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Abstract. This study establishes an optical inversion scheme
for deriving the absorption coefficient of colored (or chro-
mophoric, depending on the literature) dissolved organic ma-
terial (CDOM) at the 440 nm wavelength, which can be ap-
plied to global water masses with near-equal efficacy. The ap-
proach uses a ratio of diffuse attenuation coefficient spectral
end-members, i.e., a short- and long-wavelength pair. The
global perspective is established by sampling “extremely”
clear water plus a generalized extent in turbidity and opti-
cal properties that each span 3 decades of dynamic range.
A unique data set was collected in oceanic, coastal, and in-
land waters (as shallow as 0.6 m) from the North Pacific
Ocean, the Arctic Ocean, Hawaii, Japan, Puerto Rico, and
the western coast of the United States. The data were parti-
tioned using subjective categorizations to define a validation
quality subset of conservative water masses (i.e., the inflow
and outflow of properties constrain the range in the gradi-
ent of a constituent) plus 15 subcategories of more complex
water masses that were not necessarily evolving conserva-
tively. The dependence on optical complexity was confirmed
with an objective methodology based on a cluster analysis
technique. The latter defined five distinct classes with val-
idation quality data present in all classes, but which also
decreased in percent composition as a function of increas-
ing class number and optical complexity. Four algorithms
based on different validation quality end-members were val-
idated with accuracies of 1.2 %–6.2 %, wherein pairs with
the largest spectral span were most accurate. Although algo-
rithm accuracy decreased with the inclusion of more subcat-

egories containing nonconservative water masses, changes to
the algorithm fit were small when a preponderance of subcat-
egories were included. The high accuracy for all end-member
algorithms was the result of data acquisition and data pro-
cessing improvements, e.g., increased vertical sampling res-
olution to less than 1 mm (with pressure transducer preci-
sion of 0.03–0.08 mm) and a boundary constraint to mitigate
wave-focusing effects, respectively. An independent evalua-
tion with a historical database confirmed the consistency of
the algorithmic approach and its application to quality as-
surance, e.g., to flag data outside expected ranges, identify
suspect spectra, and objectively determine the in-water ex-
trapolation interval by converging agreement for all appli-
cable end-member algorithms. The legacy data exhibit de-
graded performance (as 44 % uncertainty) due to a lack of
high-quality near-surface observations, especially for clear
waters wherein wave-focusing effects are problematic. The
novel optical approach allows the in situ estimation of an in-
water constituent in keeping with the accuracy obtained in
the laboratory.

1 Introduction

The colored (or chromophoric, depending on the literature)
dissolved organic matter (CDOM) spectral absorption coef-
ficient, aCDOM(λ), where λ is wavelength, is widely used to
investigate terrestrial and oceanic biogeochemical processes,
as summarized in the review by Nelson and Siegel (2013).
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The selection of aCDOM(440) as the parameter of interest is a
consequence of the relationships between CDOM and the so-
lar illumination of aquatic ecosystems, as follows. (a) CDOM
protects microorganisms from harmful ultraviolet (UV) radi-
ation, albeit while reducing photosynthetically available ra-
diation (Nelson and Siegel, 2013). (b) CDOM affects the
heat content of a water mass, e.g., causing stratification for
brown lakes (Houser, 2006). (c) CDOM supplies inorganic
nutrients, i.e., ammonium (Bushaw et al., 1996), and can be
a source of labile organic substances (Mopper et al., 1991)
through photochemical degradation and mineralization pro-
cesses. (d) CDOM is a potentially useful parameter to dis-
tinguish and trace water masses in the coastal zone and open
ocean (Nelson et al., 2007; Tanaka et al., 2016).

This study evaluates whether a proposed algorithm
(Hooker et al., 2013) for deriving aCDOM(440) from a ra-
tio of diffuse attenuation coefficient spectral end-members,
Kd(λ1)/Kd(λ2), with the shortest wavelength denoted λ1
and the longest denoted λ2, can be applied to global water
masses with equal efficacy. Typically, aCDOM(440) is deter-
mined in the laboratory using an optical instrument and a
water sample obtained in situ. In this study, the water sample
is collected in temporal close proximity to in-water optical
sampling used to derive Kd(λ) from vertical profiles starting
sufficiently close to the water surface to accurately derive the
widest range of Kd wavelengths.

The Hooker et al. (2013) aCDOM(440) algorithm is based
on a straightforward principal, as follows: if a water mass is
studied optically in a homogeneous near-surface interval of
the water column, optical data products can be derived for
all wavelengths and the most sensitive parts are the spectral
end-members. The end-members exhibit the greatest range
in values as a function of the absorption and scattering pro-
cesses responsible for the attenuation of light and can be in-
verted to derive typical constituents as a function of changes
in attenuation properties.

Although an ability to derive an in-water constituent from
optical measurements provides a follow-on opportunity for
airborne or satellite synoptic surveys, this is not a princi-
pal objective of this study. The reason for de-emphasizing
remote sensing is the remote sensing instruments typically
available do not provide the spectral range used herein, al-
though a legacy pair of wavelengths are considered below.
In addition, the principal parameter used here is not mea-
sured directly by a remote sensor. Although Kd(λ) can be
derived from remote sensing data for part of the needed
spectrum (Cao et al., 2014), the inversion is incomplete and
the introduced inaccuracies compromise a principal objec-
tive, which is to determine aCDOM(λ) in situ with an accu-
racy commensurate with laboratory analyses. Finally, despite
the success with high-spatial-resolution remote sensing plat-
forms for studying coastal and inland waters (Palmer et al.,
2015; Mouw et al., 2015), this study includes water bod-
ies too small to be studied by such platforms, and the re-
duced spectral resolution or range, coupled with the methods

for characterizing aCDOM(λ), have proved inadequate even
within relatively large, lacustrine water bodies (Kutser et al.,
2015).

The global perspective refers to a generalized concept of
sampling a multitude of geographical areas and watersheds
wherein three broad categories are sampled: open ocean,
coastal zone (e.g., shelf waters, bays, estuaries, lagoons), and
inland water bodies (e.g., rivers, lakes, reservoirs, wetlands
and marshes). The near-surface viewpoint is not driven ex-
clusively by the desire to produce data products at all wave-
lengths. The other reasons for sampling and deriving data
products close to the water surface are as follows.

– (a) Establish a technique that can ultimately support re-
mote sensing objectives as the technologies advance,
wherein the spaceborne and airborne approaches obtain
data products directly from the sea surface signal.

– (b) Apply the same protocols for sampling and deriving
data products for all water masses, so the widest dy-
namic range in water properties can be considered (the
shallowest water depth sampled was 0.6 m).

– (c) Improve the use of the global solar irradiance ob-
servations (obtained with a separate solar reference) in
setting a constraint for the fitting procedures used to de-
rive the in-water data products (Antoine et al., 2013),
the effectiveness of which is related to how close the
extrapolation interval is to the surface.

The use of a homogeneous near-surface interval to derive
all data products ensures the spectral interrelationships coin-
cide with the same water used to determine the in-water con-
stituents by laboratory analysis. The perspectives of natural
changes and typical properties are also important, because
some water bodies are not automatically assumed to have
typical water properties. For example, endorheic lakes are
enclosed, so ground seepage and evaporation are the princi-
pal outflow mechanisms with evaporation continuously con-
centrating constituents (Yapiyev et al., 2017). Over time, a
narrowly defined ecosystem evolves to withstand the increas-
ingly extreme conditions, and in some cases, higher-order
life ceases to exist, e.g., in the Dead Sea (Bodaker et al.,
2010).

Endorheic lakes are an endpoint in the expression of wa-
ter masses, because the range in the temporal gradient of a
constituent, e.g., salt, is somewhat unbounded and the wa-
ter body does not evolve conservatively due to the significant
outflow versus inflow imbalance. For purposes exclusive to
this discussion, a conservative water body is defined to have
an inflow and outflow of properties that constrain the range
in the gradient of a constituent. This natural range is usually
established by seasonal factors, although unnatural or atypi-
cal stressors can add optical complexities, which may or may
not be seasonal. Examples of the latter are anthropogenic
sources (e.g., pollution or agricultural water diversion) and
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severe weather (e.g., typhoon-induced bottom resuspension
in coastal ecosystems).

Consequently, other water bodies subjected to an unex-
pected stressor that allows an unbounded gradient in a con-
stituent, e.g, long-term drought, are anticipated to not evolve
conservatively, and the constituents might be expressed as
extreme values as a function of time. Once the stressor is no
longer applied, the water mass evolves semiconservatively,
wherein the atypical properties are diluted or removed, and
at some point in time the water body reverts to a conserva-
tive evolution; i.e., the gradient in the constituent is within an
expected or natural range.

A global perspective is constructed with overlapping
ranges in the natural gradient of the constituent and the op-
tical inversion parameters within conservative water masses
(Lee and Hu, 2006). If the assembled dynamic range ex-
tends across a sufficiently dense sampling of clear to turbid
water masses, an explicit sampling of every possible global
water mass is not deemed necessary. The turbid-water end-
point of the dynamic range is somewhat undefined because
of present limitations in obtaining in-water optical measure-
ments in extremely shallow or turbid waters (a case in point,
White Lake, is presented below), but the clear-water end-
point is defined by the pure-water limit, i.e., no constituents
(Morel, 1974). Consequently, the dynamic range herein can
only be extended in one direction and any turbid additions
involve necessarily small volumes, so the global perspective
is at most only marginally incomplete.

Based on the degree of complexity for a water mass not
evolving conservatively, it is anticipated that such water
masses are questionable for validating a global algorithm es-
tablished to invert the optical properties of conservative wa-
ters. Whether a validation site is inappropriate is a function
of the severity of the stressor creating the nonconservative
evolution. For example, a short-term water diversion from a
lake is expected to create a short-term complexity, whereas
a long-term drought likely creates a time series of increas-
ingly extreme values (Vazquez et al., 2011; Guarch-Ribot
and Butturini, 2016). Consequently, the sampling objective
used here was to obtain measurements in conservative water
masses plus water bodies subjected to one or more stressors.
To assess performance, both subjective and objective classi-
fications of water mass complexity are included in the algo-
rithm evaluation process.

2 Methods

The Hooker et al. (2013) study excluded lacustrine water
bodies; the largest inland water masses were tidal estuaries.
Consequently, the new validation data set includes a large
variety of lakes and reservoirs, wherein some were selected
precisely because compliance with the original (Hooker et
al., 2013) algorithm was not anticipated. These nonconser-
vative water bodies provide an important test of the algorith-

mic approach, because if they do not appear as outliers with
respect to the original algorithm, the principles behind the
algorithm are challenged.

To improve the quality of optical measurements obtained
in near-surface waters, which is essential for studying shal-
low ecosystems, methodological advancements were in-
cluded for this study. Consequently, the methods described
herein are distinguished with respect to the original Hooker
et al. (2013) research as follows: (a) a significantly en-
larged study area with new water body types (e.g., lakes
and reservoirs, more numerous rivers, the marginal ice zone)
and (b) the use of more advanced optical technologies to im-
prove sampling efficiency and data quality.

2.1 Optical instrumentation

The optical instrument suite deployed for this study is a
handheld, free-falling Compact-Optical Profiling System (C-
OPS), as first described by Morrow et al. (2010), that
measures the downward irradiance and upwelled radiance,
Ed(z,λ) and Lu(z,λ), respectively, where z is depth. An
above-water reference, sited to avoid shadows and reflec-
tions, simultaneously measures the global solar irradiance,
Ed(0+,λ), where 0+ indicates above the water surface. This
configuration was deployed by Hooker et al. (2013), ex-
cept the study documented herein used advanced radiometers
with three gain stages rather than two. The majority of pro-
files were obtained with the Compact-Propulsion Option for
Profiling Systems (C-PrOPS) plus a conductivity sensor for
improved water mass characterization. The former uses two
small digital thrusters to maneuver the backplane (Hooker
et al., 2018a) beyond the influence of platform perturba-
tions, which does not remove the self-shading effect, thus
necessitating an Lu(λ) correction (Gordon and Ding, 1992).
Hooker (2014) provides the negative consequences of com-
mon positioning alternatives.

A transparent drawing of the next-generation C-OPS with
C-PrOPS is presented in Fig. 1. When the weak thrust hold-
ing the (slightly) negatively buoyant profiler at the surface is
removed, one or more bladders in the hydrobaric buoyancy
chamber slowly compress and increase the near-surface loi-
tering of the profiler, which results in a vertical sampling res-
olution (VSR) to within 1 cm or less. The VSR is defined as
the vertical extent of the extrapolation interval used to derive
the data products, e.g., Kd(λ), divided by the number of re-
tained data points in the interval, wherein retention requires
planar orientation to within 5◦ of vertical. For coastal and in-
land waters, the average VSR was 6.0 mm, but for very shal-
low or turbid waters, the average VSR was 0.9 mm. In com-
parison, the Hooker et al. (2013) study had a VSR of approx-
imately 10.0 mm. For the open ocean, the average VSR was
12.9 mm, because open-ocean profiles were in a more turbu-
lent wave field, so the profiler was ballasted to sink faster and
descend deeper. The open-ocean deep mixed layers mean a
slightly coarser vertical resolution is not a limitation.
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Figure 1. The principal components of the next-generation C-OPS
backplane with C-PrOPS (roll is the long axis and pitch is the short
axis into or out of the page), as follows: (a) irradiance cosine col-
lector; (b) radiometer bumper; (c) array of 19 microradiometers;
(d) aggregator and support electronics; (e) rotating V-block for pitch
adjustment; (f) two-point harness attachment; (g) hydrobaric buoy-
ancy chamber, which accommodates up to 3 compressible bladders;
(h) slotted flotation and (i) bronze weights for buoyancy and roll ad-
justment; (j) water temperature probe and (k) pressure transducer
port on the radiance end cap; (l) conductivity sensor; (m) elec-
tronics module; (n) digital thruster (one of two, on each side); and
(o) thruster guard. The aggregator and support electronics control
the 19 microradiometers as a single device. The side bumpers and
thruster guards protect the radiometers and digital thrusters from
unanticipated side impacts, respectively.

The two digital thrusters have the same cant angle with
respect to the vertical, which directs the weak turbulence
from the thrusters downward and below the irradiance in-
strument, thereby ensuring both light apertures are observing
undisturbed water; the opposite occurs if thrust is reversed.
To steer the backplane like a remotely operated vehicle, dif-
ferential thrust is applied to the two thrusters (Hooker et
al., 2018a) and allows for real-time positioning adjustments,
which is a significant advantage in shallow waters, e.g., away
from a shoreline or within a wetland.

Once the profiler reaches the desired position for obtaining
a vertical profile of measurements, or cast, it is kept in posi-
tion by maintaining weak forward thrust. While at the sur-
face, the pressure transducer measures atmospheric pressure
right before a profile commences, which allows a pressure
tare for every cast and improves the accuracy of depth mea-
surements (Hooker, 2014). The pressure transducers used
herein have a depth resolution, in terms of precision, of 0.03–
0.08 mm in all water masses. When thrust is removed, the
thruster-induced bias in the roll axis relaxes (the pitch angle
is negligible, because prior thrust aligns the backplane with
almost no pitch angle), and the profiler descends with stable
tilts (Hooker et al., 2018a). Unlike rocket-shaped profilers
(Hooker et al., 2001), the profiler has no significant right-
ing moment and the planar orientation of the radiometers is
maintained from the start of data acquisition, which signif-
icantly improves the VSR. In deep waters, the thrusters are

used at the bottom of the cast to reduce the time between
casts; in very shallow waters, the profiler was hauled closer
to the surface before the thrusters were used to prevent resus-
pension of bottom material. All profiles were obtained in wa-
ters wherein the 10 % light level was above the bottom depth
to ensure all data products were uncontaminated by bottom
reflections.

Seven different instrument suites including a next-
generation hybrid-spectral profiler with fixed wavelength
and hyperspectral detector components plus a C-PrOPS
(Hooker et al., 2018b) were used for this study. The fixed-
wavelengths of the radiometers had similar configurations
such that all measured the same nine spectral end-members
from 320 to 412 and from 670 to 780 nm, plus six com-
mon wavelengths (Table 1). All optical instruments were cal-
ibrated at the same manufacturer facility with traceability to
the National Institute of Standards and Technology (NIST)
as described by Hooker et al. (2018b). NIST traceability is a
requirement of the NASA Ocean Optics Protocols (hereafter,
the protocols). The protocols set the standards for calibration
and validation activities (Mueller and Austin, 1992), which
were revised (Mueller and Austin, 1995) and updated over
time (Mueller, 2000, 2002, 2003).

A comparison of C-OPS acquisition with and without
thrusters (Hooker et al., 2018a) verified the former improved
efficiency in all waters by a factor of 2 or more, and either no
or minor adjustments to the extrapolation interval used to de-
rive data products for replicate casts were needed (thrusters
minimize the negative influences of heterogeneity across all
wavelengths). The improved efficiency yields a closer tempo-
ral matchup between the collection of optical profiles and the
water sample. Approximately 98 % of water samples were
obtained from the surface using a bucket. For some inland
waters, the profiler was launched from a shoreline or dock,
for example, when the boat ramp was out of service (due
to drought, flooding, invasive species regulations, etc.). If
a water sample could not be otherwise retrieved from the
profiling location, the Compact-Profiler Underway Measure-
ment Pumping System (C-PUMPS) was used (Hooker et al.,
2018a). C-PUMPS provides a 20 mL s−1 flow rate from the
profiler and fills a 1 L container in less than 1 min.

2.2 Field sampling

The Hooker et al. (2013) study area was the Beaufort Sea
in proximity to the Mackenzie River outflow, the Gulf of
Maine, and the vicinity, including major portions of its in-
land watershed plus minor watershed drainage from smaller
rivers and a saltwater marsh. A validation data set from ob-
servations made in US coastal waters within the southern
Mid-Atlantic Bight was also used. Neither of the two data
sets included typical lacustrine water masses. The new sam-
pling area for the study herein included the western US (i.e.,
California, Oregon, Washington, Nevada, Utah, and Idaho),
Hawaii, Puerto Rico, Japan, the western North Pacific Ocean
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Table 1. The nominal fixed wavelengths in nanometers, all with
10 nm bandwidths, for each optical profiling system as distin-
guished by serial number. The number of casts obtained is differ-
entiated between backplanes without (C-OPS) and with (C-PrOPS)
digital thrusters (note system 021 had both), wherein boldface num-
bers indicate the 15 wavelengths common to all profiling systems,
e.g., 320 and 780 nm.

Optical profiling system Number of casts

010 014 021 021a 034 038b 039 C-OPS C-PrOPS

313 313 313 57 709
320 320 320 320 320 320 320 497 733
340 340 340 340 340 340 340 497 733
380 380 380 380 380 380 380 497 733
395 395 395 395 395 395 395 497 733
412 412 412 412 412 412 412 497 733
443 443 443 443 443 443 443 497 733
465 465 465 465 465 465 497 709
490 490 490 490 490 490 490 497 733
510 510 510 510 510 510 510 497 733
532 532 532 532 532 532 532 497 733
555 555 555 555 555 555 555 497 733
560 560 356 0

565 84 0
589 589 589 589 57 733

625 625 625 625 625 625 625 497 733
665 665 665 440 0
670 670 670 670 670 670 670 497 733
683 683 683 683 683 683 683 497 733
710 710 710 710 710 710 710 497 733
780 780 780 780 780 780 780 497 733

820 0 24
875 875 875 875 875 875 470 733

a Upgraded with C-PrOPS, a conductivity sensor, and new wavelengths. b Hybrid spectral and
equipped with C-PrOPS.

(e.g., the Kuroshio and Oyashio currents), the central North
Pacific Ocean, the Bering Sea, the Chukchi Sea, and the
Beaufort Sea (Fig. 2). The last is the only region that slightly
overlaps the Hooker et al. (2013) study. The new data set in-
cludes sampling in a wide diversity of inland rivers, lakes,
and reservoirs, including hypersaline and alkaline lakes.

The new field data are divided into the aforementioned
three primary categories according to whether or not the sam-
pling station was in the open ocean, coastal zone, or inland
waters. The open ocean is defined as offshore waters with
a water depth exceeding 200 m. The coastal zone includes
nearshore bathymetry of 200 m or less, wherein the adjacent
saline waters and shoreland strongly influence each other,
and includes islands, bays, deltas, transitional and intertidal
areas, salt marshes, wetlands, beaches, etc. Inland waters are
all other water bodies landward of the coastal low-water line,
which are predominantly – but not exclusively – fresh lacus-
trine and riverine ecosystems.

Twenty-five campaigns spanning from 29 April 2013 to
25 January 2017 were conducted with 318 stations occupied
and 1230 vertical profiles obtained, which were executed as
a minimum of three sequential casts at each station. A ma-

Figure 2. The geographical distribution of the original Canadian
Arctic and US east coast data (open diamonds) used in Hooker et
al. (2013) versus the new data used herein (solid circles).

jority of the optical data (733 casts) were obtained with C-
PrOPS (Table 1) in all three primary categories, whereas
optical sampling without thrusters (497 casts) was almost
exclusively in the open ocean and coastal bays with min-
imal heterogeneity and deep mixed layers. Duplicate, and
sometimes triplicate, water samples were collected at each
C-PrOPS station. For open-ocean campaigns in the Pacific
Ocean and Arctic, which included some coastal waters, a sin-
gle seawater sample was usually collected. A selected vol-
ume of each water sample was filtered through a 0.22 µm
filter under a gentle vacuum and collected in appropriate
(e.g., pre-combusted) clean glass vials or bottles. Typically,
CDOM absorption was measured within a few hours after
sampling. In some cases when this was not possible, sam-
ples were stored at −20 ◦C or less until subsequent labora-
tory analysis at a shore facility (Sect. 2.4). While Fellman et
al. (2008) reported that freezing changed the chemical com-
position of DOC for freshwater (stream) samples, Hancke et
al. (2014) found no such effect for Arctic marine samples,
nor was any systematic bias observed between the subset of
frozen samples compared to the full suite of samples used for
this analysis.
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The surface water sample was obtained as quickly as pos-
sible after three optical casts were performed. In some cases
when the heterogeneity or turbulence of the water mass was
considered to be excessive, an additional three optical casts
were executed immediately after the water sample was col-
lected. The determination of excessive conditions was based
on the stability achieved in optical variables (e.g., the aver-
age vertical tilt in the upper 2 m of the water column, changes
in the 10 % light level depth) during data acquisition for the
first three casts.

2.3 Optical data processing

All optical data products discussed herein, e.g., Kd(λ), were
estimated in a near-surface interval of the water column with
homogeneous properties as confirmed with physical data and
analysis of the linearity of extrapolations provided by the
processing scheme. The processor used here is based on a
well-established methodology (Smith and Baker, 1984) that
Hooker et al. (2001) showed is capable of agreement at the
1 % level within an international round-robin, when the pro-
cessing options are as similar as possible and both data acqui-
sition and processing strictly adhere to the protocols. Sum-
mary details of the data acquisition and processing capabil-
ities are provided in Antoine et al. (2013), Hooker (2014),
and Hooker et al. (2018a, b, c), so only brief overviews are
presented herein.

In-water radiometric parameters in physical units are
normalized with respect to separate, but simultaneous,
Ed(0+,λ, t) measurements, with t expressing time depen-
dence. After solar normalization and±5◦ tilt filtering, a near-
surface homogeneous portion of Ed(z,λ) centered at depth
z0 and extending from z1 = z0+1z and z2 = z0−1z is es-
tablished separately for the blue–green and red wavelengths;
the UV and near-infrared (NIR) wavelengths are included in
the blue–green and red intervals, respectively. Both intervals
begin at the same shallowest depth, but the blue–green inter-
val is allowed to extend deeper if the extrapolation linearity,
as determined statistically, is thereby improved (this only oc-
curs in oligotrophic, optically simple waters with deep mixed
layers). The negative value of the regression slope yields
Kd(λ), which is used to extrapolate the fitted Ed profile to
null depth (z= 0−).

A principal benefit of profile data with a high VSR is that
the aliasing caused by wave-focusing effects (Zaneveld et al.,
2001) can be significantly reduced during data processing.
The separately obtained above- and in-waterEd values at z=
0+ and z= 0−, respectively, can be compared using

Ed(0−,λ)= 0.97Ed(0+,λ), (1)

where the constant 0.97 represents the applicable air–sea
transmittance, Fresnel reflectances, and the irradiance re-
flectance (Morel et al., 2007). The distribution of light mea-
surements at depth z influenced by wave-focusing effects
does not follow a Gaussian distribution, especially during

clear-sky conditions, wherein the amplitude of the bright-
ened signals exceeds the companion darkened signals. Con-
sequently, arithmetic averaging is not appropriate and linear
fitting of Ed in a near-surface layer is poorly constrained, es-
pecially if the number of samples is small.

The appropriateness of the Ed extrapolation interval, ini-
tially established by z1 and z2, is evaluated by determining
if Eq. (1) is satisfied to within the 2.3 %–2.7 % uncertainty
(k = 2 coverage factor) of the optical calibrations (Hooker et
al., 2018b); if not, z1 and z2 are redetermined – while keep-
ing the selected depths within the shallowest homogeneous
layer possible – until the disagreement is minimized (usually
to within 5 % to include some inevitable variance from nat-
ural processes to the calibration uncertainty). In this proce-
dure, selection of the near-surface extrapolation interval uses
a boundary condition or constraint (Antoine et al., 2013),
wherein the central tendency of the distribution of data within
the extrapolation interval, which are typically subjected to
wave-focusing effects, satisfies Eq. (1).

The linear decay of all light parameters in the selected
near-surface layer is then evaluated, and if linearity is ac-
ceptable, the entire process is repeated on a cast-by-cast ba-
sis. Subsurface quantities at null depth are obtained from the
slope and intercept given by the least-squares linear regres-
sion versus z within the extrapolation interval specified by z1
and z2. A secondary benefit of profile data with a high VSR
is that the extrapolation interval can have a restricted verti-
cal extent, but still have sufficient data to satisfy Eq. (1) and
produce data products at all wavelengths. This is an impor-
tant advantage in optically complex water masses, which are
frequently turbid and shallow.

2.4 Water sample processing

For the Pacific Ocean samples and approximately half of
the Arctic samples, the absorption spectrum of CDOM was
determined using a spectrophotometer (Shimadzu UV-1800)
according to Yamashita et al. (2013). Briefly, after the water
sample was thawed and reached room temperature, the spec-
tral absorbance was measured from 200 to 800 nm at 0.5 nm
intervals with a 10 cm quartz-windowed cell. Absorbance
spectra of a blank (Milli-Q water) and samples were obtained
against air, and a blank spectrum was subtracted from each
sample spectrum. The blank-corrected absorbance spectrum
was baseline-corrected by subtracting average values ranging
from 590 to 600 nm (Yamashita and Tanoue, 2009) and then
converted to the absorption coefficient (Green and Blough,
1994). A single absorbance analysis was generally carried
out for the open-ocean samples, with an average accuracy
from replicates of 2.5 %.

For the other Arctic samples, CDOM absorption coeffi-
cients were determined using an UltraPath liquid waveguide
(Matsuoka et al., 2012, 2017). Briefly, CDOM absorbance
for a filtrate (less than 0.2 µm) was measured relative to a
reference water within a few hours after sampling. The ref-
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erence water was prepared in advance using pre-combusted
pure salt (450 ◦C for 4 h) with Milli-Q water to adjust salin-
ity within±2 between a sample and a reference to correct for
the refractive index effect. A 2 m optical path was used for all
waters except some coastal sites wherein a 0.1 m path was
used (Matsuoka et al., 2012, 2014). After baseline correc-
tion, absorbance was converted into absorption coefficients
by including the optical path length. The detection limit was
within 0.001 m−1 (Matsuoka et al., 2017).

For the western US coastal and inland waters, water sam-
ples were passed through a 0.2 µm syringe filter (What-
man GD/X), and absorbance of CDOM was measured on
either a Cary Varian 50 spectrophotometer using a 10 cm
quartz cell or an UltraPath liquid waveguide spectrometer
with a 2 m path length. The syringe filter was rinsed with
sample prior to collection, with the sample stored in an am-
ber, acid-washed, and combusted (450 ◦C for 4 h) glass vial
with Teflon septa and kept in the dark at 4 ◦C until analysis.
Absorption spectra of the filtered samples were measured us-
ing ultrapure water from a Millipore Milli-Q A10 pure water
system with UV to reduce total organic carbon to less than
10 ppb. The absorption coefficient (calculated as absorbance
divided by path length, multiplied by 2.303 to convert to nat-
ural log units) at 440 nm representing CDOM abundance was
estimated using the single exponential model (SEM) for ab-
sorption from 300 to 700 nm as described by Twardowski
et al. (2004). The three different methods used in this study
for determining CDOM absorption do not influence the re-
sults (see a sensitivity analysis in Sect. 4). For all the CDOM
data – regardless of the collection and processing method
– the spectral slope for the wavelength range 350–500 nm
was calculated by fitting a nonlinear least-squares model to
aCDOM(λ).

2.5 Data subcategories

Algorithm validation requires an assessment prior to data
collection whether or not the sampling violates the assump-
tions made to create the algorithm. For this study, water
masses wherein the evolution of aCDOM(440) or Kd(λ) was
considered conservative, i.e., within the likely range in the
gradient of such properties because no stressors to challenge
that perspective were evident, are considered validation qual-
ity with primary categories of open ocean, coastal zone, or
inland waters. Those water masses thought to contradict the
algorithmic approach, because one or more stressors chal-
lenging the conservative evolution perspective were evident
prior to sampling, were subcategorized to exclusively assess
algorithm performance as more complex water masses are
included in validation, as follows.

1. Waters closer to an ice field contain meltwater proper-
ties, which freshen the neighboring water body and can
result in additional particles or compounds not usually
found in the parent water mass.

2. Waters farther from an ice field, but within proximity,
contain lesser amounts of meltwater properties.

3. Resuspension occurs naturally when a sufficient flow
(e.g., an ebb or flood tide) or turbulent wave field (e.g.,
created by sufficiently strong winds) interacts with shal-
low bottom sediment to create concentrations of con-
stituents that would otherwise not be present; it occurs
unnaturally when a boat propeller (or other mechanical
device) churns up shallow bottom sediment (e.g., in a
harbor, marina, or navigation channel).

4. A refilled lake experiences a rapid inflow of alluvium
(e.g., gravel, sand, silt, and clay) from riverbeds and
eroding banks, plus floating and partially submerged
debris, which can also resuspend bottom sediment. If
the refilled lake is a controlled reservoir and exceeds
the normally maintained fill level, new lake bottom is
added, which can be a source for additional, perhaps
atypical, water constituents in terms of type or concen-
tration.

5. A drought-stricken lake has a longer residence time (the
amount of time for the time-elapsed outflow to equal
the lake volume) than normal, because once the water
level remains below the overflow elevation, evaporation
and ground seepage are the primary outflows. Increased
residence time can concentrate constituents, plus dried
and exposed bottom material can be resuspended into
the shrinking lake volume due to wind or rain.

6. A harbor (or marina) is a docking facility, usually in
shallow water, for vessels of varying sizes. Such facili-
ties can be a source of pollutants and bottom resuspen-
sion and typically include structures (breakwaters, jet-
ties, piers, etc.) for shelter from severe weather, which
can alter residence times by restricting water exchange.

7. A harmful algal bloom (HAB) is a toxic or noxious
algae in a concentration producing a deleterious effect
on humans or the environment. HABs are usually influ-
enced by chemical, physical, and biological factors.

8. A wetland (plus marsh or mangrove) filters dissolved
and suspended water constituents (e.g., from tidal cy-
cles, weather events) through settling and plant con-
sumption but might not completely remove them.

9. A polluted water mass is contaminated from an anthro-
pogenic source that alters the natural water properties.

10. An alkaline (or soda) lake has limited biodiversity due
to an elevated pH of 9–12 with high carbonate and com-
plex salt concentrations affecting the solubility and tox-
icity of chemicals and heavy metals (Grant, 2006).

11. A hypersaline lake contains high concentrations of
sodium chloride (or other salts) surpassing seawa-
ter, which limits biodiversity to organisms tolerating
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high saline levels (e.g., Mono Lake had a salinity of
about 50).

12. A river mouth is where significant amounts of alluvium
are deposited into a larger water body (e.g., a delta).

13. An atypical bloom is a generic case of high biomass
based on local reports evaluated with respect to typi-
cal temporal and spatial conditions, which may involve
weather effects (e.g., wind) concentrating algae advec-
tively.

14. An invasive species is an introduced plant, fungus, or
animal that is not native to a water body and is an-
ticipated to alter the heretofore established properties
and perhaps with a significantly negative outcome (e.g.,
damage to the environment, economy, or health of or-
ganisms, including humans).

15. A parent water mass modifier is a localized alteration
of water properties, e.g., a creek inflow into a lake, and
demonstrates the sensitivity of the methods used herein
to distinguish small changes.

The above 15 subcategories plus the original validation
quality category results in 16 categorizations, and as the for-
mer more complex waters are incrementally added to the
latter, quantitative cause-and-effect validation scenarios are
created (Sect. 4). If a sample was applicable to more than
one subcategory, e.g., a wetland can experience resuspen-
sion from tidal currents, a dominant subcategory was selected
based on observations prior to sampling. Categorization am-
biguities are not worrisome, because complex water masses
are a small fraction of global ecosystems.

The proximity to ice (farther and closer) subcategories is
based on the relative position of safely operating a small ves-
sel in and around an ice field. Sampling was usually as close
to the ice as possible and then as far from the ice within line
of sight of the larger ship the small boat was launched from.
In comparison, categorizing a refilled lake is a straightfor-
ward comparison of the water level datum available from lo-
cal authorities with respect to the outflow elevation and his-
torical norms. All refilled lakes were at 100 % capacity or
more; for example, Washoe Lake was overfilled.

The categorization of bottom resuspension is primarily
based on visual evidence, wherein resuspended particles are
visible and produce a significant change in water color (e.g.,
Akkeshi Bay after the passage of typhoon Vongfong). Al-
though a subset of sampling obtained in harbors could be
classified as resuspension stations, a harbor (or marina) is
identified based on local identification of such facilities. Sim-
ilarly, wetlands (plus marshes and mangroves) are identified
based on navigation charts, maps, and local descriptions. Hy-
persaline (endorheic) lakes are similarly categorized by state
and local authorities (e.g., Mono Lake, Great Salt Lake, and
Salton Sea), as are alkaline lakes (e.g., Mono Lake, with dual
classification, plus Borax Lake and Soda Lake).

Categorizing drought-stricken lakes relies on local author-
ities reporting lake elevations and inflow water volumes with
respect to historical norms. Examples from 2015 are as fol-
lows: (a) Shasta Lake water storage was 56 % below normal,
(b) Lake Almanor was 118.5 ft (36.1 m) below normal eleva-
tion, (c) the Truckee River flow into Pyramid Lake (Nevada)
was near historical lows and was dry for 3 d prior to sam-
pling, and (d) Eagle Lake had a water level of 5091.5 ft
(1551.9 m), which was within 0.5 ft (0.2 m) of the lowest
level recorded in 1935.

The categorization of a river mouth is a combination of
the geographical location (e.g., the Columbia River) and ev-
idence of the presence of the water mass the river flows into
(e.g., salt water intrusion from the nearshore bay). The inflow
of smaller rivers, streams, and creeks into a larger water body
(e.g., Ward Creek flowing into Lake Tahoe) is not classified
as river mouths, but rather as parent water mass modifica-
tion from a creek inflow. The creek designation is to ensure
the understanding that the inflow volume is small, but the ex-
pectation is changes in water properties are nonetheless dis-
cernible because of the enhanced sensitivity (e.g., VSR) of
the methods used.

The categorization of a water mass subjected to pollu-
tion, an atypical bloom, HAB, or an invasive species relied
principally on eutrophic chlorophyll concentrations plus his-
torical reporting or on-site local representatives. The latter
are frequently present at boat ramps to oversee measures to
mitigate health concerns or prevent the spread of invasive
species, which is presently a significant and escalating prob-
lem throughout the western US.

2.6 NOMAD archive

The NASA bio-Optical Marine Algorithm Dataset (NO-
MAD) v2.a (Werdell and Bailey, 2005) is a small, quality-
controlled subset of a larger data repository established early
in the Sea-viewing Wide Field-of-view Sensor (SeaWiFS)
satellite mission (Hooker and Esaias, 1993) called the Sea-
WiFS Bio-Optical Archive and Storage System (SeaBASS)
and is described by Hooker et al. (1994). The NOMAD
database does not include applicable aCDOM(440) measure-
ments with contemporaneous UV and NIR spectral end-
members as used in this study. Consequently, the Hooker et
al. (2013) algorithmic approach, which is based on UV and
NIR end-members, cannot be evaluated.

The NOMAD database, however, does include Kd(λ)

with legacy visible (VIS) wavelengths plus a matching dis-
solved (gelbstoff) spectral absorption coefficient at 443 nm,
ag(443), which is functionally equivalent to aCDOM(443)
following Röttgers and Doerffer (2007). The consequences
of the 3 nm shift in ag(443) with respect to aCDOM(440)
are considered negligible for a generalized inquiry involving
legacy optical data, because the fixed wavelengths involved
have 10 nm bandwidths and there are multiple sources of un-
certainties in the derived data products of equal or greater

Biogeosciences, 17, 475–497, 2020 www.biogeosciences.net/17/475/2020/



S. B. Hooker et al.: A global end-member approach to derive aCDOM(440) 483

importance (Hooker et al., 2013), e.g., pressure tares, aper-
ture offsets, dark currents, wave focusing.

2.7 Alternative classification scheme

The subcategory scheme (Sect. 2.5) included factual knowl-
edge combined with careful inspection regarding one or more
significant constituents or stressors influencing water mass
complexity. Previous studies applied fuzzy c-means (FCM)
classification to ocean color algorithm development (Moore
et al., 2001) or uncertainty estimation (Moore et al., 2015),
thereby demonstrating the usefulness of the FCM over a
crisp or hard (e.g., k-means) classification. Application of the
FCM classification is to log-transformed Kd(λ) data based
on the Calinski and Harabasz (1974) index (Matsuoka et al.,
2013). All of the reported FCM classes are based on the
water masses sampled herein, except the first class includes
the influence of the Kd values of pure seawater, denoted Kw
(Morel and Maritorena, 2001).

3 Results

All data not categorized as one of the 15 subcategories prior
to data collection (Sect. 2.5) are retained in the open ocean,
coastal zone, and inland water primary categories to yield
the following number of validation quality observations, re-
spectively: 190, 223, and 196. This new filtered data set
of 609 observations is reasonably balanced, because each
primary category contains approximately 200 observations.
These data are used to initially evaluate the global applica-
bility of the original Hooker et al. (2013) aCDOM(440) al-
gorithm. The comparison of the new validation quality data
(i.e., data not part of the 15 subcategories) with respect to
the original algorithm is presented in Fig. 3. The enhanced
global sampling of the new data set with respect to Hooker
et al. (2013) yields the following distinctions: (a) the addi-
tion of lacustrine water bodies (including Lake Shikotsu in
Hokkaido, Japan), which almost span the entire 3 decades of
dynamic range (e.g., Crater Lake to Pinto Lake), and (b) the
expansion of the dynamic range to include clearer and more
turbid water masses, which also means deeper and shallower
waters.

Given the diversity of sampling in this study, it is unlikely
that the more than 3 decades in aCDOM(440) data (Fig. 3)
might nonetheless exhibit similar chemical composition; i.e.,
the quantity of CDOM varies but the type remains constant.
To reject the latter, the Fig. 3 CDOM spectral slope, S, val-
ues were compared to a global compilation of marine CDOM
estimates from over 500 oceanographic campaigns (Aurin
et al., 2018). The new study reported a comparable spec-
tral range (350–600 nm) and a median S of 0.0167 nm−1

with a range of 0.0090–0.0208 nm−1. In comparison, Fig. 3
data have a similar median of 0.0175 nm−1 and a slightly
larger range of 0.0095–0.0410 nm−1. In addition, Grunert

Figure 3. The new validation quality data from the primary open
ocean, coastal zone, and inland water (blue, green, and red circles,
respectively) categories, which are used to evaluate the original
Hooker et al. (2013) algorithm (gray circles). The location names
of a subset of observations are explicitly identified as a function
of the approximately 3 decades of dynamic range in both axes. A
±7.5 % dispersion is approximately represented by the larger algo-
rithm symbol size; i.e., from one edge of a gray circle to the oppo-
site edge represents a total of approximately 15.0 % dispersion. The
headwaters of the San Francisco Bay Redwood Creek (RWC) chan-
nel, which is surrounded by wetlands, is the most turbulent coastal
water mass and has the highest aCDOM(440) value.

et al. (2018) compiled similar statistics by marine province,
with a comparable result in spectral range (350–550 nm) and
an approximate range in S of 0.01–0.05 nm−1. Consequently,
the range of S presented in this study is comparable to sim-
ilar recent global analyses spanning the majority of marine
waters.

The new validation quality data significantly adhere to the
original algorithm, as evidenced by how the red, green, and
blue circles in Fig. 3 are well contained within the approxi-
mately ±15 % gray boundaries that denote the dispersion in
the original algorithm. The category that spans the largest
percentage of the dynamic range for both axes is the inland
water data, although the coastal zone is somewhat similar be-
cause of the clear Hawaiian coastal waters that were sampled.
The open-ocean category has the smallest dynamic range, but
this does not diminish the importance of this category be-
cause it represents the greatest surface area and volume of
water on the planet.

The new data values, Vn, are compared to the correspond-
ing algorithm value, with the latter being the reference val-
ues, Vr, in the comparison calculation. The relative percent
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Figure 4. The new data from lacustrine water bodies that were
drought-stricken (magenta diamonds), refilled after drought (blue
triangles), alkaline (red squares), or hypersaline (green circles) in
relation to the original algorithm (gray circles). Each data point rep-
resents a single water sample with multiple optical casts for each,
which results in a series of results (typically three to six) along the
x axis.

difference (RPD) between the new data and the algorithm is
computed as RPD= 100 (Vn−Vr)/Vr and is expressed as a
percent. The average RPD for all the new data is 0.02 %; i.e.,
the new data show a negligible bias with respect to the origi-
nal algorithm. The absolute percent difference (APD), which
provides an estimate of the dispersion of differences between
the new data and the algorithm, is the absolute value of the
RPD. The average APD value for all the new data is 3.9 %;
i.e., the new validation quality data are usually to within 5 %
of the original algorithm (as visually confirmed by Fig. 3).

3.1 Drought-stricken, alkaline, hypersaline, and
refilled lakes

The new lacustrine data are presented in Fig. 4. Data from the
hypersaline and alkaline (endorheic) lakes do not conform
with the algorithm. Drought-stricken lakes exhibit a wider
range of departure, with the most significant occurring for the
most depleted water bodies, e.g., Lake Almanor and Shasta
Lake. Endorheic drought-stricken lakes, e.g., Eagle Lake and
Pyramid Lake, are the most extreme. Refilled lakes also do
not conform with the algorithm, and refilled drought-stricken
lakes exhibit an increase in CDOM and turbidity, e.g., Shasta
Lake and Pyramid Lake.

The refilled lakes in Fig. 4 are frequently more different
with respect to the algorithm than hypersaline or alkaline

lakes, especially in terms of turbidity as determined by the
Kd ratio. This is because some of the refilled lakes are over-
filled, wherein the shore of the lake extends beyond the nor-
mal acreage of the lake (e.g., Washoe Lake and Little Washoe
Lake). In overfilled lakes, land that is not normally flooded
is added as new lake bottom, and the new acreage is a source
of atypical constituents, in either composition or concentra-
tion (e.g., atypical constituents from land-use activities can
be added when a lake overfills, because these activities are
not possible in the water mass). The refilling of a normally
dry endorheic basin, e.g., White Lake, wherein the flood wa-
ters and the reclaimed lake bottom provide the maximum
areal and volumetric source of dissolved and suspended con-
stituents, results in some of the most extreme results, in terms
of both turbidity and the algorithm.

The discharge from overfilled reservoirs also has signifi-
cant deviations with respect to the algorithm. Thermalito Af-
terbay receives the discharge from Lake Oroville and was
sampled after the overfilling of the parent water mass dur-
ing the drought-breaking California 2016–2017 winter. Data
were obtained in two locations, with higher CDOM data ob-
tained in a shallow marsh. The ability to distinguish small lo-
calized differences establishes the sensitivity of the methods
used herein. For example, the three refilled Shasta Lake sam-
plings in Fig. 4 were conducted in different locations sub-
jected to the inflow of a creek, as well as a large floating and
partially submerged debris field.

3.2 River mouth, resuspension, and ice edge proximity

The inflow of dissolved and suspended constituents to a par-
ent water mass is explored further by considering a variety
of sources that can add to water mass complexity. The new
data are shown in Fig. 5 and were obtained in river mouths,
water bodies with known suspension or visible resuspension,
plus samples obtained closest to or farthest from the ice edge
within an oceanic ice field. Water bodies with known sus-
pension or visible resuspension are primarily from tidal and
riverine flows, which are shown in Fig. 5 as triangles. Almost
all of the resuspension data were obtained at peak tidal flow
to ensure safe navigation in the necessarily shallow waters.
The Akkeshi Bay data were obtained the day after the pas-
sage of typhoon Vongfong, wherein the shallow bay waters
were a distinctly different color than normal. The Sacramento
River data were obtained after heavy rains, wherein the boat
ramp to be used was closed due to flood waters. The differ-
ence between the flooded Sacramento River with respect to
the inland riverine data in Fig. 3 not in flood conditions (i.e.,
as conservative water masses) shows the classification of the
Sacramento River is appropriate and the subjective classifi-
cation approach has merit.

The resuspension data in Fig. 5 also include Bear Lake
(which straddles the Utah–Idaho border) plus the effects of a
large ship docking in the shallow RWC channel with the aid
of a tugboat. The latter involved the churning up of bottom
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Figure 5. The new data obtained in river mouths (red circles), wa-
ter bodies with known suspension or visible resuspension (green
triangles), plus samples obtained closer to (magenta squares) or far-
ther from (blue diamonds) the ice edge within an ice field. The San
Francisco RWC channel headland waters are depicted in Fig. 3 as
are the Columbia and Umpqua river data that are upstream of the
river mouth.

material that significantly changed the color of the water. The
resuspension sampling occurred shortly after the ship was
docked. The Bear Lake scattering anomaly is created primar-
ily through groundwater seepage, which is rich in calcium
carbonate particles (Davis and Milligan, 2011). The ground-
water is nutrient poor and the small amount of riverine in-
put to the lake is through a swamp and wetlands, wherein
plants consume the nutrients and sediments settle out. Con-
sequently, the Bear Lake data represent a significant clear-
water scattering anomaly.

The other clear-water data in Fig. 5 were obtained prin-
cipally in proximity to Arctic oceanic ice fields and are dis-
tinguished as being closer to, or farther from, the ice. These
data are displaced above or below the algorithm, even in the
turbid waters of Kotzebue Sound. The majority of these data
were obtained using a small boat launched from a larger ice
breaker, so the data obtained closer to the ice are as safely
close to the ice as possible while being beyond the shading of
the water mass by the ice field. The classification of closer to
and farther from is qualitative, and in complicated ice fields
misclassification is possible. The Fig. 5 data show only two
farther from points that are likely not classified correctly, and
this category is the most vulnerable to a qualitative error.

In regards to the resuspension data, which all cluster below
the algorithm in Fig. 5, river mouth data are the opposite –
the data cluster above, but the number of such observations is

Figure 6. The new data obtained in a harbor (or marina), plus water
bodies experiencing an invasive species, HAB, or atypical bloom.

much smaller. The reduced number is due to the difficulty of
operating a small boat on a trailer in a shallow river and then
safely navigating the vessel out into the river mouth through a
frequently narrow channel, wherein the higher sea state of the
coastal ocean can be significantly amplified, and boat traf-
fic can make station work hazardous. Within the plume of a
river mouth, two usually rather different water masses meet
and mix over short timescales. Under those conditions, short-
term deviations, with respect to the algorithm, can emerge, as
shown in the Fig. 5 data.

3.3 Atypical blooms, invasive species, and harbors

The presence of an atypical bloom, particularly a HAB, is an-
ticipated to create additional optical complexity, because one
or more significant stressors are frequently involved, e.g., an
overabundance of nutrients, which can be anthropogenic in
origin (Heisler et al., 2008). In a generic context, an atypical
bloom includes the concentration of biomass to artificial lev-
els (Kudela et al., 2015), perhaps due to local weather, (e.g.,
advective processes from winds and waves). Invasive species
and harbors are also expected to increase optical complexity.

The new data obtained in harbors and water bodies expe-
riencing an invasive species, or atypical bloom, including a
HAB, are shown in Fig. 6. Some of these data could have
had two classifications. For example, the Tahoe Keys and
Tahoe Yacht Club were both infested with an invasive aquatic
plant. Limited presence in one and mechanical removal in
the other implied a harbor subcategory was appropriate. The
Willamette River data were from an invasive aquatic species
area (Bierly et al., 2015), and the algorithmic relationship is
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opposite that of the Lake Tahoe harbors. The latter suggests
the Lake Tahoe harbor classifications, which cluster with the
other harbors, are likely appropriate.

Almost all harbors exhibit elevated aCDOM(440) values
with respect to the adjacent parent water mass, e.g., Chula
Vista, Treasure Isle, San Leandro, and America’s Cup. The
relationship of harbors with respect to the algorithm has
few extreme values, which is expected because harbors ex-
change water with the parent water mass. San Leandro and
El Granada have the largest expression, but San Leandro is in
a heavily urbanized area immediately south of Oakland Inter-
national Airport in the San Francisco Bay area, so significant
anthropogenic sources are anticipated.

Like some coastal harbors, El Granada vessels are moored
in an inner shallow harbor protected by an outer deeper area,
with both perimeter breakwaters and narrow channels. The
two harbor areas cannot exchange water completely (i.e., a
portion of the water volume is trapped during each tidal cy-
cle) and are more turbid than the parent water mass, Half
Moon Bay. The inner harbor is a likely and persistent anthro-
pogenic source with a longer residence time, so it is antici-
pated to have an aCDOM(440) value exceeding the neighbor-
ing bay. The increased residence time and reduced exchange
rates through the narrow channels are a possible mechanism
to increase aCDOM(440). Other harbors wherein a protected
moorage has elevated aCDOM(440) include Las Vegas (Lake
Mead) and Crescent City.

The HAB data in Fig. 6 were frequently obtained oppor-
tunistically and, thus, were not necessarily from the peak of
the phenomenon. Also, a bloom is heterogeneous and naviga-
tion within the bloom is mostly based on visual observations,
so the relationship with respect to the algorithm is not always
extreme. The Monterey Bay HAB data are the most exten-
sive, because there was the opportunity for scheduling some
of the data collection during a time period when a HAB was
likely to occur. In all cases, a HAB observation has a larger
Kd ratio than the algorithm predicts, and this is principally
caused by an increase in the Kd(320) value, i.e., increased
attenuation in the UV, which might indicate the presence of
mycosporine-like amino acids (Jessup et al., 2009; Kwon et
al., 2018).

An atypical bloom is primarily a combination of local
reporting, and a heterogeneous eutrophic water mass, i.e.,
chlorophyll concentration exceeds 1 mg m−3, with some wa-
ter bodies having concentrations greater than 10 mg m−3.
Consequently, the lack of sophistication and specificity re-
lated to explaining this subcategory does not exclude a sim-
pler explanation. For example, local wind conditions could
elevate the values associated with a typical bloom into atyp-
ical concentrations. This phenomenon was observed in more
than one lake, e.g., Pyramid Lake and Upper Klamath Lake.
The majority of the atypical blooms are in rather close agree-
ment with the algorithm.

Figure 7. The new data obtained in a wetland or polluted water
mass plus comparisons between a parent water mass and a creek
inflow or another source of water properties.

3.4 Wetlands, pollution, and water mass modifiers

The new data obtained in wetlands or polluted waters are pre-
sented in Fig. 7. The former are almost all marsh grass except
two, which are labeled according to their types. The two un-
labeled types at the top of the plot are from Cutoff Slough in
California and are marsh grass. All wetlands exhibit the same
relationship; that is, they are all displaced above the algo-
rithm, although four are in rather close agreement with the al-
gorithm. The polluted water masses are associated with agri-
cultural (Upper Klamath Lake and upper Elkhorn Slough) or
mining (Clear Lake) runoff, with the latter being the most
severe. For both Upper Klamath Lake and Clear Lake, blue–
green algae were plainly visible with extreme maximum
chlorophyll concentrations of 1.117 and 1.420 g m−3. The
chlorophyll concentrations in upper Elkhorn Slough were
less, but are still extreme with a maximum value exceeding
100 mg m−3.

Figure 7 also includes examples of a small inflow from
a creek or another source modifying the neighboring parent
water mass. These data provide a measure of the sensitivity
of the data acquisition, processing, and analysis techniques
used herein. Although other sensitivity examples are docu-
mented above, e.g., the distinction between sampling closer
to, or farther from, the ice edge (Fig. 5), the Fig. 7 examples
span diverse spatial scales, e.g., creek inflows, a fish kill in
the Salton Sea, and a large floating and partially submerged
debris field in Shasta Lake. In all cases, the anticipated al-
gorithmic relationships appear different than the parent wa-
ter mass. The water properties of the creek inflow are not
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known, because access to the source from a small boat was
problematic.

The generalized properties of the inflowing creek waters,
determined visually, are as follows: (a) the Lake Tahoe in-
flow was turbid, milky meltwater from snow and ice melting
on shoreland; (b) the Shasta Lake inflow was from rocky,
tree-covered terrain and was significantly clearer than the
lake water (the water pooled into a small pond before flow-
ing into the lake and was easily observed); (c) the Donner
Lake inflow was from a rocky, tree-lined canyon; (d) the
Mono Lake inflow was across a mostly barren, rock-strewn
shore with loose soil and was notably brown compared to
the green lake; and (e) the Pinto Lake inflow was from a
densely vegetated buffer zone adjacent to farmland. The dis-
placement of the modified waters with respect to the parent
water mass is in keeping with these observations; i.e., the wa-
ters subjected to turbid or clear inflows had larger or smaller
Kd(320)/Kd(780) ratios.

3.5 Alternative spectral end-members

The end-member wavelengths used in alternative
Kd(λ1)/Kd(λ2) ratios, hereafter 3

λ1
λ2

, follow the com-
binations first used by Hooker et al. (2013), i.e., the UV–NIR
3340

710 pair, as well as the VIS3412
670 pair. Shortly after the start

of this study, C-OPS system 021 was upgraded (Table 1),
so the 3313

875 pair is also available and provides the widest
spectral span (562 nm) between end-members. A plot of
the end-member combinations is presented in Fig. 8, which
also includes the linear fits and the root-mean-square error
(RMSE) of the data with respect to the fits. The data in
Fig. 8 are only those observations provided in Fig. 3; i.e.,
all 15 subcategories established in Sect. 2.5 (Figs. 4–7) are
excluded. The consequences of using an increasing number
of all the observations are presented in Sect. 4.

The fits in Fig. 8 show the end-member pair with the best
accuracy is 3320

780, although the 3313
875 and 3340

710 fits are within
the calibration uncertainty of the radiometers plus inevitable
environmental variance, i.e., within 5 %. The slope of the
3320

780 fit is within 1.1 % of the original Hooker et al. (2013)
algorithm (y = 0.2556x− 0.0030). As end-member wave-
lengths are brought spectrally closer together, the variance
increases and reaches a maximum for the 3412

670 pair, which
degrades accuracy (nonlinearity and RMSE generally in-
crease with decreasing spectral separation of end-members).
The 3313

875 RMSE is a little larger than for 3320
780 and a little

less for3340
710. Fewer3313

875 data creates gaps in the data distri-
bution, which partially explains why these data do not yield
the lowest RMSE.

The 3313
875 Fig. 8 data show the variance also increases

after the transition from more turbid to clear waters, i.e.,
aCDOM(440)= 0.02 m−1, and continues to increase with in-
creasing water clarity. The larger variance as a function of
water clarity is caused by the increasing importance of wave-
focusing effects coupled with increasing NIR attenuation.

Figure 8. Four end-member algorithms to derive aCDOM(440) from
in-water optical observations with the accuracy of each (considering
only a linear perspective) estimated using RMSE statistics.

Both problems are tractable for 3320
780, but contribute to the

difficulty of deriving data products and ultimately producing
a stable 3313

875. The increased 3340
710 and 3412

670 variances are
not restricted to the problems described for 3313

875. As end-
members are brought spectrally closer together, the range of
expression available to distinguish two similar but optically
different water masses decreases. Consequently, choosing
the extrapolation interval is more sensitive to small changes
in the parameters that ultimately determine the fit for the ex-
trapolation interval. For legacy end-members, clear waters
have a lesser range of expression and turbid waters have
the greatest, so this problem decreases as turbidity increases,
which is seen in the 3340

710 and 3412
670 Fig. 8 data.

3.6 Legacy data archive

From the full set of 4459 NOMAD stations, 227 in-
clude 3412

670 end-members and ag(443) observations, here-
after aCDOM(440), but two are duplicates. Application of
3412

670 data to the corresponding algorithm in Fig. 8 results in
13 observations with negative (predicted) aCDOM(440) val-
ues, which are removed to leave 212 unique stations. This
process demonstrates how end-member algorithms can be
used to quality assure optical data in archives, although only
a linear perspective is considered herein to maintain consis-
tency with the3320

780 algorithm. Of the 212 retained NOMAD
stations, 189 are located within the Chesapeake Bay and its
outflow into the southern Mid-Atlantic Bight; i.e., 89 % of
the data are from a restricted geographic area. For the re-
mainder, 13 are off the mouth of Delaware Bay, 9 are from
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Massachusetts Bay, and 1 is in the open ocean northeast of
South America. The southern Mid-Atlantic Bight and parts
of Massachusetts Bay were used by Hooker et al. (2013), so
data from these areas are anticipated to be compliant with the
end-member algorithm. The average depth of Chesapeake
Bay is relatively shallow (6.4 m) with a significant portion
(over 24 %) less than 2 m deep. Given the extensive contri-
bution of rivers, tributaries, and tides to bay dynamics, re-
suspension is a likely source of bias in optical inversions for
some bay stations (Fig. 5).

The retained NOMAD data are separated into two
regimes: north Chesapeake Bay (NCB) and all other water
masses, which consist of 106 stations for each. The divid-
ing line for the NCB is the latitude of the Wicomico River
in the Eastern Shore of Maryland (slightly north of the Po-
tomac River mouth). The separation is arbitrary and is used
to compare the 106 NCB observations from NOMAD with
174 C-OPS Kd ratios and aCDOM(440) data pairs obtained
in the NCB (not shown in Fig. 2), albeit at different times
and locations than the NOMAD data. During data collection,
the C-OPS sampling was with system 021 (Table 1) and in-
cluded notations about in situ conditions useful for establish-
ing a resuspension subcategory, but the procedures predated
and were not as rigorous as Sect. 2.5.

The C-OPS and NOMAD data plotted in Fig. 9 show gen-
eral agreement (linearity) of the NOMAD data with respect
to the algorithm, which independently confirms the Hooker
et al. (2013) algorithmic approach (and as evaluated in more
detail herein). Within the narrower turbidity range of the NO-
MAD and C-OPS NCB data without likely resuspension,
there is improved agreement. The C-OPS NCB resuspension
data appear properly categorized because of their relation-
ship to the algorithm (Fig. 5). There is evidence the C-OPS
data considered free of resuspension effects nonetheless in-
clude some resuspension (e.g., some solid circles in Fig. 9
extend into the open circles as part of shallow-to-deep tran-
sects, thereby indicating the transect point in which resuspen-
sion effects were assumed absent was likely premature). The
NOMAD data exhibit a higher variance with respect to the
algorithm, which results in an increased RMSE of 37.8 % (or
44.1 % if the 13 omitted observations are included) compared
to the 6.2 % value determined with C-OPS data (Fig. 8). The
more extreme NOMAD values suggest a subcategorization
methodology that could be applied to archival data would
improve agreement with the algorithm (already demonstrated
with the removal of 13 observations using the3412

670 algorithm
in Fig. 8).

If the NOMAD data are partitioned into turbid and clear
subsets, using aCDOM(440) > 0.2 and aCDOM(440)≤ 0.2 as
thresholds, respectively, the fit equation for the turbid 3412

670
data is y = 0.3437x− 0.2404. The slope of this turbid NO-
MAD fit is similar to the corresponding end-member fit pre-
sented in Fig. 8 for which y = 0.3504x− 0.1033 and agrees
to within 1.9 %. The fit for the clear NOMAD data (which in-
clude the 13 stations which were removed out of the 225 NO-

Figure 9. The adherence of NOMAD archival data to the legacy
(VIS) Kd(412)/Kd(670) algorithm shown in Fig. 8 (gray solid
circles) for the NCB and other Mid-Atlantic Bight locations (red
and orange solid diamonds, respectively), recalling that only a lin-
ear perspective consistent with the 3320

780 relationship is considered
herein. The NOMAD NCB data are compared to C-OPS NCB data
obtained at different times and locations with the latter separated
into two categories, wherein one is likely subjected to bottom re-
suspension (light blue open circles) and the other is not (dark blue
solid circles).

MAD stations) is y = 0.0758x+ 0.0648, which is signifi-
cantly different at the 78.4 % level. With respect to the al-
gorithm, the increased bias, variance, and 13 negative de-
rived values obtained with NOMAD data in clearer waters
suggest that the linear perspective for end-member analysis
is challenged by the reduction in spectral distance between
end-member pairs and that the legacy data are degraded by
sampling artifacts, e.g., wave-focusing effects (because of
the slower sampling rates), coarser VSR (because of faster
descent rates), and deeper extrapolation intervals (because of
near-surface data loss from large vertical tilts and large aper-
ture depth offsets). Although some legacy data problems are
absent from C-OPS data (e.g., because there is no righting
moment when C-OPS sampling begins and C-PrOPS stabi-
lizes the planar orientation of all apertures), some aspects of
these limitations are present in the Fig. 8 data, but they are
not significant; i.e., they result in a small increase in vari-
ance, which slightly degrades algorithm performance. Inclu-
sion of the C-OPS NCB data without resuspension to derive
the 3412

670 algorithm (Fig. 8) results in rather small changes to
the fit coefficients. The slope is within 4.3 % and the inter-
cept is within 4.6 % (both within the net 5 % uncertainty for
calibration and environmental variance).
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3.7 Objective versus subjective classification

The data set established herein has an extensive number of
observations directly suitable for validation exercises (Figs. 3
and 9) plus 15 subcategories (Sect. 2.5) of more complex, and
thus potentially (but not automatically) questionable, water
bodies (Figs. 4–7), with the latter determined subjectively.
The combination yields 16 categorizations of data spanning
an arguably global sampling of open ocean, coastal zone, and
inland water masses in terms of a generalized perspective of
the dynamic range in water properties (Figs. 3–8). The NO-
MAD search (Sect. 3.6), however, showed archival data pro-
vided a significantly less global data set in terms of spec-
tral expanse and dynamic range as used herein. Archival data
usually do not include a subcategory parameter for the obser-
vations; e.g., NOMAD has no applicable keyword. Although
some subcategories could be determined from geolocation,
temporal, and survey information (e.g., a harbor, wetland,
alkaline lake), other influences are not usually established
without an observer (e.g., atypical bloom or resuspension
caused by a vessel). Consequently, a subcategorization based
on the optical measurements alone might be advantageous to
the validation process, particularly for archival data.

The subcategory approach is evaluated using Kd(λ) spec-
tra for the aforementioned 16 subcategories of data, which
can be described objectively based on spectral shapes and
magnitudes. A small number of observations are excluded to
ensure consistency in the determination of all Kd(λ) values;
e.g., the White Lake data had estimated values in the UV do-
main, Bear Lake is a unique scattering anomaly created by
calcium carbonate particles, and ship-induced resuspension
is anthropogenic in origin. With the additional restriction of
wavelength commonality spanning 320–780 nm (Table 1), a
total of 1171 spectra are used for the objective classification
analysis.

Application of the FCM classification to log-transformed
Kd(λ) data for the 16 subcategorizations successfully clas-
sifies all Kd(λ) spectra into five classes based on the Calin-
ski and Harabasz (1974) index (Sect. 2.7). Spectral shapes,
as well as their magnitudes, uniquely vary between the five
classes and span a continuum of water masses from oceanic
and lacustrine case-1 to extreme case-2 inland waters. The
continuum of water mass composition is summarized by the
centered spectra for the five FCM classes shown in Fig. 10,
where Ni is the class number set by index i. The diver-
sity achieved in sampling lacustrine water masses is re-
vealed in Fig. 10 by the range of Kd(λ) spectra for the ex-
ample drought-stricken and refilled lakes shown, which are
compared with Crater Lake and Kw. The refilled lakes are
shown to emphasize the complex relationships presented in
Figs. 4–7 are not detectable by Kd(λ) alone, but require an
understanding of the applicable end-member ratio and the
aCDOM(440) value.

The two lakes at the bottom and top of the dynamic range
in Fig. 10 are Crater Lake and White Lake, respectively, with

Figure 10. The centered Kd(λ) spectra of the five classes (Ni ) de-
termined from an objective FCM classification of the data presented
in Figs. 3–8 with a few omissions for data consistency (e.g., White
Lake, Bear Lake, ship-induced resuspension) and shown with re-
spect to Kw. Example Kd spectra from drought-stricken and re-
filled lakes plus Crater Lake, obtained by averaging the results from
multiple optical casts, are also shown to demonstrate the more than
3 decades of dynamic range in turbidity that were sampled. The
shorter wavelengths for White Lake (open dark red squares) re-
quired individual wavelength processing to provide the estimated
Kd values, whereas all other data were obtained with a single pro-
cessing.

the latter having the largest displacement with respect to the
algorithm in Figs. 4–7. Using the inverse ofKd(λ) as a proxy
for the vertical scale that must be properly sampled (i.e., a
sufficient number of observations must be obtained within
the vertical scale to derive data products), the vertical scale
in Fig. 10 ranges from meters (Crater Lake) to millimeters
(White Lake), with the latter only being possible with un-
precedented VSR. The shorter wavelengths for White Lake
are shown as “estimated” because these wavelengths had to
be processed with individual extrapolation intervals to pro-
vide theKd(λ) estimates, which is not in keeping with all the
other data products.

The average Kd(313) value obtained for deep water
(586 m) sampling in Crater Lake was 0.072 m−1 and the co-
efficient of variation from the six casts was 1.1 %. According
to Morel et al. (2007) criteria, Crater Lake is “extremely”
clear water, and the CV shows exceptional reproducibility,
i.e., 1 % radiometry. Note that as shown in Fig. 3, Crater Lake
was sampled twice. A station with higher aCDOM(440) val-
ues was conducted in shallower water above submerged moss
that grows in large, dense mats. The constituent properties of
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the water were anticipated to be influenced by the moss mats,
and the aCDOM(440) values are elevated with respect to the
deeper station.

The proportionate composition of each FCM class in
Fig. 10 as a function of the original subjective subcategories,
wherein contributions less than 5 % are reported but not con-
sidered significant, is presented in Table 2. Using Fig. 10 and
Table 2, the corresponding principal class characteristics are
as follows.

N1 The first is the smallest contributor to the dynamic
ranges, although arguably accounting for most of the
pixels in a global CDOM image, with the Kd(λ) maxi-
mum in the NIR and the minimum in the blue domain
(400–490 nm). The spectral shape is consistent with
typical case-1 waters (Morel and Maritorena, 2001).
The proportional makeup is dominated by the valida-
tion quality subcategory (Figs. 3 and 8) at 83 % with
data farther from ice (Fig. 5), which are almost exclu-
sively from slightly modified case-1 waters, contribut-
ing an additional 14 %.

N2 The Kd(λ) maximum in the NIR is similar to case-1
waters, and the minimum is shifted to longer wave-
lengths (490–565 nm) from case-1 modifications, prin-
cipally from proximity to ice effects. The validation
quality proportion decreases to 66 % and is supplanted
with proximity to ice subcategories (Fig. 5).

N3 The Kd(λ) minimum is near the middle of the green do-
main (555–565 nm) due to increasing optical complex-
ity as case-2 constituents appear in larger proportions.
The UV domain values are the same as, or slightly lower
than, the NIR domain. The validation quality proportion
decreases to 39 % while case-2 subcategories increase
significantly, i.e., resuspension, drought-stricken and re-
filled lakes, harbors, and HABs.

N4 The aCDOM(440) dynamic range is established with the
Kd(λ) minimum shifted into the green–red domains
(555–625 nm) and maximum values in the UV exceed-
ing the NIR. Optical complexity reaches a maximum,
because all 16 categorizations contribute at the 1 % level
or more. The validation quality proportion is the most
abundant but is decreased to 36 %. The resuspension,
harbor, and refilled lake subcategories provide net in-
creases in case-2 waters with additional extreme contri-
butions from alkaline and hypersaline lakes.

N5 The last are extreme waters that only extend the optical
dynamic range, with theKd(λ)minimum in the NIR do-
main (710 nm), and maximum values compared to N1–
N4 that peak in the UV. The resuspension subcategory is
dominant at 38 %, followed by drought-stricken lakes at
14 %, and the validation quality subcategory is reduced
to 13 %. The remaining principal contributors are wet-
lands, refilled lakes, and polluted water bodies.

The decrease in the percent composition of the validation
quality data as a function of increasing class number (N1–
N5) is an indicator of the difficulty of validating an algorithm
within increasingly complex waters. The recurring contribu-
tion of a relatively small number of principal subjective sub-
categories to the gradient in optical complexity confirms the
subcategory approach has merit and reveals the cause-and-
effect relationships of the subcategories.

Table 2 also indicates the resolution or granularity for the
15 subcategories of more complex water masses was more
nuanced than required. For example, alkaline and hypersaline
lakes could be one subcategory, as could refilled and drought-
stricken lakes. Combining subcategories does not ensure an
eventual convergence with the objective FCM classification,
because the latter partitions the processes present in the sub-
categories into varying degrees of contribution for each iden-
tified class. This partitioning involves both direct and indi-
rect evidence, which is perhaps best realized with the original
granularity of the 15 subcategories as revealed by consider-
ing resuspension processes.

The direct evidence of resuspension is provided by the re-
suspension subcategory (created for this phenomenon). In-
direct resuspension is present or likely in multiple subcate-
gories, however. For example, meltwater releases particles at
the ice edge, bottom deposits in harbors are stirred up by boat
propellers, wind and rain redeposit exposed bottom material
into drought-stricken lakes, refilled lakes contain suspended
material from riverine inflow, and tidal and wave action sus-
pend material in shallow wetlands. Table 2 data show the per-
cent contribution of direct and indirect suspension increases
with increasing class number: N1 (17 %) to N3 (46 %) to N5
(77 %). Thus a significant part of the cascade towards com-
plexity is correlated with water masses not evolving conser-
vatively, e.g., due to resuspension.

A small number of principal subcategories (Np) signifi-
cantly determine the Kd(λ) classification spectra, although
the paucity of observations for some subcategories, in part
opportunistic or planned, depending on the subcategory, is
a largely unknown mitigating factor. Nonetheless, if refilled
and drought-stricken lakes plus hypersaline and alkaline
lakes are considered one subcategory rather than two, which
appears reasonable based on Fig. 4, five or fewer principal
subcategories determine 97 %, 92 %, 85 %, 80 %, and 96 %
of the composition for N1–N5, respectively.

Without the subcategory scheme, the importance of direct
or indirect resuspension would not have emerged with the
clarity provided in Table 2. The composition of the FCM
classes confirms the applicability of subcategories while re-
vealing which ones are important to each class and which
ones are marginally or not important. For the latter, the parent
water mass modifier is not significant, as expected, because
this small subcategory was created to demonstrate the sen-
sitivity of the in situ optical and laboratory methods. Other
subcategories might appear insignificant because of the diffi-
culty of obtaining the sample (e.g., river mouth data are un-
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Table 2. The objective FCM classification of the data in Figs. 3–8 with a few omissions to ensure consistent data quality (e.g., White Lake,
Bear Lake, ship-induced resuspension). The five classes Ni , where i is the class number index, are shown with the number of Kd(λ) spectra,
Ns, within each class in parentheses, as well as the percent composition of the original 16 subjective subcategories equalling or exceeding a
1 % contribution threshold for each class. The principal subcategories in each class, i.e., the most numerous (approximately 5 % contribution
or more), are shown in bold. Below the subcategories, the number of principal subcategories (Np) and the number of all subcategories (Na)
with a 1 % composition or more are summarized in slanted typeface followed by the percent composition from all the principal subcategories.
The extent of the dynamic range in percent for the optical and biogeochemical data is shown in the last two lines as a function of applying
successive class numbers.

Original Class number and composition

Subcategory name (Ns) N1(244) N2(263) N3(305) N4(265) N5(94)

Validation quality 83 % 66 % 39 % 36 % 13 %
Farther from ice 14 10 1 2
Closer to ice 2 11 1 1
Resuspension 1 1 10 16 38
Refilled lake 1 9 7 10
Drought-stricken lake 4 8 3 14
Harbor (or marina) 11 8 4
Harmful algal bloom 1 8 2 1
Wetland (or marsh) 3 3 11
Polluted water mass 4 10
Alkaline lake 2 5
Hypersaline lake 2 5
River mouth 3 3
Atypical bloom 3 1 2
Parent water mass modifier 2 3 2
Invasive species 2

Np (Na) subcategories 2 (4) 3 (9) 6 (14) 6 (16) 6 (8)
Np percent composition 97 % 87 % 85 % 77 % 96 %

Kd(320)/Kd(780) extent 2 % 8 % 23 % 83 % 100 %
aCDOM(440) extent 3 % 9 % 36 % 100 % 100 %

derrepresented) or the paucity of opportunities to collect a
sample (e.g., local restrictions to prevent the spread of inva-
sive species).

Because metadata to subcategorize NOMAD data are un-
available, the objective classification scheme was applied to
NOMAD and to determine the number of data in each class,
as follows: N1 6, N2 13, N3 135, N4 49, N5 0, and nine
were unclassified. All the turbid data are in classes N3 and
N4; the clear data are in classes N1 and N2, and nine are un-
classified. This means the slope of the aforementioned clear
partition (Sect. 3.6) had 19 points that were classified and
nine that were not, and this likely accounts for the degraded
performance with respect to the algorithm. It also suggests
the measurements were the issue with the NOMAD data, be-
cause some spectra could not be classified.

4 Discussion

The optical data herein had a near-surface VSR less than
1 mm, which allowed data products spanning 313–875 nm
while encompassing a global perspective of water masses as

described by approximately 3 decades of generalized water
properties. The validation approach was based on the concept
that water masses evolving conservatively (i.e., free from
stressors that might alter the natural range in the gradient of a
constituent) are suitable for validating the original Hooker et
al. (2013) inversion algorithm for deriving aCDOM(440) from
Kd(λ) spectral end-members.

The identification of 15 subcategories that were likely not
evolving conservatively yielded 609 validation quality data
points spanning extremely clear to highly turbid waters sam-
pled within the open ocean, coastal zone, and inland waters.
The new data adhered to the original 3320

780 algorithm (Fig. 3)
with an RPD of 0.02 % and an APD of 3.86 %. Alternative
spectral end-members (e.g., 3313

875, 3340
710, and 3412

670) had in-
creasingly larger RMSE values but were within the calibra-
tion uncertainty of the radiometers plus inevitable environ-
mental variance (i.e., a net uncertainty within 5 %) except for
the narrowest spectral span of legacy end-members, which
was 6.2 % for 3412

670 (Fig. 8) due to increased variance in data
products plus increasing algorithmic nonlinearity for spec-
trally closer end-members.
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Although no archive exists with the spectral and spatial
coverage used herein, NOMAD 3412

670 data showed general
agreement (of derived coefficients) with respect to the origi-
nal Hooker et al. (2013) algorithm and independently con-
firmed the algorithmic approach. There was also general
agreement between the NOMAD NCB data and the cor-
responding C-OPS NCB data without likely resuspension,
wherein the C-OPS NCB resuspension data appeared prop-
erly categorized because of their relationship with the algo-
rithm (Fig. 5). The near-surface VSR is quantitative evidence
of the successful mitigation of a variety of sampling difficul-
ties (e.g., large aperture offsets, righting moment instabili-
ties, wave-focusing effects). The C-OPS VSR resulted in an
increased sampling sensitivity in turbid waters with vertical
scales on the order of millimeters (Fig. 10) and allowed small
localized changes in a parent water mass to be distinguished
(Figs. 5 and 7). The laboratory analyses were similarly sen-
sitive, so the optical determinations of in-water constituents
using field measurements were commensurately as effective
as laboratory analyses. The ability to distinguish small dif-
ferences in water properties ensured the discrimination of 15
subcategories, wherein each represented a more complex wa-
ter mass not evolving conservatively and not automatically
used for validation.

Plots of the aCDOM(440) and 3320
780 relationships for the

15 subcategories of more complex water bodies revealed
some data were significantly different with respect to the
original algorithm and others were not (Figs. 4–7). The wide
range in complexity is largely the result of the substantial ef-
fort that was made to adopt a global perspective and sample
the greatest diversity of water bodies possible, some of which
were very difficult to access and sometimes required shore-
line launches of the optical instrumentation that C-PrOPS
made possible, e.g., severely drought-stricken and refilled
lakes (high and dry, flooded, or debris-blocked boat ramps)
plus hypersaline and soda lakes (Mono Lake, Salton Sea, Bo-
rax Lake, and Soda Lake had no boat ramps).

The accuracy of the algorithm as a function of including
increasing proportions of the 15 subcategories of more com-
plex water masses not necessarily appropriate for validation
exercises (Figs. 4–7), because they were likely not evolving
conservatively, is explored by expanding the 609 validation
quality observations of 3320

780 end-members (Figs. 3 and 8) to
include the following subcategories (hereafter referred to as
the second data set): inflows to a parent water mass that are
not hypersaline or drought-stricken lakes, closer to or far-
ther from ice edge proximity, river mouth, resuspension (but
not including Bear Lake and the ship-induced RWC chan-
nel resuspension), atypical blooms, HABs, and wetlands.
This second data set has 930 observations, the linear fit is
y = 0.2511x−0.0046, the RMSE is 5.7 %, and the new slope
is within 1.7 % of the original value presented by Hooker et
al. (2013), i.e., y = 0.2556x− 0.0030.

The reason the slope for the second data set is not signif-
icantly different than the original fit coefficients is the data

that were added are situated above and below the distribu-
tion of the validation quality data set, as shown in Figs. 4
and 5. The C-OPS NCB data without resuspension cluster
on or below the algorithmic relationship (Fig. 9). If these
data are added to the second data set used to derive the
3320

780 algorithm (the 320 and 780 nm wavelengths were al-
ways part of system 021 as shown in Table 1), the result-
ing slope and intercept is y = 0.2561x− 0.0076, which is
within 2.0 % of the slope determined for the second data set
(y = 0.2511x− 0.0046).

If a third data set is created by adding drought-stricken
and refilled lakes to the second data set, but not includ-
ing White Lake (which had some estimated data products),
this third data set has 1044 observations. The linear fit is
y = 0.2249x+0.0044, the RMSE is 6.8 %, and the new slope
is reduced (as expected, because the added data are all below
the algorithmic relationship and primarily turbid; Fig. 4), but
still within 10.4 % of the original value presented by Hooker
et al. (2013). The exclusion of White Lake, as well as hy-
persaline, alkaline, and polluted water bodies, from the third
data set is for a practical reason: they are, or have signifi-
cant characteristics of, extreme water masses and White Lake
rarely exists.

There are other lacustrine water bodies presented herein
that can be considered extreme, e.g., other endorheic lakes
(e.g., Pyramid Lake, Eagle Lake), plus shallow lakes in high
wind areas wherein bottom material is resuspended almost
continuously (e.g., Washoe Lake and Little Washoe Lake). If
all subcategories, except extreme lacustrine water bodies, are
used to create a fourth data set, it has 1086 observations, i.e.,
almost 90 % of the 1230 maximum and 93 % of the data used
in Table 2 to create the five objective FCM classifications.
The linear fit of this fourth, more comprehensive data set is
y = 0.2379x−0.0049, the RMSE is 6.2 %, and the new slope
is not reduced as much as in the third data set and is within
6.9 % of the original value presented by Hooker et al. (2013).

A fifth data set, using classes N1–N4 spans the entire
aCDOM(440) dynamic range (Table 2). This alternative for an
arguably global algorithm yields a linear fit of y = 0.2317x−
0.0053; the RMSE is 5.3 %, and the slope is within 9.3 % of
the original Hooker et al. (2013) value. This result is signif-
icantly similar to the subjective results of the fourth data set
(the slopes agree within 2.7 %). Consequently, the robustness
of the algorithm is directly supported by the combination of
subjective and objective classifications, with the latter using
FCM.

With the exception of the third data set that added primar-
ily turbid data exclusively below the algorithmic relationship
(drought-stricken and refilled lakes), all of the results from
the expanded data sets are rather indistinguishable from the
original 3320

780 fit provided by Hooker et al. (2013), wherein
y = 0.2556x−0.0030, or the separate validation quality data
set presented in Fig. 8, for which y = 0.2583x− 0.0053. Ig-
noring the third data set, the x intercept for the expanded
data sets is approximately equal to what can be expected for
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pure water, i.e., 0.02. The close agreement of the various ex-
panded data sets with adherence to the pure-water limit is
another significant confirmation of the algorithmic approach
using spectral end-members.

The robustness is further established by creating a so-
called universal algorithm, which is assumed to mean that
any water mass wherein an optical profiler can be deployed
is expected to be part of the evaluation of the end-member
approach. In this case, the universal algorithm is constructed
from all the data from all subcategories and is distinguished
from the global perspective in that the universal data set in-
cludes a far greater proportion of complex water types than
exist globally. The linear fit of this universal data set is
y = 0.2206x+0.0088, the RMSE is 7.5 %, and the new slope
is within 13.7 % of the original value presented by Hooker
et al. (2013). The removal of data that are, or have signifi-
cant characteristics of, extreme water masses improves per-
formance. For example, if hypersaline, alkaline, and polluted
lakes are removed, the linear fit of this sixth comprehensive
data set is y = 0.2250x+0.0024, the RMSE is 6.8 %, and the
new slope is within 12.0 % of the original value presented by
Hooker et al. (2013).

This study used three different laboratory methods to de-
termine aCDOM(440) from water samples and seven differ-
ent optical instrument suites to determineKd(λ). Despite the
agreement between the 3320

780 fits and their x intercepts, the
possibility the results come from an unidentified stochastic
process has not been addressed. The latter is not likely for
the optical data, because the radiometers were calibrated at
one facility and deployed with strict adherence to the proto-
cols using the same acquisition software. Furthermore, data
products were derived using the same processing software
with one operator, and the variance in optical data products
is shown in Figs. 3–8.

The capabilities of the above- and in-water radiometers
for C-OPS systems 021 (with C-PrOPS) and 039 (without
C-PrOPS) were intercompared to next-generation hybrid-
spectral instruments (Hooker et al., 2018c) containing a hy-
perspectral detector system plus 18 fixed wavelengths (sys-
tem 038 in Table 1). The comparisons showed an agreement
of 4.2 %–4.8 %, which is within the calibration uncertainty
(2.3 %–2.7 %) plus natural variability (i.e., a net uncertainty
within 5 %), as long as the stability threshold for a backplane
without thrusters or the noise limit of the hyperspectral sen-
sor was not exceeded (Hooker et al., 2018b, c).

Although field data demonstrate small changes in parent
water mass modifications can be discriminated (Figs. 5 and
7), the laboratory methods and instruments were not sys-
tematically intercalibrated to establish an overall uncertainty.
In addition, the laboratory methods included different tem-
perature controls and storage procedures for the water sam-
ples as well as application of null-point corrections in dif-
ferent spectral ranges. A lack of systematic intercalibration
is not a significant detraction, because it is a common dif-
ficulty when combining observations from databases (e.g.,

NOMAD data), and methods exist to nonetheless determine
the efficacy of the combined data.

Following the technique established by Matsuoka et
al. (2017), a statistical sensitivity analysis is used to examine
the uncertainty of the combined aCDOM(440) values from the
three different laboratory methods used in Figs. 3–8. Briefly,
for each optical and water sampling, normality of distribu-
tion for aCDOM(440) was created using the measured value
as the mean (µ) and 7 % of the measured value as the stan-
dard deviation (σ ). Similarly, normality of distribution for
3320

780 was created using the measured value as µ and 5 % as
σ . A lower σ percentage was used for the latter, because the
original data set retained each optical cast whereas only one
water sample was obtained, so the variability of the optical
data was already significantly represented (Figs. 3–8).

For each original data pair, 105 variations were prepared
for both 3320

780 and aCDOM(440). Of these data, 103 were
randomly selected and the mean computed for each 3320

780
and aCDOM(440) pair. This exercise was repeated 103 times
(bootstrap) and an overall µ and σ were obtained. For the
different combinations of applying µ± σ to bound the dis-
persion of the original data, the resulting linear fits showed
the new algorithm slopes changed by 0.3 %–1.1 % with re-
spect to the 3320

780 validation quality data set in Fig. 8. For
all combinations of µ± σ , the maximum RMSE was 1.1 %,
which is similar to the 1.2 % value for 3320

780 in Fig. 8. Con-
sequently, the use of three different laboratory methods to
determine aCDOM(440), which was not intercalibrated, does
not significantly influence the results presented here.

The state-of-the-art (approximately 1 %) accuracy
achieved with the 3320

780 end-members (Fig. 8) is, therefore,
due to the strict adherence to sampling and processing
protocols coupled with an unprecedented VSR of the optical
data. This combination also resulted in all end-member pairs
– including the legacy (VIS) 3412

670 pair – having a superior
accuracy compared to many common global inversion
algorithms. For example, aCDOM(λ) algorithms based on the
water-leaving radiance, LW (λ), and its normalized forms
have an RMSE exceeding 10 % or more (Mannino et al.,
2008, 2014), and the ocean color (OC) chlorophyll a variants
that use band ratios (O’Reilly et al., 1998, 2000) typically
exceed 20 % or more while generally excluding complex
and inland waters as used herein.

The robustness of the end-member approach is further
confirmed by how the expanded data sets (up to six), which
had increased amounts of optically complex water masses
that were not evolving conservatively, nonetheless yielded
fits with RMSE values outperforming the aforementioned
LW (λ) algorithms. With regards to which of the variants
best represents a global perspective, the 3λ1

λ2
pairs in Fig. 8

are considered appropriate. Screening of newly collected or
archival data, e.g., NOMAD data (Sect. 3.7), with respect to a
selected algorithm can be accomplished by initially flagging
data points more than 12 % from the expected relationship
and then more carefully examining those points using both
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objective and subjective criteria (based on available meta-
data) to determine whether the results are expected or are
more likely to indicate a problem with data collection proce-
dures.

If an algorithm is to be applied to a water mass that is not
evolving conservatively, an individualized relationship be-
tween aCDOM(λ) and 3λ1

λ2
should be established, especially

for an extreme water mass, e.g., drought-stricken. This main-
tains the accuracy of the global relationship while provid-
ing a mechanism for improving the study of nonconservative
waters. Identification of water masses not evolving conser-
vatively can likely be determined using Kd(λ) values de-
termined from in-water optical (e.g, C-OPS) data without
a need for laboratory analyses (Fig. 9). With additional re-
search to produce Kd(λ) for all wavelengths, e.g., expanding
upon Cao et al. (2014), the identification of water masses
evolving conservatively or not can be made from above-
water observations. This determination provides a sensitive
indicator of water masses subjected to stresses influencing
water quality, e.g., drought. The onset of next-generation
satellites, e.g., the Japanese Second-generation Global Im-
ager (SGLI) mission (Honda et al., 2012), offers unique op-
portunities for such monitoring because of the expanded spa-
tial and spectral domain, with the latter allowing improved
3
λ1
λ2

algorithm accuracy with respect to legacy missions, e.g.,
Moderate Resolution Imaging Spectroradiometer (MODIS).
While planned high-spectral-resolution sensors, such as the
Plankton, Aerosol, Cloud, ocean Ecosystem (PACE) and Sur-
face Biology and Geology (SBG) missions, may support
more sophisticated retrievals of parameters like CDOM, the
simplified approach provided by end-member analysis can be
used with both legacy and next-generation sensors, thereby
providing continuity in space and time as well as a capability
to generate high-quality in-water data with a simplified mea-
surement approach (assuming strict adherence to the proto-
cols).
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