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Abstract. Prediction of the direction of change of a sys-
tem under specified environmental conditions is one reason
for the widespread utility of thermodynamic models in geo-
chemistry. However, thermodynamic influences on the chem-
ical compositions of proteins in nature have remained enig-
matic despite much work that demonstrates the impact of
environmental conditions on amino acid frequencies. Here,
we present evidence that the dehydrating effect of salinity is
detectable as chemical differences in protein sequences in-
ferred from (1) metagenomes and metatranscriptomes in re-
gional salinity gradients and (2) differential gene and pro-
tein expression in microbial cells under hyperosmotic stress.
The stoichiometric hydration state (nH2O), derived from the
number of water molecules in theoretical reactions to form
proteins from a particular set of basis species (glutamine,
glutamic acid, cysteine, O2, H2O), decreases along salinity
gradients, including the Baltic Sea and Amazon River and
ocean plume, and decreases in particle-associated compared
to free-living fractions. However, the proposed metric does
not respond as expected for hypersaline environments. Anal-
ysis of data compiled for hyperosmotic stress experiments
under controlled laboratory conditions shows that differen-
tially expressed proteins are on average shifted toward lower
nH2O. Notably, the dehydration effect is stronger for most
organic solutes compared to NaCl. This new method of com-
positional analysis can be used to identify possible thermo-
dynamic effects in the distribution of proteins along chemical
gradients at a range of scales from microbial mats to oceans.

1 Introduction

How microbial populations adapt to environmental gradients
is a major challenge at the intersection of geochemistry, mi-
crobiology, and biochemistry. Patterns of amino acid usage in
proteins are important indicators of microbial adaptation, and
amino acid composition at the genome level is well known
to depend on growth temperature (Zeldovich et al., 2007).
Furthermore, measures of evolutionary distance and com-
munity composition based on protein sequences predicted
from metagenomic sequencing are strongly associated with
environmental temperature and pH (Alsop et al., 2014). It
is widely acknowledged that the effect of amino acid sub-
stitutions on the structural stability of proteins is a major
factor affecting amino acid usage in thermophiles (Sterner
and Liebl, 2001; Zeldovich et al., 2007). Similarly, a large
body of work has demonstrated amino acid signatures asso-
ciated with proteins from halophilic organisms (Kunin et al.,
2008; Paul et al., 2008; Oren, 2013; Boyd et al., 2014). The
most common interpretation of these trends is that particu-
lar amino acid substitutions are selected through evolution to
increase the stability and solubility of the folded conforma-
tion and enhance other structural properties such as flexibility
(Paul et al., 2008).

An interrelated approach to interpreting patterns of amino
acid composition is based on the energetics of amino
acid synthesis. Energetic costs in terms of ATP (adenosine
triphosphate) requirements have been used to model pro-
tein expression levels in bacterial and yeast cells (Akashi
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and Gojobori, 2002; Wagner, 2005). Although ATP demands
depend on environmental conditions (Akashi and Gojobori,
2002), a limitation of ATP-based models is that they are de-
rived for specific biosynthetic pathways, such as whether
cells are grown in respiratory or fermentative (i.e., aerobic
or anaerobic) conditions (Wagner, 2005). A different class
of models, based on thermodynamic analysis of the overall
Gibbs energy of reactions to synthesize metabolites from in-
organic precursors, quantifies the energetics of the reactions
in terms of temperature, pressure, and chemical activities of
all the species in the reactions, including those that define
pH and oxidation–reduction potential (Shock et al., 2010).
Notably, the overall Gibbs energies for amino acid synthe-
sis become more favorable but to a different extent for each
amino acid, between cold, oxidizing seawater and hot, reduc-
ing hydrothermal solution (Amend and Shock, 1998). A re-
cent systems biology study demonstrates trade-offs between
Gibbs energy of alternative pathways for amino acid synthe-
sis and cofactor use efficiency (which affects ATP costs) in
the model organism Escherichia coli and suggests that path-
way thermodynamics play a role in thermophilic adaptation
(Du et al., 2018). The oxidation state of proteins as well
as lipids has been shown to be associated with oxidation–
reduction (redox) gradients in a hot spring (Dick and Shock,
2011; Boyer et al., 2020), but so far energetic models have
not been broadly adopted as a tool for relating metagenomic
and geochemical data. This may be because few studies have
asked whether specific changes in the chemical composition
of biomolecules reflect specific environmental conditions.

To help close this gap, here we use compositional analysis
of protein sequences to identify chemical signatures of two
types of environmental conditions: redox and salinity gradi-
ents. In a previous study (Dick et al., 2019), we compared
one broad class of geochemical conditions (redox gradients)
with one compositional metric for proteins (carbon oxida-
tion state). Here, we expand the geobiochemical framework
to two dimensions by considering another set of environ-
ments (salinity gradients) and another compositional metric
(stoichiometric hydration state). Thermodynamic considera-
tions predict that redox gradients supply a driving force for
changes in the oxidation state of biomolecules (similar rea-
soning applies to the oxygen content of proteins; Acquisti
et al., 2007), while salinity gradients, through the dehydrat-
ing potential associated with osmotic effects, exert a force
that selectively alters the hydration state of biomolecules.

To test these predictions, we used two compositional met-
rics: the carbon oxidation state (ZC) and stoichiometric hy-
dration state (nH2O). ZC is computed from the chemical for-
mulas of organic molecules and takes values between the ex-
tremes of−4 for CH4 and+4 for CO2, although the range for
particular classes of biomolecules is much smaller (Amend
et al., 2013). nH2O is derived from the number of water
molecules in theoretical formation reactions of proteins from
basis species (Dick, 2016, 2017). Through the compositional
analysis of representative metagenomic and metatranscrip-

tomic datasets, we show that ZC and nH2O are most closely
aligned with environmental redox and salinity gradients, re-
spectively. These findings apply to freshwater and marine
environments, but trends for hypersaline environments de-
viate from the thermodynamic predictions, most likely due
to evolutionary optimizations of hydrophobicity and isoelec-
tric point to stabilize the structures of proteins in halophilic
organisms.

2 Conceptual background

In this study we use compositional analysis to uncover envi-
ronmental imprints in protein sequences. Analysis of com-
positional data is used by geochemists to study processes
such as water–rock interaction and ore deposition and is of-
ten one of the first steps in constructing thermodynamic mod-
els, but its application to living systems is relatively uncom-
mon. Therefore, it is important to describe the conceptual
basis for our methods. To do this, we identified six areas
of concern summarized as (1) intracellular or environmen-
tal conditions, (2) amino acids or atoms, (3) condensation
or theoretical formation reactions, (4) chemical composition
or conformational stability, (5) oxidation and hydration state
or temperature and pH, and (6) mathematical or biosynthetic
models.

A first concern is that intracellular conditions are main-
tained within physiological ranges, so the influence of exter-
nal conditions on the composition of microbial biomolecules
may be limited. However, cell membranes are permeable
to uncharged species such as hydrogen (Slonczewski et al.,
2009), supporting the argument that the oxidation state of
the cytoplasm and therefore the energetics of metabolic re-
actions are influenced by the external environment (Poudel
et al., 2018; Canovas and Shock, 2020). Likewise, oxygen
diffuses rapidly through lipid membranes, depending on their
composition and structure, and rates of diffusion increase
with temperature (Möller et al., 2016). Cell membranes are
also permeable to water (Record et al., 1998). For E. coli,
which grows most rapidly at about 0.3 Osm L−1 (osmolar-
ity), increasing the extracellular osmotic strength from 0.1
to 1.0 Osm L−1 (approximately the osmotic concentration of
seawater; BioNumbers BNID 100802 (Milo et al., 2010)) re-
duces the amount of free cytoplasmic water by more than
half (Record et al., 1998). Halophiles, which thrive at even
higher salinities, accumulate inorganic salts or organic so-
lutes to maintain osmotic balance with the environment (Gar-
ner and Burg, 1994; Oren, 2013). The result is that, with
few exceptions, intracellular conditions must be isosmotic
with the environment, or somewhat higher, to maintain turgor
pressure (Gunde-Cimerman et al., 2018). Water activity is
lower in more concentrated solutions, and intracellular water
activity estimated from freezing point and cell composition
data closely follows that of the growth medium but is often
offset to lower values (Chirife et al., 1981), perhaps due to
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macromolecular crowding effects (Garner and Burg, 1994).
To summarize, high osmotic strength causes a decrease in
hydration potential, measured as water activity, both outside
and inside cells.

This brief review suggests that oxidation and hydration
potentials in cell interiors, at least under experimental con-
ditions, are influenced by (but not equal to) environmental
conditions. Ideally, we would like to compare the compo-
sitions of biomolecules to conditions actually measured in-
side cells or in the immediate surroundings of cells, but these
measurements are generally not available for microbial com-
munities in their natural environments; thus, we make com-
parisons with large-scale geochemical gradients, except for
different layers of the Guerrero Negro microbial mat, where
metagenomic and chemical data are available on the scale of
millimeters.

Second, previous authors have emphasized the importance
of changes in elemental stoichiometry – that is, atomic com-
position – and not only amino acid composition in the molec-
ular evolution of proteins (Baudouin-Cornu et al., 2001). Al-
though stoichiometric predictions are amenable to experi-
mental tests, such as the long-term evolution of E. coli in
the laboratory (Turner et al., 2017), the omission of a major
bioelement, hydrogen, and the oxidation state of organic mat-
ter from most stoichiometric models (Karl and Grabowski,
2017) means that there are also significant opportunities for
theory development. Because redox reactions are inherent in
many aspects of metabolism, while hydration and dehydra-
tion reactions are essential for the synthesis of biomacro-
molecules (Braakman and Smith, 2013), our approach is
shaped by the assumption that O2 and H2O are two primary
components that link environmental conditions to the ener-
getics of biomolecular synthesis.

The third point follows from the previous one. The poly-
merization of amino acids is a condensation reaction that re-
leases one H2O per bond formed, independent of the partic-
ular amino acids that are involved. By contrast, our analy-
sis depends crucially on the concept of a “formation reac-
tion”, which in the thermodynamic literature represents the
composition of a chemical species, either in terms of ele-
ments (Warn and Peters, 1996) or in terms of other species
(May and Rowland, 2018). When these other species are re-
stricted in number to the minimum needed to represent the
composition of all possible species in the system, they con-
stitute a set of “basis species”, which can be thought of as
the building blocks of the system, similar to the concept of
thermodynamic components (Anderson, 2005). Therefore, a
formation reaction from basis species is a mass-balanced
(but nonunique) stoichiometric representation of the chem-
ical composition of the protein. This type of reaction in gen-
eral does not correspond to amino acid biosynthesis or poly-
merization, so to avoid confusion, we refer to these formation
reactions as “theoretical formation reactions”; the number of
water molecules in the theoretical formation reactions, nor-

malized by the protein length, is the “stoichiometric hydra-
tion state”.

From a mechanistic standpoint, an analysis using any set
of basis species is inadequate, since the number of basis
species (five, corresponding to the elements C, H, N, O, and
S) is smaller than the number of biochemical precursors and
inorganic species that are actually involved in amino acid
synthesis (Du et al., 2018). The use of O2, H2O, and other
basis species to represent the composition of proteins reflects
the hypothesis that they are conjugate to thermodynamically
meaningful descriptive variables (specifically, chemical po-
tentials) even if they are not directly involved in the biosyn-
thetic mechanisms for amino acids. The projection of amino
acid composition (20-D) into the compositional space rep-
resented by basis species (5-D) is a type of dimensionality
reduction, but the variables are chosen based on a physic-
ochemical hypothesis, unlike principal components analysis
(PCA) or other unsupervised methods, where the projection
is determined by the data.

A fourth concern is that this analysis is based on the hy-
pothesis that thermodynamic forces affect the chemical com-
positions of proteins over evolutionary time, which is dif-
ferent from the more common hypothesis of optimization of
structural stability. Thermodynamic models define the “cost”
of a protein as a function of not only amino acid composition
but also environmental conditions. Conceptually, this follows
from Le Chatelier’s principle, in that increasing the chemi-
cal activity of a reactant (on the left-hand side of a reaction)
drives the reaction toward the products. Stated in more gen-
eral terms, the overall Gibbs energy of a reaction depends on
the activities of species in the reaction (Shock et al., 2010;
Amend and LaRowe, 2019). Consider two proteins with dif-
ferent amino acid compositions and therefore also different
chemical compositions and theoretical formation reactions,
which should be normalized by the number of residues in or-
der to compare proteins of different length. The formation
of the protein with more water as a reactant is theoretically
favored by increasing the water activity, whereas the forma-
tion of the protein with more oxygen as a reactant is favored
by increasing the oxygen activity. The water and oxygen ac-
tivity are thermodynamic measures of hydration and oxida-
tion potential and can be converted to other scales, such as
oxidation–reduction potential (ORP).

This reasoning provides the theoretical justification for
using chemical composition as an indicator of molecular
adaptation to specific environmental conditions but does not
replace interpretations based on structural considerations.
Halophilic organisms exhibit well documented patterns of
amino acid usage, including lower hydrophobicity and higher
abundance of acidic residues that impart greater stability, sol-
ubility, and flexibility of proteins (Paul et al., 2008). These
adaptations are reflected in lower values of the GRAVY hy-
drophobicity scale (Paul et al., 2008; Boyd et al., 2014)
and/or isoelectric point of proteins (pI) (Oren, 2013). In
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Sect. 4.3 and 4.4, we compare the compositional metrics with
GRAVY and pI for the same datasets.

Fifth, temperature, pH, and other environmental parame-
ters besides redox and salinity might influence the oxidation
and hydration state of proteins. For instance, the redox gradi-
ents in hydrothermal systems are also temperature gradients,
due to the mixing of seawater and hydrothermal fluid, and
we have not attempted to disentangle the effects of tempera-
ture and redox conditions. However, our previous analysis of
other redox gradients, including stratified hypersaline lakes,
indicates that the carbon oxidation state of biomolecules can
vary even in systems where temperature changes are much
smaller (Dick et al., 2019). It is an axiomatic statement that
changes in oxidation state can be associated with one ther-
modynamic component of a system; our objective in the
present study is to explore the differences between this and
one other component, represented by hydration state. Future
work should also account for the effects of pH and tempera-
ture, which is possible using thermodynamic models for pro-
teins (Dick and Shock, 2011).

Finally, it should be noted that the basis species used in the
stoichiometric analysis are chosen primarily for mathemati-
cal convenience and not because of evolutionary or biosyn-
thetic requirements. The main criterion we consider for the
choice of basis species is to reduce the covariation between
the metrics for oxidation and hydration state, which arises as
a mathematical consequence of projecting the atomic formu-
las of proteins into a particular compositional space, and may
not reflect meaningful differences of chemical composition.
Additional considerations are described in Sect. 3.2.

3 Methods

3.1 Carbon oxidation state

The most common metric used in geochemistry for the ox-
idation state of organic molecules is the average oxidation
state of carbon (ZC), which also goes by other names such
as nominal oxidation state of carbon (NOSC) (LaRowe and
Van Cappellen, 2011). This quantity measures the average
degree of oxidation of carbon atoms in organic molecules.
For a protein for which the primary sequence has the chemi-
cal formula CcHhNnOoSs , the value of ZC can be calculated
from the following (Dick and Shock, 2011; Dick, 2014):

ZC =
−h+ 3n+ 2o+ 2s

c
. (1)

The derivation of Eq. (1) is based on the relative elec-
tronegativities of the elements, expressed as oxidation num-
bers (e.g., Kauffman, 1986; Minkiewicz et al., 2018). When
bonded to carbon, H is assigned an oxidation number of +1,
and N, O, and S have oxidation numbers of −3, −2, and −2.
Equation (1) gives the remaining charge that must be present
on each C atom, on average, to satisfy overall neutrality. Be-
cause of the relatively simple structures of amino acids and

the primary structure of proteins, in which N, O, and S are
bonded to only H and C, it is possible to calculate the av-
erage oxidation state of carbon using Eq. (1). However, this
equation is not necessarily valid for other classes of organic
molecules or some types of post-translational modifications
of proteins, including the formation of disulfide bonds. An
important relation inherent in Eq. (1) is the redox neutrality
of hydration and dehydration reactions; any pair of hypothet-
ical (or real) proteins whose formulas differ only by some
amount of H2O have equal carbon oxidation states.

3.2 Choice of basis species: theoretical considerations

A major premise of this study is that oxidation state and hy-
dration state are two primary variables in geobiochemical
systems. Accordingly, when choosing the basis species that
can be combined to make the proteins, O2 and H2O are the
only fixed requirements. This leaves three basis species that
when combined with each other and with O2 and H2O must
be able to give any possible formula written as CcHhNnOoSs .
We reiterate that this analysis refers to the chemical for-
mulas of polypeptide sequences, that is, the primary struc-
ture of proteins, not post-translational modifications or H2O
molecules in the hydration shell of folded proteins.

Equation (1) is derived from electronegativity relations
and therefore allows for the calculation of the carbon oxida-
tion state from a given chemical formula, independent of any
chemical reactions. In contrast, there is no way to count the
number of H2O molecules in a chemical formula; H2O ap-
pears only in chemical reactions. But it is important to note
that any particular reaction that involves only H2O is redox
neutral. Conversely, the coefficient of O2 in redox reactions
is closely related to the number of electrons transferred. Let
us consider the 20 protein-forming amino acids as a baseline
for compositional analysis; the numbers of H2O and O2 in
the formation reactions of the amino acids from a particular
set of basis species are denoted by nH2O and nO2 . The choice
of basis species in our study is guided by the dual objectives
that (1) nH2O of amino acids should have very little correla-
tion with ZC and (2) nO2 of amino acids should be strongly
correlated with ZC. It should be emphasized that these are
not criteria for “correctness”, since basis species, like ther-
modynamic components, only have to be the minimum num-
ber needed to represent the chemical composition of all the
species that can be formed from them (Anderson, 2005). In-
stead, basis species selected using these conditions yield a
convenient mathematical projection of elemental composi-
tion; that is, nearly horizontal or vertical trends on nH2O–ZC
scatterplots for proteins specifically reflect changes in oxida-
tion state or hydration state, respectively.

An additional consideration is that a biologically meaning-
ful set of basis species is likely to comprise metabolites that
have high network connectivity, that is, are involved in reac-
tions with many other metabolites. Reactions involving glu-
tamine and glutamic acid (or its ionized form glutamate) are
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major steps of nitrogen metabolism (Morowitz, 1999; De-
Berardinis and Cheng, 2010), and these amino acids have
been characterized as “nodal point” metabolites (Walsh et al.,
2018). Either methionine or cysteine would provide the sul-
fur required for the system, but cysteine is relevant as a con-
stituent of the glutathione molecule, which has important
roles in cellular redox chemistry (Walsh et al., 2018). These
considerations support the proposal of the amino acids glu-
tamine, glutamic acid, and cysteine (collectively abbreviated
QEC) together with O2 and H2O as a biologically relevant
set of basis species for describing the chemical compositions
of proteins (Dick, 2016). These three amino acids are among
the top eight amino acids ranked by number of reactions in a
metabolic model for E. coli (Feist et al., 2007) (E: 52, S: 25,
D: 23, Q: 18, A: 15, G: 15, M: 15, C: 13).

3.3 Choice of basis species: stoichiometric analysis

Here we compute the stoichiometric hydration state by ana-
lyzing the compositions of the 20 proteinogenic amino acids
in detail. We start with a “default” set of basis species chosen
for their common occurrence in overall catabolic reactions
(Amend and LaRowe, 2019): CO2, NH3, H2S, H2O, and O2.
Using these basis species (designated CHNOS), the theoreti-
cal formation reaction of alanine (C3H7NO2) is

3CO2+ 2H2O+NH3→ C3H7NO2+ 3O2 (R1)

and the oxygen and water content of the amino acid (i.e.,
nO2 =−3 and nH2O = 2) are the opposite of the coefficients
on O2 and H2O in the reaction. Analogous reactions for the
other amino acids were used to make Fig. 1a–b. Using glu-
tamine (C5H10N2O3), glutamic acid (C5H9NO4), cysteine
(C3H7NO2S), H2O, and O2 (the QEC basis species), the the-
oretical formation reaction of alanine is

0.4C5H10N2O3+ 0.2C5H9NO4+ 0.6H2O

→ C3H7NO2+ 0.3O2 (R2)

showing that the oxygen and water content are nO2 =−0.3
and nH2O = 0.6. Calculations for all the amino acids using
the QEC basis were used to make Fig. 1c–d.

As measured by R2 in linear regressions, the CHNOS ba-
sis yields a strong negative correlation between ZC and nH2O
for the amino acids (Fig. 1a) but a relatively weak correla-
tion between ZC and nO2 (Fig. 1b). The QEC basis provides
a stronger association between ZC and nO2 and reduces the
correlation betweenZC and nH2O (Fig. 1c–d). However, there
is still a small negative correlation for amino acids (Fig. 1c).
A plot with the R2 values for all possible combinations of
H2O, O2, and three amino acids indicates that QEC has rela-
tively low R2 of nH2O–ZC and high R2 of nO2–ZC (Fig. 1e).
Therefore, it is a suitable candidate to meet the objectives de-
scribed above. Although another combination of amino acids
– methionine, tryptophan, and tyrosine (MWY) – has even
lower R2 for the nH2O–ZC fit (Fig. 1e), tryptophan and tyro-

Table 1. Values of stoichiometric hydration state (nH2O) of amino
acids calculated with the QEC basis species (glutamine, glutamic
acid, cysteine, H2O, O2), average oxidation state of carbon (ZC),
and number of carbon atoms (nC). Standard one-letter abbreviations
for the amino acids (denoted AA) are used.

AA nH2O ZC nC AA nH2O ZC nC

A 0.6 0 3 M 0.4 −2/5 5
C 0.0 2/3 3 N −0.2 1 4
D −0.2 1 4 P 0.0 −2/5 5
E 0.0 2/5 5 Q 0.0 2/5 5
F −2.2 −4/9 9 R 0.2 1/3 6
G 0.4 1 2 S 0.6 2/3 3
H −1.8 2/3 6 T 0.8 0 4
I 1.2 −1 6 V 1.0 −4/5 5
K 1.2 −2/3 6 W −3.8 −2/11 11
L 1.2 −1 6 Y −2.2 −2/9 9

sine are not highly connected metabolites and therefore are
less preferable as basis species.

By strengthening the association between ZC and nO2 ,
which represent alternative metrics for oxidation state, and
by reducing the correlation between ZC and nH2O, the QEC
basis species provides a more convenient projection of el-
emental composition than a default choice of inorganic
species, such as CO2, NH3, H2S, H2O, and O2, which com-
monly appear in overall catabolic reactions (Amend and
LaRowe, 2019). The selection of basis species is an evolv-
ing method, and further analysis with other metabolites may
lead to a more convenient set of basis species to project the
elemental composition of proteins into chemical variables.

3.4 Compositional metrics for proteins and
metagenomes

For a given protein, the stoichiometric hydration state was
calculated from

nH2O =

∑
ni
(
nH2O,i − 1

)
+ 1∑

ni
, (2)

where ni is the frequency of the ith amino acid (i = 1 to 20)
in the protein and nH2O,i is the stoichiometric hydration state
of that amino acid (Table 1). The “−1” in the numerator ac-
counts for the loss of H2O in the polymerization of amino
acids, and the “+1” after the summation accounts for the N-
terminal H and C-terminal OH of the polypeptide.

Unlike nH2O, ZC for proteins must be weighted by the
number of carbon atoms in each amino acid, i.e.,

ZC =

∑
ninC,iZC,i∑
ninC,i

, (3)

where nC,i and ZC,i are the number of carbon atoms and car-
bon oxidation state of the ith amino acid (see Table 1). For
example, ZC of the dipeptide Ala-Gly can be calculated as
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Figure 1. Stoichiometric numbers of H2O and O2 for theoretical formation reactions of amino acids computed with different sets of basis
species, plotted against carbon oxidation state (ZC), which is computed from the elemental formula and does not depend on the choice of
basis species. Linear regressions and R2 values were calculated using the lm function in R (R Core Team, 2020). (a–b) CO2, NH3, H2S,
H2O, O2 (CHNOS). (c–d) Glutamine, glutamic acid, cysteine, H2O, O2 (QEC). (e) Scatterplot of R2 values for nH2O–ZC fits against R2

values for nO2 –ZC fits for all combinations of basis species consisting of H2O, O2, and three amino acids (including the points labeled QEC
and MWY (methionine, tryptophan, tyrosine)) or CO2, NH3, H2S, H2O, and O2 (CHNOS).

(3× 0+ 2× 1)/(3+ 2), where 3 and 2 are the numbers of
carbon atoms and 0 and 1 are the ZC of Ala and Gly, respec-
tively. The result, 0.4, can be checked by applying Eq. (1)
to the chemical formula of alanylglycine (C5H10N2O3). The
methods for calculating nH2O andZC from elemental compo-
sition and amino acid composition are shown schematically
in Fig. 2.

3.5 Amino acid composition of proteomes of
nif-bearing organisms

In a separate study, Poudel et al. (2018) used carbon oxi-
dation state as a metric for comparing proteomes of organ-
isms containing the nitrogenase gene (nif). The evolution of
these organisms is associated with rising atmospheric oxygen
through geological history. In order to approximately repli-
cate their results, amino acid compositions of all proteins for
each bacterial, archaeal, and viral taxon in the NCBI Ref-
erence Sequence (RefSeq) database (O’Leary et al., 2016)
were compiled from RefSeq release 201 (July 2020). Scripts
to do this and the resulting data file of amino acid com-
positions of 42 787 taxa are available in the JMDplots R
package (see “Code and data availability” section). Names
of organisms containing different nitrogenase (nif) homologs
were extracted from Supplement Table S1A of Poudel et al.
(2018). These names were matched to the closest organism
name in RefSeq. Duplicated species (represented by differ-
ent strains) were removed, as were matching organisms with

Figure 2. Schematic of calculations of nH2O and ZC for a sin-
gle protein. The selected protein is chicken egg white lysozyme
(UniProt ID: LYSC_CHICK), which is historically an extensively
characterized protein in the laboratory. The protein sequence was
used to tabulate the amino acid composition (right column), which
in turn was used to generate the elemental composition (left col-
umn). The coefficients on the basis species are determined from
the elemental composition by mass-balance constraints. Dividing
the number of H2O in the basis species by the protein length gives
the stoichiometric hydration state (nH2O). Independent of the ba-
sis species, the elemental composition yields the average oxidation
state of carbon (ZC) according to Eq. (1). To reduce computing
steps, in this study the amino acid compositions of proteins (ob-
tained, for example, from metagenomic sequences) were used to
calculate nH2O and ZC with Eqs. (2) and (3) and the values for
amino acids in Table 1.
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fewer than 1000 RefSeq protein sequences. As a result, the
numbers of organisms included in the present calculations
(Nif-A: 155, Nif-B: 68, Nif-C: 14, Nif-D: 7) are less than
those identified in Poudel et al. (2018). Note that values of
ZC calculated here (Fig. 3a) are lower than those shown
in Fig. 5 of Poudel et al. (2018). This difference is associ-
ated with the weighting by carbon number (described above),
which was not performed by Poudel et al. (2018).

3.6 GRAVY and pI

The grand average of hydropathicity (GRAVY) was calcu-
lated using published hydropathy values for amino acids
(Kyte and Doolittle, 1982). The isoelectric point (pI) was
calculated using published pKa values for terminal groups
(Bjellqvist et al., 1993) and side chains (Bjellqvist et al.,
1994); however, the calculation does not implement position-
specific adjustments (Bjellqvist et al., 1994). The pKa val-
ues used for calculating pI (Bjellqvist et al., 1993, 1994) and
transfer free energies used in the derivation of the GRAVY
scale (Kyte and Doolittle, 1982) correspond to 25 ◦C and
1 bar, and no attempt was made here to account for the tem-
perature effects on these properties. The charge for each
ionizable group was precalculated from pH 0 to 14 at in-
tervals of 0.01, and the isoelectric point was computed as
the pH where the sum of charges of all groups in the
protein is closest to zero. These calculations were imple-
mented as new functions in the canprot R package (Dick,
2017) (see “Code and data availability” section). Compar-
isons for selected proteins (UniProt IDs: LYSC_CHICK,
RNAS1_BOVIN, AMYA_PYRFU) show that the calculated
values of GRAVY and pI are equal to those obtained with the
ProtParam tool (Gasteiger et al., 2005).

3.7 Prediction of protein sequences

Protein sequences were predicted from metagenomic reads
using a previously described workflow (Dick et al., 2019).
Briefly, reads were trimmed, filtered, and dereplicated us-
ing scripts adapted from the MG-RAST pipeline (Keegan
et al., 2016). For metatranscriptomic datasets, ribosomal
RNA sequences were removed using SortMeRNA (Kopy-
lova et al., 2012). Protein-coding sequences were identified
using FragGeneScan (Rho et al., 2010), and the amino acid
sequences of the predicted proteins were used in further cal-
culations. For large datasets, only a portion of the available
reads were processed (at least 500 000 reads; see Supple-
ment Tables S1 and S2). This reduces the computational re-
quirements without noticeably affecting the calculated aver-
age compositions (Dick et al., 2019).

Means and standard deviations of ZC, nH2O, GRAVY, and
pI were calculated for 100 random subsamples of protein
sequences from each metagenomic or metatranscriptomic
dataset. The number of sequences included in each subsam-
ple was chosen to give a total length closest to 50 000 amino

acids on average. The subsample density (or number of se-
quences included in each sample) depends on the average
length of the metagenomic or metatranscriptomic sequences
and is listed in Tables S1 and S2. This number ranges from
251 for the dataset with the highest mean protein fragment
length (199.1; metagenome of hot-spring source of Bison
Pool) to 1696 for the dataset with the lowest mean protein
fragment length (29.5; metatranscriptome of site GS684 in
the Baltic Sea).

4 Results and discussion

4.1 Comparison of redox and salinity gradients

To search for the hypothesized dehydration signal in metage-
nomic data, we began with redox gradients as a negative con-
trol. Submarine hydrothermal vents are zones of complex in-
teractions between reduced endmember fluids and relatively
oxidized seawater (Reeves et al., 2014; Ooka et al., 2019).
Terrestrial hydrothermal systems, such as the hot springs in
Yellowstone National Park, USA, provide a source of re-
duced fluids that are oxidized by degassing and mixing with
air and surface groundwater as well as biological activity in-
cluding sulfide oxidation (Lindsay et al., 2018). Redox gradi-
ents can also develop over smaller length scales. The surface
of the Guerrero Negro microbial mat (Baja California Sur,
Mexico) is exposed to ca. 1 m deep hypersaline, oxygenated
water (approximately 200 µM O2), but in the mat, oxygen
rises during the daytime and is depleted within a few mil-
limeters, giving way to anoxic and then sulfidic conditions
(Ley et al., 2006).

Using metagenomic data for these redox gradients (Kunin
et al., 2008; Havig et al., 2011; Swingley et al., 2012; Reveil-
laud et al., 2016; Fortunato et al., 2018), Dick et al. (2019)
showed that the carbon oxidation states of DNA, messen-
ger RNA, and proteins increase down the outflow channel
of Bison Pool and between fluids from diffuse hydrothermal
vents and relatively oxidizing seawater. Moreover, intact po-
lar lipids extracted from the microbial communities of Bison
Pool and other alkaline hot springs also exhibit downstream
increases in carbon oxidation state (Boyer et al., 2020), re-
vealing that parallel compositional trends characterize many
major types of biomacromolecules in these hot springs. The
ZC of proteins increases more subtly toward the surface in
the upper few millimeters of the Guerrero Negro microbial
mat; it also increases at greater depths, perhaps due to het-
erotrophic degradation and/or horizontal gene transfer (Dick
et al., 2019). Furthermore, an evolutionary trajectory asso-
ciated with the occurrence of different homologs of nitroge-
nase (nif) in anaerobic and aerobic organisms is character-
ized by increasing ZC of the proteomes of these organisms
(Poudel et al., 2018).
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Figure 3. Compositional analysis of proteins in redox gradients and the Baltic Sea salinity gradient. (a) Redox gradients. Abbreviations
and data sources: BP (Bison Pool hot spring; Havig et al., 2011; Swingley et al., 2012), DV (diffuse submarine vents; Reveillaud et al.,
2016; Fortunato et al., 2018), GN (Guerrero Negro microbial mat; Kunin et al., 2008), and NF (nitrogenase-bearing organisms; Poudel et al.,
2018). The NF data are based on reference proteomes (see Methods section); all others are for protein sequences predicted from metagenomic
data. Outlined symbols indicate samples from relatively oxidizing conditions. (b) Surface and (c) deeper samples (Chl a max: chlorophyll a
maximum, 9–30 m deep) from the Baltic Sea transect. Metagenomes as described in Dupont et al. (2014) were downloaded from iMicrobe
(Youens-Clark et al., 2019); the plots show data for the 0.1–0.8 µm size fraction collected from stations along the transect at low salinity
(< 6 PSU) and high salinity (> 6 PSU). Background guidelines have slopes equal to that of the nH2O–ZC linear regression for amino acids in
Fig. 1c.

The trends of carbon oxidation state described above are
visible in the scatter plot in Fig. 3a, with an added dimension:
stoichiometric hydration state. The guidelines in this plot are
parallel to the nH2O–ZC trend for amino acids (Fig. 1c); their
slope represents the background correlation between nH2O
and ZC that is associated with the choice of basis species.
Sample data for Bison Pool and the submarine vents are
distributed parallel to these guidelines. Therefore, the de-
crease of nH2O along these redox gradients can be attributed
to the background correlation in the stoichiometric analysis,
and the differences between samples within each dataset are
specifically associated with changes in carbon oxidation state
and not stoichiometric hydration state. This is an expected
outcome, as the redox gradients considered here do not have
large changes in salinity. In particular, concentrations of Cl−,
a conservative ion, increase by less than 10 % (6.1 to 6.6 mM)
in the outflow of Bison Pool due to evaporation (Swingley
et al., 2012). The diffuse vents considered here have concen-
trations of Cl− between 515 and 624 mM, not greatly differ-
ent from bottom seawater at 545 mM (Dataset S1 of Reeves
et al., 2014).

As a well known example of a regional salinity gradi-
ent, the Baltic Sea exhibits a freshwater to marine transi-
tion over 1800 km, but dissolved oxygen at the surface is
at or near saturation with air (Dupont et al., 2014), so this
transect does not represent a redox gradient. For protein se-
quences derived from metagenomes in the 0.1–0.8 µm size
fraction, there are large changes in stoichiometric hydration

state along the Baltic Sea transect but relatively small dif-
ferences in the carbon oxidation state (Fig. 3b). This pattern
holds for samples from both the surface and chlorophyll a
maximum (9–30 m deep; Fig. 3c).

4.2 Multifactorial hydration effects

The stoichiometric hydration state of proteins can be in-
fluenced by factors other than just salinity. Previous au-
thors have observed large differences in microbial commu-
nity composition between free-living and particle-associated
fractions, which may be due in part to anoxic conditions aris-
ing from limited diffusion in particles (Simon et al., 2014).
As described below, we found a trend of relatively low nH2O
in particles compared to free-living fractions in both the
Baltic Sea and Amazon River. This effect is probably associ-
ated with phylogenetic differences among the size fractions,
but reduced accessibility to bulk water may be a contributing
factor. Further support for the possible influence of physical
accessibility is the reduced nH2O in the interior compared to
upper layers of the Guerrero Negro microbial mat.

For the Baltic Sea metagenomes and metatranscriptomes,
the 0.1–0.8 and 0.8–3.0 µm size fractions of particles that
do not pass through the filter, which are used for subse-
quent DNA extraction and sequencing, represent free-living
bacteria, while the 3.0–200 µm fraction contains particle-
associated bacteria with average larger genome sizes and
greater inferred metabolic and regulatory capacity (Dupont
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Figure 4. Stoichiometric hydration state of proteins in metagenomes (Dupont et al., 2014) and metatranscriptomes (Asplund-Samuelsson
et al., 2016) of surface water samples in the Baltic Sea with increasing particle size: (a) 0.1–0.8, (b) 0.8–3.0, and (c) 3.0–200 µm. From left
to right, the samples on the horizontal axis (some IDs omitted for clarity) are arranged from freshwater to marine conditions in the Sorcerer
II Global Ocean Sampling Expedition (Dupont et al., 2014); all sample IDs are GS667, GS665, GS669, GS673, GS675, GS659, GS679,
GS681, GS683, GS685, GS687, and GS694. Width of shading represents ± 1 standard deviation in subsampled sequences (see Methods
section).

et al., 2014). Figure 4a–c shows that proteins inferred from
metagenomes for larger particles have lower nH2O than those
for the smallest size fraction. The Guerrero Negro microbial
mat offers another opportunity to compare exposed and inte-
rior environments. Unlike ZC, which reaches a minimum a
few millimeters into the mat, nH2O decreases throughout the
mat, but the changes are most pronounced in the upper few
millimeters (Fig. 3a).

One hypothesis that could explain these findings is that the
interiors of particles and the mat are sequestered to some ex-
tent from the surrounding aqueous environment. If limited
accessibility to the aqueous phase were manifested as lower
water activity, perhaps due to surface effects associated with
geological nanomaterials (Wang et al., 2003) and/or higher
concentrations of solutes, it would provide a thermodynamic
drive that favors lower nH2O of proteins. However, it should
be noted that particles are also suitable habitats for multicel-
lular and eukaryotic populations (Simon et al., 2014). There-
fore, the trends in stoichiometric hydration state may require
an explanation in terms of both physical and phylogenetic
differences, which should be explored in future studies.

An important evolutionary transition is the emergence of
heterotrophic metabolism, which is a later innovation than
autotrophic core metabolism (Morowitz, 1999; Braakman
and Smith, 2013). It is notable that the deeper layers of the
Guerrero Negro mat show greater evidence for heterotrophic
metabolism (Kunin et al., 2008); likewise, heterotrophs in
the “photosynthetic fringe” in Bison Pool may outcompete
the autotrophs that dominate at higher and lower tempera-
tures (Swingley et al., 2012). These putative heterotroph-rich

zones show locally lower values of nH2O (Fig. 3a). If decreas-
ing stoichiometric hydration state is a common theme across
some evolutionary transitions, then the relatively high nH2O
in the proteomes of organisms carrying the ancestral nitroge-
nase Nif-D (Fig. 3a) is not unexpected. A better understand-
ing of these trends would require more extensive phylogenet-
ically resolved comparisons of the compositional differences
as well as quantitative analyses of water fluxes in different
metabolic pathways.

4.3 Compositional trends in rivers, lakes, and
hypersaline environments

The Amazon River and ocean plume provide another exam-
ple of a freshwater to marine transition, with salinities that
range from below the scale of practical salinity units (PSU)
in the river to 23–36 PSU in the plume (Satinsky et al.,
2014, 2015). We used published metagenomic and meta-
transcriptomic data for filtered samples classified as free-
living (0.2 to 2.0 µm) and particle-associated samples (2.0 to
156 µm) (Satinsky et al., 2014, 2015). River samples form
a tight cluster on a plot of stoichiometric hydration state
against carbon oxidation state of proteins, and the plume
samples are scattered over lower ZC and low values of nH2O,
particularly for the particle-associated fraction (Fig. 5a). For
metatranscriptomes, there is a noticeable decrease of nH2O
from the river to the ocean plume but little difference in car-
bon oxidation state (Fig. 5b), and the particle-associated sam-
ples again exhibit a generally lower nH2O than the free-living
samples. Together with the lower nH2O for proteins inferred
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Figure 5. Compositional analysis and hydropathicity and isoelectric point calculations for proteins from the Amazon River and plume
and other metagenomes. Samples representing freshwater, marine, and hypersaline environments are indicated by the colored convex hulls.
(a) Metagenomic and (b) metatranscriptomic data for particle-associated and free-living fractions from the lower Amazon River (Satinsky
et al., 2015) and plume in the Atlantic Ocean (Satinsky et al., 2014). (c) Freshwater (lakes in Sweden and USA) and marine metagenomes
considered in a previous comparative study (Eiler et al., 2014) and metagenomes from hypersaline environments including Kulunda Steppe
soda lakes in Siberia, Russia (Vavourakis et al., 2016) (KS), Santa Pola salterns in Spain (Ghai et al., 2011; Fernandez et al., 2013) (SA),
and salterns in the South Bay of San Francisco, CA, USA (Kimbrel et al., 2018) (SB). Plots (d–f) show values of average hydropathicity
(GRAVY) and isoelectric point (pI) of proteins for the same datasets. Background guidelines have slopes equal to that of the nH2O–ZC linear
regression for amino acids in Fig. 1c.

from metagenomes and metatranscriptomes in the larger size
fractions from Baltic Sea samples, this could reflect a lower
availability of H2O to organisms living near the particle sur-
face due to physical separation from the bulk aqueous phase
and associated diffusion limitation or lower water activity
(Wang et al., 2003).

We also considered data used in a previous compara-
tive study and data for hypersaline environments includ-
ing evaporation ponds (salterns) and lakes in desert areas.
Eiler et al. (2014) characterized microbial communities us-
ing metagenomic data for various freshwater samples (lakes
in the USA and Sweden) and marine locations. For hyper-
saline settings, we used metagenomic data from the Santa
Pola salterns in Spain (Ghai et al., 2011; Fernandez et al.,
2013), natural soda lakes of the Kulunda Steppe in Serbia
(Vavourakis et al., 2016), and South Bay salterns in Califor-
nia, USA (Kimbrel et al., 2018). The compositional analysis
reveals a relatively low nH2O of proteins inferred from the
marine metagenomes compared to freshwater samples in the
Eiler et al. (2014) dataset (Fig. 5c). Surprisingly, hypersaline
metagenomes have ranges of nH2O of proteins that are similar

to marine environments but considerably higherZC (Fig. 5c).
To interpret these results, we considered other factors that are
known to influence the amino acid compositions of proteins
in halophiles.

“Salt-in” halophilic organisms have proteins with rela-
tively low isoelectric point that remain soluble at high salt
concentrations (Ghai et al., 2011). It should be noted that
proteins with a lower pI also tend to have relatively high
ZC due to higher abundances of aspartic acid and glutamic
acid, which are relatively oxidized (see Amend and Shock,
1998; Dick, 2014; and Fig. 1). Consequently, the lower pI
characteristic of salt-in organisms is also associated with an
increase of carbon oxidation state. Because of the large pI
differences (Fig. 5f), the increase of ZC in hypersaline en-
vironments can not be interpreted as an indicator of an en-
vironmental redox gradient. Some halophilic organisms are
also known to have proteins that are less hydrophobic, with
lower values of GRAVY (Paul et al., 2008; Boyd et al., 2014).
Because hydrophobic amino acids have relatively low values
of ZC (Dick, 2014), a negative correlation between GRAVY
and ZC is also expected.
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Figure 6. Divergent trends of nH2O and ZC of proteins from
metagenomes for (a) the Baltic Sea and (b) freshwater and higher-
salinity samples from southern California (Rodriguez-Brito et al.,
2010). The datasets from Rodriguez-Brito et al. (2010) are classi-
fied according to salinity: freshwater (FW; three samples at differ-
ent times from the tilapia channel and one sample from the prebead
pond), low salinity (LS; three samples at different times from the
low salinity saltern), and hypersaline (MS–HS; four samples from a
medium salinity and two from a high salinity saltern). Plots (c) and
(d) show GRAVY and pI computed for the same datasets. Back-
ground guidelines have slopes equal to that of the nH2O–ZC linear
regression for amino acids in Fig. 1c.

Consistent with these well known features of halophilic
adaptation, marine metagenomes exhibit lower hydrophobic-
ity than most of the freshwater samples, and hypersaline
metagenomes are shifted to both lower GRAVY and pI
(Fig. 5f). However, there are irregular trends in the Ama-
zon River data. Compared to the river, the proteins in plume
metagenomes exhibit lower GRAVY and either higher or
lower pI (Fig. 5d). Similarly, other authors have reported
that although lower pI is a signature of many hypersaline
environments, it does not clearly distinguish marine from
lower-salinity environments (Rhodes et al., 2010). In con-
trast, the plume metatranscriptomes do show decreased pI
but no major difference in GRAVY compared to river sam-
ples (Fig. 5e).

There is not enough space here to comprehensively ex-
amine all the available metagenomic data for environmental
salinity gradients. However, we have identified one dataset
that gives a contradictory result and therefore offers more
perspective on the compositional relationships of proteins
coded by metagenomes in salinity gradients. This dataset

was generated in a time series study of microbial and vi-
ral community dynamics in a freshwater aquaculture facility
(“tilapia channel” and “prebead bond”) and low-, medium-,
and high-salinity salterns in southern California (Rodriguez-
Brito et al., 2010). Here, we have used only the reported
microbial sequences (not the viral dataset) and considered
all time points together. Contrary to our starting hypothesis,
the stoichiometric hydration state of proteins is lowest in the
freshwater samples, which is the reverse of the trend from
the Baltic Sea (Fig. 6a–b). A side-by-side comparison of the
Baltic Sea and the datasets by Rodriguez-Brito et al. (2010)
shows large changes of GRAVY in the former but pI in the
latter (Fig. 6c–d), which is another indication that these vari-
ables are responsive only in certain ranges of salinity.

This counterexample demonstrates that the sign of differ-
ences of nH2O is not predictable in all environments; how-
ever, the large negative offset in the freshwater samples may
be a signal of some other influence, perhaps related to the
human control of these ponds, which are used as fish nurs-
eries. Specifically, the microbial communities in the aquacul-
ture ponds may not be responding as they would in a typical
natural system that is less nutrient rich. As noted above for
putative heterotroph-rich zones in other systems, the lower
stoichiometric hydration state could be associated with the
enrichment of heterotrophic taxa, in this case due to the ad-
dition of organic compounds to the aquaculture ponds.

Considering all the datasets shown in Figs. 5 and 6, there
appears to be no globally consistent metric for environmen-
tal salinity gradients that can be derived from amino acid
composition. If we exclude the Rodriguez-Brito et al. (2010)
dataset, then nH2O exhibits a consistent decreasing trend in
marine compared to freshwater samples. However, this trend
does not continue into hypersaline environments.

4.4 Compositional analysis of differentially expressed
proteins

While biomolecular data for environmental salinity gradients
reflect both ecological and evolutionary differences, labora-
tory experiments provide information on the physiological
effects of osmotic conditions on protein expression in partic-
ular organisms. It is also important to recognize that osmotic
stress can be imposed by solutes other than NaCl; the effects
of organic solutes differ in relation to their ability to permeate
or depolarize cell membranes and to be sensed by cellular os-
moregulatory systems (Kanesaki et al., 2002; Shabala et al.,
2009; Withman et al., 2013). Because microbial acclimation
to changes in osmotic conditions is a dynamic process, it is
helpful to look at gene and protein expression data for a range
of times and conditions that can be controlled in the lab.

We searched the literature to compile data for differen-
tial gene and protein expression in non-halophilic bacteria
in NaCl or other osmotic stress conditions. As a general
rule, we only included datasets with a minimum of 20 down-
regulated and 20 up-regulated genes or proteins; however,
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smaller datasets were included if they are part of a study
with larger datasets. This compilation consists of 49 tran-
scriptomics and 30 proteomics datasets from 36 studies (note
that different time points and treatments are considered sepa-
rate datasets); descriptions and references for all datasets are
given in Figures S1 and S2. In addition, four datasets for dif-
ferential expression of proteins in halophilic archaea in hy-
perosmotic stress were located (Leuko et al., 2009; Zhang
et al., 2016; Lin et al., 2017; Jevtić et al., 2019) (see Fig. S3).
This is a major update to an earlier compilation of data for
hyperosmotic stress experiments (Dick, 2017), but we have
limited the present compilation to data for bacteria or ar-
chaea; data for osmotic stress induced by NaCl or glucose
in eukaryotic cells are considered in a separate paper (Dick,
2020a).

We assembled the lists of up- and down-regulated proteins
in each dataset or, for gene expression studies, the proteins
corresponding to the up- and down-regulated genes and con-
verted gene names or accession numbers to UniProt acces-
sions using the UniProt mapping tool (Huang et al., 2011).
The compiled data are available as CSV files in R pack-
ages (see the “Code and data availability” section). After
removing genes or proteins with unavailable or duplicated
UniProt IDs and those with ambiguous differences (appear-
ing in both the down- and up-regulated groups), the amino
acid compositions computed for protein sequences down-
loaded from UniProt (The UniProt Consortium, 2019) were
used for the compositional analysis of carbon oxidation state
and stoichiometric hydration state. Median differences (i.e.,
1nH2O and1ZC) were calculated as the median value for all
up-regulated proteins minus the median value for all down-
regulated proteins in each dataset.

Figure 7a shows results for time-course experiments for
hyperosmotic stress. Note that all values are differences cal-
culated relative to the same control (initial time point) in a
given study. In transcriptomic experiments for a commensal
species (Enterococcus faecalis), a soil bacterium (Methylo-
cystis sp. strain SC2), and two pathogens (E. coli O157:H7
and Salmonella enterica serovar Typhimurium) (Solheim
et al., 2014; Han et al., 2017; Kocharunchitt et al., 2014;
Finn et al., 2015), there is a marked progression toward
lower 1nH2O of the associated proteins with time. In a tran-
scriptomic experiment for salt stress in Synechocystis sp.
PCC 6803 (Qiao et al., 2013), 1nH2O is shifted negatively
between 24 and 48 h but rises to a slightly positive value at
72 h. Proteomic data are available from two of these stud-
ies, indicating that the differentially expressed proteins in E.
coli (Kocharunchitt et al., 2014) also show decreasing1nH2O
with time, but in the proteomic experiment for Synechocystis
sp. PCC 6803 (Qiao et al., 2013), 1nH2O changes sign from
negative to positive between 24 and 48 h (Fig. 7a).

Perhaps the most striking result to emerge from this anal-
ysis is the strong dehydrating signal associated with osmotic
stress imposed by organic solutes. We compared pairs of
datasets from the same study for NaCl and another solute

at concentrations that give similar total osmolalities. Tran-
scriptomic data for sorbitol (Kanesaki et al., 2002; Han et al.,
2005), sucrose (Kohler et al., 2015), and glycerol (Finn et al.,
2015) compared to controls all show a lower 1nH2O of
the associated proteins than for NaCl compared to controls
(Fig. 7b). Data from the study of Finn et al. (2015) are plotted
at 1 and 6 h in the experiment, indicating a time-dependent
decrease of 1nH2O under both NaCl and glycerol treatment
as well as more negative values for glycerol than NaCl. Ex-
periments with different strains of E. coli show a slightly
more positive value for sucrose than NaCl (Shabala et al.,
2009) and a much larger positive difference for urea com-
pared to NaCl (Withman et al., 2013). The available pro-
teomic data also show lower nH2O for sucrose (Kohler et al.,
2015) and glucose (Schmidt et al., 2016) compared to NaCl
(Fig. 7b). Note that the latter dataset is actually a comparison
between growth on glucose and glucose with NaCl; growth
on glucose alone produces a lower 1nH2O of the differen-
tially expressed proteins.

The marked decrease of 1nH2O induced by solutes such
as sorbitol, which does not permeate the plasma membrane,
could result from a higher effective osmotic pressure com-
pared to NaCl (Kanesaki et al., 2002). Because it permeates
cells, solutions of urea are not considered hypertonic (Burg
et al., 2007), which may be one reason for the higher 1nH2O
for urea compared to NaCl. Sucrose, which permeates but un-
like NaCl does not depolarize the plasma membrane (Shabala
et al., 2009), produces a slightly higher 1nH2O than NaCl in
one transcriptomics dataset for E. coli (Shabala et al., 2009)
but has a more marked dehydrating effect in both transcrip-
tomics and proteomics datasets for Caulobacter crescentus
(Kohler et al., 2015). The negative shift of1nH2O associated
with most organic solutes compared to NaCl lends support to
the notion that high organic loading could contribute to the
relatively low nH2O of protein sequences from metagenomes
of freshwater aquaculture systems (Fig. 6b).

Considering all transcriptomic datasets together (see
Fig. S1 for references), the proteins coded by differentially
expressed genes in non-halophilic bacteria under hyperos-
motic stress do not show significant differences in ZC, nH2O,
pI, or GRAVY (Fig. 7c–d). However, the average differ-
ence of nH2O would become more negative if the early time
points in individual time-course experiments were excluded
from the average (see Fig. 7a). Unlike the results for tran-
scriptomes, the average value of GRAVY for all proteomics
datasets (see Figs. S2 and S3 for references) increases sig-
nificantly (Fig. 7f; p = 0.011). The proteomic data also ex-
hibit a small decrease of pI (p = 0.083), which is expected
for halophiles, but the increase of GRAVY – that is, higher
hydrophobicity – is the opposite of the evolutionary trend for
proteomes of halophilic organisms (Paul et al., 2008) and the
metagenomic comparisons described above. Overall, the pro-
teomic experiments record a significant decrease of nH2O in
hyperosmotic stress (Fig. 7e; p = 0.016). We therefore con-
clude that nH2O is a metric with consistent behavior for field

Biogeosciences, 17, 6145–6162, 2020 https://doi.org/10.5194/bg-17-6145-2020



J. M. Dick et al.: Chemical compositions of proteins in salinity gradients 6157

Figure 7. Compositional analysis of proteins in hyperosmotic stress experiments for non-halophilic bacteria and halophilic archaea. (a) Time-
course experiments for bacteria; black circles represent datasets for proteins coded by differentially expressed genes (transcriptomics exper-
iments) and blue squares represent datasets for differentially expressed proteins (proteomics experiments). Lettered symbols represent the
progression in each experiment: (a–c) (30, 80, 310 min; Kocharunchitt et al., 2014) (transcriptomes and proteomes), (d–f) (5, 30, 60 min;
Solheim et al., 2014), (g–i) (1, 6, 24 h; Finn et al., 2015), (j–k) (45 min, 14 h; Han et al., 2017), and (l–n) (24, 48, 72 h; Qiao et al., 2013)
(transcriptomes and proteomes; no proteomic data available at 72 h). (b) Pairs of experiments for bacteria under hyperosmotic stress imposed
by NaCl or organic solutes. The sources of data are (A–B) (sorbitol; Kanesaki et al., 2002), (C–D) (sorbitol; Han et al., 2005), (E–F) (su-
crose; Kohler et al., 2015) (transcriptomes and proteomes), (G–H) (glycerol at 1 h; Finn et al., 2015), (I–J) (glycerol at 6 h; Finn et al., 2015),
(K–L) (sucrose; Shabala et al., 2009), (M–N) (urea; Withman et al., 2013), and (O–P) (glucose; Schmidt et al., 2016) (only proteomes).
(c–f) Plots of median differences of nH2O and ZC or GRAVY and pI for all compiled transcriptomic and proteomic data for hyperosmotic
stress, including datasets shown in (a) and (b) together with data for other experiments. In each panel, open symbols represent individual
datasets and filled symbols represent the mean for all datasets. The axis labels include the p values for the mean difference for all datasets in
each plot; p values less than 0.05 are shown in bold. References for all datasets are in Fig. S1 (transcriptomics for non-halophilic bacteria),
Fig. S2 (proteomics for non-halophilic bacteria), and Fig. S3 (proteomics for halophilic archaea).

and laboratory datasets, since it records decreasing hydration
state of proteins with increasing salinity in the Baltic Sea and
Amazon River and plume and of differentially expressed pro-
teins in microbial cells grown under hyperosmotic stress.

5 Conclusions

This study was focused on describing the chemical compo-
sitions of proteins in a geochemical context. The theoret-
ical novelty of this study is the derivation of a composi-
tional metric for stoichiometric hydration state (nH2O) that
is largely decoupled from changes in oxidation state (ZC) of
proteins. Therefore, based on mass-action effects in thermo-
dynamics, nH2O is predicted to decrease toward higher salin-
ity but be mostly insensitive to redox gradients. We found
that protein sequences inferred from metagenomes in re-

gional salinity gradients, including the Baltic Sea freshwater-
marine transect and Amazon River and plume, are character-
ized by changes of nH2O in the predicted direction. Although
this trend does not continue into hypersaline environments,
the applicability of the compositional analysis to microbial
cells is supported by compilations of transcriptomic and pro-
teomic data, which indicate decreasing nH2O on average for
the differentially expressed proteins in hyperosmotic stress
experiments. The dehydration signal becomes larger during
many time-course experiments and is stronger for most or-
ganic solutes than for NaCl.

The central message of this study is that geochemical
and laboratory conditions can influence, but naturally do not
completely determine, the chemical compositions of pro-
teins. As a step toward constructing multidimensional chem-
ical thermodynamic models of microbial communities, the
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present results provide evidence that different compositional
metrics, representing the oxidation state and hydration state
of molecules, can be associated specifically with redox and
salinity gradients, respectively. The findings of this study un-
derscore an opportunity for the integration of hydration state
into evolutionary models that already consider changes in ox-
idation state or oxygen content of proteins (Acquisti et al.,
2007; Poudel et al., 2018).

Code and data availability. All metagenomic and metatranscrip-
tomic data analyzed here were obtained from public databases us-
ing the accession numbers listed in Supplement Table S1 for salin-
ity gradients and Table S2 for redox gradients. The amino acid
compositions of subsampled sequences from the metagenomic and
metatranscriptomic data are available in the JMDplots R pack-
age, version 1.2.4 (https://github.com/jedick/JMDplots), which is
archived on Zenodo (Dick, 2020b). Specifically, the data are con-
tained in the file inst/extdata/gradH2O/MGP.rds, which
can be read using the R function readRDS (minimum R version:
2.3.0). The compilation of differential gene expression data is avail-
able in the JMDplots package as xz-compressed CSV files in the di-
rectory inst/extdata/expression/osmotic/. The com-
pilation of differential protein expression data is in the correspond-
ing directory of the canprot R package, version 1.1.0 (https://cran.r-
project.org/package=canprot), which is also archived on Zenodo
(Dick, 2020c). The results of the compositional analysis of dif-
ferential expression data, which are used for Fig. 7, are in the
inst/vignettes/ directories of the JMDplots and canprot
packages. The code used to make all of the figures and perform
statistical testing is in the JMDplots package. The gradH2O.Rmd
vignette in the package demonstrates the functions used to make the
figures.

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/bg-17-6145-2020-supplement.
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