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Abstract. In forested area, a large fraction of total hydroxyl
radical (OH) reactivity remains unaccounted for. Very few
studies have looked at the variations in total OH reactivity
from biogenic emissions. In the present study, we investi-
gate the total OH reactivity from three common boreal tree
species (Scots pine, Norway spruce, and downy birch) by
comparing it with the calculated reactivity from the chem-
ically identified emissions. Total OH reactivity was mea-
sured using the comparative reactivity method (CRM), and
the chemical composition of the emissions was quantified
with two gas chromatographs coupled with mass spectrome-
ters (GC-MSs). Dynamic branch enclosures were used, and
emissions from one branch of a tree at the time were mea-
sured by periodically rotating between them.

Results show that birch had the highest values of total OH
reactivity of the emissions (TOHRE), while pine had the low-
est. The main drivers for the known reactivity of pine and
spruce were monoterpenes and sesquiterpenes. Birch emis-
sions were dominated by sesquiterpenes, but monoterpenes
and green leaf volatiles (GLVs) were present as well. How-
ever, calculated reactivity values remained low, leading to the
highest missing fraction of reactivity (> 96 %), while pine
and spruce had similar missing reactivity fractions between
56 % and 82 % (higher in the spring and decreasing as the
summer proceeded). The high average values were driven by
low-reactivity periods, and the fraction of missing reactiv-
ity got smaller for pine and spruce when the TOHRE values
increased. Important exceptions were identified for periods
when the emission profiles changed from terpenes to GLVs,
a family of compounds containing a backbone of six car-
bon atoms with various functionalities (e.g. alcohols, alde-

hydes, esters) that indicate that the plant is suffering from
stress. Then, very high TOHRE values were measured, and
the missing fraction remained high.

This study found a different trend in the missing OHRE
fraction of the Norway spruce from spring to autumn com-
pared to one previous study (Nolscher et al., 2013), which
indicates that additional studies are required to fully under-
stand the complexity of biogenic reactive emissions. Future
studies of boreal trees in situ should be conducted to confirm
the findings presented.

1 Introduction

The boreal forest is the largest continuous terrestrial biome
and represents a third of forested areas (Keenan et al.,
2015). It is a large source of volatile organic compounds
(VOCs), such as isoprene (CsHg), monoterpenes (CioHjg),
and sesquiterpenes (C15H24), as well as some oxidised com-
pounds such as methanol, acetaldehyde, and acetone (e.g.
Lindfors and Laurila, 2000; Rinne et al., 2009). These com-
pounds are emitted by vegetation and are therefore referred to
as biogenic VOCs (BVOCs). Once in the atmosphere, these
emissions undergo oxidation reactions by hydroxyl radical
(OH), ozone (0O3), and nitrate radical (NO3), and therefore
they influence the lifetime and concentrations of these oxi-
dants. Moreover, the oxidation of VOCs in the atmosphere
can lead to the formation of secondary aerosol formation and
may play a role in photochemical air pollution by affecting
levels of oxidants and pollutants.
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OH is very reactive and, therefore, is difficult to measure
as well as to model (e.g. Heard and Pilling, 2003; Lelieveld
etal.,2016). Its lifetime varies spatially over time due to vari-
ations in OH sinks. When observed OH concentrations are
lower than predicted by global models, it is an indication of
missing OH sinks in the models. To estimate the magnitude
of missing OH chemical sinks, Kovacs and Brune (2001)
started measuring total OH loss rates to compare with model
results. The total OH loss rate (also known as total OH reac-
tivity) is defined as the inverse of the OH lifetime; high total
OH reactivity values translate into large OH sinks and short
atmospheric OH lifetimes. Total OH reactivity measurements
are therefore viewed as a tool to assess the exhaustiveness
of chemical composition measurements of the atmosphere.
These kinds of measurements have since been performed in
various environments (see the review by Yang et al., 2016),
and Williams and Brune (2015) advocate for the widespread
use of such measurements at monitoring stations. Based on
these studies, Ferracci et al. (2018) modelled global OH re-
activity to investigate the missing OH sinks.

By comparing the total OH reactivity with the reactivity
derived from the known chemical composition of a sample,
the gap in chemical composition knowledge can be identi-
fied. Particularly in forest environments where these mea-
surements have been made, this gap was found to be large.
Di Carlo et al. (2004) first observed this missing reactiv-
ity at the Harvard Forest station, and this was later seen in
other forests as well. Measurements of the total OH reactiv-
ity using the comparative reactivity method (CRM; Sinha
et al., 2008) in a boreal forest at the SMEAR 1I station in
Hyytiéla, Finland, for instance, have shown that less than half
of the OH reactivity can be explained by the measured VOCs
(Sinha et al., 2010; Nolscher et al., 2012). The missing frac-
tion at this site (up to 89 % for periods during which the for-
est experienced stressed conditions in Nolscher et al., 2012)
is suspected to be the result of the incapacity to measure
reactive compounds due to instrumental limitations. These
compounds can be either VOCs directly emitted from the
ecosystem (vegetation or soil) or oxidation compounds that
are formed in the atmosphere through oxidation reactions of
these emitted compounds. However, Praplan et al. (2019) re-
cently demonstrated that including modelled oxidation prod-
ucts of VOC:s that are not measured is not sufficient to explain
the missing OH reactivity at SMEAR II.

Therefore, it becomes important to consider that the chem-
ical composition of biogenic emissions has not been fully
characterised. Applying total OH reactivity measurements
to emissions allows for estimating its unknown fraction (in
terms of reactivity) in a similar fashion. Previous measure-
ments of the total OH reactivity of the emissions (TOHRE)
were inconclusive. For instance, Kim et al. (2011) found
that the TOHRE of four tree species matched the calcu-
lated OH reactivity of the emissions (COHRE, calculated
from individually quantified compounds in the emissions).
However, these measurements were performed for very short
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time periods (< 24 h for each species). In contrast, Nolscher
et al. (2013) found that, while the TOHRE from the Norway
spruce could be almost fully explained in the spring (15 %
missing reactivity), TOHRE values were much higher than
COHRE in the summer (84 % missing reactivity) and in the
autumn (70 % missing reactivity).

To further investigate the exhaustiveness of our knowledge
of biogenic emissions and their specific influence on the ob-
served missing OH reactivity, measurements were taken for
the comprehensive, simultaneous VOC and OH reactivity of
emissions from three common boreal tree species at a boreal
forest station, the second Station for Measuring Ecosystem-
Atmosphere Relations (SMEAR 1II) in Hyytidl4, Finland. The
measurements alternated between seedlings of Scots pine
(Pinus sylvestris), Norway spruce (Picea abies), and downy
birch (Betula pubescens) trees and lasted from May to Octo-
ber 2017.

2 Methods
2.1 Measurement site

Measurements were conducted at SMEAR II in Hyytiili,
Finland, (61°51’N, 24°17’E, 181 m above sea level; see Hari
and Kulmala, 2005), about 60 km northeast of the city of
Tampere. The station is located in a ca. 60-year-old man-
aged mixed conifer forest dominated by Scots pine (Pi-
nus sylvestris) homogeneously for about 200 m in all direc-
tions from its mast, which carries instrumentation for var-
ious observations. These data and additional data acquired
at the site are available via the Smart-SMEAR portal (https:
//avaa.tdata.fi/web/smart/smear/search, last access: 7 Febru-
ary 2020; Junninen et al., 2009).

For this study, the measurements were done at a container
located next to an opening about 115 m south of the mast.
The instrumentation to measure VOC emissions (Sect. 2.4)
and TOHRE (Sect. 2.5.1) was located inside the container.
The seedlings used in this study (Sect. 2.2) were located just
outside of the container and received direct sunlight for most
of the day. Branch enclosures (Sect. 2.3) were used to inves-
tigate their emissions.

2.2 Seedlings

Seedlings for each of the studied tree species — Scots pine
(Pinus sylvestris), Norway spruce (Picea abies), and downy
birch (Betula pubescens) — were brought from a commer-
cial nursery (Harviala Oy, Harviala, Finland) to the site. The
seedlings were 100-150 cm tall, and they were planted in
10 L plastic pots in a mixture of sand and peat and were wa-
tered regularly. The use of seedlings in pots was mostly prac-
tical as it was easier to bring them close to the instruments
that characterise the emissions; moving the instruments’ con-
tainer closer to the trees of interest is not possible. Addition-
ally, extremely long sampling lines and wall losses could be
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avoided. Emissions from the seedlings might not be repre-
sentative per se. Nevertheless, put in perspective with results
from other studies, they provide valuable information for any
potential upscaling effort.

For each tree, the enclosure was moved to a different
branch twice during the campaign. Each time this occurred
and at the end of the last measurement period, the branch
from which the emissions were measured last was cut in or-
der to determine the dry weight of the needles’ or leaves’
biomass for three periods for each tree. To do so, the needles
or leaves from the cut branches were dried at 80 °C overnight
and subsequently weighed. Dry weights of the needles or
leaves of the different branches can be found in Table B1
in Appendix B.

No correction for the growth of the biomass was applied
during the growth period (May—June) as the cutting of the
branches happened in general right after the measurement pe-
riod, so it can be assumed that the changes in biomass remain
small compared to other uncertainties of total OH reactivity
measurements.

Bertin et al. (1997) showed that branch-to-branch vari-
ability (for sun-exposed branches) is of a similar magni-
tude as tree-to-tree variability (for the evergreen oak). How-
ever, a large difference (190 %) was observed between sun-
exposed branches and shade-adapted branches. In our study,
the branches are exposed to both sunlight and shade, depend-
ing on the time of the day. We assume that the variability
from branch to branch to also be similar to that from tree to
tree in the present study.

2.3 Dynamic branch enclosures

Hakola et al. (2006) describe the method used in detail.
Briefly, the enclosure consists of a ca. 6 L cylinder made of
transparent Teflon, which is attached to the branch on one
side and to a Teflon frame equipped with inlet and outlet
ports on the other side. VOC-free air provided by a genera-
tor (HPZA-7000, Parker Balston, Lancaster, NY, USA) flows
through the enclosure at about 4 Lmin~! (flow f). The rel-
ative humidity (RH) and the temperature in the enclosure
were recorded with a thermistor (Philips KTY 80/110, Royal
Philips Electronics, Amsterdam, Netherlands), and the pho-
tosynthetically active radiation (PAR) was measured with a
quantum sensor (LI-190SZ, LI-COR, Biosciences, Lincoln,
USA) placed on top of the enclosure frame.

In this study, three branch enclosures were used so that
they could be set up 1 or 2 weeks before the measurements
of the emissions in order to reduce the stress (and the as-
sociation emissions) caused by handling the branches to a
minimum. During that time, the enclosure was left open, and
it was only when the measurement started that the enclo-
sure was carefully closed with transparent Teflon film, which
could nevertheless result in a low level of stress.

The temperature difference between ambient conditions
and those inside the enclosure is presented in Appendix C
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(Fig. C1). For a large majority of the data (74 %), the differ-
ence lies within 3 °C. For another 22 % of the data, the differ-
ence is between 3 and 10 °C. The maximum temperature dif-
ference is 27.5 °C. Large temperature differences happened
when prolonged direct sunlight heated up the enclosure.

2.4 In situ measurements of volatile organic
compounds

Volatile organic compounds (VOCs) were measured with two
in situ gas chromatographs coupled with mass spectrometers
(GC-MSs), which have been previously described in more
detail by Hellén et al. (2017, 2018). One GC-MS measured
the concentrations of mono- and sesquiterpenes, isoprene, 2-
methyl-3-butenol (MBO), and Cs_1¢ aldehydes in the emis-
sions. These compounds were collected for 30 min from a
40mL min~! subsample flow of the CRM instrument sam-
pling flow in the cold trap (Carbopack B/Tenax TA) of the
thermal desorption unit (TurboMatrix, 650, Perkin-Elmer)
connected to the GC (Clarus 680, Perkin-Elmer) coupled
with the MS (Clarus SQ 8 T, Perkin-Elmer). A HP-5 col-
umn (60 m, i.d. 0.25 mm, film thickness 1 um) was used for
separation. The instrument was calibrated for MBO, aldehy-
des, and mono- and sesquiterpenes using liquid standards in
methanol solutions. Isoprene was calibrated using a gaseous
standard (National Physical Laboratory, 32 VOC mix at the
4 ppby level). Limits of detections for mono- and sesquiter-
penes are between 0.5 and 4.7 ppty, and the uncertainty of the
measurements lies at 17 %—20 % (Helin et al., 2020).

The other GC-MS measured the concentrations of alco-
hols and volatile organic acids (VOAs). Every other hour,
a sample was taken for 60 min and analysed with a thermal
desorption unit (Unity 2 + Air Server 2, Markes International
Ltd, Llantrisant, UK) connected to the GC (Agilent 7890A,
Agilent Technologies, Santa Clara, CA, USA) and the MS
(Agilent 5975C, Agilent Technologies, Santa Clara, CA,
USA). A polyethylene glycol column DB-WAXetr (30 m, i.d.
0.25 mm, film thickness 0.25 um) was used for the separa-
tion. These compounds were calibrated as well with stan-
dards in methanol solutions. The detection limits are in the
1-130 ppty range, and the uncertainty is 32 %76 % (Hellén
etal., 2017).

For both instruments, measured compounds that had no
standard available were quantified using calibrations of simi-
lar compounds. The uncertainty and the detection limits were
estimated the same way.

2.5 OH reactivity

OH reactivity, Roy, can be calculated from the sum of the
concentration of individually emitted compounds X;, [X;],
multiplied by their respective reaction rate coefficient with
OH (koH+x;):

Ron = Z[Xi]koH+Xi' (D
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The experimental total OH reactivity, Rexp, can be mea-
sured with the comparative reactivity method (CRM; Sinha
et al., 2008; Michoud et al., 2015). The specific instrument
used for this study is described in Praplan et al. (2017, 2019),
and the measurement principle is briefly explained in the fol-
lowing section together with the application of the method to
measure the OH reactivity of emissions (OHRE).

2.5.1 Total OH reactivity measurements: the
comparative reactivity method

The CRM is based on monitoring the signal change of pyr-
role (C4HsN) exposed to OH in a reactor together with either
clean (zero) air or air sampled from the branch enclosure. OH
is produced by the photolysis of water (H,O) in a nitrogen
flow (99.9999 % N») using ultraviolet (UV) radiation and a
gas chromatograph (GC, Syntech Spectras analyser GC955,
Synspec BV, Groningen, the Netherlands) equipped with a
photon ionisation detector (PID), measuring the pyrrole con-
centration in the CRM instrument reactor every 2min. No
other peak is observed at the retention time (RT) of pyrrole
(ca. 65s). The GC-PID measurement uncertainty is about
5 %, and its detection limit (20) is 1.7 ppby. Based on pyr-
role calibrations, a sensitivity of 1678 ppby ! measured on
11 May was used for data until 14 June; then, a sensitivity of
1833 ;! measured on 15 June was used for data until 28 June.
On 28 June, a lower sensitivity of 1193 I was measured and
used for the rest of the measurement periods.

During zero-air measurements, all OH is consumed by
pyrrole (labelled C; level). This zero air is produced by pass-
ing the sampled air through a platinum catalyst heated at
ca. 450 °C to remove reactive species. When zero air is re-
placed with the sampled air, other reactive compounds com-
pete for OH, leading to an increased pyrrole concentration
(Cs3 level). The instrument alternates measurements of zero
air and sampled air every 8 min. The conditions in the reac-
tor after switching stabilise within 1 min, and therefore, the
first pyrrole measurement after each switch is discarded. The
amount of pyrrole in the reactor in the absence of OH with
the UV light on (C; level) is slightly lower than that intro-
duced into the reactor in the dark (Cp level) due to the photol-
ysis of pyrrole (5.6 %-9.3 %). C; is measured by introducing
a large concentration of a 0.6 % propane (C3zHg) gas mixture
in nitrogen (N3) to act as an OH scavenger (Zannoni et al.,
2015). From the difference between C, and Cs pyrrole levels
and taking into account the amount of available pyrrole (Cy),
the total OH reactivity in the reactor Reqn can be derived from
the following equation:

G -G

Reqnzcl_C3 ‘kp'Cla 2

with kp, being the reaction rate of pyrrole with OH (1.2 &
0.18 x 107 "%cm?s~!; Atkinson et al., 1985, similar to the
newer study by Dillon et al.,, 2012). However, this equa-
tion has been derived under a pseudo first-order kinetics as-
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sumption (i.e. [C4HsN] > [OH]), but the pyrrole—-OH ratio
(pyr : OH) varies between 1.0 and 3.5 in the present study.

Therefore, we apply a correction (described in detail in
Praplan et al., 2019) for this deviation from pseudo first-order
kinetics based on experimental reactivity calibrations with
a-pinene. The reactivity in the reactor (Rcry) is derived ac-
cording to the following equation:

RcrM = (Reqn +b)/a, 3

with a (0.497) and b (0.449) being the coefficients of the lin-
ear regression between measured OH reactivity in the reactor
(Regn) and expected calculated reactivity for reactivity cali-
brations with «-pinene (Rynye; see Sect. 2.5.3).

In addition, the background reactivity of the empty enclo-
sure (Regn,blank) 18 also taken into account. Regn blank Was
determined between 28 September and 4 October and is
2.342.7s7! (1o, see Fig. C2 in Appendix C). This value
is subtracted from Reqn before applying the correction for
deviation from the pseudo first-order assumption.

RCRM,blank-corrected = (Reqn - Reqn,blank + b) / a (4)

Additionally, because of the dilution of the sampled air
with humid nitrogen, the calculation of the total OH reactiv-
ity of the sampled air Rexp requires the use of the dilution
factor D (ratio of sampling flow to total flow through the re-
actor, between 0.63 and 0.69):

Rexp = RCRM/Do ®))

As there can be a difference in relative humidity (RH) in
the reactor between measurements of C, and Cj3 levels of
pyrrole (e.g. transpiration of the branch increasing RH in
C3), a correction is needed to account for the difference (see
Sect. 2.5.2). This is because OH levels in the reactor change
with RH, and Eq. (2) requires that OH concentration is the
same during C, and C3 measurements.

Corrections due to the presence of ozone (O3) and nitro-
gen oxides (NO, ) described elsewhere (e.g. Michoud et al.,
2015; Fuchs et al., 2017; Praplan et al., 2017, 2019) are not
required in the present study due to the use of zero air through
the dynamic branch enclosure. O3 and NO, are assumed to
be effectively removed by the commercial zero-air generator.
Even though the specific mode of operation of the generator
is not known, C; and Cj3 levels are similar during periods of
low emissions (e.g. at night) and during measurements of the
blank chamber. If NO, and/or O3 would be present in the
generated zero air, C3 would be lower than C,, which is why
these corrections are needed for ambient air measurements.
However, this is not what is observed in the data presented
here, which confirms that these corrections are not needed in
this particular case.

Finally, the total OH reactivity of emissions (TOHRE)
measured using a dynamic branch enclosure can be derived
from

TOHRE = Rexp - f/Mdw. (6)
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where f is the total flow through the enclosure and mg,, is the
dry weight of the leaves or needles in the enclosure. In a simi-
lar way, the calculated OH reactivity of emissions (COHRE),
based on the known air composition, can be calculated as

COHRE = Roy - f/mdw. @)
2.5.2 Correction due to the difference in RH

Equation (2) assumes that RH (i.e. OH levels) is identical in
the reactor during C, and C3 measurements. However, this
is often not the case, and a correction is derived to take this
effect into account. Figure 1 shows the pyrrole signal as a
function of RH while measuring zero air. The applied cor-
rection is then

C2 = C2,ur1corrected —0.088 - (RHC3 - RHC2)~ (8)

2.5.3 Correction due to deviation from pseudo
first-order kinetics

As mentioned previously, this correction is necessary as
Eq. (2) is derived under the assumption of pseudo first-order
kinetics ([C4H5N] > [OH]), while the experimental pyrrole—
OH ratio (pyr: OH) is between 1.0 and 3.5. Originally, Sinha
et al. (2008) used a very simple two-equation model for
this correction. Michoud et al. (2015) opted for an empir-
ical approach based on experimental calibration using gas
standards, as they demonstrated that the model was not accu-
rately reproducing the observed response of pyrrole in the re-
actor, despite alterations to account for secondary OH chem-
istry. In the present study, we use the experimental results
derived in Praplan et al. (2019) based on «-pinene calibra-
tions, which show that the measured OH reactivity (Regn) is
roughly half the expected reactivity, so the exact relationship
between the calculated reactivity in the reactor (Ryye) and
Reqn is the following:

Reqn =a- Ryye + b, 9)

with a and b values of 0.497 and 0.449, respectively. While
considering «-pinene as a representative compound for the
measured emissions, they often comprise a mixture of var-
ious compounds with various reaction rates with OH. Con-
sidering that the slope of the regression for reactivity cali-
bration with propane from earlier work (Praplan et al., 2019)
was 0.751, we can consider the lower uncertainty in this cor-
rection to be roughly 51 % at most. No reactivity calibration
with sesquiterpenes could be performed, but based on the fact
that the relative difference between the reaction rates with
OH of a-pinene and B-caryophyllene is smaller than between
the reaction rates with OH of propane and «-pinene, it is rea-
sonable to consider the lower upper uncertainty to be smaller
than 50 %.
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2.6 Emission models

We used a typical model for VOC emissions (Guenther et al.,
1993, 1995) to test the light and temperature dependence
of TOHRE. The temperature-only dependence is the same
dependence as for monoterpene emissions and is expressed
with the following equation:

TOHRE = TOHREgs - exp[B(T — Ts)]. (10)

TOHREg is the TOHRE at standard temperature Tg
(303 K), and T is the leaf surface temperature. In the present
study, we assume that the leaf surface temperature, which
was not recorded, is roughly the same as the temperature
inside the enclosure. Owen et al. (1997) mention that for a
similar system as the one used in the present study, the leaf
temperature is at most 2 K higher than in the enclosure. 8 de-
scribes the temperature dependence (so-called S-factor) and
is estimated to be 0.09 K~! for monoterpenes.

A hybrid algorithm based on both temperature and light
can be used to model emissions that also follow in illumina-
tion (Guenther, 1997; Ghirardo et al., 2010). The dependence
on light and temperature for TOHRE is then formulated as
follows:

TOHRE = TOHRE(),pO()] -explB(T —Ts)]
+ TOHREO,synth *CL " CT, 11

with  TOHRE( pooi and TOHREq syne, as the standard
TOHRE pool emission potential (stored compounds, tem-
perature dependent) and TOHRE synthesis emission poten-
tial (newly synthesised compounds, light- and temperature-
dependent), respectively. Additionally, ¢, and ct are light
and temperature activity coefficients, respectively, defined as

=L (12
V1+a?Q?
exp (CTIIg;TTS) )
cr = TN (13)
1+eXp(cT2RTSTM )

T and Ts are the same as above, and Q is the PAR
measured just above the enclosure. The empirical coeffi-
cients are  (0.0027), c1 (1.066), ct1 (95000molJ~1), et
(230000 mol J~1), and Ty (314 K). Finally, R is the gas con-
stant (8.314J K~ mol™1).

3 Results and discussion

3.1 Overview

An overview of monthly averages for TOHRE and miss-
ing TOHRE (absolute and fraction) can be found in Ta-
ble 1. The highest TOHRE monthly averages were found
for birch in May and June (1.6-2.6 1073 m3s~2 gg‘i), which
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Figure 1. Change in pyrrole level (C;) according to relative humidity (RH) in the CRM reactor.

is mostly unaccounted for (missing OHRE fraction 96 %-—
99 %). The monthly TOHRE averages from spruce were high
in July and August (1.1-1.5 x 1073 m3s~2 g;vi), while the
highest monthly average for TOHRE from pine was in July
(6.1 x 1074 m3s2 ggvi). A few compounds per class of bio-
genic VOCs were identified as the main drivers of the reac-
tivity, which will be discussed in the following subsections
for each tree individually.

In general, the missing OHRE fraction was higher in
spring and decreased as the seasons proceeded (see Table 1).
The missing OHRE fraction from birch remained high from
May to July (99 %—84 %), making it the least understood
reactivity. Pine and spruce had similar fractions of missing
OHRE (59 %—-78 % and 56 %—82 %, respectively), partly due
to uncertainties on both the measured TOHRE and COHRE.
For TOHRE, the correction for deviation from pseudo first-
order kinetics applied to CRM data is based on calibra-
tion with a-pinene as a surrogate for biogenic emissions,
but monoterpenes do not always represent the largest frac-
tion of the emissions, which result in some uncertainty in
TOHRE (roughly a factor of 1.5 at most). On the other hand,
unidentified sesquiterpenes have been found in emissions
from all three tree species (see Appendix D), their quan-
tification was performed using surrogates, and their reaction
rates were assumed to be average based on the reaction rates
for other sesquiterpenes (10~!9 cm® s=!). COHRE is derived
from up to 67 compounds. Considering the uncertainty from
the GC-MS measurements and from the reaction rates used
to derive COHRE for its contributing compounds (never all
67 compounds simultaneously), the estimated uncertainty of
COHRE stays mostly around 25 %-50 %.

This also introduces some uncertainty. Notwithstanding
these uncertainties, it will appear in the following discussion
that the averages of high missing OHRE values are driven
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by low reactivity values and measurement scatter. When
TOHRE is clearly above the background values, the missing
fraction is reduced, which indicates a generally good under-
standing of emissions with the exception of periods domi-
nated by green leaf volatiles (GLVs). GLVs form a family
of C¢ compounds, including aldehydes, alcohols, and esters,
which are emitted rapidly and in large amounts during stress
periods (e.g. Scala et al., 2013). Stress can have various abi-
otic and biotic causes (e.g. drought, attack by pathogens or
herbivores). During these periods, TOHRE values were high,
but the missing fraction also remained high, and this cannot
be explained only by measurement and calculation uncertain-
ties.

The results also illustrate how reactive biogenic emissions
are influenced by time of the year and the tree species found
in the forested areas. In addition, high measured TOHRE is
related to a change in the emission profiles with a larger frac-
tion of GLVs.

3.2 Pine

The data for pine are shown in Fig. 2, divided into periods
labelled with “P” (for “pine”), a number (for each different
branch measured), and possibly a letter to indicate various
measurement periods of the same branch. Branches were cut
on 15 June, 16 August, and 11 October. TOHRE, its 1 h av-
erage, and COHRE are displayed in the top row, the relative
contribution of measured compounds to COHRE is shown in
the middle row, and the missing OHRE fraction is shown in
the bottom row.

The highest TOHRE values from pine were measured in
early July and early October. These two periods, the end
of period P2.a (3-5 July), and the beginning of period P3.b
(4-11 October) are marked with a fraction of GLVs up to
roughly 35 % (mostly due to cis-3-hexenol). At the same
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Table 1. Monthly averages of temperature (7¢) and relative humidity (RHe) in the branch enclosure, photosynthetically active radiation (PAR)
measured just above the enclosure, and total OH reactivity of the emissions (TOHRE), as well as missing OHRE (absolute and relative). The
number of observations, n, for missing OHRE is lower than for other parameters due to an incomplete overlap between calculated OHRE
(VOC data) and TOHRE.

Ndays Te RHe PAR TOHRE Missing OHRE  Missing OHRE
°C) (%)  (umol m2s7 1 m3s~2 ggvl) m3s~2 g;“]/) (fraction)
Pine
June 10 (n =753) 156+6.0 20.6+4.8 90+175 9.6+11.2x 107 7.64+8.0x 1075 (n="1727) 0.77+£0.25
July 8 (n =542) 155+52 228+7.0 714138 6.1+6.2x 1074 53+54x 1074 (n =506) 0.76 +£0.17
August 7 (n =535) 159448 19.5+£3.0 46 £ 84 1.8+1.8x 1074 14+1.3x 1079 (n =364) 0.58+0.31
September 8 (n=0621) 8.84+2.2 39.6+84 30+42 <lo.d. - -
Spruce
May 10(n=664) 13.2+103 258+7.6 24 +41 25+1.5x1074 20+13x1074 (n =458) 0.81+0.22
June 0(m=0) - - - - - -
July 9 (n =708) 16.0+£6.5 16.2+£3.5 13+£28 15+4.1x1073  7.94£295x 1074 (n = 658) 0.534+0.26
August 8 (n = 625) 16.3+3.4 17.2+4.7 54 +£68 1.1+£1.7%x1073 98+15.6x 1074 (n =604) 0.57+0.33
Birch
May 8 (n=0671) 134458 222+4.5 30+30 26+1.4x1073 254+0.6x 1073 (n =1582) 0.99 +0.02
June 15 (mn =1133) 11.9+69 29.1+45 17+34 1.6+£0.9 x 1073 1.5+£09x 1073 (n =980) 0.97+0.13
July 7 (n =533) 159+83 257+5.5 14 +£31 6.8+6.3x 1074 6.4+54x 1074 (n =506) 0.844+0.29
Period P1 Period P2.a Period P2.b Period P2.c Period P3.a Period P3.b
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Figure 2. Measured total OH reactivity of the emissions (TOHRE), its 1 h average values, and COHRE normalised to dry weight (top row)
for pine. Fraction of the various contributions of chemical species to COHRE (middle row). Missing fraction of OHRE (bottom row). The
periods are denoted “P” for “pine”, the number indicates which branch is being measured, and the letter indicates which period it is for the

same branch.

time, emissions from monoterpenes and terpinolene increase
as well. Between 3 and 5 July, TOHRE increased and was
high even at night, while it is usually close to zero at that
time. Interestingly, 3 July marks the end of a warm and sunny
period, with a maximum temperature in the branch enclosure
of 30—40°C for 5d in a row and the beginning of a cooler
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and cloudier period with some precipitation. It is not clear,
though, whether stress emissions are related to the change
in environmental conditions or if they are a result of stress
experienced during the previous days.

Despite these observations, and with TOHRE being usu-
ally higher than COHRE, both display a similar time evo-
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lution. The Pearson’s correlation coefficient between the
overlapping periods of TOHRE and COHRE r is 0.89
(p value <0.01).

The known OH reactivity for pine emissions is dominated
by monoterpenes with a small fraction of sesquiterpenes, as
expected from earlier studies (Tarvainen et al., 2005; Hakola
et al., 2006; Yassaa et al., 2012; Bick et al., 2012; Faiola
et al., 2018). The profiles of known emissions from all three
branches of this same seedling are similar. Here, COHRE
is mostly driven by a-pinene, limonene, and A3-carene.
Sesquiterpenes (mostly «- and B-farnesene) contribute up to
15 % of the known OH reactivity, and MBO represents an
important fraction, especially in June and July. In September,
the missing fraction is lowest due to the low TOHRE values
measured, which are in the same range as the COHRE values
(only with a much larger scatter).

Nolscher et al. (2012) found higher missing reactivity for
ambient measurements for stress periods (elevated tempera-
ture) at SMEAR 1I, a boreal site dominated by Scots pine.
In our study, these stress periods for pine, identified with
GLV emissions, are not related to elevated temperature (see
Sect. 3.5). Missing OHRE was generally higher during these
periods, but as terpenoids were monitored, they cannot ex-
plain the stress-related emissions of reactivity. Some oxi-
dised volatile organic compounds were also measured, but
not methanol, formaldehyde, and acetaldehyde, for instance,
which could contribute — at least in part — to the missing
OHRE. Paired sample ¢ tests to compare monthly averages
with each other show that the average missing OHRE values
in June and July are not significantly different (p value 0.52),
while it is significantly lower in August (p value < 0.05).

3.3 Spruce

The data for spruce are shown in Fig. 3, and similarly to the
previous section, they are divided into periods labelled with
“S” (for “spruce”), a number (for each different branch mea-
sured), and possibly a letter to indicate various measurement
periods of the same branch. Branches were cut on 21 June,
9 August, and 5 November. TOHRE, its 1h average, and
COHRE are displayed in the top row, the relative contri-
bution of measured compounds to COHRE is shown in the
middle row, and the missing OHRE fraction is shown in the
bottom row.

For spruce, TOHRE follows the time evolution of
COHRE, even though their absolute values do not match.
The Pearson’s correlation coefficient r for the TOHRE
and COHRE overlapping periods is 0.78 (p value <0.01).
The highest TOHRE values are observed at the beginning
of July (period S2), with one extremely high peak over
0.06 m3s~2 gg\i on 9 July and another TOHRE peak the
next day. However, almost all reactivity can be explained
by monoterpenes and GLVs during that period (mostly cis-
3-hexen-1-ol and cis-3-hexenylacetate, as well as limonene).
Hakola et al. (2017) found relatively high emissions of higher
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aldehydes, especially nonanal and decanal. In our study,
these high emissions could not be observed, and their con-
tribution to OHRE remained small.

It was dry and sunny on 9 and 10 July, with maximum tem-
peratures in the branch enclosure close to 40 °C. After that,
when the weather gets cooler and cloudier with some precip-
itation between 11 and 14 July, the GLV fraction decreases,
and monoterpenes and sesquiterpenes account for most of the
known reactivity. This is in stark contrast with the observed
stress emissions from pine in this study, which increased dur-
ing the colder period, after a warm spell.

The known reactivity of the emissions in May (periods
Sl.aand S1.b) is dominated by monoterpenes, which was ex-
pected from earlier studies (Yassaa et al., 2012; Hakola et al.,
2017; Wang et al., 2017). The main drivers are limonene, §-
pinene, and S-phellandrene. Between 19 and 23 August (pe-
riod $3.a), high TOHRE values (up to 0.01 m3 s =2 gg“lj) were
measured (including at night), similarly to the stress period
observed for pine. It can be seen that, during these periods
with a larger fraction of GLVs, some needles were drying
and falling (Appendix A), which confirms that the tree suf-
fered stress (most probably drought). Other environmental
conditions did not change much during that period, which
was relatively cool and cloudy.

In contrast to stress periods in pine, monoterpene
emissions from spruce were low when the GLV frac-
tion increased. During this period, cis-3-hexen-1-ol, cis-
3-hexenylacetate, and frans-2-hexenal mostly contribute to
COHRE. In September, this branch had low TOHRE, and the
known reactivity of the emissions was caused by monoter-
penes and sesquiterpenes, similarly to the period between 16
and 19 August, before the large stress episode. The biggest
contributor to the sesquiterpene reactivity fraction was o-
farnesene (here and for other periods as well). The increase
of the sesquiterpene fraction in the emissions is in agree-
ment with observations from Hakola et al. (2017) (up to
75 % of the emissions in late summer, mostly B-farnesene).
In their study, they speculated on the possible defensive role
of sesquiterpenes, but the lack of any visible infestations of
feeding herbivores indicated a systemic defence mechanism
rather than a direct one.

A direct comparison with the results for TOHRE and the
missing OHRE of spruce from Nolscher et al. (2013) is dif-
ficult due to the many factors affecting the emissions. In
addition, because of the different method used, Nolscher
et al. (2013) report TOHRE with the units of m—3s2 g !,
while the present study reports TOHRE in m? s—2 gg“l,. Nev-
ertheless, knowing the volume of the enclosure used in
Nolscher et al. (2013) (15L; Bourtsoukidis et al., 2012), it
is possible to convert the values for quantitative comparison.
Nolscher et al. (2013) reported TOHRE values for spruce
ranging from 0.1639 (early autumn) to 0.8260 m~3 s> gg‘}/
(later summer), corresponding to 3.69 x 107> and 1.86 x
1074 m3s~2 gg\i, respectively. TOHRE measured in this
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Figure 3. Measured total OH reactivity of the emissions (TOHRE), its 1 h average values, and COHRE normalised to dry weight (top row)
for spruce. Fraction of the various contributions of chemical species to COHRE (middle row). Missing fraction of OHRE (bottom row). The
periods are denoted “S” for “spruce”, the number indicates which branch is being measured, and the letter indicates which period it is for the

same branch.

study ranged from 2.5 x 107% to 1.5 x 1073 m? s =2 ggvi, SO
clearly higher values. This reflects the variability of reac-
tive emissions due to the age of the tree (seedlings in the
present study) and the level of stress experienced by the tree.
Moreover, they found that the missing OHRE fraction was
lower in the spring and increased in the late summer and
autumn to 70 %—-84 %, while the present study suggests that
the missing OHRE fraction decreases from May to August.
Paired sample ¢ tests show that the decrease is significant. All
monthly averages are statistically different from each other
(p values < 0.05). As discussed earlier, lots of high missing
OHRE in the present study stems from low-reactivity peri-
ods with high scatter for TOHRE and values close to zero for
COHRE. However, because Nolscher et al. (2013) assume
a constant emission profile (measured in spring) through-
out the year and otherwise rely on unspeciated data from a
proton-transfer-reaction MS (PTR-MS), it is imaginable that
the chemical compositions of the emissions changed with the
season to more reactive monoterpenoids or sesquiterpenes,
leading to an underestimation of the calculated OH reactiv-

1ty.
3.4 Birch

The data for birch are shown in Fig. 4, and similarly to the
previous sections, they are divided into periods labelled with
“B” (for “birch”), a number (for each different branch mea-
sured), and possibly a letter to indicate various measurement
periods of the same branch. Branches were cut on 21 June,
9 August, and 6 September. TOHRE, its 1h average, and
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COHRE are displayed in the top row, the relative contri-
bution of measured compounds to COHRE is shown in the
middle row, and the missing OHRE fraction is shown in the
bottom row.

The observed TOHRE shows relatively high values (due to
the low dry weight mass) with almost no diurnal pattern. In
late June (period B2.a), a weak pattern can be observed, and
in mid-July (period B2.b), a few reactivity peaks can be ob-
served. It is possible that the constant blank value subtracted
from the measurements sometimes underestimates the actual
background of the measurements, leading to high missing re-
activity values because of overestimated TOHRE values. For
this reason, the missing OHRE values reported during peri-
ods when TOHRE is close to the detection limit or does not
display diurnal variation should be considered with caution.

Here, the Pearson’s correlation coefficient r between
TOHRE and COHRE for the periods when both are avail-
able is very low (0.02, p value 0.4), and the missing frac-
tion of OHRE is consistently high with a statistically signifi-
cant decrease from May to July (p value from paired-sample
t tests < 0.05) . This is partly due to the generally low val-
ues of COHRE, which are dominated by sesquiterpenes for
the first two branches (periods B1, B2.a, and B2.b), with a
significant amount of monoterpenes (up to 40 %). Instances
when the known reactivity is dominated by organic acids
are the result of missing terpene measurements. In May (pe-
riod B1), B-caryophyllene, a-humulene, another unidenti-
fied sesquiterpene, and sometimes cis-3-hexenylacetate con-
tribute most to the reactivity of the emissions. In June and
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Figure 4. Measured total OH reactivity of the emissions (TOHRE), its 1 h average values, and COHRE normalised to dry weight (top row)
for birch. (The dashed line, TOHRE*, designates the time when the dry weight of the leaves is significantly smaller than measured at the end
of the period B1, leading to unreliable values of TOHRE.) Fraction of the various contributions of chemical species to COHRE (middle row).
Missing fraction of OHRE (bottom row). The periods are denoted “B” for “birch”, the number indicates which branch is being measured,

and the letter indicates which period it is for the same branch.

July (periods B2.a and B2.b), the emission profile is slightly
different with B-caryophyllene, «-farnesene, linalool, and
sometimes cis-3-hexenylacetate and cis-3-hexen-1-ol (co-
emitted) contributing most.

For the last branch measured in August (period B3), a sig-
nificant fraction (up to 50 %) of the known reactivity comes
from GLVs (again, cis-3-hexenylacetate and cis-3-hexen-1-
ol), but the fraction of sesquiterpenes (mostly «-farnesene)
is smaller, while monoterpenes (carene, o-pinene, and «-
terpineol) contribute more. Pictures in Appendix A show
how some leaves turned brown, possibly indicating the end
of the growing season and the senescence of the leaves.

Haapanala et al. (2009) found a large fraction of «-
farnesene in mountain birch emissions in a given year, but
they stressed that there was an important inter-annual varia-
tion in the emission profile, with almost no «-farnesene de-
tected the following year for the same branch.

3.5 Temperature and light dependence of TOHRE

To also study the dependence of TOHRE on temperature,
TOHRE has been plotted against the temperature in the en-
closure, and exponential regressions using Eq. (10) have been
performed (Fig. 5 and Table 2). Excluding data when the
temperature in the enclosure is higher than 30 °C leads to a
change in B-factors within 15 % of the values reported here,
except for the notable exception of the S-factor for spruce
emissions in July, as discussed below. Similar figures for
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COHRE and missing OHRE can be found in Appendix E,
showing similar findings to TOHRE dependence on temper-
ature.

Good correlations with temperature are found for the
TOHRE of pine in June and August (R =0.70 and 0.61, re-
spectively), in May and July for spruce (R = 0.59 and 0.50),
and in July for birch (R = 0.71). Periods with no correlation
were connected to either abiotic stress events (particularly
July for pine) increasing TOHRE at night, or low TOHRE
values during the daytime (as in September for pine and
spruce and May—June for birch), possibly due to cooler and
cloudier weather. Because of this, averaging the whole data
set leads to low coefficients of correlation (R = 0.23-0.37).

Considering values of g-factors from monthly regressions
with R > 0.5, they range from 0.0246 to 0.1853 K~!. Guen-
ther et al. (2012) recommended a value of 0.10 K~! to model
monoterpene emissions. For sesquiterpenes, average values
of 0.14-0.22 have been reported (e.g. Tarvainen et al., 2005;
Hakola et al., 2006; Duhl et al., 2008), even though values as
low as 0.025, 0.05, and 0.056 were also found (Tarvainen
et al., 2005; Helmig et al., 2007; Ruuskanen et al., 2007,
respectively). For pine, which is dominated by monoter-
pene emissions, S-factors are about 0.09—0.10K~! except
for stress periods, when the S-factor is smaller than 0.003.
For spruce, -factors increase from 0.02 to 0.19 K~! between
May and July, demonstrating a clear regime change in the
temperature dependence of the emissions, with an increasing
contribution of less-volatile compounds (sesquiterpenes and
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Figure 5. TOHRE as a function of temperature in the branch enclosure for pine (a), spruce (b), and birch (c). Coloured dots and dashed lines
are data separated by month (data and exponential regression), and the solid black line is the exponential regression for all data.

Table 2. Regression coefficients (TOHREg and g) for the exponential regressions of TOHRE as a function of temperature and regression
coefficients (TOHRE( pool, B, and TOHRE( synth) for its dependence on both temperature and light using the hybrid algorithm, as well as

coefficients of correlation (R).

Temperature dependence (exponential) ‘ Hybrid algorithm (light and temperature dependence)

TOHREg B R | TOHRE( pooi B TOHRE( synn R
3.—2,—1 K—l 3.-2.—1 K—l 3.-2.—1
m?s2gg) (K m?s2ge)  KTH s egl)
Pine
June 3.4x 1074 0.1013 0.70 3.4x 1074 0.1013 2.0x 107 0.79
July 7.0x107*  0.0028 0.08 7.0x 107 00028  4.0x10"!! 0.02
August 77x107%  0.0903 0.61 7.7%x10~%  0.0903 1.8x 10710 0.67
September 82x107°  0.0019 —0.14 7.9% 1075 0.0000 43x10710  _0.14
All 50x 107 0.0356 0.30 50x107%  0.0356 6.8 x 10719 0.17
Spruce
May 3.7x 1074 0.0246 0.59 3.4x107%  0.0207 1.3x 1072 0.47
July 53%x1073  0.1853 0.50 53%x 1073 0.1853 2.1x10720 0.90
August 7.0x 1073 0.1080 0.32 7.0%x 1073 01080  9.1x 1012 0.36
September 1.1x 1073 0.1434 0.48 2.1x1073  0.4980 2.1 x 10100 0.53
All 33x1073  0.1229 0.37 33x1073  0.1229 9.7x 10725 0.39
Birch
May 3.8x 1073 0.0228 0.33 2.6x 1073 0.0032 42x 107! 0.35
June 22x1073  0.0151 0.16 1.6 x 1073 0.0000 2.5% 1071 0.28
July 1.4x 1073 0.0438 0.71 1.4x 1073 0.0438 2.0x 1076 0.69
August 47x1073  0.0217 0.01 2.9x10™4  0.0000 8.0 x 10~1 0.08
All 22x1073  0.0224 0.23 1.4x 1073 0.0000 3.3x 107! 0.31

GLVs). However, leaving out values when the temperature is
higher than 30°C, the B-factor for spruce in July is 0.093,
indicating that the highest temperatures (that are not ambient
temperatures in the boreal forest) might trigger emissions of
more reactive species, which is not the case for usual warm
summer temperatures in this type of forest. These changes
in emission profiles are possibly driven by the volatility of
the compounds emitted. For birch, when a good correla-
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tion with temperature was found (R =0.71) in July, the g-
factor remains low, even though emissions are dominated by
sesquiterpenes. This might be an indication of emissions of
non-terpenoid volatile compounds.

The results of using Eq. (11) to include the effect of light
on TOHRE (Hybrid algorithm, Table 2) show that, in gen-
eral, only small improvements (increases of R) are achieved.
In a few cases, R was even slightly reduced. One notable
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exception is a large improvement of the coefficient of cor-
relation R from 0.5 to 0.9 for spruce in July. The addition
of a small TOHRE synn term seemed to be enough to cap-
ture the large peak that was reported as stress, indicating a
radiation-induced stress in this case.

In general, B-factors are very similar to the results of
the regression for the temperature-only dependence (when
a good correlation was found in the first place). Note that in
September (and to some extent in August), the temperature
range remains small (about 10 K) and on the lower end, so
that nothing conclusive can be inferred from these results. In
summary, the effect of light on reactive remissions remains
limited in the present study, but other factors such as abiotic
stress can play a major role in the type and amount of reactive
emissions.

4 Conclusions

This study presents the total OH reactivity of emissions
(TOHRE) for three tree species from the boreal forest. The
studied trees were seedlings (in pots) placed outside the mea-
surement container at the SMEAR 11 station in Hyytiéld, Fin-
land. Instruments to measure TOHRE with the comparative
reactivity method (CRM) and the chemical composition of
the emissions (two online GC-MS systems) were located in-
side the container. Three dynamic branch enclosures (one for
each tree species) were set up, but VOC and TOHRE mea-
surements were performed for one enclosure at a time for
periods ranging from a few days to over a week.

The results show that the chemical composition of the
emissions varies greatly between tree species but also for
the same tree depending on environmental conditions. The
seedlings’ emissions were classified as induced by abiotic
stress (most likely drought) on several occasions. During
these periods, TOHRE increased greatly and did not return
to values close to zero at night, and the emission profiles
changed with an increased fraction of green leaf volatiles
(GLVs) and different terpene emissions.

Pine emissions were dominated by monoterpenes for all
measurement periods with varying fractions of MBO and
sesquiterpenes mostly. GLVs were found to be up to al-
most 40 % of the known reactivity in July and October for
two short stress periods. Spruce emissions were also dom-
inated by monoterpenes, and from July onwards, sesquiter-
penes contributed almost equally to TOHRE, as observed in
an earlier study (Hakola et al., 2017), possibly related to a
systemic defence mechanism. Exceptions are the two stress
periods, where GLVs and aldehydes were the major com-
pounds. Birch emissions were dominated by various frac-
tions of monoterpenes and sesquiterpenes with GLVs also
present, especially in mid-July and August.

In absolute terms, the highest TOHRE values were mea-
sured for birch. This is partly explained by total OH reac-
tivity values measured close to the experimental background
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(independent of the tree species measured) and normalised
by the smallest dry weight of the leaves or needles of all tree
species. Compared to pine, higher TOHRE averages were
found for spruce, indicating that knowledge of the tree com-
position of a forest is important in order to assess reactive
emissions.

In general, the missing OHRE fractions remain high, but
for pine and spruce, they were driven by low-reactivity peri-
ods (low COHRE and scatter of the TOHRE measurements),
and the missing OHRE fraction was smaller for periods with
higher TOHRE. However, for birch, we found consistently
high missing fractions throughout the measurement periods,
which emphasises the need to look for emitted compounds
with different functionalities than the ones studied so far.

Moreover, TOHRE exhibited various degrees of temper-
ature dependence. For spruce in particular, this temperature
dependence had a strong seasonality: a high temperature de-
pendence was found in July and August (when less-volatile
compounds such as sesquiterpenes are emitted), but a low de-
pendence was measured in May and September. For pine and
birch, the temperature difference varied less with the seasons.
Stress emissions for pine in July were not temperature depen-
dent at all, and no correlation could be found. Accounting
for photosynthetically active radiation (PAR) with a hybrid
model did not significantly improve the correlations, with the
notable exception of pine emissions in July (including a very
large peak on 9 July).

Because this type of characterisation of TOHRE is rare,
only a comparison with a study by Nolscher et al. (2013)
is possible. They found that the missing OHRE fraction for
spruce emissions was low in spring and increased as the sea-
sons proceeded; in the present study, however, we found a
larger missing OHRE fraction for spruce emissions in the
spring compared to later in the year. This underscores how
much is still unknown regarding biogenic emissions of re-
active species but also the challenges of the methods used.
For instance, Nolscher et al. (2013) did not have continuous
GC-MS measurements throughout the year and relied on a
constant chemical speciation derived in the spring, while our
results demonstrate that emission profiles vary throughout
the year and react to various environmental conditions, par-
ticularly stress episodes. Further understanding, characteri-
sation, and quantification of such stress episodes (and their
many causes) are necessary in order to better model reactive
emissions from vegetation in global models as they can occur
suddenly and with high intensity.

While it remains difficult to generalise from the particular
data set presented in this study, clear future research direc-
tions are highlighted. In addition, direct in situ studies for
various trees from the forest should be conducted to confirm
the findings of the present work.
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Appendix A: Pictures of the branches

21 Junegw:
I =

Figure A2. Pictures of spruce branches. Dates framed in green indicate that a new branch was placed in the enclosure.

https://doi.org/10.5194/bg-17-4681-2020 Biogeosciences, 17, 4681-4705, 2020



4694 A. P. Praplan et al.: OH reactivity from different tree species

Figure A3. Pictures of birch branches. Dates framed in green indicate that a new branch was placed in the enclosure.

Appendix B: Dry weight of biomass

Table B1. Dry weight of the needles’ or leaves’ biomass on the
dates the branches were cut.

Pine | Spruce | Birch
15 June 9.2g+0.8g (buds) | 21 June 7.62g | 7 June 0.5454 ¢
16 August  594g+1.3g (buds) | 9 August 23g | 9 August 1.32¢
11 October 5.133g | 5November 5.616g | 6 September -

Biogeosciences, 17, 4681-4705, 2020 https://doi.org/10.5194/bg-17-4681-2020
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Appendix C: Dynamic branch enclosure

C1 Temperature difference inside the enclosure
compared to ambient temperature

Pine

Spruce

Birch
----- 1:1 line

»
S

= N w
° o ]

Temperature in the enclosure [°C]
o

5 10 15 20 25
Ambient temperature [°C]

Figure C1. Temperature inside the enclosure compared to ambient temperature.

C2 Blank reactivity values

Reqn, blank [5_1]

-10

————— Average: 2.3 +2.7 s

28.09 29.09 30.09 01.10 02.10 03.10 04.10 05.10

Figure C2. Reqp blank measured from an empty branch enclosure.
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Table D3. Averages of individual compounds’ OH reactivity of the emissions, OHRE (m3s72 gg\i), with standard deviations (in brackets)
for the different measurement periods for birch; “n.d.” means “not detected”.

Period B1
24 May-8 June

Period B2.a
21-29 June

Period B2.b
13-19 July

Period B3
23-28 August

Isoprene 8.1x 1079 (£22 x 1078) 15x1072 (£ 1.1x1078)  525x 1078 (+1.88x 1077) 1.19 x 1078 (£3.05 x 1078)
MBO 25%x 1078 (£7.0x 1078) 12x 1072 (£2.0 x 1078) 1.22 x 1078 (£8.55 x 1078) 2.66 % 1079 (£1.78 x 1078)
«-Pinene 35x 1077 (£72x1077)  9.20 x 1078 (£7.01 x 10~8) 1.13x 1077 (£1.18 x 1077) 2.08 x 1070 (£3.62 x 10~9)
B-Pinene 1.0x 1078 (£2.0x 107%) 56x 1079 (£4.0x1078) 457 x 10710 (£7.45 x 1079) 1.63 x 1077 (£2.75 x 1077)
Camphene 79% 1072 (£1.7x 1078) 25%x 1072 (£1.8 x 1078) 1.18 x 1079 (£ 1.41 x 1078) 5.42 x 1078 (£8.29 x 1078)
Carene 75x 1078 (£1.6x1077) 526x 1072 (£3.34 x 1078) 1.01 x 1078 (£ 8.00 x 10~8) 2.54 % 1070 (£3.96 x 1070)
B-Phellandrene® 1.7x 1078 (£32x 1078) n.d. n.d. 9.09 x 1078 (£1.52 x 1077)
p-Cymene 43x1072 (£1.0x1078)  7.0x 1071 (£1.2x1079) n.d. 6.99 x 1079 (£1.29 x 10~8)
1,8-Cineol 3.6 x 1079 (£9.0 x 1079) n.d. 113 x 1078 (£541 x 1078) 527 x 10710 (£3.68 x 1079)
Limonene 40x 1077 (£1.0x 107%) 52x 1077 (£8.6 x 1077) 8.03x 1072 (£1.31x 1077) 3.72x 1077 (£5.45x 1077)
Terpinolene 3.7x 1077 (£8.6x1077) nd.  9.07x1079 (£148x1077)  577x 1077 (£877x 1077)
Linalool 47 x 1077 (£1.5x 1079) 28x 1070 (£4.7 x 1079) 1.75% 1077 (£7.11 x 1077) 246 x 1072 (£1.85 x 1078)
Myrcene 1.5 x 10716 (£4.7 x 10716) nd. 4.69x 10710 (£2.72 x 10715)  2.89 x 10710 (£ 4.16 x 10~10)
a-Terpineol? 4.6x107% (£1.4x 1078) n.d. n.d. 3.87 x 1070 (£5.98 x 10~9)
Longicyclene 47x 1078 (£2.0x 1077) n.d. n.d. n.d.
Isolongifolene and agurjunene  9.78 x 1072 (£2.99 x 1073)  3.32x 1079 (£2.26 x 1078) n.d. n.d.

o«-Humulene
B-Farnesene
a-Farnesene®
pB-Caryophyllene

2.1%x107% (£8.8 x 107%)
1.1x 1077 (£3.2x 1077)
46x 1077 (£1.3x1079)
3.0x 1070 (£ 1.2 x 1075)

4.03x 1077 (£6.82 x 1077)
620 x 1078 (£2.82 x 1077)
1.66 x 107 (£2.53 x 1079)
247 x 1070 (£2.97 x 10)

522%x 1077 (£238 x 1079)
9.88 x 1077 (£3.82 x 1079)
239 x 1075 (£4.62 x 1077)
145 x 1076 (£5.27 x 107%)

231 x 1077 (£3.78 x 1077)
320 1077 (£3.94 x 1077)
4.80 x 1070 (£2.61 x 1079)
2.69 x 1079 (£4.05 x 10~8)

sQT1¢ 9.8x 1077 (£4.0x 1070 293 x 1077 (£1.01 x 1079) n.d. 2.69 x 1078 (+£8.38 x 10~8)
SQT2¢ 12x 1078 (£43x 1078) n.d. n.d. n.d.
SQT3¢ 27x 1078 (£1.1x1077) n.d. n.d. n.d.
SQT5® 3.9x 1078 (£ 1.8 x 1077) n.d. n.d. n.d.
SQT64 3.7x 1079 (£1.7 x 1078) n.d. n.d. 454 x 1077 (£2.11 x 1079)
SQT74 53%x 1078 (£1.3x1077) n.d. 5.15 x 1070 (£ 1.06 x 1075) n.d.
1-Hexanol 37x 1079 (£6.7x1078)  1.03x 1072 (£ 1.71 x 10~8) 3.68 x 1078 (+£1.85 x 10~7) 1.81 x 1078 (£9.26 x 10~8)

cis-2-Hexen-1-ol
trans-2-Hexen-1-o0l
cis-3-Hexen-1-ol
trans-3-Hexen-1-ol
Hexyl acetate
cis-3-Hexenyl acetate
trans-2-Hexenyl acetate

n.d.
n.d.
6.6x 1078 (£7.5x1077)
n.d.
n.d.
1.1x 1070 (£8.1 x 107%)
n.d.

n.d.
1.35x 1077 (£1.10 x 1079)
1.24 x 107% (£9.69 x 1079)
n.d.
n.d.
474 x 1070 (£2.66 x 1075)
3.02x 1078 (£5.04 x 1077)

n.d.

1.13x 1070 (£4.51 x 1079)
8.59 x 1070 (£3.13 x 1077)
n.d.

7.50 x 10710 (£ 1.22 x 1078)
2.56 x 1075 (£8.64 x 1075)
557x 1078 (£6.42x 1077)

n.d.
1.89 x 1077 (£8.45 x 1077)
378 x 1070 (£7.02 x 1079)
n.d.
n.d.
2.94 % 1070 (£6.10 x 1070)
n.d.

Pentanal 39x 1078 (£9.1x 1078)  3.78 x 1078 (£7.49 x 10~8) 3.79 x 1078 (£1.29 x 10~7) 1.97 x 1077 (£ 8.46 x 10~8)
Hexanal 58%x 1078 (£1.6x1077) 133x 1077 (£1.68 x 10~7) 2.68 x 1077 (£6.37 x 1077) 3.64 x 1077 (£2.31 x 1077)
Heptanal 52x 1078 (£1.1x1077) 270 x 1078 (£ 1.05 x 10~7) 3.97x 1078 (£2.11 x 1077) 1.87 x 1077 (£ 1.46 x 10~7)
Octanal 45x 1078 (£1.1x1077) 471 x 1078 (£1.51 x 1077) 5.82x 1078 (£2.68 x 1077) 249 x 1077 (£2.00 x 10~7)
Nonanal 56x1078 (£1.3x1077) 331x 1077 (£3.89 x 1077) 2.05x 1077 (£5.79 x 10~7) 6.62x 1077 (£4.46 x 1077)
Decanal 14x1077 (£33%x1077)  1.72x 1077 (£2.99 x 10~7) 8.81x 1072 (£7.21 x 1078) 1.78 x 1077 (£1.59 x 10~7)
Methacrolein 31x 1078 (£72x1078)  6.13x 1078 (£2.39 x 1077) 4.64 x 1078 (£6.86 x 1078) n.d.
1-Pentanol n.d. n.d. 3.57x 1078 (£3.74 x 10’7) n.d.
1-Octen-3-ol n.d. n.d. n.d. n.d.
Butyl acetate n.d. n.d n.d. n.d.

Bornyl acetate

11x 1072 (£3.6 x 1079)

3.05 x 1079 (£ 1.05 x 1078)

3.79 x 10710 (£ 6.18 x 1079)

3.40 x 10710 (£3.15x 1079)

Propanoic acid
Butanoic acid
Isobutanoic acid
Pentanoic acid
Isopentanoic acid
Hexanoic acid
4-Methylpentanoic acid

3.8x 1077 (£5.0 x 1077)
47 %1077 (£3.9%x1077)
5.1%x 1072 (£6.5x 1078)
62x 1072 (£9.0 x 1078)
n.d.
n.d.
n.d.

2.25x 1078 (+£4.88 x 1078)
5.01 x 1078 (£3.90 x 10~8)
8.36 x 1072 (£4.43 x 10~8)
n.d.
n.d.
n.d.
n.d.

324 x 1078 (£1.17 x 1077)
1.93 x 1077 (£1.90 x 10~7)
6.30 x 1079 (£7.25 x 1078)
n.d.
n.d.
n.d.
n.d.

3.88 x 1078 (£9.76 x 1079)
9.11 x 1078 (£1.24 x 10~7)
439%x 1078 (£1.22x 1077)
1.50 x 1079 (£2.26 x 1078)
n.d.
n.d.
n.d.

2 Quantified as carene. ® Quantified as terpinolene. © Quantified as B-farnesene. d Quantified as B-caryophyllene. © Quantified as longicyclene.
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Appendix E: COHRE and missing OHRE temperature

dependence
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Figure E1. COHRE temperature dependence by month (coloured dots and dotted line fits) and fit for all data combined (black solid line) for
pine (a), spruce (b), and birch (c).
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Figure E2. Missing OHRE temperature dependence by month (coloured dots and dotted line fits) and fit for all data combined (black solid
line) for pine (a), spruce (b), and birch (c).
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Table E1. Regression coefficients and coefficients of correlation (R) for temperature dependence of COHRE and for its dependence on both
temperature and light using the hybrid algorithm.

Temperature dependence ‘ Hybrid algorithm
COHREg B R | COHRE( pool B COHRE( synh R
ms~2ggly (KT ms~ gy (KT mPsT2ggh)

Pine
June 94x1075  0.1290  0.72 94x1075  0.1290 14%x1075 085
July 14x10™%  0.0160 0.14 14x107%  0.0148 31x1073 0.12
August 1.8x 1074 0.1063  0.92 1.8x 1074  0.1065 9.8x 1075  0.95
September 57%x1075  0.0290  0.55 8.7x 1072  0.4561 6.9x10~1 027
All 12x107% 00579 034 12x107%  0.0579 1.8x107% 0.1
Spruce
May 8.6x 1075 0.0294  0.44 8.6x 1075  0.0294 22x 1077 024
July 32x1073 01195 0.6l 32x 1073 0.1195 75x10718 074
August 49%10™%  0.0359  0.20 49%x107%  0.0359 55x 1078 0.19
September 23 x 1073 0.4978 —0.06 8.7x 1074 0.4996 1.1x 10190 018
All 15%x1073 0.0986 045 | 1.12x1073 0.0986 1.0x 10718 024
Birch
May 17x107% 0098  0.72 1.7x107%  0.0947 1.9% 1075 0.80
June 56x107°  0.0613  0.39 56x 1075 0.0613 48x10710 036
July 1.8x 1074 00737  0.66 1.8x 1074  0.0737 14%x107%  0.65
August 3.8x 1072 04863 034 3.6x 1072 0.4872 3.1x1072  0.29
All 13x107% 00914  0.56 13x107%  0.0914 25x 1078 036

Table E2. Regression coefficients and coefficients of correlation (R) for temperature dependence of missing OHRE (MOHRE) and for its
dependence on both temperature and light using the hybrid algorithm.

Temperature dependence ‘ Hybrid algorithm
MOHREg B R | MOHRE( p01 B MOHRE( gynh R
m3s~2gyly (KT m3s72gghy  (KTH  mds2gg))

Pine
June 25%x 1074 0.0932 054 25x 1074 0.0932 73x107%  0.66
July 58x107% 0.0000  0.03 5.8 x 1074  0.0000 1L1x10723  —0.03
August 46x107% 00676 045 46x107%  0.0676 7.9 x 1071 0.51
September 14x107% 00371 —0.06 6.2x 1073 0.0000 46x1071  —0.12
All 39x 1074  0.0304 025 3.9% 1074 0.0304 24x10714 0.4
Spruce
May 3.1x107% 00254 052 29% 1074 0.0220 8.9x 1073 0.49
July 17x1073 02559 039 1.7x1073  0.2559 6.0x10722 091
August 70%x1073  0.1232 034 7.0x 1073 0.1232 8.1 x 10713 0.37
September 52 x107% 0.1372 033 29x 1073  0.4981 1.1x10T00 027
All 22x1073  0.1371 0.30 22x1073  0.1371 2.2 x 10737 0.40
Birch
May 24x1073  0.0000 —0.11 24 %1073 0.0000 6.7x10~%  0.00
June 1.9%x 1073 0.0097  0.11 1.5%x 1073 0.0000 2.2 x 1071 0.26
July 12x1073  0.0374 061 12x 1073 0.0373 2.6x 1074 0.60
August 32x 1074 0.0043  0.02 28x 104 0.0000 3.7 x 107! 0.06
All 1.6 x 1073 0.0067 0.07 1.4%x 1073 0.0000 1.7x 107! 0.20
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