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Abstract. The contribution of soil heterotrophic respiration
to the boreal–Arctic carbon (CO2) cycle and its potential
feedback to climate change remains poorly quantified. We
developed a remote-sensing-driven permafrost carbon model
at intermediate scale (∼ 1 km) to investigate how environ-
mental factors affect the magnitude and seasonality of soil
heterotrophic respiration in Alaska. The permafrost carbon
model simulates snow and soil thermal dynamics and ac-
counts for vertical soil carbon transport and decomposition
at depths up to 3 m below the surface. Model outputs in-
clude soil temperature profiles and carbon fluxes at 1 km res-
olution spanning the recent satellite era (2001–2017) across
Alaska. Comparisons with eddy covariance tower measure-
ments show that the model captures the seasonality of carbon
fluxes, with favorable accuracy in simulating net ecosystem
CO2 exchange (NEE) for both tundra (R > 0.8, root mean
square error (RMSE – 0.34 g C m−2 d−1), and boreal forest
(R > 0.73; RMSE – 0.51 g C m−2 d−1). Benchmark assess-
ments using two regional in situ data sets indicate that the
model captures the complex influence of snow insulation
on soil temperature and the temperature sensitivity of cold-

season soil heterotrophic respiration. Across Alaska, we find
that seasonal snow cover imposes strong controls on the con-
tribution from different soil depths to total soil heterotrophic
respiration. Earlier snowmelt in spring promotes deeper soil
warming and enhances the contribution of deeper soils to
total soil heterotrophic respiration during the later growing
season, thereby reducing net ecosystem carbon uptake. Early
cold-season soil heterotrophic respiration is closely linked to
the number of snow-free days after the land surface freezes
(R =−0.48, p < 0.1), i.e., the delay in snow onset relative
to surface freeze onset. Recent trends toward earlier autumn
snow onset in northern Alaska promote a longer zero-curtain
period and enhanced cold-season respiration. In contrast,
southwestern Alaska shows a strong reduction in the number
of snow-free days after land surface freeze onset, leading to
earlier soil freezing and a large reduction in cold-season soil
heterotrophic respiration. Our results also show nonnegligi-
ble influences of subgrid variability in surface conditions on
the model-simulated CO2 seasonal cycle, especially during
the early cold season at 10 km scale. Our results demonstrate
the critical role of snow cover affecting the seasonality of
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soil temperature and respiration and highlight the challenges
of incorporating these complex processes into future projec-
tions of the boreal–Arctic carbon cycle.

1 Introduction

Warming in the northern high latitudes (> 50◦ N) is occur-
ring at roughly twice the global rate and has trigged a se-
ries of changes in boreal and Arctic ecosystems, including
earlier and longer growing seasons, widespread soil thaw-
ing, and permafrost degradation (Jeganathan et al., 2014;
Liljedahl et al., 2016), with large impacts on the regional
carbon cycle (McGuire et al., 2016). Atmospheric CO2 ob-
servations indicate a strong increase in the seasonal ampli-
tude of the northern carbon cycle, which may reflect an en-
hancement of net carbon uptake during the growing season
or soil carbon emissions during the cold season in north-
ern ecosystems (Graven et al., 2013). However, there is a
lack of consensus on whether increased vegetation produc-
tivity or enhanced respiration drives such changes, due to
sparse in situ measurements and uncertainties in satellite re-
mote sensing retrievals and model simulations (Fisher et al.,
2014; Forkel et al., 2016; Parazoo et al., 2016; Wenzel et al.,
2016). For example, there is a large discrepancy in the contri-
bution of cold-season respiration to the annual carbon budget
in boreal–Arctic ecosystems (Zona et al., 2016; Euskirchen
et al., 2017; Natali et al., 2019a). In addition, potential re-
lease of a large amount of carbon currently sequestered in
perennially frozen soils in the northern high latitudes adds
additional uncertainty in assessing the response of boreal–
Arctic ecosystems to future climate change (Schuur et al.,
2015).

Pronounced changes have occurred in the northern high
latitudes, especially during the shoulder seasons. Satellite re-
mote sensing data sets over the past several decades indi-
cate reductions of 0.8–1.3 d decade−1 in the duration of the
annual frozen period in the northern high latitudes (Kim et
al., 2015) and ∼ 3–4 d decade−1 in the snow cover duration
across the Northern Hemisphere, mostly due to spring snow
cover reduction (Hori et al., 2017; Bormann et al., 2018).
Strong warming in both spring and fall has significantly re-
duced snow cover during the shoulder seasons; however,
there is large spatial variability across the region, partly due
to more variable snow cover conditions during fall and winter
(Brown and Derksen, 2013; Hori et al., 2017). Climate mod-
els project continued strong warming during the spring and
fall in the Arctic and increases in previously rare winter rain
events (Bintanja and Andry, 2017). How the boreal–Arctic
carbon cycle responds to such changes remains to be under-
stood.

Previous studies reported that the combination of warming
and a longer snow-free season has led to widespread green-
ing and enhanced vegetation productivity in the northern lat-

itudes, especially during the early growing season (Aurela et
al., 2004; Humphreys and Lafleur, 2011; Buermann et al.,
2013; Pulliainen et al., 2017). However, a detailed under-
standing of how soil respiration and other belowground pro-
cesses respond to climate variability, especially during the
cold season, remains elusive. Soil respiration is mainly the
product of respiration by roots (autotrophic) and soil decom-
posers (heterotrophic), while it is generally difficult to par-
tition soil respiration into the heterotrophic and autotrophic
components (Phillips et al., 2017). In this study, we focus
on the heterotrophic component of soil respiration and as-
sume it is the dominant component of total soil respiration
in northern ecosystems during the cold season due to root
dormancy (Tucker et al., 2014; Hicks Pries et al., 2015). Sur-
face warming and a longer snow-free season are associated
with earlier soil thawing and deeper active layer thickness
(ALT) in permafrost regions, which can result in enhanced
soil respiration and reduced annual net carbon uptake (Lund
et al., 2012; Yi et al., 2018). Moreover, ALT deepening in
permafrost regions will likely lead to a longer zero-curtain
period (i.e., soil temperature persists around 0 ◦C), especially
in the deeper active layer, which may even form talik and
further accelerate permafrost thawing (Connon et al., 2018;
Yi et al., 2019). These changes may promote even more soil
carbon losses, particularly during the cold season, reinforc-
ing a positive permafrost–carbon feedback (Parazoo et al.,
2018). On the other hand, the timing and magnitude of au-
tumn snowfall determine the onset and rate of soil freeze-
up, which affects soil microbial activity and soil respiration
during fall and early winter (Zona et al., 2016; Arndt et al.,
2019). A better understanding of how snow cover trends are
affecting soil respiration is needed to inform projections of
the potential response of the boreal–Arctic carbon cycle to
climate change.

Landscape-level processes can affect the amount and age
of soil carbon released to the atmosphere (Hobbie et al.,
2000). An important feature of boreal–Arctic landscapes is
strong surface heterogeneity, driven by relatively fine-scale
microtopographic variability of the order of 0.1–10 m (Zona
et al., 2011; Kumar et al., 2016; Grant et al., 2017a, b),
which can influence coarser landscape-level behavior. How-
ever, current large-scale models generally operate at scales
of 10–100 km and are too coarse to resolve finer-scale sur-
face heterogeneity and its influence on active layer dynam-
ics and soil carbon decomposition (Yi et al., 2015; Tao et
al., 2019). Satellite or airborne remote sensing can provide
information on land surface heterogeneity across large ex-
tents and may provide critical constraints on model predic-
tions of regional active layer changes, soil carbon, and per-
mafrost vulnerability. Therefore, the objective of this study
was to develop a process-based permafrost carbon model
mainly driven by satellite remote sensing data. The model
was designed at an intermediate scale (∼ 1 km) that is effi-
cient for regional runs but also able to bridge the gap between
very fine-scale (∼ tens of meters) ground measurements and
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large-scale (∼ tens of kilometers) Earth system simulations.
The model simulations were conducted over a multiyear pe-
riod (2001–2017) across Alaska to study how soil carbon
emissions and the seasonal carbon cycle are responding to
recent climate and snow cover trends.

2 Methods

2.1 Model description

The remote-sensing-driven permafrost model (RS-PM), de-
veloped by Yi et al. (2018, 2019), was coupled with a ter-
restrial carbon flux (TCF) model (Yi et al., 2015) to inves-
tigate the climate sensitivity of carbon fluxes across Alaska
(Fig. 1), with a particular focus on the shoulder season. The
soil decomposition model in the original TCF model was re-
vised in this study to account for vertical soil carbon transport
in order to better simulate the depth-dependent soil carbon
distribution and respiration fluxes. The RS-PM model simu-
lates soil temperature and changes in soil liquid water con-
tent due to soil freeze–thaw transitions along the soil profile,
using remote-sensing-based land surface temperature (LST),
snow cover information, and total soil moisture content as
key model forcing. The RS-PM outputs were then used as
inputs to the carbon model and as constraints on both the
vegetation productivity and soil respiration. A brief descrip-
tion of the modeling framework is described here, with a fo-
cus on the revised soil decomposition model, while a detailed
description on the RS-PM model is provided in the Supple-
ment.

The RS-PM follows the prototype of a detailed permafrost
hydrology model (Rawlins et al., 2013; Yi et al., 2015) but
has a flexible structure designed to use satellite remote sens-
ing data as the key model drivers and for model parameter-
ization. The RS-PM uses a numerical approach for simulat-
ing soil freeze/thaw (F/T) and temperature profiles down to
60 m below the surface, using 23 soil layers with increas-
ing layer thickness at depth. The model also accounts for
the effects of seasonal snow cover evolution, organic soil,
and soil water phase change on soil F/T processes. Satellite-
based LST and snow cover time series data were used as
model drivers. Soil thermal properties were parameterized
using soil moisture data from the Soil Moisture Active Pas-
sive (SMAP) Level 4 (L4) data assimilation system (Reichle
et al., 2017). RS-PM validation using in situ measurements
shows favorable model accuracy for ALT (mean R = 0.60;
bias – 1.58 cm, root mean square error (RMSE – 20.32 cm)
and zero-curtain period (mean R = 0.60; RMSE – 19 d) sim-
ulations, especially over the Alaskan North Slope (Yi et al.,
2018, 2019).

We coupled the RS-PM and TCF models to represent the
influence of permafrost active layer processes on net ecosys-
tem CO2 exchange (NEE) and its component carbon fluxes.
The TCF model uses a light use efficiency (LUE) algorithm

Figure 1. Flow diagram describing the modeling procedure and
main input data sets used in this study. The terrestrial carbon flux
model has two components, including the light use efficiency al-
gorithm for vegetation productivity estimates and a soil decompo-
sition model for soil heterotrophic respiration estimates. The main
equations used for each modeling component are referenced in the
appropriate modeling box.

driven by the satellite fraction of the vegetation canopy ab-
sorbed photosynthetically active radiation (FPAR) observa-
tions to calculate vegetation productivity and litterfall inputs
to a soil decomposition model as follows:

GPP= ε×FPAR×PAR (1)
ε = εmax× Tmn_scalar×SMmn_scalar, (2)

where GPP is the gross primary productivity (g C m−2 d−1),
ε (g C MJ−1) is the LUE coefficient converting canopy
absorbed photosynthetically active solar radiation (APAR;
MJ m−2 d−1) to biomass. The biome-specific maximum LUE
coefficient (εmax) was reduced for suboptimal temperature
and moisture conditions represented by the scalars Tmn_scalar
and SMmn_scalar to estimate ε. Moderate Resolution Imag-
ing Spectroradiometer (MODIS) nighttime LST and SMAP
L4 root zone (0–1 m depth) soil moisture records were used
to estimate these rate scalars using a simple linear ramp
functions (Yi et al., 2015). Vegetation net primary produc-
tivity (NPP) was estimated as a fixed portion of GPP for
each biome type based on an assumption of conservatism in
vegetation carbon use efficiency within similar plant func-
tional types. Annual litterfall was assumed to be equal to an-
nual NPP, without accounting for the impact of disturbance
events.

Our soil decomposition model uses multiple litter and soil
organic carbon (SOC) pools to characterize the progressive
decomposition of fresh litter to more recalcitrant materials,
which include three litterfall pools and three SOC pools, with
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relatively fast turnover rates, and a deep SOC pool, with slow
turnover rates (Thornton et al., 2002). The litterfall carbon in-
puts were first allocated to the three litterfall pools and then
transferred to the SOC pools through progressive decompo-
sition. In a previous study (Yi et al., 2015), the litterfall and
SOC pools were arbitrarily distributed at different soil depths
within the top 3 m of soils to account for depth-dependent
differences in litterfall and soil organic matter substrate qual-
ity. However, in this study we model the profile of the carbon
pools by introducing a vertical dimension (z) and account-
ing for the vertical carbon transport across the z dimension
(Elzein and Balesdent, 1995; Koven et al., 2013a) as follows:

∂Ci(z)

∂t
= Ri (z)+

n∑
j 6=i

(1− rj )Tjikj (z)Cj (z)

+
∂

∂z

(
D(z)

∂Ci

∂z

)
− kiCi(z), (3)

where Ri (g C m−3 d−1) is the carbon input from litterfall
allocated to pool i through the profile, and Tji is the frac-
tion of carbon directed from pool j to pool i with fraction
rj lost as respiration. ki(kj ) is the decomposition rate (d−1)
of carbon pool i(j), which was derived as the product of a
theoretical maximum rate constant and dimensionless mul-
tipliers for soil temperature and liquid water content con-
straints to decomposition, simulated by the RS-PM model.
The diffusivity D was used to account for vertical diffusive
soil C transport, while vertical C transport due to advec-
tion was ignored here. Constant D values were assigned to
permafrost (5.0 cm2 yr−1) and nonpermafrost (2.0 cm2 yr−1)
regions within the top 1 m of the soil and then linearly de-
creased to zero at 3 m below the surface (Koven et al., 2013a).
The boundary conditions at the soil surface were defined as
follows:

D
∂Ci

∂z
= Rs,i at z= 0, (4)

where Rs,i is the carbon input rate (g C m−3 d−1) to the three
surface litterfall pools. A zero flux was assigned at the bottom
of the soil carbon pool, which was set to 3 m depth.

2.2 Model inputs and parameterization

The main RS-PM inputs include LST, snow cover properties,
and soil moisture from global satellite and reanalysis data
products. LST and soil moisture records from the MODIS
8 d composite data set (MOD11A2; Wan and Hulley, 2015)
and SMAP L4 9 km daily surface (5 cm depth) and root zone
(0–1 m depth) products (L4SM, Reichle et al., 2017) were
used to define the model boundary conditions and parame-
terize soil thermal properties (Yi et al., 2018). MODIS 500 m
snow cover extent (SCE) data (MOD10A2; Hall and Riggs,
2016) were used to downscale snow depth and density data
from the Modern-Era Retrospective Analysis for Research

Figure 2. The Alaskan land cover map and the location of in situ
sites used for model validation. The land cover types are aggre-
gated from the 30 m NLCD map (Jin et al., 2013), while the fol-
lowing land cover classes were used in the model simulations: de-
veloped and barren land, forest, scrub/shrub, grassland/herbaceous,
croplands, and wetlands. The percentage of each land cover type is
provided alongside the color bar legend labels.

and Applications version 2 (MERRA-2) (∼ 0.5◦) global re-
analysis (Gelaro et al., 2017) to characterize subgrid variabil-
ity in snow distribution, as described in Yi et al. (2019). The
RS-PM model outputs include soil temperature and liquid
water fraction within the soil profile, which are the major in-
puts to the soil decomposition model. Other primary inputs to
the TCF model include MODIS normalized difference vege-
tation index (NDVI), nighttime LST, and MERRA-2 down-
ward solar radiation data. The NDVI data were used to esti-
mate FPAR using a biome-specific empirical relationship (Yi
et al., 2015). The nighttime LST and SMAP L4 root zone soil
moisture were used to estimate the environmental constraints
on LUE and GPP. All model input data sets were reprojected
into a 1 km resolution Albers projection and resampled to an
8 d time step consistent with the model simulations.

Other ancillary data sets included the 30 m National Land
Cover Database (NLCD) 2011 (Jin et al., 2013), 50 m SOC
estimates for Alaska (to 1 m depth; Mishra et al., 2017), and
the global 9 km mineral soil texture data developed for the
SMAP L4SM algorithm (De Lannoy et al., 2014). The domi-
nant NLCD land cover type within each 1 km pixel was used
to define the modeling domain, with open water and peren-
nial ice and snow areas excluded (Fig. 2). The SOC inventory
data were used to define the organic fraction of the top 10
model soil layers (∼ 1.05 m depth), which was used to adjust
the soil properties of each soil layer based on the weighted
mineral and organic soil components. More details on the
data processing and soil parameterization can be found in Yi
et al. (2018, 2019).

A dynamic litterfall allocation scheme, based on the satel-
lite NDVI time series, was used in Yi et al. (2015) to ac-
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count for litterfall seasonality. We revised this scheme for
the present study to incorporate a vertical distribution of
root turnover, which is required by the soil decomposition
model. The total litterfall was partitioned into aboveground
(leaves and woody components) and belowground (mostly
fine roots) litterfall using prescribed ratios for each biome
type (Table S1 in the Supplement). A constant turnover rate
for each 8 d composite period was assigned to the woody
components of litterfall. The turnover rates of the other com-
ponents of litterfall, i.e., leaves and fine roots, were calcu-
lated based on the annual time series of MODIS NDVI, with
more litterfall generally allocated during the latter half of
the year. The belowground litterfall was distributed through
the rooting depth based on a vertical root distribution pro-
file (Jackson et al., 1996). The maximum root depth in per-
mafrost areas was limited to the maximum thaw depth. Then,
the total litterfall at each depth was first allocated to the three
litterfall pools according to the substrate quality of each lit-
terfall component, i.e., labile, cellulose, and lignin fractions,
and then transferred to the SOC pools through progressive
decomposition. Table S1 provides the main parameters of the
TCF model for each biome type, which were largely consis-
tent with the prior study (Yi et al., 2015).

2.3 In situ data and model validation

We used four Alaska eddy covariance (EC) tower sites with
multilayer soil temperature or moisture measurements to
evaluate the simulated carbon fluxes and temperature sensi-
tivity of ecosystem respiration. Table 1 lists the relevant site
characteristics. The Atqasuk site (US-Atq) is about 100 km
south of Utqiaġvik on the Alaskan North Slope and consists
of a mixture of tussock tundra and shrubs with some sedges
and sandy soils (Davidson et al., 2016; Arndt et al., 2019).
The Ivotuk site (US-Ivo) is about 300 km south of Utqiaġvik
in the northern foothills of the Brooks Range and is char-
acterized as a mixed tussock tundra/moss composition on a
gentle slope (Arndt et al., 2019). Soil temperature measure-
ments were available at 5, 15, and 30 cm at US-Atq and 5,
15, 30, and 40 cm at US-Ivo, with full annual cycles recorded
in 2014 and 2015. The two boreal forests sites (US-Prr and
US-Uaf) are located near Fairbanks, Alaska, and dominated
by mature black spruce forest (Ueyama et al., 2014; Ikawa
et al., 2015). The leaf area index is ∼ 0.73 at US-Prr and
1.9 at US-Uaf, respectively. Understory vegetation is dom-
inated by peat moss and feather moss. The US-Uaf is lo-
cated in ice-rich permafrost, and the soil is silt-loam overlain
by a 25–45 cm organic layer. Measurement records longer
than 7 years were available at both forest sites; however, soil
temperature measurements at the two sites show some drift
throughout the period, while soil moisture measurements are
more consistent. Therefore, for the boreal sites, we used
the relationship between ecosystem response and the zero-
curtain period calculated from the soil moisture measure-
ments to evaluate the temperature response of cold-season

respiration. The zero-curtain period was defined as the differ-
ence between surface freeze-up and the soil freeze-up dates,
where soil freeze-up was defined as the date on which the soil
liquid water content dropped below 15 %–20 % of the annual
amplitude after surface freeze-up (Yi et al., 2019).

We used two regional data sets to evaluate the model
performance during the cold season. Daily snow depth and
soil temperature measurements at SNOwpack TELemetry
(SNOTEL) sites across Alaska (http://www.wcc.nrcs.usda.
gov, last access: 3 January 2020) were used to evaluate the
model’s skill in representing snow insulation effects dur-
ing the cold season, using a snow and heat transfer metric
(SHTM) defined in Slater et al. (2017), which was based
on the deviation of a model-simulated snow insulation curve
from observations. The snow insulation curve can be char-
acterized as an exponential relationship of attenuated soil
temperature amplitude with increasing snow depth in which
snow insulation influence diminishes beyond a certain depth
as follows:

Anorm = P +Q(1− e−(Sdepth,eff/R)), (5)

where Anorm is the normalized temperature amplitude dif-
ference between air temperature and soil temperature, rang-
ing from 0 to 1. The effective snow depth Sdepth,eff describes
the snow insulation impact and is the integrated monthly
snow depth from October to March weighted by its duration.
P and Q are empirical parameters, and R is the effective
damping soil depth, which can be determined using a data-
fitting method. We chose to evaluate the modeled snow in-
sulation effects using the SHTM metric, rather than directly
comparing the modeled and observed soil temperatures. This
approach minimizes the influence of potentially large dif-
ferences between the relatively coarse (∼ 1 km resolution)
model input data and the local site observations, particularly
for SNOTEL sites located in mountainous terrain.

We used the Natali et al. (2019b) in situ winter soil CO2
flux data set to evaluate our simulated temperature sensitivity
of cold-season respiration. The CO2 flux measurements were
collected from previous studies using a variety of methods
(e.g., chamber and EC tower), and reported as the daily aver-
age over the monthly or seasonal interval when monthly data
were not available. This data set represents CO2 emissions
from belowground ecosystems, including respiration contri-
butions from both autotrophic (from roots) and heterotrophic
components. In this study, we compared the model-simulated
soil heterotrophic respiration directly with the measured soil
CO2 flux since the model assumes the autotrophic respiration
(as a portion of GPP) is very low throughout the cold season,
especially for tundra (Tucker et al., 2014; Hicks Pries et al.,
2015). Soil temperature measurements were also provided in
the data set at varying depths. Soil temperature data at 10 cm
depth were collected if available; otherwise, surface soil tem-
perature reported in the studies were collected. The data set
contains 366 data records at tundra sites and 174 data records
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Table 1. Characteristics of the eddy covariance tower sites used for model validation. Note: Tsoil – soil temperature; SM – soil moisture.

US-Atqa US-Ivoa US-Uafb US-Prrc

Location 70.4696◦ N, 157.4089◦W 68.4805◦ N, 155.7568◦W 64.8663◦ N, 147.8555◦W 65.1237◦ N, 147.4876◦W
Mean Tair (◦C) −9.4 −8.3 −2.9 −2.0
Annual P (mm) 93 304 263 275
Vegetation Tussock tundra Tussock tundra Black spruce forest Black spruce forest
Permafrost Yes Yes Yes Yes
Observation period 2014–2016 2013–2016 2008–2017 2011–2016
Tsoil measurement depths (cm) 5, 15, and 30 cm 5, 15, 30, and 40 cm 10, 20, 50, 80, and 125 cm∗ 5, 10, 20, 30, 40, and 100 cm*
SM measurement depths (cm) 5, 15, and 30 cm 5, 15, and 30 cm 5, 15, and 25 cm 5, 10, 20, 30, and 40 cm

∗ Data were not consistent throughout the observational period. Site references: a Davidson et al. (2016) and Arndt et al. (2019), b Ueyama et al. (2014), and c Ikawa et al. (2015).

at boreal forest sites across Alaska from October to April dur-
ing the study period (2001–2017). However, most of the data
records were collected from the same sites, with 17 tundra
sites and 16 boreal forest sites in total (Fig. 2). For the tundra
sites, modeled ecosystem respiration and NEE from October
to April are quite similar due to negligible GPP. For the bo-
real sites, simulated NEE can be very small or even negative
(net sink) when soil temperatures approach 0 ◦C. We chose
simulated ecosystem respiration and soil temperature values
at the center of layer 3 (∼ 8 cm) as a representative depth
and aggregated these model outputs to monthly or seasonal
averages for comparison with the observation data set.

For all of the site comparisons, the model was run using
the 1 km spatial input data sets described in Sect. 2.2, and the
model outputs from the 1 km grid cell encompassing each
validation site were extracted. For the winter flux compari-
son, 1 km grid cells with biome types inconsistent with the
local in situ sites were removed prior to the comparison.

2.4 Model analysis

The permafrost carbon model was run at 1 km resolution and
8 d time step from 2001 to 2017. The model domain en-
compassed the majority of the Alaska land area (∼ 1.21×
106 km2). The model was initialized using a two-step spin-
up process prior to the transient simulations. The model was
first spun up using satellite-based LST, snow depth, and soil
moisture data for 50 years to bring soil temperatures in the
top∼ 3 m into dynamic equilibrium. The model was then run
using the same meteorology inputs, simulated soil tempera-
ture, and liquid water content fields over several thousands of
years to bring the soil carbon pools (0–3 m) into equilibrium.
Due to an incomplete MODIS record in the year 2000, the
year 2001 was used for the spin-up period. The permafrost
mode simulation is sensitive to the choice of spin-up year.
However, our analysis focused on the interannual variabil-
ity in the model simulations and the associated model sen-
sitivity to environmental factors, which were less affected
by the choice of spin-up year. In order to examine the im-
pact of model resolution on the simulated ecosystem car-
bon fluxes, another set of model simulation was conducted at
10 km resolution, and the statistical distribution of the model-

simulated carbon fluxes was compared between the two sim-
ulations. For the 10 km runs, all model input meteorology
data sets were aggregated to the coarser resolution, and the
dominant land cover type within each 10 km grid cell was
used.

Correlation analysis was used to examine the sensitivity of
soil freeze-up and carbon fluxes to snow cover changes and
other environmental variables across Alaska. We first calcu-
lated the onset of land surface freeze based on the MODIS
LST data, which was defined as the center date of the 8 d
period at which the mean LST during three consecutive 8 d
periods dropped below 0 ◦C. Soil-freezing onset for each soil
layer was then determined when the simulated soil tempera-
ture dropped below −0.35 ◦C and after land surface freez-
ing; this temperature threshold corresponds to ∼ 15 %–20 %
liquid water content in the model simulations at an Arctic
Alaskan site (Yi et al., 2019). The soil-freezing delay at each
layer was defined as the duration between land surface freeze
onset and freeze onset of the given soil layer. In permafrost
areas, this was also the duration of the zero-curtain period.
Unfrozen conditions in the deep active layer may persist well
into the cold season and even into January, causing a tempo-
ral lag in soil-freezing onset at these depths that may extend
into the following calendar year. Since the model was only
run from 2001 to 2017, the soil-freezing onset delay in the
year 2017 was not calculated. The number of snow-free days
after the land surface temperature drops below 0 ◦C will af-
fect how fast and deep the soil freezes (Bjerke et al., 2015).
Therefore, we calculated the number of snow-free days after
the land surface freeze onset (defined as the difference be-
tween the snow onset and land surface freeze onset) and ana-
lyzed its correlation with the above soil-freezing indices. The
timing of the snow onset after the summer snow-free period
was defined as the center date of the 8 d composite period
when both the snow depth for this period and the mean snow
depth within the 24 d moving window was greater than 5 cm.

Finally, we used the gradient boosting regression (GBR)
method to quantify the contribution of selected environmen-
tal variables to the annual carbon fluxes. The GBR method
consists of a sequence of models, and each consecutive
model is developed based on the errors of previously added
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models (Friedman et al., 2000). The above model-simulated
annual carbon fluxes from 2002 to 2017 were used to train
and evaluate the GBR models. We chose the following nine
contributing environmental factors or predictors of annual
carbon fluxes during the model fitting, including summer
(June–August) NDVI, annual freezing and thawing index,
mean annual downward solar radiation, root zone soil mois-
ture during the thaw season, snow offset and onset, mean
snow depth averaged from January to March (represent-
ing annual maximum snow depth), and snow depth during
the early snow season (from October to November). The
GBR method was implemented using the sklearn package in
Python 2.7. The following method was used to determine the
relative importance of each predictor to the model predictive
performance. We first ran the model using all nine predictors,
and the model results were referred to as the baseline simula-
tion (GBRbaseline). We then ran the fitted model successively
with one randomized variable and the other variables intact,
with the model outputs denoted as GBRone_variable_randomized.
The reduction in the Pearson’s correlation coefficient be-
tween the two model runs was used to quantify the rela-
tive importance of each variable, computed as follows (Kar-
jalainen et al., 2019; Zheng et al., 2020):

Ix = 1− corr(GBRbaseline−GBRone_variable_randomized)

RIx =
Ix∑

x=1,9
Ix

, (6)

where Ix represents the reduction in the correlation coeffi-
cient of the model runs with the variable x randomized, and
RIx is the relative importance value of variable x.

3 Results

3.1 Model validation

Previous studies have evaluated the performance of the RS-
PM model in reproducing regional ALT patterns over the
Alaskan domain (Yi et al., 2018) and the zero-curtain period
in Arctic Alaska (Yi et al., 2019). Here we focus on assess-
ing the model’s capability of representing snow insulation
effects and ecosystem carbon fluxes, particularly during the
cold season.

3.1.1 Model representation of snow insulation effects

The relationship between the normalized temperature ampli-
tude difference between surface air and 20 cm depth soil con-
ditions (Anorm), and the effective mean snow depth (Sdepth,eff)
derived from the SNOTEL observations and model sim-
ulations is shown in Fig. 3. Both the model simulations
and in situ data indicate an increase in the snow insula-
tion effect with increasing snow depth until Sdepth,eff reaches
approximately 0.3 m; this relationship is also significantly

Figure 3. Comparison of the snow insulation curve derived from
in situ measurements and model simulations at the Alaskan SNO-
TEL sites. The dark line is drawn using the following parame-
ters presented in Slate et al. (2017): Anorm = 0.1875+ 0.5× (1−
e−(Sdepth,eff/0.0941)). Observations have fewer data points due to
data gaps in the observed snow depth and soil temperatures at the
SNOTEL sites.

(p < 0.1) correlated with the fitted curve derived from Slater
et al. (2017; observations – R = 0.56; model – R = 0.48).
Using an interval of 0.01 m for Sdepth,eff below 0.3 m, the
RS-PM model’s snow and heat metric was 0.85, indicat-
ing good performance. Similar performance was found using
5 cm depth soil temperatures. However, relatively few data
points were available with Sdepth,eff lower than 0.2 m; the bi-
ases toward deeper Sdepth,eff conditions were attributed to the
model snow depth inputs. MERRA-2 generally shows earlier
snow accumulation compared with the MODIS SCE data,
which leads to model overestimation of Sdepth,eff (Fig. S1 in
the Supplement). During the downscaling process, the snow
depth during the early period was reassigned as zero when
the MODIS SCE record indicated no snow conditions, which
may also contribute to a higher value of Sdepth,eff.

3.1.2 Model-simulated carbon fluxes and temperature
sensitivity

The model simulations showed overall favorable agreement
with tower-based 8 d composite carbon fluxes at the two
tundra sites (Fig. 4), including strong correlation (R > 0.8,
p < 0.1), minimal mean bias (0.065 g C m−2 d−1 for US-
Ivo and −0.015 g C m−2 d−1 for US-Atq), and low RMSE
(0.39 g C m−2 d−1 for US-Atq and 0.29 g C m−2 d−1 for
US-Ivo) differences. However, the model showed an ap-
parent overestimation of GPP at the US-Ivo site (bias –
0.18 gC m−2 d−1; RMSE – 0.71 g C m−2 d−1). Here the ag-
gregated land cover map indicated shrub/scrub vegetation at
this site, while in situ surveys show a mixture of tussock
sedge, dwarf shrub, and moss communities (Davidson et al.,
2016). Alternative model simulations for the site using the
less productive tundra land cover type markedly reduced the
resulting model GPP discrepancy (bias –−0.01 g C m−2 d−1;
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RMSE – 0.42 g C m−2 d−1). The model-simulated GPP
at US-Atq showed no apparent bias compared with the
tower measurements (bias – −0.04 g C m−2 d−1, RMSE –
0.34 g C m−2 d−1).

At both sites, abrupt decreases in the model-simulated
GPP and the net carbon uptake occur during the peak grow-
ing season (Fig. 4a, c), which was mainly due to imposed
low-minimum temperatures and associated LUE reductions
defined by the MODIS nighttime LST observations. The
largest GPP reductions during the peak season were gen-
erally caused by very low nighttime LST, which may have
large uncertainties in cloudy sky conditions. In addition,
there is also large uncertainty imposed from the NEE par-
titioning method, with different methods resulting in large
differences (up to more than 1 g C m−2 d−1) in the tower-
based GPP and Reco estimates. Both the model simulations
and tower observations indicate a significant nonzero carbon
flux during early cold season. The model-simulated Reco also
shows overall similar sensitivity to surface soil temperature
(Tsoil) as the tower data, including a large decrease in res-
piration when surface soil temperatures drop below −2 ◦C
(Figs. 4b and S2). However, the tower-based data indicate a
large amount of scatter in the Reco−Tsoil relationship for Tsoil
above 0 ◦C, depending on the partitioning method.

The model-simulated soil temperatures showed overall
good correspondence with the in situ measurements over
the soil profile (R > 0.9 and RMSE < 2 ◦C; Figs. S3 and
S4). Both the tower-based and model-simulated soil temper-
ature profiles show a consistent pattern of soil warming over
the growing season, followed by gradual freezing with cold-
season onset; however, the soil temperature of the middle and
bottom active layer can stay near 0 ◦C through December.
The model-simulated soil respiration density profile largely
follows soil temperature, with respiration peaks during mid-
summer, followed by gradual diminishment with active-layer
freeze-up.

The model-simulated carbon fluxes were also compara-
ble to the in situ data at the two boreal forest sites (Figs. 5
and S5). The model showed a slight underestimation of GPP
and the relationship between ecosystem respiration (Reco)
at the US-Uaf site, with a respective mean bias of −0.32
and −0.34 g C m−2 d−1. The model showed a slightly lower
positive bias in GPP and Reco at the US-Prr site, averag-
ing 0.16 and 0.06 g C m−2 d−1. At both sites, no obvious bias
was observed in model-simulated NEE during the growing-
season despite the model’s assumption of dynamic equilib-
rium in the estimated carbon pools at these two mature for-
est sites. A much stronger decrease in ecosystem respiration,
when the surface soil temperature drops below 0 ◦C, was ob-
served at the US-Prr site relative to the US-Uaf site (Fig. S6),
which may partially reflect soil temperature measurement
uncertainty (Sect. 2.3). Significant respiration fluxes were
observed at the US-Uaf site when soil temperatures were less
than 0 ◦C and even below −10 ◦C. At the US-Uaf site, the
in situ data indicate a linear increase in the total respiration

fluxes, with a longer zero-curtain duration during this pe-
riod (Fig. 5c, n= 10, R = 0.6, p < 0.1). The model simula-
tions for this site indicate a similar Reco relationship with the
zero curtain but with a much shorter estimated zero-curtain
period. The apparent model discrepancy was attributed to
a lower SMAP-L4SM-derived mean annual soil saturation
level at two boreal forest sites (∼ 45 %–50 %), while the in
situ measurements indicate much higher saturation (> 80 %)
in the deep soils. We were unable to conduct a similar analy-
sis at the US-Prr site due to the relatively short measurement
record for this site compared with the US-Uaf site.

The model-simulated ecosystem respiration showed a
broadly similar response to surface soil temperature during
the cold season (October to April) relative to the in situ
winter flux synthesis data from the larger Alaskan domain
(Fig. 6). The temperature sensitivity of the winter flux shown
here is generally similar to the temperature sensitivity curve
at the two tundra sites (Figs. 4b and S2) when ecosystem
respiration mainly consists of soil respiration. The model in-
dicates a rapid decrease in soil respiration as soil tempera-
ture and unfrozen water content decrease. The in situ data
collected using chambers and the diffusion method show a
similar response pattern to the model; however, the EC data
show large scattering in the respiration temperature response
and evidence of large winter carbon fluxes when surface soil
temperatures drop below −5 ◦C, especially from the open-
path EC measurements (Fig. S7). At the tundra sites, model
simulations showed a higher correlation with observations
excluding the EC-open path measurements (R = 0.49) than
those using all available measurements (R = 0.32). The syn-
thesis data set does not include any Alaskan boreal forest
sites using EC-closed path measurements, and all available
measurements were used in the analysis. Here, the in situ data
indicate a more consistent winter carbon flux temperature re-
sponse among different measurement methods, which was
moderately correlated (R = 0.44) with the model-simulated
carbon flux. The model-estimated soil temperature was also
significantly correlated with the surface soil temperature re-
ported for both tundra sites (R = 0.59, p < 0.01) and the
two boreal forest sites (R = 0.51, p < 0.01). However, the
model-simulated soil temperatures showed a warm bias of
1.6 ◦C at the tundra sites and a cold bias of 2.3 ◦C at the bo-
real forest sites.

3.2 Spatial pattern and temporal trends of carbon
fluxes

3.2.1 Annual carbon fluxes

The seasonal cycle of model-simulated carbon fluxes and the
soil heterotrophic respiration (Rh) from different soil depths
averaged across Alaska and within different permafrost re-
gions is shown in Fig. 7. The model simulations indicate that
both GPP and Rh peak in July, while Rh persists well into
the cold season. There is a notable difference in the timing
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Figure 4. Model-simulated carbon fluxes and temperature sensitivity of ecosystem respiration at two tundra sites (US-Ivo and US-Atq).
“GPP1 obs” and “GPP2 obs” represent the gross primary productivity (GPP) estimates derived using tower-based net ecosystem CO2 ex-
change (NEE) measurements and different partitioning methods provided by the tower PI, similar to “Reco1 obs” and “Reco2 obs”. At the
US-Ivo site, two GPP simulations were conducted using different maximum light use efficiency (LUE) parameters representing two differ-
ent vegetation types (shrub and grassland tundra), indicated as “GPP (shrub)” and “GPP (tundra)” in (a). Comparisons between model and
tower-based NEE fluxes at the two sites are shown in (d).

of the Rh seasonal peak from different soil depths, with a
longer temporal lag for deeper soil layers. Figure 7c com-
pares the seasonality of the Rh fraction from different soil
depths, averaged for regions with different permafrost proba-
bility, using an ancillary permafrost map (Pastick et al., 2015;
Fig. S8). Southern Alaska has relatively low permafrost prob-
ability (≤ 33 %), where the upper (0–13 cm) soil layer shows
an earlier seasonal onset and peak in respiration relative to
deeper soil layers. The surface soil contribution to Rh grad-
ually decreases after the seasonal peak in May as deeper soil
layers progressively warm. As the surface starts to freeze
in September, Rh from deeper (> 13 cm depth) soil layers
provides the major contribution to total soil respiration dur-
ing the cold season (October–March). Other areas in Alaska
show a similar pattern but with ∼ 1-month delay in the sea-
sonal peak of the surface Rh contribution in the colder per-
mafrost region (permafrost probability > 67 %), compared
with the more southern areas.

Across Alaska, annual GPP from 2001 to 2017 shows
overall positive productivity trends mostly in western Alaska
and the interior of Alaska (Fig. 8a), with 66.8 % of areas
showing positive trends and 32.9 % of areas showing neg-
ative trends. However, only a very small portion of the ar-
eas show significant (p < 0.1) productivity trends. The pos-
itive GPP trends are mostly explained by increasing vegeta-

tion growth and a longer growing season, indicated by the
MODIS SCE and NDVI records (Fig. S9). Areas with nega-
tive GPP trends mainly occur in southern Alaska and the inte-
rior of Alaska. The areas in the interior of Alaska with nega-
tive GPP trends also show negative trends in growing-season
NDVI and are likely associated with fire-induced vegetation
loss (Ju and Masek, 2016). Compared with GPP, Rh shows
more extensive enhancement across the region, with 88.4 %
(11.5 %) of areas showing increasing (decreasing) respira-
tion trends (Fig. 8b). Correspondingly, areas with strong a
increase in ecosystem respiration but moderate or nonsignifi-
cant increase in GPP show decreases in net ecosystem car-
bon uptake (i.e., positive NEE trends), such as the North
Slope and portions of southern Alaska, while much of the
Alaskan interior shows increasing net carbon uptake (i.e.,
negative NEE trends) due to the generally stronger increase
in GPP relative to respiration (Fig. 8c). Overall, approxi-
mately 63.1 % (36.9 %) of the Alaska domain showed de-
creasing (increasing) trends in net ecosystem carbon seques-
tration. However, only a very small portion of the land area
shows significant (p < 0.1) trends, with only 6.1 % (2.1 %)
of areas having significant positive (negative) NEE trends.
At the regional scale, the time series of estimated annual car-
bon fluxes showed nonsignificant (p > 0.1) positive trends
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Figure 5. Comparisons of model-simulated carbon fluxes with tower-based estimates (a, b), and the relations of total NEE fluxes to the zero-
curtain duration at 25 cm soil depth (c). There was a significant correlation (R = 0.6, p < 0.1) between the zero-curtain period derived from
in situ soil moisture data and the total NEE fluxes during this period. The terms “model_1” and “model_2” indicate the model simulations
using different soil saturation levels, with “model_2” using a slightly higher (120 %) saturation level than “model_1”.

Figure 6. Effects of soil temperature on CO2 fluxes during the cold season over Alaskan tundra (a) and boreal forest (b) sites indicated by
model simulations (this study) and in situ observations from a winter flux synthesis data set (Natali et al., 2019b). The terms “ch&ch_snow”,
“diff”, “ECC”, and “ECO” represent measurements made using chambers and chambers placed atop the snowpack, diffusion, EC-closed
path, and EC-open path methods, respectively. The error bars indicate the standard deviations of model simulations using different values
(0.35–0.9) for the dimensionless parameter characterizing the unfrozen water curve for most soil types (Schaefer and Jafarov, 2016).
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Figure 7. Regional mean of model-simulated carbon fluxes (a),
Rh fluxes from different soil depths (b) averaged across Alaska,
and Rh contribution from different soil depths to total Rh averaged
across two regions with different permafrost probability (c). In (c),
solid and dashed lines represent the mean values averaged across
areas with permafrost probability from 0 % to 33 % and 67 % to
100 %, respectively. Gray shading denotes the standard deviation of
monthly mean fluxes from 2001 to 2017.

of 2.58, 1.86, and 0.38 Tg C yr−1 for respective GPP, Rh, and
NEE fluxes (Fig. S10).

The attribution analysis results using the GBR method
confirmed that NDVI and the annual thawing index are the
two most important variables affecting the estimated annual
carbon fluxes, which was generally consistent across differ-
ent vegetation types (Fig. 9). For annual GPP flux, NDVI was
the most important variable, followed by the annual thaw-
ing index and downward solar radiation, while, for annual
Rh fluxes, the annual thawing index was the most important
variable, followed by NDVI, with other variables playing a
very minor role. Despite the importance of the annual thaw-
ing index in controlling annual GPP and Rh fluxes, the snow
offset showed little importance to both fluxes. This was likely
due to the low temporal resolution of the MODIS snow cover
data (i.e., 8 d composite) used to calculate the snow offset,

which was calculated as the center date of the 8 d composite
period. The low temporal resolution of the snow offset and
a strong correlation (R > 0.7, p < 0.1) between the annual
thawing index and snow offset may limit its use in the regres-
sion model. As for annual NEE flux, NDVI, downward solar
radiation, and the annual freezing index are among the most
important factors. However, the effects of different variables
on annual NEE flux varied throughout the period, due to their
compensating effects on GPP and Rh fluxes and NEE be-
ing a small residual of these two larger carbon fluxes; there-
fore, none of the variables played a dominant role throughout
the entire period. In addition, the GBR model also showed
generally poor performance in predicting annual NEE fluxes
(R ≥ 0.7) compared with the other two fluxes (R > 0.9).

3.2.2 Growing-season carbon fluxes

The model-simulated growing-season Rh shows overall pos-
itive trends during the study period, while the contribution of
surface (≤ 13 cm) soils to total Rh shows opposite trends dur-
ing the snow-melting period (April to May) and the summer
season (June to August; Fig. 10). During the snow-melting
period, the Rh trend pattern is similar to GPP, while the sur-
face soil Rh fraction shows large positive trends in western
Alaska and the North Slope. The MODIS LST record during
this period shows a general surface-warming trend in west-
ern and interior Alaska during April and across the North
Slope from May to June, which contributes to an advance in
seasonal snowmelt in those areas (Fig. S11) and surface soil
warming. From June to August, the MODIS LST data show
mixed trends in interior Alaska and overall cooling trends in
southern and southwestern Alaska, which contribute to the
negative model GPP trends in those areas. However, Rh still
shows extensive positive trends across Alaska, likely due to
increasing trends in the deep soil (> 13 cm) respiration con-
tribution discussed below. Correspondingly, NEE shows neg-
ative trends (i.e., increasing net carbon uptake) in interior and
southern Alaska from April to May but overall positive trends
(decreasing net carbon uptake) across Alaska from June to
August (Fig. S12a, b).

The timing of snow offset or surface thaw onset shows the
highest correlation with the surface soil Rh fraction during
the growing season but with opposing respiration responses
during the early (April–May; R =−0.55) and peak (June–
August; R ≥ 0.58) growing season (Table 2). The snow off-
set and spring thaw onset are highly correlated as both are
mainly controlled by surface temperature (Fig. S11). Corre-
lation analysis (Fig. S13) indicates that the Rh fraction from
surface soils is more closely correlated with monthly LST
in April and May in areas with low permafrost probability
(≤ 33 %) and with LST in May and June in areas with high
permafrost probability (> 67 %). These periods correspond
to the active snowmelt period in each region, with the mean
snow offset day of year (DOY) of ∼ 136.0± 14.4 in areas
with low permafrost probability and ∼DOY 148.8± 8.9 in
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Figure 8. Temporal trends of model-estimated annual carbon fluxes from 2001 to 2017. For NEE, positive trends indicate decreasing net
carbon uptake activity, while negative trends indicate enhanced net ecosystem carbon uptake.

Figure 9. Mean relative importance values of selected environmental variables in controlling model-estimated annual carbon fluxes in
Alaska (in which (a) GPP, (b) Rh, and (c) NEE are shown). The importance values were averaged for four major vegetation types (forest,
shrub, herbaceous, and wetlands; Fig. 2), and the error bar represents their standard deviation across the different vegetation types. The
nine environmental variables are summer (June–August) normalized difference vegetation index (NDVI), the annual thawing and freezing
indexes, snow offset and onset, mean snow depth averaged from January to March (representing annual maximum snow depth), snow depth
averaged during the early snow season (from October to November), mean annual downward solar radiation, and root zone soil moisture
during the thaw season. The annual thawing and freezing indexes represent the sum of MODIS land surface temperature (LST) above 0 ◦C
and below 0 ◦C throughout the year, respectively.

more continuous permafrost areas. Changes in the contribu-
tion of surface soils to total Rh between the early and peak
growing season can be explained by a slower warming rate
in deeper soils. Earlier snowmelt and reduced spring snow
cover can significantly increase the thermal loading into the
ground with the progressive warming of underlying soils.
This can partly explain the low correlation between sum-
mer (June–August) LST and the Rh contribution from sur-
face soils for the same period.

3.2.3 Cold-season carbon fluxes

Total Rh during the early cold season, from September to
November, shows overall positive trends from 2001 to 2017,
except for portions of interior and southwestern Alaska,
while the Rh contribution from surface (≤ 13 cm) soils
(hereby denoted as the Rh fraction) shows a similar trend

pattern to that of total Rh (Fig. 11). The Rh trend pat-
tern is largely explained by regional trends in the number
of snow-free days after the land surface freezes (i.e., snow
onset–surface freeze onset; Fig. 11c), which shows the high-
est correlation with both Rh and the surface soil Rh frac-
tion (Table 3; Rh – mean R =−0.48; Rh fraction – mean
R =−0.46) among all environmental variables examined.
The number of snow-free days after the land surface freeze
onset shows large positive trends in southwestern Alaska and
portions of southern Alaska, while negative trends mostly
occur in northern Alaska. Both total Rh and the Rh frac-
tion of surface soils generally increase with delayed sur-
face freeze onset but decrease with delayed snow onset, al-
though the correlation is relatively weak (Table 3). Among
the monthly snow depth data, Rh and Rh fraction show the
highest correlation with snow depth during the early snow
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Figure 10. Temporal trends of model-estimated total Rh, GPP, and surface soil contribution to Rh (Rh fraction) during the early and peak
growing season from 2001 to 2017. In (c), large areas in the Alaskan North Slope were masked out (in white) due to negligible total Rh
fluxes in April.

Table 2. Regional mean correlation coefficient between the environmental variables and estimated Rh fraction of surface (0–13 cm) soils
during the growing season from 2001 to 2017. Unless indicated, the variables were calculated during the same period as the Rh fraction. The
thaw onset was derived from MODIS LST data, and the snow offset was derived from Modern-Era Retrospective analysis for Research and
Applications, version 2 (MERRA-2), downscaled snow depth data.

Period Thaw onset Snow offset GPP LST

Rh fraction (April–May) −0.55 −0.55 0.40 0.48
Rh fraction (June–August) 0.66 0.58 −0.24 (−0.43∗) −0.26

∗ Indicates GPP from April to August.

season (September–October), which supports a close corre-
lation between snow accumulation and soil respiration.

The spatial pattern in the soil respiration trends during
the early cold season can be explained by the temporal lag
(days) between the onset of surface freezing and freezing
in deeper (23 cm) soil layers, i.e., the soil-freezing delay or
the duration of the zero-curtain period in areas with per-
mafrost occurrence (Fig. 12). The model simulations show
an advance of ∼ 0.78 d yr−1 (p < 0.1) in the regional mean
soil-freezing delay at 23 cm, averaged across Alaska from
2001 to 2016, which is mainly driven by a delay in autumn
snow cover onset (Fig. S11d–f). However, large variations
in the timing and depth of autumn snow accumulation con-
tribute to large interannual variability in the soil-freezing de-
lay (Fig. 12c). The model-simulated soil-freezing delay in-
creases with soil depth, and the soil-freezing delay at dif-

ferent soil depths is generally highly correlated. Soil wa-
ter content is one of the major factors affecting the soil-
freezing delay, which explains why northern and southern
Alaska show a longer delay in soil freezing than relatively
drier soil regions in interior Alaska, indicated by the SMAP
L4 SM record (not shown). The trends of the soil-freezing
delay at 23 cm depth are largely determined by the number
of snow-free days after land surface freeze onset (regional
mean R =−0.46± 0.26), with ∼ 72 % of areas showing a
significant (p < 0.1) correlation. Earlier snow onset over the
Alaskan North Slope corresponds to an overall longer delay
in soil freezing (i.e., longer zero-curtain duration), consistent
with a previous study (Yi et al., 2019), while southwestern
Alaska shows an overall shorter soil-freezing delay due to
later snow onset (Fig. S11e–f). The soil-freezing delay at the
23 cm depth was also closely related to the snow depth dur-
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Figure 11. Regional trends of total Rh (a) and its surface soil contribution (b) during the early cold season (September–November) versus
regional trends of the number of snow-free days after the land surface freezes (c), which was defined as the difference between snow onset
and surface freeze onset.

Table 3. Regional mean correlation coefficient between the environmental variables and estimated surface (0–13 cm) soil contribution to
total Rh during the early cold season (September to November). Unless indicated, the variables were calculated during the same period as
the Rh fraction.

GPP LST SNOD Freeze onset Snow onset Snow onset–freeze onset

Total Rh 0.33 (0.27a) 0.15 0.24b 0.36 −0.22 −0.48
Rh fraction (0–13 cm) 0.13 (−0.10a) 0.01 0.22b 0.33 −0.21 −0.46

a GPP from April to November. b Snow depth (SNOD) from September to October shows strongest correlation with the Rh and Rh fraction.

ing early snow season from September to October (regional
mean R = 0.58±0.21), with ∼ 85 % of areas showing a sig-
nificant (p < 0.1) correlation.

3.2.4 Impact of model resolution on the CO2 seasonal
cycle

Comparisons of the statistical distribution of model-
simulated carbon fluxes at the 1 and 10 km resolutions show
an enhanced NEE seasonal amplitude from the coarser-scale
model simulations (Fig. 13). A larger difference in the dis-
tributions is seen in the model-simulated Rh fluxes, with
slightly reduced Rh flux during summer and enhanced Rh
flux from October to November at a 10 km resolution. The
largest differences in the Rh fluxes occur in October and
November, with daily mean differences of∼ 0.1 gC m−2 d−1

and a total difference of 9.8 Tg C across the entire study area
from October to December (or more than 20 % of the multi-
year mean during the same period averaged across Alaska).
This is consistent with an overall reduction in the number of
days between snow onset and surface freeze onset derived
from the model input data sets of LST and snow depth at
a 10 km resolution (Fig. 13a). The statistical distribution of
the model input snow depth data at the two resolutions also
shows the largest differences in October due to more vari-
able snow cover conditions in the early snow season, which
can have a large impact on subsurface soil temperatures due
to the stronger insulating effects of early snow accumula-
tion (Fig. 3; Slater et al., 2017). The model-simulated GPP

flux during the growing season shows only limited differ-
ences (< 2 %) between the two spatial scales (not shown).
However, the NEE simulations at a 10 km resolution show
enhanced carbon uptake during the growing season, and en-
hanced carbon loss during the early cold season, with∼ 14 %
increases in the seasonal amplitude averaged over Alaska.

4 Discussion

Based on the simulations of a newly developed 1 km per-
mafrost carbon model, we highlight the important role of
snow cover variability in controlling soil heterotrophic res-
piration and the CO2 seasonal cycle of boreal and Arctic
ecosystems in Alaska. The large differences between model-
simulated soil respiration during the early cold season and
the estimated NEE seasonal amplitude at different model
spatial scales also highlight potential large uncertainties in
regional model simulations contributed from an inadequate
representation of land surface heterogeneity.

4.1 Environmental sensitivity of boreal–Arctic CO2
seasonal cycle

Our results show that earlier snow melting, associated
with spring warming, enhances soil heterotrophic respira-
tion throughout the growing season, leading to a reduction
in net carbon uptake later in the growing season in Alaska
(Fig. S12). Previous studies reported that earlier snow melt-
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Figure 12. Sensitivity of model-simulated soil-freezing process to snow cover changes across Alaska. The mean (a) and trends (b) of the
soil-freezing delay at 23 cm soil depth relative to surface freeze onset. (c) The annual time series of the model-simulated soil-freezing delay,
the number of snow-free days after land surface freezes, and MERRA-2 snow depth (SNOD) from September to October, averaged across
Alaska.

ing generally results in enhanced vegetation productivity and
carbon uptake during the early growing season, consistent
with our simulations, while its impact on net ecosystem ex-
change during the later growing season may vary with local
climate and site conditions (Aurela et al., 2004; Humphreys
and Lafleur, 2011; Pulliainen et al., 2017). The variable im-
pact of snow on the seasonal carbon cycle can be explained
by the divergent responses of vegetation productivity and Rh
to soil moisture and soil temperature during the later growing
season. Earlier snow melting in spring can lead to depleted
soil water conditions during the later growing season, result-
ing in a decrease in vegetation productivity and weaker net
ecosystem carbon sink activity, especially in the boreal re-
gion (Buermann et al., 2013; Sulla-Menashe et al., 2018).
However, our simulations indicate that deeper soil warming
associated with early snow melting is mainly responsible for
the enhanced ecosystem carbon loss later in the growing sea-
son. Surface warming and earlier disappearance in spring
snow cover are associated with a deeper thaw depth in the
permafrost region (Park et al., 2016; Yi et al., 2018). Field
studies have shown that deeper permafrost thawing is associ-
ated with enhanced ecosystem respiration and, thus, reduced
carbon sink activity during the later summer (Natali et al.,

2011; Lund et al., 2012; Webb et al., 2016). Other studies
also indicate that ecosystem respiration may dominate the
NEE response to spring snow cover conditions and warm-
ing in the Arctic tundra; however, divergent responses have
been observed in different tundra ecosystems (Humphreys
and Lafleur, 2011; Parmentier et al., 2011; Lund et al., 2012;
Darrouzet-Nardi et al., 2019).

Our simulations also indicate that the arrival of seasonal
snow cover and the number of snow-free days after land sur-
face freeze play a major role in controlling subsurface soil
freeze-up and soil respiration during the early cold season.
Earlier snow onset relative to surface freeze onset (i.e., a
short snow-free period after surface freezing) keeps the soil
warm and results in a longer soil-freezing delay and zero-
curtain period in permafrost areas, with enhanced soil respi-
ration during the early cold season (Fig. 11). Due to strong
snow insulation effects, underlying soils can remain unfrozen
for a substantial period long after the surface soil freezes,
i.e., the zero-curtain period. Field studies have shown persis-
tent carbon emissions during this zero-curtain period and also
throughout the winter season, while the resulting cold-season
soil carbon emissions may partially offset or even exceed
the growing season net carbon uptake (Elberling and Brandt,
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Figure 13. Comparisons of the statistical distribution of model inputs and simulations at the 1 and 10 km resolutions across Alaska. (a) The
number of snow-free days after land surface freeze onset, derived from the model input LST and snow depth data sets. (b) Model-simulated
daily mean Rh flux averaged from September to November. (c) Model-simulated daily mean NEE flux averaged from June to August.
(d) Model-simulated NEE amplitude, which was defined as the difference in the daily mean NEE flux between two periods (September–
November vs. June–August). The lines show the fitted probability distribution function (pdf) using a normal distribution.

2003; Luers et al., 2014; Webb et al., 2016; Euskirchen et al.,
2017). A recent study showed that Alaskan ecosystems were
either a carbon source or carbon neutral during the recent
observational period (2012–2014) due to a large contribu-
tion of cold-season carbon emissions, with larger emissions
in the early cold season based on CO2 flux estimates opti-
mized using data collected from the Carbon in Arctic Reser-
voirs Vulnerability Experiment (CARVE; Commane et al.,
2017). Our simulations show a much longer soil-freezing de-
lay and zero-curtain period in 2013 than the other 2 years
for the same overlapping period (Fig. 12c), corresponding to
large net CO2 fluxes during the fall in 2013 across Alaska
and the North Slope region, as shown in Fig. 1 of Commane
et al. (2017).

However, large uncertainties are associated with cold-
season carbon emissions in our estimates and other stud-
ies based on either in situ data or atmospheric inversions.
An analysis using satellite and airborne CO2 observations
pointed out that the current sparse CO2 observational net-
work is insufficient to constrain current and future estimates
of cold-season carbon emissions and the annual carbon bud-
get of Arctic ecosystems (Parazoo et al., 2016). The in situ
winter flux synthesis data set (Natali et al., 2019b) also shows
large scatter in the winter flux response to surface soil tem-

perature, especially when using the eddy covariance method.
The in situ data set indicated that significant carbon loss
(> 0.5 gC m−2 d−1) can occur even when surface soil tem-
perature drops below −5 ◦C (Fig. S7). This large carbon
loss at very low temperatures was not reproduced by our
model, which showed a rapid decrease in soil respiration
when surface soil temperatures (∼ 8 cm depth) drop below
−2 or −3 ◦C. However, previous studies have highlighted
the inconsistency among different measurement methods in
the Arctic and uncertainties in winter flux measurements due
to significant data loss under extreme weather conditions
(Goodrich et al., 2016; Webb et al., 2016).

4.2 Model limitations and potential improvements

An important feature of boreal–arctic landscapes is strong
surface heterogeneity, which may not be well represented
in current global-scale models operating at the order of tens
of kilometers or more (Koven et al., 2013b; Yi et al., 2015;
Tao et al., 2019). Our comparisons between the 1 and 10 km
model simulations showed a nonnegligible influence of land-
scape heterogeneity on the model-simulated CO2 seasonal
cycle, especially during the early cold season (Fig. 13).
A total difference of ∼ 9.8 Tg C from October to Decem-
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ber across Alaska was found between the two simulations.
Scaled to the larger pan-Arctic region (24.95× 106 km2),
the resulting difference represents∼ 194 Tg C in cold-season
carbon emissions and can account for more than 10 % of the
estimated total winter flux for the pan-Arctic permafrost re-
gion (Natali et al., 2019a). The resulting uncertainty partially
reflects spatial heterogeneity in autumn snow cover condi-
tions and subgrid variability in the surface energy budget (in-
dicated by LST). The complex relationship among soil satu-
ration, snow accumulation, and soil freezing also contributes
to scale-dependent differences in the soil carbon emission
estimates (Outcalt et al., 1990; Oechel et al., 1997; Zhang,
2005). These results highlight a nonlinear response of car-
bon fluxes to land surface heterogeneity across the different
model scales (≥ 1 km). Moreover, a number of studies have
shown that microtopography, of the order of a few meters,
exerts a strong control on permafrost thaw and carbon dy-
namics (Kumar et al., 2016; Liljedahl et al, 2016; Grant et
al., 2017a, b), which should be addressed in future model de-
velopment.

Our current and previous assessment of the permafrost soil
model also identified several areas in which improvements
should be made to enhance model capabilities, especially
in boreal forest. Comparisons with in situ measurements in-
dicate larger discrepancies between model ALT simulations
and in situ data in the boreal interior of Alaska characterized
by a greater density of woody vegetation overlain with dis-
continuous or sporadic permafrost (Yi et al., 2018). Model-
simulated soil temperatures also showed a larger bias at the
boreal forest sites in relation to the in situ winter flux syn-
thesis data (Sect. 3.1.2). The larger apparent uncertainty may
reflect poor model representation of the vegetation canopy
influence on thermal energy loading at the soil surface. Pre-
vious studies have shown that the MODIS vegetation index,
leaf area index, and tree cover data are sensitive to boreal for-
est structure and postfire disturbance recovery (Mastepanov
et al., 2013). These data sets can be used to account for the
temperature difference between the soil surface and canopy
skin temperature indicated by the MODIS LST data for dif-
ferent vegetation categories, either through simple empiri-
cal models or more sophisticated approaches derived from
canopy radiative transfer models (Paul et al., 2004; Verhoef
et al., 2007; Dolschak et al., 2015).

In addition, better understanding of the scaling behavior
of environmental controls on soil moisture is needed to im-
prove model representation of active layer conditions and
carbon emissions (Mishra and Riley, 2015). Previous stud-
ies indicate that topography and soil conditions are the dom-
inant factors affecting soil moisture variability at finer scales
(Crow et al., 2012), which are not sufficiently represented
by the coarse resolution (∼ 9 km) soil moisture observations
used as model inputs for this study. For example, our model
simulations indicate a much shorter zero-curtain period at an
interior Alaska boreal forest site compared with the local site
measurements (Fig. 5c), and there is also a shorter overall

zero-curtain period in interior Alaska than in the Alaskan
North Slope and southern Alaska. This pattern was closely
related to the model input SMAP soil wetness data, which
indicated much drier conditions in interior Alaska.

Other notable uncertainties in the model-estimated carbon
fluxes include insufficient representation of the soil mois-
ture migration with permafrost thaw and winter processes.
Earlier spring thaw and snowmelt have been linked with ac-
tive layer deepening and permafrost degradation, exacerbat-
ing the soil water deficit during the later growing season,
especially in the southern boreal forest areas (Buermann et
al., 2013; Park et al., 2016; Zhang et al., 2019). Using ex-
ternal soil moisture inputs, the current permafrost model was
not able to fully represent this phenomenon, which requires
a more complete depiction of soil water, energy and car-
bon processes, and linkages (Walvoord and Kuryly, 2016).
On the other hand, insufficient winter process representa-
tion in our model may partly explain the inconsistency be-
tween the model-simulated and observation-based tempera-
ture response curve of the winter flux indicated by the EC
tower-based measurements (Fig. 6). For example, field stud-
ies have shown that the soil CO2 flux from microbial produc-
tion during fall and winter can be trapped due to the overlying
snowpack or surface ice layers (Elberling and Brandt, 2003;
Raz-Yaseef et al., 2017). The trapped CO2 can be rapidly re-
leased during high wind conditions or during the spring thaw
period, resulting in strong transient flux events which are
more likely recorded in EC measurements but not detected
in closed-chamber measurements (Luers et al., 2014; Webb
et al., 2016). Late-season bursts in CO2 emissions were also
reported during the soil freeze-in period at a high Arctic wet-
land site (Mastepanov et al., 2013). However, our model cur-
rently assumes that all soil microbial respiration is released
directly to the atmosphere, without the mediation of snow-
pack, ice, and mesoscale wind or pressure conditions on CO2
emissions.

5 Conclusion

We developed a remote-sensing-driven permafrost carbon
model at an intermediate scale (∼ 1 km) to evaluate the sen-
sitivity of the seasonal and annual carbon (CO2) cycle and
soil respiration to snow cover changes across Alaska during
the recent two decades (2001–2017). Our results indicate that
earlier snowmelt onset associated with spring warming en-
hances soil heterotrophic respiration throughout the growing
season and reduces net carbon uptake during the later grow-
ing season when carbon losses from enhanced deep soil res-
piration may offset or exceed ecosystem carbon gains from
vegetation productivity. Soil freeze-up and early cold-season
soil respiration are closely linked to the number of snow-
free days after the land surface freezes, i.e., the delay in
snow onset relative to surface freeze onset. Recent trends to-
ward earlier autumn snow onset in northern Alaska promote
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a longer zero-curtain period and enhanced cold-season respi-
ration. In contrast, southwestern Alaska shows a longer delay
in autumn snow accumulation relative to surface freeze on-
set, leading to earlier soil freezing and a large reduction in
cold-season soil respiration. Our results also show nonneg-
ligible influences of subgrid variability in surface conditions
on the model-simulated CO2 seasonal cycle, especially dur-
ing the early cold season at a 10 km scale. These results con-
firm the important control of seasonal snow cover on the an-
nual and seasonal carbon exchange of boreal–Arctic ecosys-
tems. A nonlinear response of soil respiration to snow cover
changes poses significant challenges for global Earth system
models in accurately projecting the pan-Arctic carbon cycle
response to climate change.
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