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Abstract. The interaction between co-occurring drought and
hot conditions is often particularly damaging to crop’s health
and may cause crop failure. Climate change exacerbates such
risks due to an increase in the intensity and frequency of dry
and hot events in many land regions. Hence, here we model
the trivariate dependence between spring maximum tempera-
ture and spring precipitation and wheat and barley yields over
two province regions in Spain with nested copulas. Based on
the full trivariate joint distribution, we (i) estimate the impact
of compound hot and dry conditions on wheat and barley loss
and (ii) estimate the additional impact due to compound haz-
ards compared to individual hazards. We find that crop loss
increases when drought or heat stress is aggravated to form
compound dry and hot conditions and that an increase in the
severity of compound conditions leads to larger damage. For
instance, compared to moderate drought only, moderate com-
pound dry and hot conditions increase the likelihood of crop
loss by 8 % to 11 %, while when starting with moderate heat,
the increase is between 19 % to 29 % (depending on the ce-
real and region). These findings suggest that the likelihood of
crop loss is driven primarily by drought stress rather than by
heat stress, suggesting that drought plays the dominant role
in the compound event; that is, drought stress is not required
to be as extreme as heat stress to cause similar damage. Fur-
thermore, when compound dry and hot conditions aggravate
stress from moderate to severe or extreme levels, crop loss
probabilities increase 5 % to 6 % and 6 % to 8 %, respectively
(depending on the cereal and region). Our results highlight
the additional value of a trivariate approach for estimating the

compounding effects of dry and hot extremes on crop failure
risk. Therefore, this approach can effectively contribute to
design management options and guide the decision-making
process in agricultural practices.

1 Introduction

The assessment of the adverse social, economic and envi-
ronmental impacts associated with a combination of multi-
ple climate hazards has recently become a focus of high in-
terest (Leonard et al., 2014; Zscheischler et al., 2020). Such
compound events often lead to larger impacts compared to
when hazards occur separately (Zscheischler et al., 2018).
For instance, compound dry and hot conditions reduce car-
bon uptake more strongly compared to the sum of the indi-
vidual hazards (Zscheischler et al., 2014). Dry and hot con-
ditions often co-occur. For instance in Europe, the extreme
2003, 2010 and 2018 heatwaves were accompanied by strong
soil moisture deficits (Bastos et al., 2014; Schumacher et al.,
2019; Buras et al., 2020). In 2010, the compound event was
particularly strong in Russia (Schumacher et al., 2019), while
in 2003 the extreme drought and heatwave affected mostly
central Europe, extending to west Mediterranean countries
like Portugal and Spain (Garcia-Herrera et al., 2010), with
critical consequences in several sectors. In 2010, widespread
crop yield declines and failures occurred over the major
grain-producing regions of Russia, northeastern Ukraine and
northwestern Kazakhstan (Loboda et al., 2017). Previously,
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the shortages in crop yields in 2003 also caused major fi-
nancial losses in the agricultural sector, and when compared
to the previous year, the cereal productions in the European
Union (EU) decreased 23× 106 t (COPA-COGECA, 2003).
The decline in the harvests was both in quantity and qual-
ity, as was the case for winter cereals whose maturation was
accelerated due to compound extreme dry and hot condi-
tions, forming grains with insufficient water content (COPA-
COGECA, 2003). The 2018 event strongly impacted pastures
and arable land north of the Alps (Buras et al., 2020). As the
occurrence of climate extremes such as heatwaves, droughts,
and compound dry and hot events is expected to increase in
intensity and frequency in many land regions due to climate
change (IPCC, 2012; Zscheischler and Seneviratne, 2017),
associated adverse impacts such as widespread harvest fail-
ures threatening global cereal supplies may also increase.

Among the panoply of multivariate approaches applied
to assess the impacts of multiple climate hazards, the use
of copulas has become quite popular in studies focused on
analysing the social, environmental and economic risks as-
sociated with adverse climate conditions (Bokusheva et al.,
2016; Gaupp et al., 2019; Madadgar et al., 2017; Ribeiro
et al., 2019b, a; Zscheischler et al., 2017). With copulas non-
linear dependency structures can be modelled, which offers
more flexibility and possibly a more adequate fit for differ-
ent dependence types at the extremes (Durante and Sempi,
2015; Nelsen, 2006; Salvadori and De Michele, 2007; Sal-
vadori et al., 2016). Among all types of copulas described in
the literature, the popularity of the class of elliptical copulas
comes from the fact that they are derived from well-known
distributions associated with the widely used Pearson’s cor-
relation, but the elliptical dependence is only able to capture
radial symmetry and the respective mathematical expressions
do not have a closed form. One of the copula classes that
overcomes this drawback is the Archimedean, which has a
simpler mathematical form and can capture different kinds
of tail dependence and radial symmetry or asymmetry.

Archimedean copulas (ACs) are exchangeable, which
means that the copula is the same if we permute the respec-
tive margins. For the bivariate case this may not be a lim-
itation, but as the number of dimensions increase, it is un-
likely that exchanging across the involved variables allows
for the “true” dependence structure to be well-defined. To
avoid exchangeability, nested Archimedean copulas (NACs)
have been proposed (Okhrin and Ristig, 2014), also referred
to as hierarchical Archimedean copulas (HACs), obtained by
nesting lower-dimensional Archimedean copulas into each
other and/or using marginal distributions. Okhrin and Ristig
(2014) introduced NACs where all copulas belong to the
same family with a nesting condition that requires decreasing
dependence strength from the highest to the lowest hierarchi-
cal level. Here we make use of this NAC approach, taking
advantage of the balance between flexibility (modelling dif-
ferent types of dependence structures) and usability in higher
dimensions (limiting the number of parameters).

The present work aims to identify how compound dry
and hot conditions affect wheat and barley yields over two
regions of provinces in Spain based on the trivariate de-
pendence between precipitation, maximum temperature and
yields using a NAC approach. In particular, we are inter-
ested in quantifying the additional risk associated with com-
pound dry and hot conditions compared to only dry or only
hot conditions. Wheat and barley are chosen as they are two
of the major rainfed crops in the Iberian Peninsula (Peña-
Gallardo et al., 2019; Vicente-Serrano et al., 2006). More-
over, we build here on prior work which has estimated wheat
and barley losses in the same area but related to a single haz-
ard, namely droughts (Ribeiro et al., 2019a, b).

Using NACs, we estimate the conditional probabilities
of crop loss under different severity levels of dry and hot
conditions based on the full trivariate joint distribution. We
focus on annual wheat and barley yield data at the sub-
national scale, thus overcoming drawbacks related to assess-
ing climate-related crop risks at the national scale. Based on
the proposed approach we (i) characterise the dependence
structures between the dry and hot conditions and the crop
yields, (ii) estimate the conditional probability of crop loss
under different compound dry and hot severity levels, and
(iii) evaluate how much the compound dry and hot condi-
tions increase the risk of crop failure in comparison to the
individual hazards.

2 Data and methods

2.1 Crop yield data

Wheat and barley yields were obtained for nine provinces
in Spain from the Spanish Ministry of Agriculture, Fish-
eries and Food (available at https://www.mapa.gob.es/es/
estadistica/temas/publicaciones/anuario-de-estadistica/, last
access: 9 November 2019). Those nine provinces were ag-
gregated into two distinct regions (Fig. 1), which are dom-
inated by rainfed agricultural practices following the non-
irrigated arable land classification from the CORINE Land
Cover dataset based on an earlier regionalisation (Ribeiro
et al., 2019c; Ribeiro et al., 2019b). The provincial region-
alisation consisted in the application of three main criteria:
first the provinces with land use dominated by agricultural
practices were identified (Fig. 1), and from those provinces,
the ones dominated by non-irrigated practices and contigu-
ous in space were selected for analysis (Fig. 1 – bold black
contours). Figure 1 shows the Iberian provinces with< 50 %
agricultural pixels coloured white, the provinces with> 50 %
agricultural pixels coloured with the respective agricultural
CORINE classes and the selected two regions of contigu-
ous provinces dominated by rainfed agriculture delineated
in bold black contours. This aggregation of provinces al-
lowed for the identification of two major breadbaskets where
rainfed systems supply the predominant crops among the
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provinces with higher percentage of agricultural land use in
the Iberian Peninsula.

Crop yields were obtained as the ratio between production
and harvested area during the period of 1986–2016. We com-
puted crop yield anomalies by removing longer-term trends
based on locally estimated scatterplot smoothing (LOESS, a
method for local regression) to account for yield increases
due to technological development (Ben-Ari et al., 2016). We
pooled crop yields from the provinces over each region, re-
sulting in sample sizes N1 = 155 for Region 1 (31 years of
annual data over five provinces) and N2 = 124 for Region 2
(31 years of annual data over four provinces). Pooling time
series greatly expands the sample size, allowing greater ro-
bustness in three-dimensional statistical analysis that other-
wise would be compromised. This type of assessment is a
compromise between the use of a sub-national resolution of
crop data and the sample size to evaluate the number of cases
of simultaneous occurrence of dry and hot conditions.

2.2 Weather data

The vegetative cycle of the winter crops in Spain is mainly
driven by precipitation and temperature: sowing occurs
around autumn (from September through November, SON),
followed by the vegetative phase in winter (from December
through January, DJF) and reproductive phase (more photo-
synthetically active phase) in spring (from March through
May, MAM), and crop harvest occurs in the early summer
(around June). Therefore, monthly accumulated precipita-
tion (P ) and monthly maximum temperature (Tmax) were
extracted from the Climatic Research Unit (CRU) TS4.01
dataset (Harris et al., 2014) spanning the same time period.
Given the importance of assessing crop’s water and temper-
ature requirements at different moments of the vegetative
cycle, we conducted a correlation analysis between the an-
nual yields and the 3-monthly means of P and 3-monthly
means of Tmax during the whole growing season, as shown
in Fig. 2. The identification of the moment of the vegetative
cycle of the crop’s highest water and temperature require-
ments was assessed based on the strongest statistically sig-
nificant correlation value (denoted by filled circles in Fig. 2).
Figure 2 suggests that the greatest influence of P and Tmax
in crop yields is observed during spring (MAM in both re-
gions and cereals), corresponding to the reproductive phase
of plant development, when vegetation is photosynthetically
more active. Therefore, for the remaining analysis we focus
on 3-monthly means of Tmax and 3-monthly means of P dur-
ing spring (PMAM and TmaxMAM , respectively), which has also
been identified in previous studies as a growth stage sensitive
to the effects of water content and high temperatures (Ferrise
et al., 2011; Del Moral et al., 2003; Iglesias and Quiroga,
2007; Ribeiro et al., 2019c). This selection of climate vari-
ables allows for the maximisation of the dependence between
climate conditions and yields as also shown by previous work
based on the same data (Ribeiro et al., 2019c).

We considered three severity levels of dry and/or hot con-
ditions – moderate (+), severe (++) and extreme (+++) –
based on percentile thresholds as shown in Table 1. Besides
these three severity levels, we further considered all combi-
nations of 10 categories of severity levels of dry and hot con-
ditions exceeding the 50th to 5th and 50th to 95th percentiles
for PMAM and TmaxMAM , respectively. We further considered
the 20th percentile of the crop anomaly time series as the
lower exceedance threshold for crop failure (Ben-Ari et al.,
2016; Ribeiro et al., 2019a, b).

2.3 Modelling trivariate distributions with nested
Archimedean copulas

We model the trivariate relationship between temperature,
precipitation and crop yields with nested copulas. Consider
a vector of crop yield annual anomalies Y and the climate
variables X1 = PMAM and X2 = TmaxMAM with marginal cu-
mulative distribution functions (CDFs) FY , FX1 and FX2 , re-
spectively. We aim to estimate and compare three conditional
CDFs with the scalars x∗1 and x∗2 corresponding to the dry and
hot thresholds, respectively:

FY |X1(Y |X1 = x
∗

1 )= P(Y ≤ y|X1 ≤ x
∗

1 ), (1)

FY |X2(Y |X2 = x
∗

2 )= P(Y ≤ y|X2 ≥ x
∗

2 ), (2)

FY |X1,X2(Y |X1 = x
∗

1 ,X2 = x
∗

2 )

= P(Y ≤ y|X1 ≤ x
∗

1 ,X2 ≥ x
∗

2 ). (3)

With the above equations we can estimate the crop yield
impacts under dry conditions FY |X1 (Eq. 1), under hot con-
ditions FY |X2 (Eq. 2), and under compound dry and hot con-
ditions FY |X1,X2 (Eq. 3), respectively. In other words, if the
compound dry and hot conditions cause more damage than
the individual hazards, it is expected that FY |X1,X2 suggests
higher probabilities of crop loss (i.e. y = y∗ for a low y∗)
than FY |X1 or FY |X2 . Furthermore, we can study the rela-
tive role of PMAM and TmaxMAM for crop loss with Eqs. (1)
and (2).

To compare the additional impact of compound dry and
hot conditions with the impacts caused by the individual haz-
ards, Eqs. (1)–(3) are used to estimate

relative change from drought stress

=
FY |X1=x

∗

1 ,X2=x
∗

2
(0.2)−FY |X1=x

∗

1
(0.2)

FY |X1=x
∗

1
(0.2)

, (4)

relative change from heat stress

=
FY |X1=x

∗

1 ,X2=x
∗

2
(0.2)−FY |X2=x

∗

2
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FY |X2=x
∗

2
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, (5)
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Figure 1. Iberian provinces dominated by agricultural land use (> 50 % agricultural pixels belonging to all agricultural CORINE classes; see
legend) according to the CORINE Land Cover dataset and respective categories. The contiguous provinces dominated by rainfed practices
(> 50 % non-irrigated pixels in yellow) are delineated in bold black contours and grouped into two regions. Northern region (Region 1)
provinces: Burgos, Palencia, Segovia, Valladolid and Zamora. Southern region (Region 2) provinces: Albacete, Ciudad Real, Cuenca and
Toledo.

Table 1. Categories of severity levels of dry and hot conditions based on PMAM and TmaxMAM percentiles.

Moderate (+) Severe (++) Extreme (+++)

Dry PMAM ≤ 20th percentile PMAM ≤ 10th percentile PMAM ≤ 5th percentile
Hot TmaxMAM ≥ 80th percentile TmaxMAM ≥ 90th percentile TmaxMAM ≥ 95th percentile

where 0.2 is the threshold of crop loss (y∗) corresponding
to the 20th percentile of the crop yield anomalies. These
changes can be estimated for different severity levels of dry
(x∗1 ) and hot (x∗2 ) conditions.

Following the theorem of Sklar (1959) we can decom-
pose a multivariate probability distribution into its marginals
and a copula C which describes the dependence structure
between the margins. To estimate the multivariate distribu-
tion P(Y,X1,X2), the respective copula C is fitted, which is
then a joint CDF whose marginal distributions are uniform in
the interval [0,1] (Durante and Sempi, 2015; Nelsen, 2006;
Salvadori and De Michele, 2007). Transforming the margins
to uniform variables through their CDFs, that is, u1 = FY ,
u2 = FX1 and u3 = FX2 , the trivariate CDF can be written as
(Sklar, 1959)

F(u1,u2,u3)= C(u1,u2,u3) . (6)

Within the copula families, ACs are extensively used due to
their flexibility and applicability to a variety of tail depen-
dence structures, as well as their analytical tractability. An
AC can be written in terms of the respective generator func-
tion ϕ, which belongs to a parametric family ϕθ dependent
on the parameter θ , e.g. for the three-dimensional case,

C(u1,u2,u3;θ)= ϕθ (ϕ
−1
θ (u1)+ϕ

−1
θ (u2)+ϕ

−1
θ (u3)). (7)

Due to the symmetry of bivariate ACs, the above trivariate
form can be expressed in terms of an NAC, where two of the
margins are first coupled by their bivariate copula and then
coupled with the third margin, via the same generator on each
level but different parameters θ12 and θ1, respectively, e.g.

C(u1,u2,u3;θ12;θ1)= C1(C12(u1,u2;θ12),u3;θ1). (8)

Equation (8) can also be expressed in terms of the other pos-
sible pair copulas C13(u1,u3;θ13) and C23(u2,u3;θ23) that
are coupled with u2 and u1 by C2 and C3, with expressions
C2(C13(u1,u3;θ13),u2;θ2) and C3(C23(u2,u3;θ23),u1;θ3),
respectively. Like Eq. (8), in each structure of the NAC the
same generator is required for each level but with potentially
different parameters. Hence, both the optimal structure and
respective parameters must be determined.

Most structures of NACs require decreasing parameters
from the inner to the outer hierarchical level to attain a prop-
erly fitted copula. As for most ACs, the larger the parameter,
the stronger the dependence; this means that most structures
of NACs require that the marginal copulas in the inner level
should correspond to the pair with the strongest dependence,
i.e. satisfying θ12 ≥ θ1 in the case of Eq. (8). This require-
ment applies to NACs with generators from the same family,
providing a flexible estimation of the NAC, which allows for
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Figure 2. Kendall correlation τ between 3-monthly means of maximum temperature (Tmax, red) and precipitation (blue) with wheat (solid
lines) and barley (dashed lines) yield anomalies. Correlations were computed during the crop-growing period (September to June) over
1986–2016 for Region 1 (a) and 2 (b; Fig. 1). The letters on the x axis denote the 3-month averaging periods. Circles indicate statistically
significant correlations at α = 0.05. The strongest correlation (positive or negative) is denoted by filled circles (PMAM and TmaxMAM ).

specifying the full distribution with at most d−1 parameters,
where d is the number of copula dimensions or marginal dis-
tributions (Okhrin and Ristig, 2014).

In our study we focus on a total of four Archimedean fam-
ilies that capture different kinds of joint dependence struc-
tures: Clayton, Gumbel, Frank and Joe. The Clayton, Gum-
bel and Joe copulas describe an asymmetrical tail behaviour,
while the Frank copula, in a similar way to the Gaussian
copula, captures joint symmetric dependence. While Gumbel
and Joe copulas can represent upper tail dependence, Clayton
copulas can represent lower tail dependence. The estimation
of the copula parameters is based on maximum likelihood
based on the R package “HAC” (Okhrin and Ristig, 2014).

The main steps of the trivariate approach used in this study
can be summarised as follows (Okhrin and Ristig, 2014).
First, the marginal distributions u1, u2 and u3 are estimated
non-parametrically by simple ranking, using the empirical
distribution functions of the data through the pobs function
in the R package “copula” (Kojadinovic and Yan, 2010), a
common approach for copula modelling. Afterwards, the fit
of bivariate copula models is performed to every pair of vari-
ables to estimate Cθ12 , Cθ13 and Cθ23 . For each pair, the cop-
ula selection is performed based on Akaike’s information
criterion (AIC), and the goodness of fit is checked by com-
paring the empirical copula based on the Cramér–von Mises
distance (Sn). The bivariate copula with the strongest depen-
dence, with the lowest AIC and the lowest Sn, is selected
to define the structure of the NAC. Afterwards, the marginal
distribution that is not part of the selected bivariate copula
is joined and the parameter of the upper-level copula of the
same family is estimated (Eq. 8). As a final step, the esti-
mated NAC with two parameters is compared with the same
Archimedean family with one parameter (Eq. 7) in terms of
the AIC, which penalises the number of estimated parame-
ters.

2.4 Diagnostics and uncertainties in the estimation
procedure

The visual diagnostics of the quality of the selected models
are performed analogously to a Q–Q plot by comparing the
empirical estimate of the Kendall function (cumulative dis-
tribution of the copula) with the theoretical estimate of the
Kendall function based on the selected parametric trivariate
copulas (Okhrin and Ristig, 2014).

Best estimates of all conditional probabilities (i.e. Eqs. 1–
5) are estimated by drawing N = 100000 samples from the
fitted trivariate copula. Using the same single-parameter gen-
erator function on each level of the NAC (but with a po-
tentially different value of θ ) satisfies the required complete
monotonicity of the AC generators to construct NACs fol-
lowing Okhrin and Ristig (2014), which also implies that the
possible pairs are positively dependent. Therefore, due to the
negative dependence between TmaxMAM and both crop yields
and PMAM, we inverted the margins of TmaxMAM for copula
modelling (i.e. multiplication by −1). For more details on
complete monotonicity of the AC generators and NAC con-
structions, see e.g. Górecki et al. (2017).

Uncertainties in the statistical modelling are estimated by
repeated sampling (10 000 times) of the fitted model with
sample sizes equal to the number of observations (i.e. N1 in
the case of Region 1 and N2 in the case of Region 2). From
these samples, 95 % confidence intervals of Kendall’s rank
correlation are estimated and compared with the observed
pairs (u1,u2), (u1,u3) and (u2,u3). This validation step in-
tends to verify if the generated pairs of copula-based samples
preserve the level of dependence found in the observations.
Furthermore, this approach is used to estimate uncertainties
related to the conditional probabilities (Eqs. 1–5).
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Figure 3. Structure and respective parameters of the selected nested
Frank models C1(C12(u1,u2;θ12),u3;θ1) to model the trivari-
ate joint distributions between crop yields, PMAM and TmaxMAM .
(a) Wheat in Region 1. (b) Wheat in Region 2. (c) Barley in Region
1. (d) Barley in Region 2.

3 Results

In both cereals and both regions the most dependent pair of
variables corresponds to crop yields and PMAM; hence the
pair of variables u1,u2 defines the optimal NAC structure
(Fig. 3). Results for all possible variable pairs and the re-
spective bivariate copulas are shown in Table A1.

Once the bivariate copula C12(u1,u2) of yields and PMAM
are known, the NAC models are constructed (Table 2). The
Frank copula provides the best fit of C12(u1,u2) (Table A1)
for both cereals and both regions, and thus the parameters
of the trivariate nested copulas are all from the Frank fam-
ily. Nevertheless, despite Frank being the best family to
characterise the nested copulas, we also constructed NAC
models with Gumbel, Clayton and Joe copulas for compari-
son, as well as trivariate Archimedean copulas with one pa-
rameter where we selected the best structure between one-
parameter and two-parameter AC copulas via the AIC (Ta-
ble 2). In all but one case the NAC model with Frank copulas
is the best model. The only exception is barley in Region 2
whose AIC of Cθ (u1,u2,u3) is slightly lower than the AIC
of Cθ1(u3,Cθ12(u1,u2)) (Table 2). This feature may suggest
that a structure favouring the dependence between yield and
precipitation (u1,u2) may not be as relevant as in the other
regions and yields due to a less dominant role of drought in-
dividually in this case. Nevertheless, in terms of the Cramér–
von Mises distance (Sn) the nested copula is closer to the
empirical trivariate copula. For this reason, we modelled the
trivariate joint distribution based on nested Frank copulas for
all cases. For all fitted models, the empirical cumulative dis-

Figure 4. Empirical versus theoretical probability distributions
based on the nested Frank copula models. (a) Wheat in Region 1.
(b) Wheat in Region 2. (c) Barley in Region 1. (d) Barley in Re-
gion 2.

tribution corresponds well to the theoretical cumulative dis-
tributions (Fig. 4).

Bivariate dependencies as measured by Kendall’s τ are
captured well by the fitted models (Fig. 5 for wheat, Fig. A1
for barley). Among all possible pairs, the correlation between
Tmax and yield is the weakest for both cereals (Table A1),
and likely for this reason it is the pair in Figs. 5 and A1 with
observational τ closest to the lower bound of the 95 % confi-
dence intervals (Figs. 5f, h and A1f, h). Nevertheless, in both
Figs. 5 and A1, the simulated level of dependence is inside
the 95 % confidence level and the magnitude of correlations
among the pairs is also reasonably preserved by the models
i.e. such that τu1,u2 > τu2,u3 > τu1,u3 .

The cumulative conditional probabilities of yield under
moderate (+), severe (++) and extreme (+++) compound dry
and hot conditions demonstrate that the probability of crop
loss increases with the severity of compound dry and hot con-
ditions for both regions and both cereals (Fig. 6a–d). More-
over, the likelihood of crop loss is higher in Region 2 for
both cereals, particularly in the case of barley. Under ex-
treme dry and hot conditions (+++dry+++hot, purple), the
likelihood of crop loss is 68 % and 71 % for wheat and bar-
ley, respectively, in Region 2, in contrast to 62 % and 63 % in
Region 1 (Fig. 6e, purple bars). In addition, the differences in
crop loss are higher between moderate (+dry+hot) and severe
(++dry++hot) conditions compared to the differences be-
tween severe and extreme (+++dry+++hot) conditions. More
precisely, when the compound dry and hot conditions aggra-
vate stress from moderate to severe levels, crop loss increases
5 % to 6 %, and when the compound dry and hot conditions
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Table 2. Trivariate Archimedean copula (AC) parameters (θ ) with nested structure with two-parameter C1(C12(u1,u2;θ12),u3;θ1) and
with one-parameter C(u1,u2,u3;θ) and respective Akaike’s information criterion (AIC) and Cramér–von Mises distance (Sn). Fit based on
maximum pseudo-likelihood (Gumbel, G; Clayton, C; Frank, F; and Joe, J, copulas). Smaller values of AIC and Sn indicate the selected
copula for each cereal and region (bold).

Region 1 Region 2

G C F J G C F J

Wheat

C(u1,u2,u3;θ)
θ 1.41 0.66 3.22 1.53 θ 1.53 0.75 3.88 1.72
AIC −74.16 −79.89 −99.02 −49.16 AIC −89.12 −74.67 −106.14 −69
Sn 0.15 0.21 0.07 0.31 Sn 0.14 0.31 0.07 0.27

C1(C12(u1,u2;θ12),u3;θ1)

θ12 1.37 0.9 3.51 1.41 θ12 1.57 0.91 4.26 1.76
θ1 1.59 0.93 4.75 1.73 θ1 1.88 1.37 5.98 2.11
AIC −79.69 −71.27 −102.84 −54.29 AIC −99.7 −79.76 −112.93 −78.49
Sn 0.12 0.11 0.03 0.3 Sn 0.08 0.18 0.03 0.19

Barley

C(u1,u2,u3;θ)
θ 1.43 0.66 3.25 1.57 θ 1.58 0.81 4.12 1.8
AIC −80.8 −78.91 −101.84 −57.51 AIC −105.59 −85.87 −118.55 −83.54
Sn 0.12 0.21 0.07 0.26 Sn 0.16 0.36 0.08 0.3

C1(C12(u1,u2;θ12),u3;θ1)

θ12 1.38 0.87 3.54 1.43 θ12 1.72 1.05 5.04 1.99
θ1 1.7 0.92 4.89 1.92 θ1 1.94 1.41 6.02 2.21
AIC −95.8 −72.07 −107.17 −73.98 AIC −112.52 −86.85 −116.31 −90.86
Sn 0.09 0.12 0.04 0.22 Sn 0.08 0.21 0.03 0.19

aggravate stress from moderate to extreme levels, crop loss
increases 6 % to 8 % (depending on the cereal and region).
For comparison, conditional cumulative probability distribu-
tions for single stressors compared with the compound stres-
sors are shown in Fig. A2 for all three severity levels.

While Fig. 6 illustrates the same severity levels for the dif-
ferent hazards, Fig. 7 illustrates crop loss for a range of dif-
ferent combinations of severity levels of dry and hot condi-
tions (e.g. extreme dry conditions combined with moderate,
severe and extreme hot conditions and vice versa) starting
from the 50th percentile of PMAM and TmaxMAM . When PMAM
or TmaxMAM are below or above the median, the probability of
crop loss is always higher than 40 %. Similarly to Fig. 6, the
increase in crop loss with the severity of drought and heat
stress is evident (Fig. 7). The higher likelihood of crop loss
in Region 2, particularly for barley, is also consistent with
Fig. 6. Moreover, the results indicate that droughts are typ-
ically associated with higher probabilities of crop loss than
heatwaves at the same severity level. This finding suggests
that drought stress causes more damage to crop yields than
heat stress, even for lower values of stress.

In all cases, the additional effect of compound dry and hot
conditions is larger when starting from only hot conditions,
compared to when starting from only dry conditions (Fig. 8
for moderate stress, Fig. A3a and b for severe and extreme
stress). The estimates are based on Eqs. (4) and (5). Depend-
ing on the cereal and region, the difference between drought
stress and compound conditions may vary from 8 % (barley
in Region 1) to 11 % (barley in Region 2). In contrast, the dif-
ference between heat stress and compound conditions may
vary between 19 % (barley in Region 2) to 29 % (wheat in
Region 2). Uncertainties are large for these estimates and in-

crease with the severity of the events (Fig. A3). Consistent
with Fig. 7 these findings suggest that drought stress is the
major driver of crop loss associated with compound drought
and heat.

4 Discussion

We have modelled the trivariate relationship between
TmaxMAM and PMAM and wheat and barley yields in two re-
gions in Spain using nested copulas. We found that the likeli-
hood of crop loss increases with the severity of the compound
dry and hot conditions and that compound drought and heat
always increases the likelihood of crop loss. Moreover, our
findings suggest that drought stress is not required to be as
extreme as heat stress to cause the same adverse impact on
crop yields. Hence drought is the more dominant driver of
crop loss, when considering compound drought and heat.

Although the use of different methodologies and spatio-
temporal scales and the focus on different cereals and re-
gions make a comparison between studies difficult, our find-
ings are consistent with previous work. Using bivariate re-
turn periods of combined climate conditions, Zscheischler
et al. (2017) have shown how linear models based directly
on precipitation and temperature (and not the respective bi-
variate return period) may underestimate the explained vari-
ability in crop yields and that in several countries maize
yields decrease with dry and hot conditions. Based on a
meta-Gaussian model at the national level, Feng et al. (2019)
have also shown that compound dry and hot extremes lead
to larger impacts on maize yields than the individual hazards
across five major maize-producing countries.
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Figure 5. Scatterplots of copula-based samples (blue) compared with ranked observations (red) of crop anomalies with climate variables
PMAM and TmaxMAM (a, c, e, g) and PMAM against TmaxMAM (i, k), for both regions. The histograms (b, d, f, h, j, l) correspond to
the Kendall rank correlation of each pair based on 10 000 simulations with the same sample size of the observational sample. The 95 %
confidence intervals are shown with dashed lines. The red lines indicate the Kendall rank correlation of the observations.

Figure 6. Conditional probability distributions of crop yield anomalies FY |X2,X2 over each region of provinces (wheat in Region 1 a,
wheat in Region 2 b, barley in Region 1 c and barley in Region 2 d) under moderate (+dry+hot, yellow), severe (++dry++hot, orange) and
extreme (+++dry+++hot, purple) compound dry and hot conditions (see Table 1). (e) Conditional probabilities of not exceeding the crop loss
threshold (20th percentile – vertical dashed line in a–d) for each severity level of compound dry and hot conditions given by FY |X1,X2(0.2).
Uncertainty ranges illustrate the 95 % confidence intervals.
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Figure 7. Conditional probability of crop loss given by FY |X1,X2(0.2) (bar height) for both regions and cereals (wheat in Region 1 a, wheat
in Region 2 b, barley in Region 1 c and barley in Region 2 d) for different combinations of severity levels of dry and hot conditions. The
x axis indicates the PMAM percentiles (drought), and the y axis indicates the TmaxMAM percentile (heat).

Figure 8. Difference in probability of crop loss from dry (blue) and
hot (orange) to compound dry and hot conditions in wheat (left)
and barley (right) for Regions 1 and 2. Shown are the best estimates
for moderate dry and hot (+dry+hot) conditions (bar height) and
associated 95 % confidence intervals.

In terms of the relative contributions of drought and heat
conditions, a variety of studies at the national scale have
found that the response varies from country to country. Feng
et al. (2019) have found that in China, France and Roma-
nia, higher chances of maize loss under dry conditions with
normal temperatures (rather than under hot conditions with
normal precipitation) can be expected, while in the USA and
Argentina, higher chances of maize loss under hot condi-
tions with normal precipitation (rather than under dry con-

ditions with normal temperatures) can be expected. In con-
trast, Zscheischler et al. (2017) have found that in countries
such as Lithuania, Luxembourg and the UK, maize yields in-
crease under hot and wet conditions, likely because of the
importance of summer precipitation for the crop vegetative
cycle and the relatively cooler climate in those countries.

Although previous studies have discussed that maximum
temperature might be the best predictor variable for yield
variability in most countries (Zscheischler et al., 2017), our
study highlights that in Spain crop loss of wheat and barley
is more sensitive to dryness than to hot conditions. This find-
ing agrees with the rainfed practices adopted in the wheat and
barley cultivation in Spain. In fact, the nesting structure of the
trivariate models adopted in the present study privileges the
stronger dependency between yields and precipitation, rather
than between yields and temperature or between precipita-
tion and temperature (Fig. 3). Though irrigated crops typi-
cally produce higher yields, the pressure in water resources
is already increasing the deficit between water supplies and
water demand in Spain (Rodríguez Díaz et al., 2007). Hence,
understanding climate risks for rainfed crops is crucial to ad-
dress the current water management challenges for agricul-
tural practices in Mediterranean regions.

Higher probabilities of crop loss under drought and/or
heat stress are generally expected in the southern region of
Spain, in comparison to the northern region (Figs. 6 and 7),
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in agreement with the higher temperatures and lower rainfall
amounts observed in the south (Ribeiro et al., 2019a; IM and
AEMET, 2011). In the case of wheat losses, this finding is
in agreement with previous work which focused on drought
risks for the same crops and the same region (assessed based
on remote sensing and hydro-meteorological drought indica-
tors; Ribeiro et al., 2019b). However, Ribeiro et al. (2019b)
identified a higher likelihood of barley loss with drought in
the northern region. This discrepancy underlines the impor-
tance of addressing the interaction between compound dry
and hot conditions and the associated impacts on vegetation.
For instance, compound dry and hot conditions have a larger
impact on the carbon uptake potential than the sum of the in-
dividual impacts (Zscheischler et al., 2014), highlighting the
relevance of interactions between multiple stressors.

We found that for barley in Region 2, drought is the least
dominant driver in comparison to the other cereals and re-
gions. Barley in Region 2 shows the highest difference be-
tween drought and compound dry and hot conditions and the
lowest difference between heat stress and compound condi-
tions (Fig. 8). This suggests that for both cereals and in both
regions, barley in Region 2 is the case where the compound
and possibly interacting effects of drought and heat are most
relevant. Also note that in this case the CDFs between the
dry and hot and dry or hot conditions are more differentiated
from each other for the severe and extreme stress (Fig. A2).
This is consistent with a recent study at the province level,
which recommended that crop production in Spain should
focus more on wheat production given that most provinces
displayed lower levels of wheat loss with drought in compar-
ison to barley loss (Ribeiro et al., 2019a). This finding is also
consistent with Figs. 6 and 7.

The uncertainties associated with the parametric statistical
model were assessed with a large number of sampled dis-
tributions with the same sample size as the observations. In
some of these distributions, drought or heat alone may cause
more damage than concurrent drought and heat (lower uncer-
tainty bound is below 0 in Figs. 8 and A3). This highlights
the challenges of estimating the likelihood of rare events in
two- or three-dimensional probability distributions with lim-
ited sample sizes (Serinaldi, 2013, 2016; Zscheischler and
Fischer, 2020). For the same reason, the wheat loss in Region
2 when PMAM is below the 5th percentile in Fig. 7 slightly
decreases when the threshold of TmaxMAM changes from the
10th percentile to the 5th percentile (where an increase would
be expected as in the other cases). These features are associ-
ated with the uncertainties in the estimation procedure, which
may be particularly large for extreme values, and it would
be difficult to find a physical explanation for such a feature.
Note that the uncertainties increase with the increasing sever-
ity of the compound dry and hot conditions (Fig. A3) due
to the rapid decrease in available samples in the corners of
the three-dimensional probability distribution. Nevertheless,
the best estimates (bars in Figs. 8 and A3) show indeed that
compound dry and hot extremes contribute to an increase in

yield loss. In the general sense, the biophysiological expla-
nation for the combination of environmental drivers leading
to stronger yield reductions relates to the crop’s requirements
of water and thermal conditions during the key phenological
stage in the analysis. The selection of the climate variables
during spring corresponds to the reproductive phase of the
plants and when vegetation is photosynthetically more ac-
tive, and the combined effect of water and heat stress during
this period is critical for the crop’s health leading to yield de-
crease. During this stage of formation of the grains the dry
and hot extremes may accelerate the maturation, affecting
the size, number and weight of the grains and consequently
affecting the crop’s harvests in quantity and quality (Balla
et al., 2011; COPA-COGECA, 2003; Nicolas et al., 1984;
Qaseem et al., 2019; Talukder et al., 2014).

Following the work by Okhrin and Ristig (2014), here
we considered nesting copulas of the same family only, as
more complex structures would be difficult to implement in
general. Vine copulas might offer an alternative that is also
appropriate for higher dimensions (Bevacqua et al., 2017),
when considering for instance more driver variables. Never-
theless, in comparison with previous studies based on bivari-
ate models only, we argue that the statistical modelling based
on NACs is a good compromise between complexity and the
trivariate dimension.

5 Conclusions

The present study assessed how compound drought and heat
enhances losses of wheat and barley in two major dryland
areas in Spain. We showed that nested Archimedean cop-
ulas can successfully model the trivariate joint distribution
between spring maximum temperature, spring precipitation
and yields to estimate conditional probabilities of crop loss
under different severity levels of hot and dry conditions. The
strongest dependence exists between spring precipitation and
yields and is best captured by a Frank copula. Our results
demonstrate that the probability of crop loss increases with
the severity of compound dry and hot conditions. Further-
more, the likelihood of wheat and barley loss increases when
drought or heat, respectively, are aggravated to form com-
pound dry and hot conditions in both regions. Overall, the
likelihood of crop loss in the southern region is larger, in par-
ticular for barley. For both cereals and regions, the likelihood
of crop loss increases more with increasing drought stress
than with heat stress, suggesting that drought plays a dom-
inant role in the compound event. Our results illustrate the
additional value of using trivariate copula modelling to esti-
mate the compounding effects of dry and hot extremes on the
risk of crop failure. In operational practice, this research can
contribute to the design of supporting tools and provide guid-
ance in the decision-making process in agricultural practices
to minimise crop losses related to climate hazards.
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Appendix A

Table A1. As in Table 2 with respect to the possible bivariate pairs of crop yield (u1), precipitation (u2) and maximum temperature (u3) and
corresponding Kendall’s’ correlation (τ ). Maximum values of τ are denoted in bold for each cereal and region indicating the pair of variables
with the strongest relationship.

Region 1 Region 2

τ G C F J τ G C F J

C(u1,u2) 0.44
θ 1.59 0.93 4.75 1.73

0.51
θ 1.88 1.37 5.98 2.11

AIC −51.43 −47.28 −69.71 −35.58 AIC −71.04 −64.6 −81.22 −53.26
Sn 0.06 0.14 0.01 0.17 Sn 0.04 0.11 0.02 0.13

C(u1,u3) 0.30
θ 1.28 0.71 2.73 1.27

0.30
θ 1.31 0.53 2.88 1.38

Wheat AIC −14.3 −31.71 −28.51 −4.07 AIC −13.83 −13.07 −23.77 −8.08
Sn 0.09 0.04 0.03 0.18 Sn 0.08 0.1 0.03 0.13

C(u2,u3) 0.32
θ 1.4 0.58 3.27 1.51

0.41
θ 1.66 0.77 4.28 1.98

AIC −28.45 −21.74 −38.13 −20.41 AIC −52.05 −27.27 −48.85 −47.27
Sn 0.07 0.11 0.03 0.13 Sn 0.04 0.14 0.03 0.08

C(u1,u2)
θ 1.7 0.92 4.89 1.92 θ 1.94 1.41 6.02 2.21

0.44 AIC −66.25 −47.07 −72.18 −53.18 0.51 AIC −78.79 −68.34 −81.99 −61.18
Sn 0.02 0.13 0.02 0.08 Sn 0.03 0.1 0.02 0.1

C(u1,u3)
θ 1.3 0.69 2.77 1.31 θ 1.46 0.69 3.73 1.61

Barley 0.30 AIC −16.34 −30.27 −29.9 −6.11 0.38 AIC −29.33 −22.43 −38.56 −21.43
Sn 0.08 0.06 0.04 0.16 Sn 0.09 0.15 0.04 0.16

C(u2,u3)
θ 1.4 0.58 3.27 1.51 θ 1.66 0.77 4.28 1.98

0.32 AIC −28.45 −21.74 −38.13 −20.41 0.41 AIC −52.05 −27.27 −48.85 −47.27
Sn 0.07 0.11 0.03 0.13 Sn 0.04 0.14 0.03 0.08
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Figure A1. Same as Fig. 5 but for barley.
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Figure A2. Conditional probability distributions of crop yield anomalies over each region under hot (yellow), dry (blue) or compound dry
and hot (red) conditions under moderate (a–d), severe (e–h) and extreme conditions (i–l).

Figure A3. Same as Fig. 8 but for severe (a) and extreme (b) conditions.
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(https://doi.org/10.18637/jss.v034.i09, Kojadinovic and Yan,
2010 and “HAC” (https://doi.org/10.18637/jss.v058.i04,
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crop yield is published by the Spanish Ministry of Agriculture,
Fisheries and Food (2019) in their statistical yearbooks, which
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