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Abstract. Multiple lines of evidence have demonstrated the
persistence of global land carbon (C) sink during the past
several decades. However, both annual net ecosystem pro-
ductivity (NEP) and its inter-annual variation (IAVNEP) keep
varying over space. Thus, identifying local indicators for the
spatially varying NEP and IAVNEP is critical for locating the
major and sustainable C sinks on land. Here, based on daily
NEP observations from FLUXNET sites and large-scale es-
timates from an atmospheric-inversion product, we found a
robust logarithmic correlation between annual NEP and sea-
sonal carbon uptake–release ratio (i.e. U /R). The cross-site
variation in mean annual NEP could be logarithmically indi-
cated by U /R, while the spatial distribution of IAVNEP was
associated with the slope (i.e. β) of the logarithmic corre-
lation between annual NEP and U /R. Among biomes, for
example, forests and croplands had the largest U /R ratio
(1.06± 0.83) and β (473± 112 g C m−2 yr−1), indicating the
highest NEP and IAVNEP in forests and croplands, respec-
tively. We further showed that these two simple indicators
could directly infer the spatial variations in NEP and IAVNEP
in global gridded NEP products. Overall, this study provides
two simple local indicators for the intricate spatial variations
in the strength and stability of land C sinks. These indicators
could be helpful for locating the persistent terrestrial C sinks
and provide valuable constraints for improving the simula-
tion of land–atmospheric C exchanges.

1 Introduction

Terrestrial ecosystems reabsorb about one-quarter of anthro-
pogenic CO2 emission (Ciais et al., 2019) and are primarily
responsible for the recent temporal fluctuations in the mea-
sured atmospheric-CO2 growth rate (Randerson, 2013; Le
Quéré et al., 2018). In addition, evidence based on eddy-
flux measurements (Baldocchi et al., 2018; Rödenbeck et
al., 2018), aircraft atmospheric budgets (Peylin et al., 2013)
and process-based model simulations (Poulter et al., 2014;
Ahlström et al., 2015) has shown a large spatial variability in
net ecosystem productivity (NEP) on land. The elusive vari-
ation in terrestrial NEP over space refers to both of the sub-
stantial varying mean annual NEP and the divergent inter-
annual variability (IAV) in NEP (i.e. IAVNEP; usually quan-
tified as the standard deviation of annual NEP) across space
(Baldocchi et al., 2018; Marcolla et al., 2017). The mean an-
nual NEP is related to the strength of carbon exchange of a
specific ecosystem (Randerson et al., 2002; Luo and Weng,
2011; Jung et al., 2017), while IAVNEP characterizes the sta-
bility of such a carbon exchange (Musavi et al., 2017). Thus,
whether and how NEP and IAVNEP change over space is im-
portant for predicting the future locations of carbon sinks on
land (Yu et al., 2014; Niu et al., 2017).

Large spatial difference in terrestrial NEP has been re-
ported from eddy-flux measurements, model outputs and
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atmospheric-inversion products. In addition, the global aver-
age IAV of NEP is large relative to global annual mean NEP
(Baldocchi et al., 2018). More importantly, the spatial varia-
tions in NEP and IAVNEP have been typically underestimated
by the global flux-tower-based product and the process-based
global models (Jung et al., 2020; Fu et al., 2019). These dis-
crepancies have further revealed the necessity of identifying
local indicators for the spatially varying NEP and IAVNEP
separately. The NEP in terrestrial ecosystems is determined
by two components, including vegetation photosynthesis and
ecosystem respiration (Reichstein et al., 2005), and their rel-
ative difference could determine the spatial variation in NEP
(Baldocchi et al., 2015; Biederman et al., 2016). Many pre-
vious analyses have attributed the IAVNEP at the site level
to the different sensitivities of ecosystem photosynthesis and
respiration to environmental drivers (Gilmanov et al., 2005;
Reichstein et al., 2005) and biotic controls (Besnard et al.,
2018; Musavi et al., 2017). For example, some studies have
reported that IAVNEP is more associated with variations in
photosynthesis than carbon release (Ahlström et al., 2015;
Novick et al., 2015; Li et al., 2017), whereas others have indi-
cated that respiration is more sensitive to anomalous climate
variability (Valentini et al., 2000; von Buttlar et al., 2018).
However, despite previous efforts in a predictive understand-
ing of the land–atmospheric C exchanges, the multi-model
spread has not reduced over time (Arora et al., 2020). There-
fore, it is imperative to explore the potential indicators for the
spatially varying NEP, which could help attribute the spatial
variation in NEP and IAVNEP into different processes and
provide valuable constraints for the global C cycle. Alterna-
tively, the annual NEP of a given ecosystem can be also di-
rectly decomposed into net CO2 uptake flux and CO2 release
flux (Gray et al., 2014), which are more direct components
for NEP (Fu et al., 2019). It is still unclear how the ecosystem
net CO2 uptake and release fluxes would control the spatially
varying NEP.

Conceptually, the total net CO2 uptake flux (U ) is deter-
mined by the length of the CO2 uptake period (CUP) and the
CO2 uptake rate, while the total net CO2 release flux (R) de-
pends on the length of the CO2 release period (CRP) and the
CO2 release rate (Fig. 1b). The variations in NEP thus could
be attributed to these decomposed components. A strong spa-
tial correlation between mean annual NEP and length of the
CO2 uptake period has been reported in evergreen needle-
and broad-leaved forests (Churkina et al., 2005; Richard-
son et al., 2013; Keenan et al., 2014), whereas atmospheric-
inversion data and vegetation photosynthesis models indi-
cated a dominant role of the maximal carbon uptake rate (Fu
et al., 2017; Zhou et al., 2017). However, the relative impor-
tance of these phenological and physiological indicators for
the spatially varying NEP remains unclear.

In this study, we decomposed annual NEP into U and
R and explored the local indicators for spatially vary-
ing NEP. Based on the eddy-covariance fluxes from the
FLUXNET2015 dataset (Pastorello et al., 2017) and the

Figure 1. Relationship between annual NEP and U /R for 72
FLUXNET sites (of the form NEP= β · ln(U

R
)). (a) Dependence

of annual NEP on the ratio between total CO2 exchanges during
net uptake (U ) and release (R) periods (i.e. U /R). Each line rep-
resents one flux site with at least 5 years of observations. (b) Con-
ceptual figure for the decomposition framework introduced in this
study. Annual NEP can be quantitatively decomposed into the fol-
lowing indicators: NEP= U−R. (c) Distribution of the explanation
of U /R on temporal variability in NEP (R2) for FLUXNET sites.

atmospheric-inversion product (Rödenbeck et al., 2018), we
examined the relationship between NEP and its direct com-
ponents. In addition, we used the observations to evaluate
the spatial variations in NEP and IAVNEP in the FLUXCOM
product and a process-based model (CLM4.5; Oleson et al.,
2013). The major aim of this study is to explore whether there
are useful local indicators for the spatially varying NEP and
IAVNEP in terrestrial ecosystems.

2 Materials and methods

2.1 Datasets

Daily NEP observations of eddy-covariance sites are ob-
tained from the FLUXNET2015 Tier 1 dataset. The
FLUXNET2015 dataset provides half-hourly data of carbon,
water and energy fluxes at over 210 sites that are standard-
ized and gap-filled (Pastorello et al., 2017). However, time
series of most sites are still too short for the analysis of
inter-annual variation in NEP. So only the sites that provided
the availability of eddy-covariance flux measurements for
at least 5 years are selected. This leads to a global dataset
of 72 sites with different biomes across different climatic
regions. Based on the biome classification from the Inter-
national Geosphere–Biosphere Programme (IGBP) provided
for the FLUXNET2015 sites, the selected sites include 35
forests (FORs), 15 grasslands (GRAs), 11 croplands (CROs),
4 wetlands (WETs), 2 shrublands (SHR) and 5 savannas
(SAVs; Fig. S1 and Table S1 in the Supplement).

The Jena CarboScope inversion product combines high-
precision measurements of atmospheric-CO2 concentration
with simulated atmospheric transport to infer the net CO2 ex-
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changes between land, ocean and atmosphere at large scales
(Rödenbeck et al., 2018). Here, we used the daily land–
atmosphere CO2 fluxes from the s85_v4.1 version at a spatial
resolution of 5◦× 3.75◦. Considering the relatively low spa-
tial resolution of the Jena CarboScope inversion product, the
daily fluxes were only used to calculate the local indicators
for the spatially varying NEP at the global scale.

Daily NEP simulations from the Community Land Model
version 4.5 (CLM4.5) were also used to calculate the local
indicators for the spatially varying NEP at the correspond-
ing flux tower sites. We ran the CLM4.5 model from 1985 to
2010 at a spatial resolution of 1◦ with meteorological forc-
ing from the Climate Research Unit and National Centers
for Environmental Prediction (CRUNCEP). Here, NEP was
derived as the difference between gross primary productiv-
ity (GPP) and total ecosystem respiration (TER), and TER
was calculated as the sum of simulated autotrophic and het-
erotrophic respiration. The daily outputs from CLM4.5 were
used to calculate the local indicators for the spatially varying
NEP at both the global scale and the FLUXNET site level.

The FLUXCOM product presents an upscaling of carbon
flux estimates from 224 flux tower sites based on multi-
ple machine-learning algorithms and meteorological drivers
(Jung et al., 2017). To be consistent with the meteorolog-
ical forcing of the Jena CarboScope inversion product and
the CLM4.5 model, we used the FLUXCOM CRUNCEPv6
products. In addition, in order to reduce the uncertainty
caused by machine-learning methods, we averaged all the
FLUXCOM CRUNCEPv6 products with different machine-
learning methods. It should be noted that the inter-annual
variability in the FLUXCOM product is driven by meteoro-
logical measurements and satellite data, which partially in-
clude information on vegetation state and other land surface
properties. Daily outputs from FLUXCOM for the period
1985–2010 at 0.5◦ spatial resolution were used to calculate
the local indicators for the spatially varying NEP at both the
global scale and the FLUXNET site level.

2.2 Decomposition of NEP and the calculations for its
local indicators

The annual NEP of a given ecosystem can be defined numer-
ically as the difference between the net CO2 uptake and re-
lease (Fig. 1b). These components of NEP contain both pho-
tosynthesis and respiration flux, which directly indicate the
net CO2 exchange of an ecosystem. The total net CO2 up-
take flux (U ) and the total net CO2 release flux (R) can be
further decomposed as

U = U ×CUP (1)

R = R×CRP, (2)

where CUP (d yr−1) is the length of the CO2 uptake period,
and CRP (d yr−1) is the length of the CO2 release period; U
(g C m−2 d−1) is the mean daily net CO2 uptake over CUP,

Figure 2. Relationship between annual NEP and U /R for the Jena
CarboScope inversion product (of the form NEP= β · ln(U

R
)). The

black box indicates the location of the sample.

and R (g C m−2 d−1) represents the mean daily net CO2 re-
lease over CRP. Many studies have reported that the vegeta-
tion net CO2 uptake during the growing season and the non-
growing season soil net CO2 release are tightly correlated
(Luo and Zhou, 2006; Zhao et al., 2016). Therefore, we fur-
ther tested the relationship between annual NEP and U /R
(i.e. NEP∝ U

R
), which reflects the seasonal carbon uptake–

release ratio. Consequently, NEP in any given ecosystem can
be expressed as (Fig. S2)

NEP= β · ln
(
U

R

)
, (3)

where the parameter β represents the slope of the linear re-
lationship of NEP∝ ln(U

R
), indicating the site-level carbon

uptake sensitivity. Based on the definitions of U and R, the
ratio U /R can be further written as

U

R
=
U

R
·

CUP
CRP

. (4)

The ratio of U

R
reflects the relative physiological differ-

ence between ecosystem CO2 uptake and release strength,
while the ratio of CUP

CRP is an indicator of net ecosystem CO2
exchange phenology. Environmental changes may regulate
these ecological processes and ultimately affect the ecosys-
tem NEP. The slope β indicates the response sensitivity of
NEP to the changes in phenology and physiological pro-
cesses. All of β, CUP

CRP and U

R
were then calculated from the

selected eddy-covariance sites and the corresponding pixels
of these sites in models. These derived indicators from eddy-
covariance sites were then used to benchmark the results ex-
tracted from the same locations in models.

2.3 Calculation of the relative contributions

We further quantified the relative contributions of U
R

and CUP
CRP

in driving the spatial variations in NEP:

NEP= β ·

[
ln

(
U

R

)
+ ln

(
CUP
CRP

)]
. (5)
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For each eddy-covariance site, the parameter β was con-
stant. Then, we used a relative-importance analysis method
to quantify the relative contributions of these two ratios to the
spatial variations in NEP. The algorithm was performed with
the “relaimpo” package in R (R Development Core Team,
2011). The relaimpo package is based on variance decom-
position for multiple-linear-regression models. We chose the
most commonly used method named “Lindeman–Merenda–
Gold” (LMG; Grömping, 2007) from the methods provided
by the relaimpo package. This method allows us to quan-
tify the contributions of explanatory variables in a multiple-
linear-regression model. Across the 72 FLUXNET sites, we
quantified the relative importance of U

R
and CUP

CRP to cross-site
changes in NEP.

3 Results

3.1 The relationship between NEP and its direct
components

To find local indicators for the spatially varying NEP in ter-
restrial ecosystems, we tested the relationship between NEP
and its direct components (U and R) across the 72 flux tower
sites. The results showed that annual NEP was closely re-
lated to the ratio U /R (Fig. S2). The logarithmic correla-
tions between annual NEP and U /R were significant at all
sites (Fig. 1a), and ∼ 90 % of R2 values fall within a range
of 0.7 to 1 (Fig. 1c).

In addition, the relationship between NEP and U /R was
also confirmed by the atmospheric-inversion product (i.e.
Jena CarboScope inversion). The control of U /R on annual
NEP was robust in most global grid cells (i.e. 0.6<R2 < 1).
The coefficient of determination for this relationship was
higher in 80 % of the regions but lower in North America
(Fig. 2). These two datasets both showed that the indica-
tor U /R could successfully capture the variability in annual
NEP.

3.2 Local indicators for spatially varying NEP

Across the 72 flux tower sites, the across-site variation in
mean annual NEP was significantly correlated to mean an-
nual ln(U

R
) of each site (R2

= 0.65, P < 0.01; Fig. 3a).
In this network, the mean annual ratio ln(U

R
) was a good

indicator for cross-site variation in NEP. By contrast, the
spatial variation in IAVNEP was moderately explained by
the slope (i.e. β) of the temporal correlation between NEP
and ln(U

R
) at each site (R2

= 0.39, P < 0.01; Fig. 3b)
rather than ln(U

R
) (Fig. S3). The wide range of the ra-

tio β reveals a large divergence in NEP sensitivity across
biomes, ranging from 121± 118 g C m−2 yr−1 in shrubland
to 473± 112 g C m−2 yr−1 in cropland.

The decomposition of indicator U /R into U

R
and CUP

CRP al-
lowed us to quantify the relative importance of these two

ratios in driving NEP variability. The linear regression and
relative-importance analysis showed a more important role of
CUP
CRP (58 %) than U

R
(42 %) in explaining the cross-site vari-

ation in NEP (Fig. 4). Therefore, the spatial distribution of
mean annual NEP was more strongly driven by the pheno-
logical changes.

3.3 Simulated spatial variations in NEP by models

We further used these two simple indicators (i.e. U
R

and β) to
evaluate the simulated spatial variations in NEP by the global
flux-tower-based product (i.e. FLUXCOM) and a widely
used process-based model at the FLUXNET site level (i.e.
CLM4.5). We found that the low spatial variation in mean
annual NEP in FLUXCOM and CLM4.5 could be inferred
from their more converging ln(U

R
) than flux tower measure-

ments (Fig. 5). The underestimated variation in IAVNEP in
these modelling results was also clearly shown by the smaller
β values (268.22, 126.00 and 145.08 for FLUXNET, FLUX-
COM and CLM4.5, respectively; Fig. 5b).

In addition, the spatial variations in NEP and IAVNEP were
associated with the spatial resolution of the product (Mar-
colla et al., 2017). Considering the scale mismatch between
FLUXNET sites and the gridded product, we run the same
analysis at the global scale based on the Jena CarboScope
inversion product. At the global scale, the spatial variation
in mean annual NEP can also be well indicated by ln(U

R
)

(Fig. 6). The larger net C uptake in FLUXCOM resulted from
its higher simulations for ln(U

R
). Furthermore, the larger spa-

tial variation in IAVNEP in CLM4.5 could be inferred from
the indicator β.

4 Discussion

4.1 New perspective for locating the major and
sustainable land C sinks

Large spatial differences in mean annual NEP and IAVNEP
have been well documented in previous studies (Jung et al.,
2017; Marcolla et al., 2017; Fu et al., 2019). Here we pro-
vide a new perspective for quantifying the spatially vary-
ing NEP by tracing annual NEP into several local indica-
tors. Therefore, these traceable indicators could provide use-
ful constraints for predicting annual NEP, especially in areas
without eddy-covariance towers.

Typically, the C sink capacity and its stability in a spe-
cific ecosystem are characterized separately (Keenan et al.,
2014; Ahlström et al., 2015; Jung et al., 2017). Here we inte-
grated NEP into two simple indicators that could directly lo-
cate the major and sustainable land C sink. Among biomes,
forests and croplands had the largest ln(U

R
) and β, indicat-

ing the strongest and the most unstable C sink in forests
and croplands, respectively. However, the relatively lower β
in shrublands and savannas should be interpreted cautiously.
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Figure 3. Contributions of the two indicators in explaining the spatial patterns of mean annual NEP and IAVNEP. (a) The relationship
between annual mean NEP and ln(U

R
) across FLUXNET sites (R2

= 0.65, P < 0.01). The insets show the magnitude of ln(U
R
) for different

terrestrial biomes. (b) The explanation of β in IAVNEP (R2
= 0.39, P < 0.01). The insets show the distribution of parameter β for different

terrestrial biomes. The number of years at each site is indicated with the size of the point.

Figure 4. The relative contributions of the local indicators in ex-
plaining the spatial patterns of mean annual NEP. (a) The lin-
ear regression between mean annual NEP with CUP

CRP (R2
= 0.33,

P < 0.01) and U

R
(R2
= 0.25, P < 0.01) across sites. (b) The rela-

tive contributions of each indicator to the spatial variation in mean
annual NEP. The number of years at each site is indicated with the
size of the point.

There are very few semi-arid ecosystems in the FLUXNET
sites, while they represent a large portion of land at the
global scale and have been shown to substantially control
the inter-annual variability in NEP (Ahlström et al., 2015).
The highest β implies that the land covered by cropland has
the largest IAVNEP. Therefore, the reported rapid global ex-
pansion of cropland may enlarge the fluctuations in land–
atmosphere CO2 exchange. In fact, the cropland expansion
has been confirmed as one important driver of the recent in-
creasing global vegetation growth peak (Huang et al., 2018)
and atmospheric-CO2 seasonal amplitude (Gray et al., 2014;
Zeng et al., 2014).

4.2 Joint control of plant phenology and physiology on
mean annual NEP

Recent studies have demonstrated that the spatio-temporal
variations in terrestrial gross primary productivity are jointly
controlled by plant phenology and physiology (Xia et al.,
2015; Zhou et al., 2017). Here we demonstrated that the spa-
tial difference in mean annual NEP was determined by both
the phenology indicator CUP

CRP (58 %) and the physiological in-

dicator U

R
(42 %). In addition, the lower contribution of the

physiological indicator could partly be attributed to the con-
vergence of U

R
across FLUXNET sites (Fig. S4).

The convergent U

R
across sites was first discovered by

Churkina et al. (2005) as 2.73± 1.08 across 28 sites,
which included deciduous broadleaf forest (DBF), evergreen
broadleaf forest (EBF), and cropland and grassland. In this
study, we found that the U

R
across the 72 sites is 2.71± 1.61,

which confirms the findings of Churkina et al. (2005). This
spatial convergence of U

R
at the site level provides important

constraints for global models that simulate large spatial vari-
ation in physiological processes (Peng et al., 2015; Xia et al.,
2017). These findings imply that the phenology changes will
greatly affect the locations of the terrestrial carbon sink by
modifying the length of the carbon uptake period (Richard-
son et al., 2013; Keenan et al., 2014).

4.3 The simulated local indicators from gridded
products

This study showed that the considerable spatial variations in
mean annual NEP and IAVNEP from global gridded products
could also be inferred from their local indicators. The low
variations in the U /R ratio in CLM4.5 could be largely due
to their simple representations of the diverse terrestrial plant
communities in a few functional plant types with parameter-

https://doi.org/10.5194/bg-17-6237-2020 Biogeosciences, 17, 6237–6246, 2020



6242 E. Cui et al.: Spatial variability in terrestrial net ecosystem productivity

Figure 5. Representations of the spatially varying NEP and its local indicators in the FLUXCOM product and the Community Land Model
(CLM4.5) at the FLUXNET site level. (a) The variation in mean annual NEP and IAVNEP is derived from FLUXNET, FLUXCOM and
CLM4.5. Variation in mean annual NEP: the standard deviation of mean annual NEP across sites; variation in IAVNEP: the standard deviation
of IAVNEP across sites. (b) Representations of the local indicators for NEP in FLUXNET, FLUXCOM and CLM4.5. The corresponding
distributions of ln(U

R
) and β are shown at the top and right. Significance of the relationship between annual NEP and ln(U

R
) for each site is

indicated by the circles. Closed circles: P < 0.05; open circles: P > 0.05. Note that the modelled results are from the pixels extracted from
the same locations of the flux tower sites.

Figure 6. Representations of the spatially varying NEP and its local indicators in the FLUXCOM product and the Community Land Model
(CLM4.5) at the global scale. (a) The variation in mean annual NEP and IAVNEP is derived from Jena CarboScope inversion, FLUXCOM
and CLM4.5. Variation in mean annual NEP: the spatial variation in mean annual NEP; variation in IAVNEP: the spatial variation in standard
deviation in IAVNEP. (b) Representations of the local indicators for NEP in Jena CarboScope inversion, FLUXCOM and CLM4.5.

ized properties (Cui et al., 2019; Sakschewski et al., 2015). In
addition, the higher U /R ratio from the FLUXCOM prod-
uct indicated its widely reported larger net C uptake (Fig. 6;
Jung et al., 2020). Meanwhile, the ignorance of fire, land-use
change and other disturbances could lead to the smaller β
by allowing for only limited variations in phenological and
physiological dynamics (Reichstein et al., 2014; Kunstler et
al., 2016). Although the magnitude of IAVNEP depends on
the spatial resolution (Marcolla et al., 2017), we recommend
that future model-benchmarking analyses use not only the
global product compiled from the machine-learning method
(Bonan et al., 2018) but also the site-level measurements or
indicators (Xia et al., 2020).

4.4 Conclusions and further implications

In summary, this study highlights the changes in NEP and
IAVNEP over space on land and provides the U /R ratio and
β as two simple local indicators for their spatial variations.
These indicators could be helpful for locating the persistent
terrestrial C sinks where the ln(U

R
) ratio is high but the β

is low. Their estimates based on observations are also valu-
able for benchmarking and improving the simulation of land–
atmospheric C exchanges in Earth system models. The find-
ings in this study have some important implications for un-
derstanding the variation in NEP on land. First, forest ecosys-
tems have the largest annual NEP due to the largest ln(U

R
),

while croplands show the highest IAVNEP because of the
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highest β. Second, the spatial convergence of U

R
suggests a

tight linkage between plant growth and soil microbial activi-
ties in the non-growing season (Xia et al., 2014; Zhao et al.,
2016). However, it remains unclear whether the inter-biome
variation in U

R
is due to different plant–microbe interactions

between biomes. Third, the within-site convergent but spa-
tially varying β needs better understanding. Previous stud-
ies have shown that a rising standard deviation of ecosystem
functions could indicate an impending ecological state transi-
tion (Carpenter and Brock, 2006; Scheffer et al., 2009). Thus,
a sudden shift in the β value may be an important early-
warning signal for the critical transition of carbon uptake
sensitivity of an ecosystem. In this study, the atmospheric-
inversion product shows low correlation between NEP and
ln(U

R
) in some boreal ecosystems, which might be due to the

fact that the terrestrial NEP is not well constrained for these
regions or because these boreal ecosystems are experienc-
ing state transition. Therefore, the robustness in the relation-
ship between annual NEP and ln(U

R
) depends on the tem-

poral stability of carbon uptake sensitivity for an ecosystem.
In addition, the spatial variation in β reveals the differences
in carbon uptake sensitivity across ecosystems. Furthermore,
considering the limited eddy-covariance sites with long-term
observations, these findings need further validation once the
longer time series of measurements from more sites and veg-
etation types become available.
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