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Abstract. We present a new algorithm for the estimation of
the plant area density (PAD) profiles and plant area index
(PAI) for forested areas based on data from airborne lidar.

The new element in the algorithm is to scale and average
returned lidar intensities for each lidar pulse, whereas other
methods do not use the intensity information at all, use only
average intensity values, or do not scale the intensity infor-
mation, which can cause problems for heterogeneous vege-
tation. We compare the performance of the new algorithm to
three previously published algorithms over two contrasting
types of forest: a boreal coniferous forest with a relatively
open structure and a dense beech forest. For the beech forest
site, both summer (full-leaf) and winter (bare-tree) scans are
analyzed, thereby testing the algorithm over a wide spectrum
of PAIs.

Whereas all tested algorithms give qualitatively similar re-
sults, absolute differences are large (up to 400 % for the av-
erage PAI at one site). A comparison with ground-based es-
timates shows that the new algorithm performs well for the
tested sites. Specific weak points regarding the estimation of
the PAD from airborne lidar data are addressed including the
influence of ground reflections and the effect of small-scale
heterogeneity, and we show how the effect of these points is
reduced in the new algorithm, by combining benefits of ear-
lier algorithms. We further show that low-resolution gridding
of the PAD will lead to a negative bias in the resulting esti-
mate according to Jensen’s inequality for convex functions
and that the severity of this bias is method dependent. As
a result, the PAI magnitude as well as heterogeneity scales
should be carefully considered when setting the resolution
for the PAD gridding of airborne lidar scans.

1 Introduction

Plant area is a key parameter for the quantification of air–
vegetation exchange of momentum, latent and sensible heat,
and carbon dioxide. Its vertical distribution, the plant area
density (PAD), describes the distribution of plant elements
from the ground to the canopy top. The PAD profile is a
key parameter in high-accuracy atmospheric models for the
estimation of fluxes between the atmosphere and canopies
(Williams et al., 1996; Sogachev et al., 2002; Patton et al.,
2016; Smallman et al., 2013). PAD profiles have also been
introduced into the modeling of wind over heterogeneous
forests in the context of understanding how local inhomo-
geneities affect the wind field above the crowns (Boudreault
et al., 2015; Ivanell et al., 2018). As wind turbines are very
tall, the wind approaching the turbine is affected by surface
conditions from far away. Therefore, large areas of consistent
high-quality PAD profiles are attractive as model input. Like-
wise, atmosphere–biosphere interactions for weather and cli-
mate modeling require PAD information from large areas.
With the advent of airborne lidar scans (ALSs), such a prod-
uct is possible to achieve.

ALSs, made with a density of 5–10 laser shots over each
square meter of ground, are now performed routinely on a
country-level scale. Besides information on where the laser
beam from the airplane was reflected in x, y, and z coor-
dinates down to centimeter precision, each point is associ-
ated with several other attributes; these normally include the
scanning angle, the number of returns from a pulse, the re-
turn rank in the pulse, and the intensity of the return. In this
paper, we attempt to use more of this information than pre-
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viously published methods (Solberg et al., 2006; Morsdorf
et al., 2006; Richardson et al., 2009; Boudreault et al., 2015;
Almeida et al., 2019; Hopkinson and Chasmer, 2009; Vin-
cent et al., 2017) with the aim of producing a more consistent
and less biased estimate of the PAD.

Previously established methods for calculating the PAD
profile and, hence, the PAI from ALSs have been based on
approximations of the Beer–Lambert law, which was first
introduced in the field of vegetation density estimation by
Monsi and Saeki in 1953 (see Monsi and Saeki, 2005, for a
translated version). The results have been promising for the
PAI (Solberg et al., 2006; Morsdorf et al., 2006; Richardson
et al., 2009; Hopkinson and Chasmer, 2009) and even for
PAD (Boudreault et al., 2015; Vincent et al., 2017; Almeida
et al., 2019) calculations by ALSs when compared with var-
ious ground-based methods. The potential of estimating PAI
and PAD from ALSs is underlined by relative agreement with
ground-based methods made using very different techniques
as well as the obvious advantage of producing results with
great spatial coverage. Below, we recall the Beer–Lambert
law and its adaptation for vegetative canopies and describe
three reference models published by Hopkinson and Chas-
mer (2009), Boudreault et al. (2015), and Almeida et al.
(2019). We then introduce the new method. The rest of the
paper follows standard formats.

2 Background

2.1 The Beer–Lambert law and its adaptation for
vegetative canopies

The Beer–Lambert law expresses the light level at a given
height as a function of effective canopy density in the form
of PAD as follows:

Q(z)=Q0e
−µ

cosθ
∫ hc
z PAD(z)dz, (1)

whereQ is the amount of radiation that penetrates the canopy
to height z, Q0 is the incoming radiation, µ is the extinction
coefficient, θ is the zenith angle of the incoming radiation,
and hc is the height of the canopy. The value of µ depends
on how the canopy elements are oriented in space, and the
values for common types of trees have been reported to be
in the range from 0.28 to 0.58 (see Bréda, 2003, for a de-
tailed investigation). By rearranging Eq. (1), the PAD can be
isolated and light-level observations can provide a basis for
estimations of vegetation density.

In contrast to ground-based optical methods, measure-
ments from ALSs are based on the reflected radiation R.
Whereas it is clear from Eq. (1) that the radiation level above
the canopy Q0 is of high importance for the determination
of the PAD and PAI, the use of the reflected radiation turns
the problem on its head. To determine the value of the PAI
based on ALS data, ground reflections are essential, and the
magnitude of incoming radiation is not important for the PAI

or the PAD provided that it is strong enough to produce de-
tectable scatter at ground level. There are several other funda-
mental differences between the ground-based optical meth-
ods for determining the PAI and the lidar-based methods:
(1) whereas optical methods are typically based on observed
radiation of natural light, ALSs normally use infrared light;
(2) the primary information utilized in ALS-based methods is
the exact location describing where the radiation is reflected
(e.g., Morsdorf et al., 2006; Solberg et al., 2006); and (3) con-
trary to the homogeneously lit canopies used to determine
plant area with ground-based optical methods (Monsi and
Saeki, 2005; Bréda, 2003; Yan et al., 2019), ALS data are
based on discrete lidar pulses, which have a finite diameter of
around 0.1–1 m at the canopy top (e.g., Hopkinson and Chas-
mer, 2009; Popescu et al., 2011; Almeida et al., 2019). The
high sampling rate of the airborne lidar scanners allows for
the detection of multiple reflections from one single emitted
pulse, with data sets ranging from one to several returns per
pulse, all the way up to the full waveform, depending on the
type of scanner. Regardless of these fundamental differences,
the Beer–Lambert law has also been used for the determina-
tion of the PAD and PAI with ALS data via the following
formulation:∫ z

0R(z)dz∫ hc
0 R(z)dz

= e
−µ

cosθ
∫ hc
z PAD(z)dz, (2)

where R is the reflected radiation at height z, and integration
on the right-hand side all the way from the forest floor gives
the PAI.

The method for determining the PAI and PAD are based
on a grouping of the exact coordinates where the pulses
reflected on a canopy element into distinct vertical layers
1,2, . . .,k, . . .,ktop− 1,ktop, where 1 is the layer closest to
the ground and ktop is the highest layer containing plant area
density. The effective PAD (assuming a constant extinction
coefficient, which implies locally homogeneous distribution
of canopy elements) between layer zk and zk+1 can be found
by isolation in Eq. (2):

PAD1z=−
cosθl

µ
ln

(∑k
i=1Ri∑k+1
i=1Ri

)
, (3)

where the overbar indicates average, 1z= zk+1− zk , and θl
is the zenith angle of the lidar beam.

Despite the significant differences between airborne and
ground-based estimates of the PAI, comparisons have shown
promising agreement in both absolute levels and spatial
correlations (Solberg et al., 2006; Morsdorf et al., 2006;
Richardson et al., 2009; Solberg et al., 2009). A straightfor-
ward interpretation of the correlation was put forward by Sol-
berg et al. (2009), who concluded that the canopy gap frac-
tion was strongly correlated with the probability of airborne
lidar beam penetration below the canopy and, hence, strongly
linked to the PAI. Boudreault et al. (2015) and Almeida et al.
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(2019) also compared PAD profiles to observations from ref-
erence sensors, with similarly promising results.

Whereas earlier ALS studies used ground-based estimates
of the PAD and PAI as validation, it is generally acknowl-
edged that ground-based methods also carry uncertainty, for
instance, regarding the sky exposure level and difficulties in
reproducing the footprint, which are points that have often
been brought up in the discussion sections of earlier work
(Solberg et al., 2006; Morsdorf et al., 2006; Richardson et al.,
2009; Solberg et al., 2009; Vincent et al., 2017). For the data
sets presented here, ground-based reference data are included
for two out of the three investigated cases. However, the main
focus of the study is instead the comparison between differ-
ent ALS-based methods.

2.2 ALS reference methods

Two different interpretations of the reflected radiation R

in Eq. (3) have been applied to ALS data: one based on
measured intensities of the reflected pulses (Hopkinson and
Chasmer, 2009) and one based on the relative probabil-
ity of detecting a reflection (Solberg et al., 2006; Morsdorf
et al., 2006; Richardson et al., 2009; Boudreault et al., 2015;
Almeida et al., 2019). The latter method can be subcatego-
rized further based on how many reflections (or returns) from
each lidar pulse are considered in the PAD and PAI evalua-
tion. Hence, in total, we use the following three reference
methods:

1. Intensity ratio (IR). This method makes use of the in-
tensity I of the recorded reflection following Hopkinson
and Chasmer (2009). Over a volume 1A1z, the right-
hand side of Eq. (3) is calculated from∑k

i=1Ri∑k+1
i=1Ri

=

∑k
i=1Ii∑k+1
i=1 Ii

(4)

It is assumed that the reflected intensity from a vertical
section of forest is dependent on the vegetation density
from that section. An important assumption of the IR
method is that the albedo α = R/Q is the same for the
ground and the vegetation.

2. First returns ratio (FR). This is a method that has been
used in studies such as Solberg et al. (2006), Solberg
et al. (2009), Morsdorf et al. (2006), Richardson et al.
(2009), Boudreault et al. (2015), and Almeida et al.
(2019); here, the amount of reflected radiation R is
rather interpreted as the number of reflections from a
distinct layer of the canopy. The method is limited to
using only the first returns (r1) for each pulse, and it is
assumed that the probability of pulse penetration into
the canopy decreases exponentially with height:∑k

i=1Ri∑k+1
i=1Ri

=

∑k
i=1r1i∑k+1
i=1 r1i

(5)

3. All returns ratio (AR). This method assumes that the
intercepted radiation is related to the total number of
returns from a volume 1A1z, regardless of the return
number in the pulse. (Almeida et al., 2019, Supple-
ment):∑k

i=1Ri∑k+1
i=1Ri

=

∑k
i=1ri∑k+1
i=1 ri

(6)

These different methods are associated with different un-
certainties and advantages. Starting from below, Almeida
et al. (2019) noted that the AR method has a poor theoret-
ical foundation in that the total number of emitted pulses
above the canopy is not same as the number of reflections
accounted for, and they pointed to the need for further al-
gorithm improvement. They also noted a poorer agreement
with reference data than when using the FR method, which
gives an unbiased probability of interception. However, the
FR method is associated with other documented issues, espe-
cially for dense canopies (Blair and Hofton, 1999; Richard-
son et al., 2009; Freier, 2017), where the diameter of the laser
beam (footprint size) may exceed a typical size gap in the
canopy. As the FR method is based on the probability that
the beam passes through the canopy top with no obstruction,
the method becomes sensitive to the ratio of the lidar foot-
print and the typical gap size in the canopy, and a high site-
to-site variability is expected. A further disadvantage of the
FR method is that a large part of the data set is disregarded,
as secondary reflections are not utilized.

The IR method in many ways circumvents the abovemen-
tioned issues: all reflections are used, and as the method is
formulated in terms of intensity rather than relative proba-
bility, the framework is closely related to the original Eq.
(1). Another obvious advantage is that by using the inten-
sity information for the recorded reflection, information on
the size of the reflecting object can be extracted; a reflection
on a thin bare twig will result in a low-intensity reflection,
whereas higher intensity reflections can be expected from a
fully leaved branch. Hopkinson and Chasmer (2009) showed
improvements using the intensity information compared with
using only the first returns (based on correlation with gap
fractions from hemispheric photos) and concluded that an
intensity-based method is less error prone due to the implicit
information about the size of the return object that is carried
in the intensity value. A disadvantage of the IR method is
that it relies on the assumption of identical albedo for ground
and vegetation. Wagner et al. (2008), for instance, reported a
difference in reflective properties of non-vegetation and veg-
etation. This is particularly problematic for less dense forests
where many of the returns come from the ground. In the IR
method, the intensity value of first-return ground reflections
partly determine the PAD of the upper canopy; thus, PAD and
PAI estimates from this method are sensitive to the ground
properties.
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Thus, a method that combines the respective strengths of
the IR and FR methods has the potential to be less sensitive to
parameters that affect beam width, such as flight altitude and
instrument type, and thus be more suited for PAI and PAD
estimates from ALSs.

In order to ensure a comparison where the treatment of the
reflections is consistent, the three references methods have
been slightly modified relative to their original formulations.
For the AR method, we use the formulation presented in the
supplementary material of Almeida et al. (2019), with the
modification of taking the scanning angle into account in the
same way as done in the FR method by Boudreault et al.
(2015). For the IR method, we follow the one-way formula-
tion by Hopkinson and Chasmer (2009), by which the two-
way transfer of the pulse through the crown is disregarded.
The reason for only using one-way attenuation is that the
scattering from canopy elements and the ground does not
come from continuous attenuation but rather from distinct
reflection on objects. This, in combination with the fact that
changes in θl (the position of the airplane) are negligible in
the short time it takes for the light pulse to return to the sen-
sor, leads to the conclusion that if the path was free of ob-
stacles on the way down, it should also be free on the way
up.

3 Methods

3.1 New method

The new method will be referred to as SR (scaled ratio). Us-
ing this method, all reflections from each emitted pulse are
identified in a preprocessing step. Once the reflections are
identified, their impacts are scaled according to their inten-
sities in a similar way as in the IR method. Mathematically,
this individual beam scaling can be expressed as follows:

rs = Iir

/ Nr∑
ir=1

Iir , (7)

where Iir is the intensity of the irth return in the pulse, and
the scale is found by summation from the first return in the
pulse to the number of returns that the pulse contains (Nr).
After the intensity scaling, the PAD is calculated in the same
way as with the other methods: (1) by estimating the ratio of
incoming to outgoing radiation following∑k

i=1Ri∑k+1
i=1Ri

=

∑k
i=1rsi∑k+1
i=1 rsi

(8)

and (2) by calculating the PAD using Eq. (3). In this way, for
all pulses with only one return (Nr = 1), the scaling weight
is 1, whereas the weights for all other pulses are scaled by
their respective backscatter intensity. Hence, for the special
case of a data set with only first returns, the SR method re-
duces to the FR method, and for the special case of only one

pulse over the binning area A, the SR method reduces to the
IR method. For the majority of modern ALS data sets, the
scanning density is high, and the SR method has the poten-
tial to combine the benefits of the FR and SR methods while
minimizing their drawbacks regarding the influence from po-
tential difference in albedo between vegetation and ground as
well as footprint size relative to canopy gap size.

The SR method requires that the backscatter intensity of
each return can be connected to the total backscatter intensity
of the emitted pulse which the return belongs to. In order to
test this assumption, we scanned the data sets and determined
the fraction of the points in the data sets that fulfilled the
following criterion: 5Nrir=1ir =Nr !. For the data sets used in
this study, the number of points satisfying the above criterion
was more than 99 % of all of the investigated data sets.

MATLAB and Python codes for the preprocessing step,
the scaling, and the calculation of the PAD are shared via the
link given in the Supplement. The routine requires .las data
files, which are the global standard for storing ALS data (AS-
PRS, 2013), as inputs, and it outputs terrain height, PAI, and
PAD at a horizontal and vertical resolution set by the user. An
early version of the SR algorithm was tested in Freier (2017).

The SR method uses all of the standard recorded attributes
of the reflections (Table 1) in the .las format, whereas the ref-
erence methods (in addition to zenith angle θ ) use either only
the position and classification (AR); the position, classifica-
tion, and return number (FR); or the position, classification,
and intensity (IR).

In the comparison with reference methods, we follow Sol-
berg et al. (2006), Morsdorf et al. (2006), Richardson et al.
(2009), and Boudreault et al. (2015) in assuming a spheri-
cal distribution of the reflecting surfaces of vegetation, cor-
responding to a value of µ= 0.5, which is the equivalent of
approximating that the effective forest density is the same
looking from above, from the side, or from any other direc-
tion of the forest. While choosing a value of µ fitting for the
vegetation of interest improves the PAI estimates (Yan et al.,
2019), the focus of this study is the application of the Beer–
Lambert law itself, and any change in µ would be common
for the investigated methods; therefore, the valueµ= 0.5 has
been kept throughout the study. To speed up the calculation,
instead of using pulse-specific θl, we have used the average
absolute angle within the grid box.

Recently, Vincent et al. (2017) presented a method in
which intensity information is used to determine averaging
weights specific to the return number, similar to the method
presented here. However, the method proposed by Vincent
et al. (2017) uses the intensity information averaged over the
area of interest, whereas the method proposed in this paper
uses individual intensity data for each pulse. If the individual
intensities are not available in the data set or the data set is not
ordered in consecutive returns, using the average data might
be the only option. For a discussion on the implications of
using average intensities as scales, please see Sect. 5.1.
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Table 1. Attributes used to calculate the PAD from ALSs with four different methods. The attributes are usually available with data in the
.las format.

Scaled return ratio (SR) Intensity ratio (IR) First return ratio (FR) All returns ratio (AR)

Position, x, y, z × × × ×

Intensity, I × ×

Return number, ir × ×

Number of returns (per pulse), NR ×

Classification (ground identification) × × × ×

Scanning angle, θl × × × ×

3.2 Sites

The methods were tested on three different data sets from
two different sites: one site is a dense deciduous (beech) for-
est, scanned both with and without leaves; and the other one
is a medium dense coniferous (mainly pine) forest. The data
sets were chosen based on the fact that they cover two dif-
ferent and commonly occurring types of forests as well as
the availability of both ALS data and ground-based PAI esti-
mates. Table 2 shows a summary of scan characteristics for
the three different data sets. The width of the laser beam at
the ground differs from around 10 cm in the beech summer
scan up to 80 cm in the coniferous forest, due to different
instruments and flight altitudes. The scanning density also
differs between sets (between less than 1 and more than 32
returns per square meter), providing contrasting conditions
for testing the ALSs to PAD methods.

Dense beech forest: Tromnæs

This approximately 80-year-old forest of predominantly Eu-
ropean beech (Fagus sylvatica L.) is located near the coast
on the island of Falster in Denmark. During the leaf-on sum-
mer period, the canopy is very dense, whereas the wintertime
tree structure is relatively open, as seen in Fig. 1. In order to
accurately estimate the canopy height and density for the pur-
pose of wind flow modeling, the forest was scanned during
the summer time in 2013. The site was scanned again in a
national survey in 2014 during the leaf-off winter period. In
connection with a field campaign of wind observations up-
wind and downwind of the forest edge, the forest density was
further measured using two LAI-2000 plant canopy analyz-
ers (PCAs; LI-COR, Lincoln, NE, USA). The PAI was found
to be approximately 1 and 6 m2 m−2 under leaf-off and leaf-
on conditions, respectively. These measurements were per-
formed using two instruments: one was placed well within
the forest and the other, which was used for reference mea-
surement, was placed well outside the forest. More informa-
tion on the site can be found in Dellwik et al. (2014).

From the point cloud of the two scans, we focus our anal-
ysis on a 300 m× 300 m tile which has its center coordinate
at 54.7638◦ N, 12.0396◦ E. The respective data sets will be
referred to as “Falster winter” and “Falster summer”.

Norunda

The Norunda site is a research site under the ICOS (Inte-
grated Carbon Observation System) infrastructure, located
in southeastern Sweden (60.0833◦ N, 17.4833◦ E). The for-
est cover is predominately Norway spruce (Picea abies) and
Scots pine (Pinus sylvestris). A minor fraction (15 %) of de-
ciduous trees, mainly birch (Betula sp.), is also present. The
forest at the site is marked by its many clearings, charac-
teristic of Swedish forest management. As part of the ICOS
project, the forest density at the site has been analyzed with
digital hemispheric photometry according to the ICOS pro-
tocol for ancillary vegetation measurements (Gielen et al.,
2018). The site has also been scanned with an airborne laser
as part of a national scan over Sweden (Lantmäteriet, 2016).
The scan was carried out in November 2010, and the cover-
age is generally more than 0.5 ground reflections per square
meter, although it is sometimes as low as around 5 ground
reflections per 10 m× 10 m square in the densest parts of the
forest. This data set will be referred to as “Norunda”.

Ground-based estimates of the forest were made in
November 2018. Despite the difference of 8 years between
the ground-based measurements and the airborne scan, the
two data sets are expected to be comparable, as this partic-
ular forest stand was more than 100 years old and, thus, the
growth rate was very low.

3.3 Evaluation parameters

3.3.1 Spatial differences

Spatial differences are demonstrated by showing differences
in the PAI from the new method (SR) relative to the refer-
ence methods (IR, FR. and AR) for larger areas using a res-
olution of 10 m× 10 m for the three ALSs used. Calculation
followed the same procedure for all methods, with the only
distinction being the use of Eqs. (4), (5), (6), or (8) as a model
for the extinction.

3.3.2 Comparison to ground-based methods

To provide an independent comparison, PAI from ALSs are
compared to ground-based estimates. To mimic the footprint
of the ground-based methods, reflections within a radius of
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Table 2. Characteristics of the three ALS data sets used in the study. a Lantmäteriet (2016). b Personal communication with Laurids Rolighed
J. Laursen, Niras (2017).

Scan First returns Footprint diameter Percentage of pulses Percentage of pulses Percentage of pulses
per square meter (m) with Nr = 1 with Nr = 2 with Nr > 2

Norunda 0.9 0.5–0.8a 73 23 3
Falster summer 32.5 0.2b 53 40 8
Falster winter 8.3 0.4b 47 30 23

Figure 1. Photos taken at the position of the beech forest mast at the Falster site (Dellwik et al., 2014) illustrating the large difference between
the summer (left) and winter (right) canopies.

one tree height from the center of the ground-based mea-
surement were used. This yielded a circular binning area, as
opposed to the square used in all other comparisons.

3.3.3 Sensitivity to ground albedo

In order to investigate the sensitivity to ground albedo, a test
was constructed where the intensity values of returns clas-
sified as ground were manipulated. Ground intensity values
were increased by 10 %, and the PAI was then calculated and
compared to the PAI derived from the original data set. The
same test was carried out again, but the ground intensity val-
ues were instead decreased by 10 %. The manipulation only
affects SR and IR methods, as FR and AR exclude intensity
information (Table 1). SR and IR showed only minor dif-
ferences in sensitivity between a 10 % decrease and a 10 %
increase in ground intensities; thus, the results are presented
as sensitivity to a 10 % ground intensity alteration.

3.3.4 Sensitivity to grid size

All four ALS methods rely on the Beer–Lambert law which
assumes a homogeneous spatial distribution of the scattering
elements. This assumption is generally violated in forests,
which have both a vertically and horizontally inhomoge-
neous distribution of scattering elements. With vertical bin-
ning in thin planes, the effect of vertical inhomogeneity is
minimized, but heterogeneity in the horizontal direction is
still present and results in a grid size sensitivity of the ALS
to PAD methods. The reason for this can be illustrated by

studying a single-layer PAI calculation for which the Beer–
Lambert law simplifies to

PAI=−
cosθl

µ
ln

(∑
groundRi∑

allRi

)
(9)

Calculating the PAI of an area by reducing the horizon-
tal resolution so that there is only one single cell for the
whole area is then proportional to− ln

(∑
groundRi/

∑
allRi

)
,

where the vertical bar represents the area average. Calcu-
lating the PAI for the whole area by taking the average
of the PAI from a higher resolution is instead proportional

to −ln
(∑

groundRi/
∑

allRi

)
. Because of the curvature of

the convex logarithm function, Jensen’s inequality states

that −ln
(∑

groundRi/
∑

allRi

)
>− ln

(∑
groundRi/

∑
allRi

)
,

which means that sub-grid size variations in the ratio of the
canopy to ground returns leads to lower PAI estimates for a
larger grid size. The sensitivity of the routines to the grid size
was investigated by simply calculating the PAD and PAI for
the three data sets with a different horizontal resolution, rang-
ing from 10 m× 10 m to 100 m× 100 m. Before calculating
the PAI and PAD, the terrain height data were flattened in
the vertical direction by subtracting the 10 m× 10 m ground
height in order to avoid effects coming from terrain elevation
changes within the grid cell.
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4 Results

4.1 Spatial differences and comparison to
ground-based methods

Maps of the calculated PAI can be seen in Figs. 2 and Figs. 3
and 4 for the Norunda and Falster sites, respectively. PAI
magnitudes are shown for the SR method, and the differ-
ences of the IR, FR, and AR methods from the SR method
are also given. It is immediately clear that forest character-
ization using ALSs has a big advantage over ground-based
estimates due to the full horizontal coverage. In Fig. 2b, de-
tails of a road and clearings at the site shown in the aerial
photo are also clearly visible in the PAI estimates. In terms
of PAI magnitudes, FR gives the highest values for all three
data sets (Figs. 2e, 3e, 4c), whereas the IR method shows the
lowest values (Figs. 2d, 3d, 4b). Average PAI values over the
area at the 10 m× 10 m resolution are given in the second
column of Table 3; for Norunda, they show that the differ-
ence between the IR and SR methods is approximately 25 %,
whereas it is less than or equal to 12 % for the AR and FR
methods, respectively. In addition to these differences, larger
local differences of up to approximately 100 % are visible in
Fig. 2d–f. A comparison to the ground-based PAI observa-
tions is presented in Fig. 2c. Whereas the IR method shows a
systematic underestimation relative to the ground-based ob-
servations, all other methods show an overestimation. These
systematic differences could likely be removed by calibrat-
ing the extinction coefficient µ, as has been done in studies
such as Solberg et al. (2009), but it is clear that such cali-
bration would need to be method specific; therefore, it is not
pursued further here. Another reason for an imperfect match
is connected with the unknown footprint of the ground-based
method (see Sect. 4.3 below).

Whereas the results from SR, FR, and AR were relatively
similar in Norunda, a larger difference is seen for these meth-
ods for the summer scan of the dense beech forest at the Fal-
ster site (Fig. 3). The SR method indicates large variability
over the tile (Fig. 3a), with the PAI exceeding 10 m2 m

−2

in the lower-right and upper-left corners. A close look at
the aerial photo (Fig. 3b) also indicates larger gaps in the
forest in the lower left of the image, which could explain
the relatively lower PAI in this area. Whereas the observed
spatial variability using the SR method is similar for the
IR method (Fig. 3d), it is strongly increased for the FR
method (Fig. 3e) and decreased for the AR method (Fig. 3f).
The very high PAI values using the FR method (Fig. 3e)
can be explained by few pulses penetrating the dense up-
per canopy, which is in line with earlier observations on gap
fraction versus beam footprint. The AR results are generally
lower in magnitude than SR, whereas the FR results are of a
higher magnitude. Averages over the whole tile (second col-
umn, Table 3) reveal mean differences of up to 30 % relative
to the SR method.

The comparison between the ALS and ground-based ob-
servations (Fig. 3c) reveals a high degree of scatter and large
standard errors. In addition to the potential reasons for the
difference given above for the Norunda site, there is more
uncertainty regarding the exact coordinates of the ground-
based observations. In general, the ground-based observa-
tions seem to be saturated at around 6 m2 m−2, whereas the
ALS data allow for a larger range.

Figure 4 shows the spatial variability over the same area
as in Fig. 3 but for the winter scan of the site. Overall,
the SR results indicate a low PAI (Fig. 3a), except for a
small area to the right of the clearing, where values above
3 m2 m−2 are visible, corresponding to the location of a few
coniferous trees. The IR method shows similar results to the
SR (Fig. 3b), whereas much larger differences are observed
for the FR and AR methods (Fig. 3c) and (Fig. 3d). The mean
value over the whole tile (second column, Table 3 indicates
differences of up to approximately 300 %. The reason for this
is examined in detail in the next section, but (as can be seen
from Fig. 1) even though the PAD of the upper canopy is
low in winter compared with summer, there are relatively few
gaps in the forest without any branches at all, effectively lim-
iting the number of first-order returns reaching the ground.

4.2 Single-grid-cell PAD and sensitivity to ground
albedo

In order to illustrate how the ALS methods work, a grid cell
encapsulating a single tree was selected. The location of the
grid cell is highlighted in Figs. 3 and 4 using a black square.
Figure 5 shows the reflections used and the resulting PAD
for the four different methods. Figure 5a–e show the summer
results, whereas Figure 5f–j show the winter results. The size
of the markers in Fig. 5a–d and Fig. 5f–i indicates the weight
that the algorithm gives to the reflections in the four different
methods. As intensity is not regarded in the FR and AR meth-
ods, all markers in Fig. 5c, d, h, and i have the same size. As
the SR method restricts the weight of the return, less differ-
ence in the marker size is seen in Fig. 5a and f, whereas more
variability is seen for the IR method, where the reflections
are not scaled. The first reflections are marked in blue, the
second reflections are marked in red, and the third reflections
are marked in black.

There is a marked difference between the lidar returns in
the summer and winter scan. In summer (Fig. 5a–e), the ma-
jority of the returns come from the upper part of the foliage,
predominately from first- and second-order returns of rela-
tively high backscatter intensity. In winter (Fig. 5f–j), the in-
tensity of the returns from the upper canopy is much lower,
and the only returns with high intensity come from the stem
and larger branches as well as from the ground.

The reason for the high PAI values in FR and AR relative
to SR and IR in the case of Falster winter becomes appar-
ent from Fig. 5. The ground returns used in the AR method
are often higher-order returns, which are not included in FR.
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Figure 2. PAI evaluation at the Norunda site using a 10 m× 10 m grid: (a) the SR method; (b) an aerial photo (©Lantmäteriet) over the site,
where the circles represent the placement of the ground-based observations; (c) a scatterplot of the hemispheric photo estimates and the ALS
methods. The lines show linear regression forced through zero with shading indicating the 95 % confidence level (1.96 times the standard
error). SR is represented using the blue line and stars, IR is represented using the dark green line and triangles, FR is represented using the
bright green line and circles, and AR is represented using the pink line and crosses. Panels (d), (e), and (f) show the difference between SR
and the IR, FR, and AR reference methods, respectively.

Figure 3. PAI estimates from the summer scan at the dense beech forest Falster site: (a) SR method; (b) an aerial photo (©Google Earth
2020) over the site; (c) a scatterplot of the ground-based estimates and the ALS methods. The lines show linear regression forced through
zero with the shading indicating the 95 % confidence level (1.96 times the standard error). SR is represented using the blue line and stars,
IR is represented using the dark green line and triangles, FR is represented using the bright green line and circles, and AR is represented
using the pink line and crosses. The circles in the maps display the positions of the ground-based measurements. Panels (d), (e), and (f) show
the difference between SR and the IR, FR, and AR reference methods, respectively. The black square marks the edges for the data used in
Sect. 4.2.
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Figure 4. PAI estimates from the Falster winter scan using various methods. (a) The PAI in a 10 m× 10 m square grid based on the SR
method. Panels (b), (c), and (d) show the difference between SR and the IR, FR, and AR reference methods, respectively. The black square
marks the edges for the data used in Sect. 4.2.

As seen in Fig. 1b, many of the gaps in the winter canopy
are smaller than the∼ 40 cm beam width for the Falster win-
ter scan, making first-order returns in the lower canopy less
likely. The data in Table 2 confirm that higher-order returns
are more prevalent in Falster winter than in the other two
scans. The AR method includes higher-order returns, but nei-
ther FR nor AR takes the low intensity in the returns from the
upper canopy into account, ultimately leading to a relatively
higher estimate of the PAD and PAI. Compared with the win-
ter PAI reported in Dellwik et al. (2014) from ground-based
observations, the average PAI was more than 4 times higher
in FR (see Table 3) and more than 2 times higher in AR.

The way first-order ground returns are treated in the meth-
ods that use the intensity of the backscatter (SR and IR)
leads to a different sensitivity regarding the ground albedo.
The difference in scaling technique between the SR and IR
methods is visible in Fig. 5, particularly in the winter scan,
through the dominance (large size) of the ground reflections
in IR. As SR uses the scaling of each pulse, the intensity of a
higher-order ground reflection is always smaller than that of a
single first reflection, regardless of the actual back-scattered
intensity.

The sensitivity to ground albedo was investigated by arti-
ficially changing the intensity values of the ground returns
as detailed in Sect. 3.3. For the open pine forest of the
Norunda site tile (Fig. 2), the mean difference in sensitivity
was large, with SR only showing a 0.4 % change in the PAI
for a 10 % change in the ground return intensity; the corre-
sponding number for IR was 5.3 %. For the beech forest tile
taken during the summer (Fig. 3), the sensitivity to a 10 %
change in the ground return intensity was 0.8 % and 2.7 % for
SR and IR, respectively. For the bare trees in winter, the cor-
responding values were 2.4 % and 6.0 % for SR and IR, re-
spectively. The larger difference in Norunda comes from the
larger share of first-order ground returns (see Table 2), ow-
ing to the more open structure of the forest. However, com-
pared with the absolute differences between the methods, the
albedo sensitivity is relatively small.

4.3 Sensitivity to grid size

As the canopy elements are heterogeneously distributed on
all scales that are suitable for gridding when the PAD and
PAI are calculated, the homogeneity assumption used when
applying the Beer–Lambert law is violated. To illustrate
the effect of that violation, the mapping of the PAI from∑

groundRi/
∑

allRi using Eq. (9) is shown in Fig. 6 in the x–
y plane. Jensen’s inequality is seen from the strong curvature
of Eq. (9), which has the effect that an even distribution in∑

groundRi/
∑

allRi becomes positively skewed, with the long
tail on the high PAI side. Lowering the resolution means nar-
rowing the distribution of

∑
groundRi/

∑
allRi , thereby short-

ening the long tail more than the short tail in the PAI distri-
bution and effectively lowering the PAI average.

The sensitivity of the routines to grid size was investigated
by evaluating the PAD and PAI for the three data sets using
different horizontal resolutions ranging from 10 m× 10 m to
100 m× 100 m. Table 3 summarizes the sensitivity to grid
size; it shows that for a magnitude change in grid size, the
change in the PAI ranges from between a few percent to more
than 30 % depending on the site and method. The AR method
was found to be the least sensitive to grid size changes, fol-
lowed by the SR method. The FR method was the most sen-
sitive. The results indicate that IR and FR see more hetero-
geneity than the AR and SR methods. This is also observed
in Fig. 6, where the distributions of

∑
groundRi/

∑
allRi for

IR are skewed towards high values (low PAI) and those for
FR are skewed towards low values (high PAI). The observa-
tion in Sect. 4.1 that the AR method predicts less variation
in PAI spatially, mainly due to underprediction in dense ar-
eas relative to the other routines, can also be seen in Fig. 6,
particularly in Fig. 6c, Falster winter, where the distribution
of
∑

groundRi/
∑

allRi is much less skewed for AR than for
the other methods. As also noted in Sect. 4.1, the SR method
behaves in the same manner as the FR method in sparse re-
gions and behaves like the IR method in dense regions, thus
avoiding overprediction in the densest areas and underpre-
diction in the least dense areas. As shown in Sect. 4.2, the
weight of the first-order ground returns is limited in the SR
method, while the reflectively of the ground leads to lower
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Figure 5. Backscatter reflections from within a 10 m× 10 m grid box taken from the Falster summer (a–e) and winter (f–j) scans. The color
indicates the return number: first returns are represented using blue, second returns are represented using red, third returns are represented
using black, fourth returns are represented using purple, and fifth returns are represented using green. The size of the marker indicates the
weight of the return according to the four methods. The scaled return number for SR (a, f) is determined from Eq. (7); for IR (b, g), it is
scaled by the medium intensity of the first-order canopy returns in the grid box; and for FR and AR (c, d, h, i), all returns are weighted
the same. Note that the scale changes between the summer and winter. The gray lines indicate the path of the lidar beam between first- and
higher-order returns; thus, lines are only shown for beams that have more than one return. Panels (e) and (j) shows the corresponding PAD for
the summer and winter scan, respectively. SR is represented using blue stars, IR is represented using dark green triangles, FR is represented
using bright green circles, and AR is represented using pink crosses. The location of the grid cell can be seen in Figs. 3 and 4.

Figure 6. The mapping of PAI from the ratio of ground returns to the total number of returns (
∑

groundRi/
∑

allRi at a 10 m× 10 m resolution)
using Eq. (9) (black line in the x–y plane). The vertical axis shows the respective distributions of the PAI (y–z plane) and

∑
groundRi/

∑
allRi

(x–z plane), at a 10 m× 10 m resolution, for the four methods (SR is represented using blue, IR is represented using dark green, FR is
represented using light green, and AR is represented using pink). The dashed lines indicate the area-averaged PAI from averaging the PAI at
a 10 m× 10 m resolution for the Norunda (a), Falster summer (b), and Falster winter (c) scans.

PAI estimates for IR, thereby widening the overall estimated
PAI distribution.

The average PAD profiles for the three data sets using
varying grid sizes are given in Fig. 7, where the data in Ta-
ble 3, when split up into vertical profiles, reveal some dif-
ferences between the methods. The difference in the PAD
magnitude follow that of the PAI, with magnitudes particu-
larly contrasting for Falster winter, although there are also
some differences in the shape of the profile. In Norunda and
Falster summer, the SR and AR methods appear very similar
from Table 1 and Fig. 2a, d, and g as well as Falster sum-
mer (Fig. 3c). However, studying the PAD profiles, the SR
method shows a less bottom-heavy profile, with a PAD max-

imum above a height of 10 m, in the canopy of most trees,
whereas the AR method has the maximum PAD at around
5 m. For Falster summer, the difference between SR and AR
is mainly in the dense regions (see Fig. 3a and d) which trans-
lates to a less pronounced upper-canopy peak in the average
profiles in AR. In the Falster winter case, the profiles reveal a
difference between the intensity-based SR and IR, with max-
imums at a lower height, and the FR and AR, which have
maximums at higher heights. This is consistent with the case
study in Sect. 4.2, in which a lack of intensity information
regards the upper-canopy reflections with higher weight.
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Table 3. Values of the average PAI for the two sites, using different calculation methods and grid resolutions. ∗ A number of PAD estimates
were not possible due to fully attenuated first returns before ground level. The data were filled with PAD values of 0.1. Less than 1 % of the
estimates were affected except for Falster summer at a resolution of 10 m× 10 m, where 4 % were affected.

Site and method 10 m× 10 m 20 m× 20 m 50 m× 50 m 100 m× 100 m

Norunda SR 2.56 2.42 (0.95) 2.35 (0.92) 2.29 (0.90)
Norunda IR 1.95 1.80 (0.92) 1.70 (0.87) 1.64 (0.84)
Norunda FR 2.87∗ 2.69 (0.94) 2.58 (0.90) 2.51 (0.87)
Norunda AR 2.60 2.51 (0.96) 2.45 (0.94) 2.41 (0.93)
Falster summer SR 7.09 6.58 (0.93) 5.94 (0.84) 5.68 (0.80)
Falster summer IR 6.34 5.74 (0.90) 5.03 (0.79) 4.75 (0.75)
Falster summer FR 9.23∗ 8.68∗ (0.94) 7.39 (0.80) 6.77 (0.73)
Falster summer AR 6.45 6.07 (0.94) 5.62 (0.87) 5.46 (0.85)
Falster winter SR 1.60 1.45 (0.91) 1.31 (0.82) 1.23 (0.77)
Falster winter IR 1.17 1.01 (0.86) 0.86 (0.74) 0.79 (0.68)
Falster winter FR 4.63∗ 4.13 (0.89) 3.76 (0.81) 3.48 (0.75)
Falster winter AR 2.66 2.59 (0.97) 2.50 (0.94) 2.48 (0.93)

Figure 7. Average PAD profiles for the Norunda (top row), Falster summer (middle row) and Falster winter (bottom row) sites. The averages
are based on a 10 m× 10 m (red full line), 20 m× 20 m (blue dashed line), 50 m× 50 m (green dash dotted line), and 100 m× 100 m (black
dotted line) resolution using the SR, IR, FR, and AR methods (left to right), respectively.

5 Discussion

5.1 Comparison between the ALS routines

In general, the methods resulted in similar spatial patterns
and magnitudes of PAD. Systematic differences were, how-
ever, found for specific conditions. For winter (leafless con-
ditions) the results showed differences between the area-
averaged PAI of more than 400 %. Both FR and AR showed
overpredictions relative to estimates in Dellwik et al. (2014);

furthermore, values by FR and AR exceeded the maximum
for beech trees reported in Bréda (2003). In addition, the ra-
tio of winter to summer PAI was in excess of 0.4 for both FR
and AR, which is also outside of the range reported in Bréda
(2003). We attributed this to the high weights of reflections
from the upper canopy, which is a result that follows from
the lack of intensity information in connection with the tiny
frontal area of branches to the footprint area of the lidar. The
FR method further showed problems in the summer scan of
the same forest, with a low number or lack of ground re-
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turns making the PAI estimates very high or impossible (ar-
gument in the logarithm of Eq. 3 becomes zero). This result
indicates that using the intensity information provides a key
benefit when the lidar footprint is large compared with com-
mon gap sizes in the forest. On the other hand, the results
also show a sensitivity to ground albedo when the intensity
information is used. This sensitivity was present in both the
IR and SR methods, but the effect in SR was limited to be-
tween 7.5 % and 40 % of the sensitivity in IR. Overall, the
scaling technique introduced in SR limits effects related to
ground albedo and the footprint to gap size ratio, which in-
dicates that it might be less sensitive to stand characteristics
and scanning parameters such as flight height and scan den-
sity. The present study included needle and broadleaf trees
for in-leaf and leafless conditions in addition to a dense heli-
copter scan with a small lidar footprint as well as sparse scans
with a relatively larger footprint; however, future studies that
systematically vary scan characteristics in different types of
forests could help further quantify the differences between
methods.

The method of Vincent et al. (2017) is similar to the
method presented herein and, thus, potentially also has many
of the advantages of the SR method. However, their use of
weights based on the average intensity per return number and
number of returns is a key difference from using the actual
intensity fraction of the return within the pulse. In their study,
Vincent et al. (2017) found that return number within the
pulse and the total number of returns in the pulse described
51 % of the variance in intensity, which indicates that using
average intensity numbers omits roughly half of the variation
that is captured by using pulse-specific intensity information.
For the data sets presented in this study, the average intensity
roughly splits evenly among the returns in the two full-leaf
scans; however the leafless scan was very different, as the
average ground return was consistently more than twice as
intense as any of the canopy returns, regardless of the num-
ber of returns. When we tested the difference between the SR
method using individual and average weights, the absolute
relative difference in the PAI estimates between the two was
less than 5 % in the full-leaf scans; however, the difference
was 25 % on average for the winter scan. Hence, if possible,
the use of individual weights should be preferred, especially
during the leafless state.

In cases of strong heterogeneity and focus on the actual
PAD, as opposed to effective PAD, the method presented in
Detto et al. (2015) provides an alternative to the approxima-
tion Beer–Lambert law, and future research in that direction
is interesting, especially with increasing access to computa-
tional power.

5.2 The effects of resolution

How to optimally select resolution for PAI and/or PAD esti-
mation by ALSs is still an open question. From Table 3, it is
clear that a coarser resolution leads to a systematically lower

PAI. The results agree with Boudreault et al. (2015), who
presented a study on grid resolution using the FR algorithm
in a spruce forest, varying the resolution from 5 m× 5 m
to 30 m× 30 m. The results also agree with the analysis of
Dufrêne and Bréda (1995), who presented a comparison be-
tween the leaf area index from litter collection and from
ground-based PAI observations using the plant canopy an-
alyzer (LI-2000, LI-COR Inc., Nevada), which is based on
light penetration from five concentric rings. The PAI read-
ings from the plant canopy analyzer systematically decreased
in magnitude when rings at higher zenith angles were in-
cluded in the estimate. The inclusion of more rings at high
zenith angles can directly be translated to an enlargement
of the measurement footprint, which makes the results from
Dufrêne and Bréda (1995) comparable to the ALS-based re-
sults on gridding resolution from this study. As stated above,
Jensen’s inequality for convex functions explains these sys-
tematic changes. Hence, when estimating the PAI for hetero-
geneous forests from instruments that are based on the expo-
nential decay of radiation into the canopy, the results can be
expected to be resolution dependent. It should also be noted
that results shown in Fig. 6 demonstrate that grid size sen-
sitivity is dependent on the magnitude of PAD and/or PAI
than less dense forests, and that this dependence enhances
grid size sensitivity. Additionally, as discussed above, forest
density in combination with the scan density (the number of
returns per square meter) sets an upper limit for the possible
resolution. Whereas the results in Table 3 show that system-
atic changes with resolution occurred for all four tested meth-
ods, there was significant variability between the tested meth-
ods, where FR always showed the highest sensitivity and AR
and SR showed the lowest sensitivity.

The optimal resolution likely depends on the application.
In wind modeling there is, for example, the optimal ratio of
the resolution of the PAD field and flow field to consider,
where the resolution of the flow field puts an upper limit
on the resolution of the PAD field. Ivanell et al. (2018) con-
cluded that for a predominantly forested area, where the drag
force from the forest on the wind was modeled by means of
PAD profiles, the value of the surface roughness below the
canopy had very little impact on the flow above the forest.
This implies that uncertainty in the lower part of the canopy
is acceptable for wind modeling. Further research into how
to optimally choose the grid resolution is needed.

6 Conclusion

We presented a new method to calculate the PAI and PAD
from airborne laser scans (ALSs). This method uses all avail-
able reflection attributes commonly stored in the ALS data
sets and combines benefits from earlier published algorithms.
In order to evaluate the performance of the new method, it
was used together with three reference methods on sites with
contrasting characteristics. The results of the new routine
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showed no marked weakness with respect to sensitivity to
forest characteristics, grid resolution, beam attenuation, and
the ratio of ground to canopy returns, whereas all reference
methods were challenged in one of those categories. In sum-
mary, the results indicate that the new algorithm is robust and
would, therefore, perform well for a wider range of vegeta-
tion types than tested here.

The new routine is applicable provided that each data point
in the data set contains information on the number of returns
in the pulse and the return number of the specific point and
that the data are ordered such that consecutive reflections
from the same pulse are grouped in the data set. For the ALS
data sets that we used in this study, these criteria have been
fulfilled.

The results showed a dependence on the grid resolution of
the derived PAI and PAD fields that was systematic for all
methods. The grid sensitivity was linked to the violation of
the homogeneity assumption in the Beer–Lambert law, which
can also be explained by the Jensen’s inequality for convex
functions. The grid resolution sensitivity varies between the
methods (from a 7 % to 32 % reduction in PAI for a magni-
tude change in grid size), where the new method showed the
second-lowest sensitivity.

Despite the issues identified with airborne lidars for the
determination of plant area and plant density, the similarities
between the four tested methods highlight the prospect of ob-
taining PAD and PAI measurements with great spatial cov-
erage, which are both precise and accurate, especially with
regards to the uncertainty levels in established ground-based
methods (Yan et al., 2019). The use of airborne lidar scans to
derive maps of the PAD and PAI also provides a promising
way to greatly reduce the subjectivity and likely uncertainty
of any atmospheric modeling that involves air–canopy inter-
actions, such as drag, heat transfer, and gas exchange.
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