (Mackay, 1997). Illisarvik has since served
as the focus of studies on permafrost growth, active layer
development, and vegetation succession (Ovenden, 1986;
Mackay and Burn, 2002; O’Neil and Burn, 2012; Wilson
et al., 2019). At the nearby Tuktoyaktuk climate station mean
annual air temperature (Ta) is −10.1 ◦C, July is the warmest
month with a mean of 11 ◦C, and January is the coldest at
−27 ◦C. Mean annual precipitation is 160.7 mmyr−1, the
majority falling as rain in the summer and autumn. Snow
cover typically lasts from mid-September or early October to
late May (Environment Canada, 2016). Tuktoyaktuk is 60 km
east of Illisarvik and in similar proximity to the coast so the
climatology is expected to be similar at Illisarvik.

In the 39 years since drainage, Illisarvik has undergone
rapid vegetation succession. After drainage, there were two
remnant ponds. In the first 5 years after drainage, vegeta-
tion colonized the basin margins and wetter areas (Oven-
den, 1986). By 1999, low vegetation had proliferated across
most of the basin and taller willows had become established
along the basin margins (Mackay and Burn; 2002). By 2010,
some of the willows had grown to be 3 m in height (O’Neil
and Burn; 2012). Current vegetation at Illisarvik is diverse
relative to the dwarf-shrub tundra of the surrounding up-
lands (Table 1); the basin hosts a mix of woody shrubs
(Salix spp., Betula spp., and Alnus spp.), wetland vegetation
(Carex aquatilis, Arctophila fulva, etc.), and various grasses
(Pocacea spp.) (Wilson et al., 2019). The basin is partly
ringed by a terrace of peat that formed after a partial drainage
event ∼ 5000 years BP and supports vegetation similar to
the uplands (Michel et al., 1989). An ancient DTLB is lo-
cated 100 m to the south of the Illisarvik basin, and the Arc-
tic Ocean is to the west of the basin, separated by a ridge of
upland tundra about 50 m wide at its narrowest (Fig. 1).

A vegetation survey of species composition and abun-
dance was done on a 50 m grid in and around the basin dur-
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Table 1. Dominant species or landscape feature within the vegetation/cover classes. Unit codes correspond to the map in Fig. 1a.

Unit code Vegetation class Dominant species/landscape feature

1a Shrub Salix alaxnesis (tall willow)
1b Shrub Salix glauca (low willow)
1c Shrub Alnus viridis subsp. crispa (alder)
2a Sedge marsh Carex aquatilis (sedge)
2b Sedge marsh Arctophila fulva (pendant grass)
3 Grass meadow Poaceae spp. (grasses), Eriophorum angustifolium (cotton grass)
4a Sparse cover Sparse vegetation
4b Sparse cover Bare ground
5 Ponds Hippuris vulgaris (mare’s tail), open water
6a Outside of basin Dwarf-shrub tundra: Salix spp. and Betula nana (birch)
6b Outside of basin Fen
6c Outside of basin Ocean

ing the 2016 study period (Wilson et al., 2019). A vegeta-
tion map was created with 10 units based on plant functional
type and vegetation structure, with sub-units denoting sub-
canopy vegetation. The unit boundaries between grid points
were estimated visually by traversing the grid lines. Addi-
tional survey data on vegetation units and canopy height were
collected manually with a GPS in the proximity of the EC
station because greater resolution was needed for footprint
modelling. Aerial imagery was collected on 23 July over two
flights using a Phantom 2 drone (DJI, Shenzhen, China). The
GPS points and drone imagery were used to cross-reference
and modify the map of Wilson et al. (2019). The 10 units
were then aggregated into six broader surface cover classes
(listed from largest to smallest areal fraction within the foot-
print climatology (FClim); see Sect. 2.3 for definition): shrub,
grass, sedge, upland, sparse, and water (Fig. 1 and Table 1).

2.2 Weather and soil measurements

Weather data were logged on a CR1000 data logger (Camp-
bell Scientific Inc, Logan, UT, USA; CSI) at 5 min intervals.
Net all-wave radiation (Rn) and photosynthetic photon flux
density (PPFD) were measured with a NR Lite net radiome-
ter (Kipp and Zonen, Delft, Netherlands) and a SQ-110 quan-
tum sensor (Apogee Instruments, Logan, UT, USA), respec-
tively, 3.2 m above the grass surface on the main EC sys-
tem tripod (Fig. 1). A shielded HMP35 (CSI) recorded Ta
and relative humidity (RH) 2 m above the surface. A tipping
bucket rain gauge (R.M Young Company, Traverse City, MI,
USA) was placed 3 m to the west of the main tripod. Soil
temperature and moisture were measured within soil pits in
two different vegetation types near the tripod: grass (30 m to
the east) and shrub (40 m to the north). Measurements were
made of ground heat flux (G) with custom-made heat flux
plates, soil temperatures (Ts) with custom type-T thermocou-
ples at depths of 0.08 m, and 0–20 cm integrated volumetric
water content (VWC) with CS616 water content reflectome-
ters (CSI). The soil measurements were recorded at 30 min

intervals on CR10x data loggers (CSI). The climate and soil
stations operated uninterrupted from 10 July (day 192) and
11 July (day 193), respectively, until 7 August 2016 (day
220). On 11 July and 6 August thaw depth was measured
at each of the 10 chamber sites (see below). Thaw depth
was measured by inserting a graduated steel probe into the
ground to the point of refusal. Each site was probed five
times: the median value has been used as the thaw depth
at each location. On 12 and 15 July, a large herd of rein-
deer (∼ 500 animals) visited Illisarvik. They mostly avoided
the tripod but did graze near it for about an hour on 12 July,
which may have affected greenhouse gas fluxes.

2.3 EC fluxes

An EC system was placed in the southwestern portion of the
basin (69◦28′47.82′′, −134◦35′18.6′′) and measured fluxes
of CO2 (FCO2 ) and CH4 (FCH4 ) for the full study period be-
tween 10 July and 7 August 2016. The EC system consisted
of an open-path infrared CO2/H2O gas analyzer (IRGA)
(model LI-7500, LI-COR Inc., Lincoln, NE, USA; LI-COR),
an open-path CH4 analyzer (model LI-7700, LI-COR), and
a CSAT3 sonic anemometer (CSI) mounted on a tripod at a
measurement height (zm) of 3 m (Fig. 2). The EC data and
air pressure (Pa) were logged at 10 Hz on the LI-7550 ana-
lyzer interface unit (LI-COR). The CSAT3 was oriented to
the northeast (40◦) because climatology for Tuktoyaktuk in-
dicated northerly and easterly winds are typical for July and
August (Environment Canada, 2016).

Half-hourly fluxes were calculated with EddyPro v.6.2.0
(LI-COR). The software performed statistical assessments
(Vickers and Mart, 1997), performed low- and high-
frequency spectral corrections (Moncrieff et al., 1997 and
2004), performed a double rotation (Wilczak et al., 2001),
applied the WPL correction to account for density fluctua-
tions (Webb et al., 1980), and computed quality control (qc)
flags (Mauder and Foken, 2004). Post-processing treatments
included storage correction (calculating the net flux as the
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Figure 1. (a) Map of the distribution of vegetation classes at Illisarvik, with the footprint climatology (FClim) over the study period, the
locations of the chambers, and the eddy covariance (EC) system. The alphanumeric labels correspond to the unit codes in Table 1. (b)
Legend for the map in (a). (c) Oblique drone image of Illisarvik, taken at the 16:40 23 July 2016 view from E of DTLB towards W. The basin
and EC system are shown on the image using the same symbology as (a).

sum of the observed scalar flux and the rate of change in
scalar concentration at zm), filtering fluxes by friction veloci-
ties (u∗) below 0.1 ms−1, removing qc flags= 2 (Mauder and
Foken, 2004), and the mean absolute deviation spike removal
algorithm (Papale et al., 2006). Additionally, observations
with mean winds of 220±30◦ were removed to avoid uncer-
tainties associated with the wake of the sonic anemometer,
and observations were removed during precipitation events
and when the open-path analyzers indicated there were any
other obstructions within the path (Aubinet et al., 2012). The
data were gap-filled using neural networks (NNs) which have
been applied to FCO2 and FCH4 in other studies (Moffat et al.,

2010; Dengel et al., 2013). Details of the NN methodology
are described in Appendix A.

The flux footprint represents the influence of upwind areas
on a measured scalar flux, and the footprint climatology is the
average of individual footprints over a time period. Evalua-
tion of the flux footprints and climatology helps evaluate the
reliability of the dataset and estimate the source area of each
individual half-hourly EC flux measurement. A scalar flux Fc
sampled at (0,0,zm), where zm is the height of the EC instru-
mentation, can be represented as the integral of the flux foot-
print function f (x,y) and the distribution of sources–sinks
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Figure 2. (a) Half-hourly air and soil temperatures, displayed along with photosynthetic photon flux density (PPFD). (b) Hourly soil vol-
umetric water content and daily total precipitation. (c) Half-hourly FCO2 (green) and NEENN (grey) and (d) half-hourly FCH4 (red) and
NMENN (grey).

(Qc) over a domain D (Kljun et al., 2015):

Fc (0,0,zm)=

∫
D

Qc(x,y)f (x,y). (1)

The flux contribution of upwind source areas increases
sharply upwind from the measurement location to a peak and
then decreases gradually with increasing distance (Schmid,
2002). The empirically derived flux footprint function of
Kljun et al. (2015) was used to estimate the source area of
each half-hourly flux measurement.

The model requires boundary layer heights which were not
measured on site. Half-hourly boundary layer heights were
interpolated from 3 h estimates obtained from the Global
Data Assimilation System of the US National Oceanic and
Atmospheric Administration. The model also requires the
aerodynamic roughness length (z0), which is influenced by
the canopy height and spacing. Canopy height (Ch) varied
considerably within the basin (from > 1 m in the north to

∼ 0 m in the bare-ground areas). Canopy height variability
was lower in the vicinity of the EC tripod but ranged from
0.35 to 0.55 m with a few taller shrubs approaching 1 m. Me-
dian z0 was calculated for 30◦ wind sectors following Paul-
Limoges et al. (2013). This calculation was performed for
near-neutral conditions: −0.05≤ zm

L
≤ 0.05, where L is the

Obukhov length. The z0 for each wind sector was found to be
insensitive to zero-plane displacement height, d , as zm� d ,
so the mean value of d around the tripod was used, where
d = 2/3Ch. Zero-plane displacement did not change signifi-
cantly over the course of the study so z0 remained fixed over
the study period for each wind sector.

For each half-hourly flux observation, f (x,y)i was solved
at 1 m2 resolution over a 1 km2 domain centred on the EC tri-
pod. Then, f (x,y)i values were intersected with the surface
classes to determine the relative contribution of each surface
type to each flux observation (referred to as FShrub, FSedge,
etc.). The footprint function is technically infinite so a frac-
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Table 2. The surface cover class fractions of the basin, along with
the mean source area fractions of the footprint climatology (FClim)
and the range of source area fractions for individual half-hourly ob-
servations shown in brackets.

Surface class Basin FClim

Shrub 48.3 % 36.0 % [0.0 %–79.0 %]
Grass 27.9 % 39.0 % [1.1 %–78.1 %]
Sedge 12.3 % 10.9 % [0.0 %–55.6 %]
Sparse 8.4 % 2.2 % [0.0 %–33.6 %]
Water 3.1 % 0.2 % [0.0 %–4.4 %]
Upland 0 % 6.2 % [0.6 %–15.0 %]
Outside basin 0 % 12.3 % [0.2 %–28.0 %]

tion of each f (x,y)i was not contained within the model do-
main. The out-of-domain source fraction ranged from 1.8 %
to 4.9 % with a mean of 3.2 % and was assumed to have min-
imal impact on the analysis. The flux footprint climatology
(FClim) was calculated by averaging the half-hourly flux foot-
prints over the study period and is shown in Fig. 1. Table 2
shows the flux contribution of each vegetation class.

2.4 Closed chamber measurements

In addition to EC measurements, fluxes of CO2 and CH4
were sampled using a static non-steady-state chamber flux
technique on 11 dates between 12 July and 5 August 2016
(Laforce, 2018). Nineteen chamber collars were located at
10 sites, eight sites within and two outside the basin (Fig. 1).
Each surface cover class was represented by at least one
chamber site, except for open water. At each vegetated site
a pair of collars were installed 20 cm apart, except at the
“sparse” site where only one collar was installed. The above-
ground biomass was removed from one of the collars at each
vegetated site. There were three replicates (six collars) for the
shrub class; two for the sedge; grass, and upland tundra; and
no replicates for the Sparse class. PVC collars 30 cm long
and 24.3 cm in diameter were inserted to a depth of approxi-
mately 15 cm. The chambers were 34 cm tall and made out of
polycarbonate covered in black opaque tape to maintain dark
conditions inside the chamber (for more details, see Martin
et al., 2018). The chambers contained a small vent (10 cm
coiled 1/8 in. diameter copper pipe) to ensure a constant pres-
sure during measurements. The opaque chamber fluxes of
CO2 provided an independent estimation of ER. This helped
characterize ER given the challenges with standard NEE par-
titioning techniques at high-latitude sites during the Arctic
summer as noted in Sect. 2.5.1.

Chamber flux measurements were made between 09:00
and 17:00 starting at a different collar set each day to ran-
domize the sampling order to avoid a bias due to diurnal
patterns. During gas flux measurements, the chambers were
sealed to the top of the collars within a groove filled with wa-
ter, and five 24 mL air samples were collected into evacuated

12 mL vials sealed with doubled septa. Each vial contained a
small amount of magnesium perchlorate to dry the air sam-
ple. Samples were collected at 0, 5, 10, 15, and 20 min after
the chambers were set on the collars. Air within the cham-
ber was mixed with a 60 mL syringe attached to a three-way
stopcock before each air sample was taken. Samples were
stored until analysis 1 month later at Carleton University. The
integrity of the vials through shipping, storage, and analysis
was confirmed using a subset filled with helium before the
field season began.

Concentrations of CO2, CH4, and N2O were determined
using a CP 3800 gas chromatograph (Varian Inc., Palo Alto,
CA, USA) as described by Wilson and Humphreys (2010).
Three replicates of five CO2/CH4 standards varying from
383.1 to 15 212.6 ppm CO2 and from 1.08 to 22.11 ppm CH4
were included in every set of measurements to create a linear
relationship between gas concentration and chromatogram
area. The chamber fluxes of CO2 and CH4 (FC) were cal-
culated as follows:

FC =
VP

ART

dc
dt
, (2)

where (dc/dt) is the linear rate of change in the mixing ra-
tio of the gas, A is the chamber area (0.0464 m3), V is the
chamber volume (between 0.0182 and 0.0242 m3 adjusted
for collar depth at each collar location), R is the ideal gas
constant, P is pressure in pascals, and T is the air temper-
ature in kelvin. P and T values corresponding to the time
of each measurement were obtained from the EC station.
Visual inspection of the linear trend of gas concentrations
(dc/dt) was used to identify and remove spurious point mea-
surements associated with analysis errors, leaking chambers
(isolated decreases in concentration), and contamination or
ebullition events (isolated increases in concentration) (0.3 %,
0.7 %, and 2.0 % of CO2 samples and 2.1 %, 0.5 %, and 1.1 %
of CH4 samples, respectively). In all flux measurements, at
least three or more gas samples remained so that dc/dt and
its coefficient of determination (R2) were determined using
least-squares linear regression. We did not use R2 as an ad-
ditional quality control criterion as many of our CH4 fluxes
were near zero and tended to have low R2 values due to only
small variations in the point sample concentrations (see also
Clark et al., 2020). A total of 40 % and 32 % of the 227 CH4
flux measurements and 97 % and 92 % of the 227 CO2 flux
measurements had R2 over 0.80 and 0.90, respectively. No
flux measurements were removed from the analysis. Posi-
tive fluxes indicate emissions of gases to the atmosphere, and
negative fluxes indicate uptake by the surface.

2.4.1 Upscaling

Chamber fluxes of ER were upscaled from the plot scale (in-
dividual chamber) to the footprint scale using the footprint-
weighted average method and to the basin scale using the
area-weighted average method (Budishchev et al., 2014). The
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Table 3. The ER temperature sensitivity (Q10) and base respiration
(R10) estimated by Laforce (2018) and estimated from nighttime
EC footprint observations.

Q10 R10 R2

µmolm−2 s−1

Sedge 2.1 3.8 0.82
Upland 1.9 4.1 0.55
Grass 1.6 4.0 0.55
Shrub 1.8 2.7 0.46
Sparse 1.0 1.9 0.01
Night-time EC observations 1.6 2.9 0.47
(n= 100)

chamber ER and air temperature from the EC tripod (Ta)
were used to determine R10, the base respiration at 10 ◦C,
andQ10, the temperature sensitivity coefficient, using Eq. (3)
for five of the six surface classes (Fig. 1) (Laforce, 2018) (Ta-
ble 3).

ER= R10Q
(Ta−10)

10
10 (3)

Half-hourly footprint-scale estimates (ERFS) were calculated
by multiplying ER derived from Eq. (3) for each surface
class by the footprint source area fraction and summing over
classes. Basin-scale estimates (ERBS) were estimated the
same way but using the mean source area fractions of the
basin (Table 2). As there were no open water class ER esti-
mates, ER from open water was assumed to be zero.

In contrast to ER, there are no standard empirical functions
to estimate temporal variations in NME. Instead, we used
ordinary least-squares regression (OLS) to estimate NME.
The most important environmental controls over FCH4 were
VWC and Ts (discussed below). Continuous observations of
these factors at the flux chambers were not available; instead
chamber NME values were grouped by vegetation class and
fit to VWC and Ts measured in the soil pits near the EC sta-
tion. Half-hourly footprint-scale (NMEFS) and basin-scale
(NMEBS) estimates were then made using the OLS param-
eters for each surface class using the same procedures for
ERFS and ERBS.

2.5 Factor selection and gap filling

We used an exploratory approach to identify the smallest set
of factors that best predicted half-hourly EC-derived NEE
and NME without overfitting the dataset using a series of
neural networks (NNs). We started with 10 factors: four
meteorological variables (PPFD, Ta, vapour pressure deficit
(VPD) computed using the Ta and relative humidity (RH)
data, and three-dimensional wind speed (U ) measured us-
ing the CSAT3 sonic anemometer), two soil variables (VWC
and Ts averaged between the two soil pits near the EC tri-
pod), and four source area fractions (shrub, FShrub; grass,

FShrub; sedge FSedge; and upland, FUpland). The four source
area variables correspond to surface classes sampled by the
chambers. We excluded water (FWater) and sparse (FSparse)
fractions because its average contribution to the EC observa-
tions was only 0.2 % and 2.2 %, respectively, and there were
no chamber measurements for the water class while cham-
ber measurements indicated ER was low and NME was not
significantly different from zero for the sparse class. A num-
ber of these prediction factors were highly correlated, but it
was necessary to include them so the model could account
for source area heterogeneity.

The NNs were trained iteratively on bootstrapped datasets.
First NNs were trained on each factor individually, and the
one with the lowest mean squared error (MSE) was selected.
Next, NNs were trained on that factor in combination with
one of the remaining nine. The best performing additional
factor was again selected, and this process was repeated until
MSE failed to improve. The most parsimonious model was
identified using the 1 standard error (SE) rule. Dybowski and
Roberts (2001) give the standard error of a bootstrap estimate
of a given error metric (e.g. θ =MSE) to be

SEboot(θ)=

√
1

B − 1

∑B

b=1
(θb− θboot)

2, (4)

where θboot is the mean of the bootstrapped samples. The
smallest set of factors where θboot was within one SEboot of
the minimum θboot for both NEE and NME was selected for
further analysis. The outputs from the selected models are
referred to as NEENN and NMENN. NN modelling was done
using the Keras Python library (Chollet et al., 2015); see Ap-
pendix A for a more detailed explanation of the NN analysis.

Multiple imputation (MI) was then used to gap-fill the
NEE and NME with the NEENN and NMENN, respectively
(Vitale et al., 2018). Of the 1296 half-hourly flux observa-
tions 28.9 % of FCO2 and 31.3 % of FCH4 were missing or
filtered out. There were a few gaps in the source area frac-
tions needed to gap-fill the flux time series because the foot-
print function is not valid when u∗ < 0.1 ms−1. When source
area fractions were missing, they were gap-filled by using
the mean source area fraction observed for winds within±5◦

of the observed wind direction. The meteorological and soil
data were continuous and did not need to be gap-filled.

2.5.1 Flux partitioning

NEE is negative when there is net uptake of CO2 by the
ecosystem and positive when there is net emission. ER and
GPP are always positive, ER represents the sum of het-
erotrophic and autotrophic respiration, and GPP represents
photosynthetic uptake of CO2. Night-time NEE observations
(e.g. PPFD≤ 10 µmolm−2 s−1) are typically used to quan-
tify ER because GPP is ∼ 0 (Aubinet et al., 2012). We fit
the limited night-time EC observations available (n= 95)
to Eq. (3) for comparison with the ER measured using the
chambers. We used the fitted values to model daytime ER
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and approximate NEE by fitting the daytime data to a light
response curve (Aubinet et al., 2012).

NEE=
1
2c

(
αPPFD+β −

√
(αPPFD+β)2− 4αβcPPFD

)
+ER (5)

Here α is the initial slope of the light response curve, β is
GPP at saturation, and c is a curvature parameter. These esti-
mates are referred to as ERQ10 and NEEQ10 .

Some NN analyses of NEE have trained separate models
for night-time and daytime conditions for partitioning pur-
poses (Papale and Valentini, 2003). However, these methods
are not practical during the Arctic summer as the sun did
not set at Illisarvik until 28 July, over halfway through the
study period. There were not enough night-time samples to
train a separate NN. Instead, we estimated ER by calculat-
ing NEENN at PPFD= 0 µmolm−2 s−1 for all observations,
henceforth referred to as ERNN. This is a projection outside
of the observed parameter space resulting in greater uncer-
tainty and a wider confidence interval around ERNN than
NEENN. Calculation of confidence intervals for NN outputs
is discussed in Appendix A.

2.5.2 Factor analysis

The trained NNs were used to investigate how individual fac-
tors influenced NEE and NME. The partial first derivative of
the model response to one controlling factor was calculated
while keeping all other inputs fixed. For example, the par-
tial first derivative, ∂NEE

∂PPFD , is an approximation of the NEE
light response curve under a specific set of conditions. Simi-
larly, NMENN can be used to approximate NME response to
controls like VWC or Ts. For both fluxes, the selected mod-
els contained at least one source area fraction variable, indi-
cating the vegetation type(s) which had significant influence
over NEE and NME. Additionally, we mapped NEENN and
NMENN to 100 % coverage for individual surface classes to
see how fluxes at Illisarvik may change as vegetation succes-
sion continues. For example, to project to 100 % sedge cover-
age, we set the other surface classes to 0 % and left the other
environmental factors unchanged. This allows for an estima-
tion of how carbon fluxes may change if vegetation succes-
sion leads Illisarvik to look more like the DTLBs studied in
Alaska.

3 Results

During the 29 d study, half-hourly Ta and Ts ranged between
0.4 and 26.2 ◦C and 4.4 and 11.0 ◦C, respectively (Fig. 2a).
Day length and maximum solar altitude decreased from 24
to 19.25 h and 41.6 to 35.4◦, but daily PPFD was more in-
fluenced by variations in cloud cover. Precipitation (19 mm)
fell on 14 of the 28 d with trace snowfall on three of those
days, but VWC of the soils decreased throughout the period

(Fig. 2b). At the onset of the study period, VWC was high
and soils were saturated with ponding in the sedge areas. By
the end of the study most of this surface water had dried up.
On 11 July average thaw depth (cm) was 37, 45, 51, 64, and
81 at upland, sedge, grass, shrub, and sparse classes, respec-
tively. By 6 August, average thaw depth had increased to 45,
62, and 66 cm at upland, sedge, and grass surface classes and
over 100 cm at both the shrub and sparse classes.

A strong low-pressure system stalled off the coast between
day of year (DOY) 199 and 204. This caused westerly winds
to occur much more frequently than is typical for July and
August. The 50 %, 80 %, and 90 % flux FClim contours are
shown in Fig. 1a. Mean source area fractions indicate the EC
observations were skewed towards the grass surface class and
under-sampled for the shrub class, but the range of surface
classes sampled was diverse enough to allow for testing of
the impact of source area fraction on the fluxes (Table 2).

3.1 EC observations

Half-hourly observations of FCO2 and FCH4 along with
the NEENN and NMENN used to gap-fill the time se-
ries are shown in Fig. 2c and d. Gap-filled daily NEE
ranged from −3.7 to −0.2 g C−CO2 m−2 d−1 with a mean
of −1.5 [CI95 %± 0.2] g C−CO2 m−2 d−1. Day-to-day vari-
ability was considerable but there was no notable trend
in NEE over the peak growing season. The half-hourly
NEE during the study period reached a minimum of
−10.4 µmolCO2 m−2 h−1 just before solar noon and peaked
at 4.7 µmolCO2 m−2 h−1 around midnight (Fig. 2c). NEENN
was used to gap-fill the flux data because it was in good
agreement with FCO2 observation (r2

= 0.91). Daily ERNN
was estimated to be 2.2 [CI95 %± 0.9] g C−CO2 m−2 d−1

with corresponding GPP of 3.7 g C−CO2 m−2 d−1. ERNN
was in poor agreement (R2

= 0.35, n= 95) with night-time
FCO2 observations. For comparison, Eq. (3) provided a better
fit (R2

= 0.47) with night-time EC data, and ERQ10 was es-
timated to be 3.0 g C−CO2 m−2 d−1. However, NEEQ10 did
not fit FCO2 as well (r2

= 0.80) as NEENN.
Gap-filled daily NME was modest and decreased over the

study period. It ranged from 2.0 to 25.1 mg C−CH4 m−2 d−1

with a mean of 8.7 [CI95 %± 0.4] mg C−CH4 m−2 d−1

(Fig. 2d). NMENN was used to gap-fill the flux data because
it provided a reasonable fit (r2

= 0.62) to FCH4 observations.
NME did not constitute a significant component of the car-
bon balance and thus the flux footprint area was a carbon sink
during the peak growing season with negative global warm-
ing potential (GWP) after accounting for the greater GWP of
CH4 (IPCC, 2104).

3.2 Chamber observations

ER was highest in the sedge, upland, and grass classes where
fluxes were very similar at 5.5 [CI95 %± 1.2], 5.4 [CI95 %±

1.2], and 4.9 [CI95 %± 0.7] g C−CO2 m−2 d−1. Shrub ER
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was significantly less (3.5 [CI95 %±0.6] g C−CO2 m−2 d−1)
than the other vegetated classes, and sparse ER was the low-
est among the classes (2.0 [CI95 %±0.3] g C−CO2 m−2 d−1)
(Fig. 3a). TheQ10 and R10 values also differed between veg-
etation classes: ER in the sedge class was the most sensitive
to changes in air temperature, and modelled values provided
the best fit (R2

= 0.82) to observations. Upland and grass had
the highest base respiration and fit observations moderately
well (Table 3).

NME was more variable between vegetation classes
than ER (Fig. 3b and c). Sedge was a very strong CH4
source at 114.7 [CI95 %± 15.3] mg C−CH4 m−2 d−1. Shrub
and grass were very weak sources, 0.7 [CI95 %± 0.3] and
0.4 [CI95 %± 0.3] mg C−CH4 m−2 d−1, respectively. Sparse
was neutral. Upland was a net CH4 sink −1.1 [CI95 %±

0.4] mg C−CH4 m−2 d−1. Sedge and shrub NME values
were positively correlated with Ts (r = 0.61, p < 0.01; r =
0.35, p = 0.04) and VWC (r = 0.58, p < 0.01; r = 0.5, <
0.01). They also had a positive correlation with Ta, while
upland NME was negatively correlated with Ta. Grass and
sparse did not have any significant correlations.

Footprint-scaled chamber fluxes were 59 % and 47 %
higher than ERNN or gap-filled NME, respectively. Mean
ERFS was 3.5 g C−CO2 m−2 d−1 [CI95 %± 0.1], it fit ERQ10

very well (R2
= 0.95) as would be expected and ERNN

moderately well (R2
= 0.46). Mean NMEFS was 12.8

[CI95 %± 1.3] mg C−CH4 m−2 d−1; it did not fit NMENN
well (R2

= 0.30). At the basin scale, ERBS (3.4 [CI95 %±

0.1] g C−CO2 m−2 d−1) was slightly lower than ERFS be-
cause of the exclusion of upland areas. NMEBS was
higher (15.2 [CI95 %±0.1] g C−CO2 m−2 d−1) because of the
greater sedge fraction in the basin than the footprint (Ta-
ble 2).

3.3 NEE response to environmental factors and
vegetation type

NEENN (r2
= 0.91) was estimated using four factors: PPFD,

VPD, VWC, and FShrub. PPFD is the primary control over
NEE: a NN trained on PPFD alone provided a reasonable fit
(r2
= 0.83). The three additional factors, VPD, VWC, and

FShrub, helped NEENN fit a wider variety of conditions. Ex-
amining the partial first derivative of NEENN under different
conditions provides interpretation of the modelled light re-
sponse curves (Fig. 4). The minimum values represent the
peak light use efficiency and are analogous to α in Eq. (5)
(Fig. 4b). With increasing PPFD, light use becomes less ef-
ficient and approaches zeros as the light response nears light
saturation (Fig. 4b).

VPD was a secondary control over NEE. Increasing VPD
increased peak light use efficiency and net CO2 uptake un-
til a threshold, above which it had a strong limiting ef-
fect (Fig. 4a and b). For example, under dry atmospheric
conditions (e.g. VPD= 1.5 kPa), peak light use is less effi-
cient (−12 nmolCO2 µmol−1 photon) than under more hu-

mid conditions (−18 nmolCO2 µmol−1 photon). The value
of this VPD threshold was dependent upon soil moisture:
from 1 kPa when VWC was highest to 0.25 Pa when VWC
was low. Mapping NEENN and ERNN at FShrub = 100 %,
FShrub = 0 %, and FShrub = 36 % (FClim) shows that VWC
and FShrub were the primary controls over ER and thus in-
fluenced NEE (Fig. 4c and d). We can see from the partial
first derivates of NEENN that increasing VWC increases ER
from shrub areas. In the absence of shrubs, increasing VWC
inhibits ER, although it is important to note that variations
in VWC were subtle, ranging from 51.7 % to 59.0 %. The
partial first derivative of NEENN shows that VWC slightly
limits NEE from non-shrub areas and significantly reduces it
in shrub areas.

3.4 NME response to environmental factors and
vegetation type

NMENN (r2
= 0.62) was estimated using five factors: FSedge,

FShrub, VWC, TS, and U . NME was more variable and less
dependent on any one factor than NEE, which is why the
NMENN needed an extra factor and had a lower r2 score. The
source area had a significant effect on NME, and it was en-
couraging that the model contained FSedge and FShrub since
sedge and shrub were the strongest CH4 source and largest
footprint component, respectively. These two factors can
combine to map NME under three general situations: we can
extrapolate to FSedge = 100 % and FShrub = 0 % or FSedge =

0 % and FShrub = 100 %, or we can represent actual FClim,
where FSedge = 11 % and FShrub = 37 % (Table 2). Some up-
land tundra was included in theFClim estimate, which reduced
NME.

VWC was the primary climatic driver identified by
NMENN. Wetter soils had a consistent positive effect on
NME, which was strongest when FSedgewas high (Fig. 5a
and b). Between the driest and wettest conditions, estimated
NME increased: by an order of magnitude at FSedge = 100 %,
4-fold at FShrub = 100 %, and from neutral to a source at
FClim (Fig. 5a). Higher Ts generally had a negative effect on
NME (Fig. 5c and d). The negative correlation between Ts
and VWC (r = 0.54, < 0.01) may have contributed to this
result. NMENN performance improved less with the addition
of U , indicating the NMENN was near saturation and its ef-
fects are less relevant. HigherU had a weak limiting effect on
NME when VWC was high and increased NME when VWC
was low (not shown).

4 Discussion

4.1 Carbon balance and controlling factors

Compared to other DTLBs, Illisarvik has drier soils and
greater shrub and grass cover (Table 4). Peak growing sea-
son CO2 uptake at Illisarvik was greater than at most wet-
sedge-dominated DTLBs (Table 4; Zona et al., 2010, Sturte-
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Figure 3. Box plot of (a) ER, (b) NME, and (c) NME fluxes measured using closed chambers, grouped by vegetation class. The orange lines
represent the median, blue stars represent means, the boxes indicate the interquartile range (Q1–Q3), the whiskers indicateQ1−(1.5×IQR)
and Q3+ (1.5× IQR), and the circles represent outliers extending beyond the whiskers. Note the scale for (c) sedge is different.

vant and Oechel, 2013; Lara et al., 2015). These differences
may be due to differences in the periods of observation and
year-to-year variability but may also be due to the presence
of more productive shrubs and slightly warmer climate at
Illisarvik. Mean 1980–2010 Ta at Utqiaġvik (formerly Bar-
row, AK) is −11.2 ◦C (US National Climate Data Centre,
2020). Tuktoyaktuk, the closest station to Illisarvik, is 1.1◦

warmer. Shrub cover is expected to have a number of im-
pacts on the microclimate and carbon cycle of Arctic tun-
dra (e.g. Myers-Smith et al., 2011). Typically, greater decid-
uous shrub cover is expected to increase GPP as a result of
greater leaf area and photosynthetic potential compared to
graminoid-dominated tundra (Sweet et al., 2015; Street et al.,
2018). GPP was greater at Illisarvik compared to the young
wet-sedge-dominated DTLBs in Alaska (Zona et al., 2010).
It was more similar to Katyk, which has significant dwarf-
shrub cover, predominately Betula nana and Salix pulchra
(van der Molen et al., 2007).

Differences in ER among tundra environments can be re-
lated to substrate availability, soil moisture and temperature,
and thaw depth, among other factors (Sturtevant and Oechel,
2013). The “snow-shrub hypothesis” (Sturm et al., 2001) de-
scribes the potential for greater snow trapping in shrub com-
munities which insulates soils in winter, leads to increased
decomposition and nutrient availability, and promotes fur-
ther shrub growth. At Illisarvik, snow blowing in off the Arc-
tic Ocean results in large snow drifts within the basin where
snow depth correlates with vegetation height (Wilson et al.,
2019). Wilson et al. (2019) concluded that the soils within the
Illisarvik basin were warmer than those of the surrounding
dwarf-shrub tundra in part through these snow–shrub inter-
actions. Although our chamber observations suggested shrub
ER is lower than ER from other vegetation classes, this may
have been an artifact as the taller shrubs (> 40 cm) could not
fit inside the chambers. In another study, chamber ER in-
creased with greater shrub cover in upland tundra (Ge et al.,
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Figure 4. (a) Modelled NEE response to PPFD under different VPD conditions and (b) the partial first derivatives of NEE with respect to
PPFD. (c) Modelled ER (dashed line) and NEE (solid line) response to VWC at different Shrub% values and (d) the partial first derivatives
of ER (dashed lined) and NEE (solid line) with respect to VWC. NEE in (c) was calculated at PPFD= 600 µmolm2 s−1. The shaded areas
in (a) and (c) are 95 % confidence intervals and grey circles are the EC observations.

2017). ER at Illisarvik was greater than the ER observed at
both the young wet-sedge DTLB in Barrow (Zona et al.,
2010) and at the shrub–wet-sedge DTLB at Katyk where
thaw depth was much shallower (45 to> 100 cm at Illisarvik
vs. 25 to 40 cm at Katyk; van der Molen et al., 2007). The im-
portance of FShrub in describing temporal variations in half-
hourly NEE within the flux footprint at Illisarvik is further
evidence of the importance of shrub cover on tundra carbon
cycle processes in this environment.

PPFD and VPD were the most important factors for pre-
dicting half-hourly NEE. This was to be expected as they
are typically the primary controls over GPP (Aubinet et al.,
2012). The limiting effects of VPD are consistent with
another study using NN to analyze NEE at a deciduous
forest site (Moffat et al., 2010) and have been found at
other tundra sites (Euskirchen et al., 2012; López-Blanco

et al., 2017). VWC was also important at Illisarvik. Zona
et al. (2010) found VWC could explain 70 % of the variabil-
ity in daily peak season ER in a young DTLB. Similarly, Kit-
tler et al. (2016) found drier soils increased ER and decreased
NEE after a wet tundra drainage experiment in Siberia, con-
sistent with our results at Illisarvik when FShrub was low.

As expected, NME at Illisarvik was about half that ob-
served at the Alaskan DTLB sites where soils were wetter
with greater sedge cover (Table 4, Zona et al., 2009; Lara
et al., 2015). NME at Katyk was even higher than the Bar-
row DTLBs and had a significant impact on the greenhouse
gas (GHG) balance for this site (van der Molen et al., 2007;
Parmentier et al., 2011). In our NN modelling of NME at
Illisarvik, FSedge was the most important factor for predict-
ing half-hourly FCH4 . Sedges are aquatic plant species with
aerenchymatous tissues that act as conduits for CH4 from
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Figure 5. (a) Modelled NME response to VWC at different source area fractions and (b) the partial first derivatives of NME with respect to
VWC. (c) Modelled NME response to Ts at different source area fractions and (d) the partial first derivatives of NME with respect to Ts. The
shaded areas in (a) and (c) are 95 % confidence intervals and grey circles are the EC observations.

below the water table to the atmosphere and limit CH4 ox-
idation by methanotrophs in aerobic surface soils (Lai et al.,
2009). The inclusion of FShrub further refined the model, al-
lowing it to better fit the site-specific distribution of vegeta-
tion types. Budishchev et al. (2014) found shrub and sedge
fraction had a significant influence on FCH4 at Katyk. Vege-
tation type is the dominant control over NME across multiple
tundra landscapes and our results further support that (David-
son et al., 2016).

VWC was the second most important factor, which was
expected as CH4 production occurs in anaerobic environ-
ments and has been linked to variability in CH4 emission
in many other studies (e.g. Zona et al., 2009; Nadeau et al.,
2013; Olefeldt et al., 2013). Soil temperature (Ts) was the
third most important factor. Higher Ts values increase the

oxidation potential of methanotrophs (Liu et al., 2016; King
and Adamsen, 1992), so this result was expected for the drier
portions of the basin and upland tundra. However, this was
not expected for the sedge areas because most studies find
NME in sedges is positively correlated to Ts (Olefeldt et al.,
2013). The negative correlation between Ts and VWC may
partly explain this.

4.2 Upscaling

ERFS and NMEFS were about 59 % and 47 % greater than
the gap-filled EC estimates. Discrepancies between EC and
chamber observations are common and have been attributed
to differences in measurement techniques, the small sample
size of chamber observations, and sampling bias since all
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Table 4. Growing season (gs) daily range in eddy-covariance-derived NEE and NME from drained thermokarst lake basins (DTLBs) and
other select wetland and coastal tundra sites across the Arctic.

Site Site characteristics NEE
g C−CO2 m−2 d−1

NME
mg C−CH4 m−2 d−1

Studies

Illisarvik Young DTLBs,
low and tall
shrub/grass/wet
sedge

−1.5 8.7 (this study)

Various DTLB, Barrow
Peninsula, Alaska

Young DTLB,
wet-sedge tundra

−1.1b, −0.9d,
−0.8c

18.4a, 26.1d, 44.0c Zona et al. (2009)a and (2010)b,
Sturtevant and Oechel (2013)c,
Lara et al. (2015)d

Medium DTLB,
wet-sedge tundra

−0.7b, −0.6d, −0.4c 27.0d, 41.3c

Old DTLB,
wet-sedge tundra

−1.0b, −0.4d, 0.1c 24.2d, 38.7c

Ancient DTLB,
wet-sedge tundra

0.4d 21.7d

Katyky, Indigirka low-
lands, Siberia

Ancient DTLB,
dwarf-shrub and
wet-sedge tundra

−1.3e 36.0f Van der Molen et al. (2007)e,
Budishchev et al. (2014)f

The periods of study measurements for the study observations are as follows.
a Mid-June–end of July.
b 12 June–28 August 2007, Fig. 4.
c 11 June–25 August 2011.
d Upscaled chamber estimates, exact dates not specified.
e Mean 15 June–31 August 2003–2006.
f 5 July–4 August 2009.

chamber measurements were taken during the day with fair
weather (Katayanagi et al., 2005; Chaichana et al., 2018).
Meijide et al. (2011) found that chamber NEE could be up to
twice as large as EC observations, and Riederer et al. (2014)
also found chamber NME estimates were about 30 % higher
than EC estimates. Others have been more successful, yield-
ing upscaled chamber NME fluxes within 10 % of EC obser-
vations (Zhang et al., 2012; Budishchev et al., 2014; David-
son et al., 2017). A potential reason for the disagreement with
ERFS may be the lack of direct observations by the EC sys-
tem under low-light conditions. Another potential source of
error for the upscaling is inaccuracies in the vegetation map.

4.3 Future trajectories

Presently, peak growing season carbon uptake at Illisarvik
is greater than similarly aged landscape features on the Bar-
row Peninsula, Alaska, and more similar to levels observed
at Katyk, Siberia. NME is well below levels observed at any
other DTLB studied, making this site a stronger GHG sink
than other DTLBs. However, the basin at Illisarvik will con-
tinue to evolve, and the trajectory it takes could significantly
alter its carbon balance. Historically, DTLBs on Richards Is-
land and the Tuktoyaktuk Peninsula evolve into sedge wet-
lands, as do DTLBs on the Barrow Peninsula (Ovendend,

1986; Lara et al., 2015). Active maintenance of the outlet
channel at Illisarvik has artificially lowered soil moisture and
flooding and potentially limited this transition thus far (C.
Burn, personal communication, 2016).

If Illisarvik follows the same trajectory as older DTLBs in
the area and becomes dominated by sedge wetlands, NME
will increase significantly. Figure 5a shows that with extrap-
olations to full sedge cover (FSedge = 100 %), NME would
be similar to values on the Barrow Peninsula (Zona et al.,
2009). If the basin instead transitions into a shrub-dominated
DTLB similar to those of Old Crow Flats, Yukon (Lantz and
Turner, 2015), NMENN would remain similar to current lev-
els, meaning the basin would remain a weak source of CH4.
These are projections well beyond FClim fractions observed,
so confidence in the specific values predicted is low.

The effects of changing shrub and sedge cover on Illis-
arvik’s growing season NEE are less straightforward than on
NME, partly because shrub cover had less overall influence
on NEENN. Figure 4c shows that the model suggests ER de-
creases and NEE increases with increasing shrub coverage
when soils are slightly drier but has the opposite effect un-
der wetter conditions. To our knowledge, only a few win-
ter season (e.g. Zona et al., 2016) and no year-round stud-
ies of DTLB NEE and NME have been published to help
evaluate the factors influencing carbon losses through the
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non-growing-season months. Further observation year-round
is needed to better understand the implications of continued
vegetation change for the carbon balance of DTLBs such as
Illisarvik.

5 Conclusions

This study investigated NEE, GPP, ER, and NME in the Illis-
arvik experimental DTLB using EC and chamber data. To
our knowledge this is the first such study conducted in a
DTLB outside of the Barrow Peninsula or Siberia. Illisarvik
is a carbon sink during the growing season with NME only
having a small effect on the net carbon balance. Our flux
observations were generally in agreement with other stud-
ies but show how shrub-dominated DTLBs such as Illisarvik
and Katyk in Siberia differ from sedge-dominated DTLBs on
the Barrow Peninsula. Illisarvik’s growing season net carbon
uptake was greater than young and ancient DTLBs on the
Barrow Peninsula and more similar to the shrub-dominated
ancient DTLB in Siberia. NME at Illisarvik was lower than
all published DTLB studies, likely due to better drainage
and more diverse vegetation. A longer, more comprehensive
study would be needed to resolve the annual carbon budget
for Illisarvik.

Chamber measurements of ER and NME from different
land cover classes within and outside the Illisarvik basin
added context to the EC observations. Vegetation class (and
associated difference in terrain and soil properties) had only
a small but significant impact on NEE and ER but was one
of the dominant controls over NME. Sedge areas were a
strong source of CH4, other vegetation types in the basin
were weak sources, and upland areas were a net sink. These
results suggest that NME in particular will change as the Il-
lisarvik DTLB vegetation communities continue to evolve.

Biogeosciences, 17, 4421–4441, 2020 https://doi.org/10.5194/bg-17-4421-2020



J. Skeeter et al.: Vegetation influence and environmental controls on greenhouse gas fluxes 4435

Appendix A: Neural network analysis and uncertainty
calculations

Typically, NEE is gap-filled using flux-partitioning algo-
rithms that model ER and GPP separately using TS and
PPFD, respectively (e.g. Lee et al., 2017; Aubinet et al.,
2012). However, this method requires night-time observa-
tions and thus does not perform well for Arctic summer-
time measurements due to the limited number of samples
available during low-light conditions. There are no widely
agreed upon functional relationships for gap-filling NME
since CH4 production and consumption vary considerably
between both different land cover types and environmental
conditions. Some methods that have been used include gen-
eral linear models (GLMs) (Zona et al., 2009), mean diurnal
variation (Nadeau et al., 2013), and classification and regres-
sion trees (CARTs) (Nadeau et al., 2013; Sachs et al., 2008).
We attempted to use a GLM and CART but they were not
flexible enough to account for source area variability.

Neural networks (NNs) are flexible machine-learning
methods that are ideally suited to perform non-linear, mul-
tivariate regression. They make no a priori assumptions
about the functional relationships between the factors and re-
sponses (Melesse and Hanley, 2005; Desai et al., 2008). NNs
are universal approximators; given enough hidden nodes a
NN is capable of mapping any continuous function to an ar-
bitrary degree of accuracy (Hornik, 1991). If all relevant cli-
mate and ecosystem information is available to a network, the
remaining variability can be attributed to noise in the mea-
surement (Moffat et al., 2010).

NNs have been shown to be among the best performing
methods for gap-filling NEE data for temperate forest and
wetland sites (Papale and Valentini, 2003; Moffat et al., 2007;
Knox et al., 2016). They have also been used to gap-fill NME
time series in sub-Arctic wetlands, tundra sites, and wet-
sedge tundra (Dengel et al., 2013). NNs have been used to
identify and model factors influencing NEE and to partition
NEE into ER and GPP (Moffat et al., 2010). NNs have even
been used to upscale fluxes from the ecosystem level to the
continental scale (Dou and Yang, 2018; Papale et al., 2003).

A NN approximates a true regression function F(X):

F(X)= t (X)− ε(X), (A1)

where t (X) is the target function and ε(X) the noise (Khos-
ravi et al., 2011). X = [x0,x1, . . .,xM ], where x0 = 1 is a
bias term and [x1, . . .,xM ] represents the independent vari-
ables. M denotes the number of independent variables. The
network approximates F(X) as f (X,w) by mapping the re-
lationship between X and the target. Here we used feed-
forward dense NNs with a single hidden layer:

f (X,w)=
∑H

h=1
βhg

(∑M

m=0
γhmxm

)
. (A2)

g(·) is a non-linear transfer function; here we used the recti-
fied linear activation unit (ReLu) (Anders and Korn, 1999).

H denotes the number of hidden nodes in the network and
must be assigned before training. Too many hidden nodes
and the NN will overfit the training data, too few and it
will underfit. Early stopping will prevent NNs from overfit-
ting training sets (Weigend and Lebaron, 1994; Tetko et al.,
1995). Therefore, it is more important to ensure a NN has
enough hidden nodes to adequately map the target function
(Smith, 1993). We set H to a function of M , the number of
targets (1), the number of training samples (N ), and a scaling
parameter (a) which was set to 2:

H =
N

a× (M + 1)
. (A3)

This rule of thumb ensures a NN has sufficient flexibil-
ity to approximate the target response. The weights w =
[β1. . .βN,γ10. . .γNM] are randomly initialized and after each
model iteration are updated by back-propagating the error
through the network. N denotes the number of observations
or targets. The error metric most commonly used is the mean
squared error, MSE:

MSE=
∑N

i=1
(f (Xi)− ti)

2. (A4)

The weights are adjusted in the direction that will decrease
the error, and training continues until a stopping criterion is
reached. We chose to set aside 20 % of the training data as
a test set to be used for early stopping, and we terminated
training when the MSE of the test set failed to improve for 10
consecutive iterations.

Bootstrapping is used to account for model variability and
estimate confidence and prediction intervals by training NNs
on B different realizations of the dataset, where B is the
number of bootstrapped samples, we used B = 30 (Heskes,
1997; Khosravi et al., 2011). An individual NN generates
point outputs approximating a target function with no infor-
mation on the confidence in those estimates (Khosravi et al.,
2011). However, there are usually multiple f (X,w) values
that approximate F(X) because of the random weight ini-
tializations (Weigend and LeBaron, 1994). As such, there are
two sources of error we are concerned with, the accuracy of
our estimation of F(X) and the accuracy of our estimates
with respect to the target. A confidence interval describes the
first (e.g. F(X)− f (X,w)) while a prediction interval de-
scribes the latter (e.g. t (X)− f (X,w)) (Heskes, 1997). By
definition, a prediction interval contains the confidence in-
terval because

t (X)− f (X,w)= [F(X)− f (X,w)] + ε(X). (A5)

For b = 1. . .B, a random sample with replacement of size p
is drawn from the original dataset. Setting p equal to the size
of the original dataset yields a set of B training sets each con-
taining approximately 67 % of the original dataset. The 33 %
leftover from each bootstrap sampled can be used for model
validation (Heskes, 1997). The average of our ensemble of
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Figure A1. The averaged mean squared error (θ) of the bootstrapped neural network model validation datasets, with error bars showing 1
standard error (SE). The x axis shows models of increasing size from left to right (one to nine factors), and the label indicates the factor
added to the model at each step. The blue line indicates the 1 SE rule threshold, and the red bar indicates the model selected by the 1 SE rule.

Figure A2. FCH4 estimated by a RF using the same factors as the
NN model. The colours correspond to the scenarios in Fig. 5a. VWC
was estimated over the range from 0.45 to 0.65.

networks can then serve as our approximation of F(X):

F(X)=
1
B

∑B

b=1
fb(X,w). (A6)

The variance of the model outputs is

σ 2(X)=
1

B − 1

∑B

b=1
(fb(X,W)−F(X))

2. (A7)

A confidence interval (CI) for F(X) can be calculated as
F(X)± t(1−∝,df )σ(X), where t is the Student t score, 1-α
is the desired confidence level, and df is the degrees of free-
dom which are set to the number of bootstrapped samples
B. NN performance can be seen to improve with the inclu-
sion of more factors, until the model saturates and becomes
over-parameterized (Fig. A1).

Random forests (RFs) are said to be among the best per-
forming gap-filling methods for NME (Kim et al., 2020), and
it has been claimed that aggregating many regression trees
in a RF prevents overfitting (Breiman, 2001). We did not
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find this to be the case. Following the methods outlined in
Kim et al. (2020): a RF with 400 trees and no restrictions on
tree size fit FCH4 nearly perfectly (R2

= 0.98). Without con-
siderable limitations on tree size, the RF will just learn the
dataset rather than the relationships present. It is our view
that this tree is extremely overfit, as highlighted by the ex-
ample in Fig. A2. Further, RFs do not allow for straightfor-
ward visualization functional relationships in a dataset. Plot-
ting FCH4 against VWC, which is the dominant environmen-
tal control identified, does not reveal a meaningful relation-
ship like Fig. 5a and c. You can look at an individual de-
cision tree within the RF, but those are difficult to interpret
beyond the first few splits, and each tree will be different.
Lastly, RFs are incapable of projecting beyond the parame-
ter space observed, which limited their applicability for this
study (Fig. A2). This presents an issue because many gaps in
EC data arise from data filtering (e.g. clear calm nights, pre-
cipitation events) and are by definition outside the parameter
space observed.
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