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Abstract. Inter-annual variations in the tropical land carbon
(C) balance are a dominant component of the global atmo-
spheric CO2 growth rate. Currently, the lack of quantitative
knowledge on processes controlling net tropical ecosystem
C balance on inter-annual timescales inhibits accurate under-
standing and projections of land–atmosphere C exchanges. In
particular, uncertainty on the relative contribution of ecosys-
tem C fluxes attributable to concurrent forcing anomalies
(concurrent effects) and those attributable to the continu-
ing influence of past phenomena (lagged effects) stifles ef-
forts to explicitly understand the integrated sensitivity of a
tropical ecosystem to climatic variability. Here we present a
conceptual framework – applicable in principle to any land
biosphere model – to explicitly quantify net biospheric ex-
change (NBE) as the sum of anomaly-induced concurrent
changes and climatology-induced lagged changes to terres-
trial ecosystem C states (NBE=NBECON

+NBELAG). We
apply this framework to an observation-constrained analy-
sis of the 2001–2015 tropical C balance: we use a data–
model integration approach (CARbon DAta-MOdel fraMe-
work – CARDAMOM) to merge satellite-retrieved land-
surface C observations (leaf area, biomass, solar-induced flu-
orescence), soil C inventory data and satellite-based atmo-
spheric inversion estimates of CO2 and CO fluxes to pro-
duce a data-constrained analysis of the 2001–2015 tropical
C cycle. We find that the inter-annual variability of both con-

current and lagged effects substantially contributes to the
2001–2015 NBE inter-annual variability throughout 2001–
2015 across the tropics (NBECON IAV= 80 % of total NBE
IAV, r = 0.76; NBELAG IAV= 64 % of NBE IAV, r = 0.61),
and the prominence of NBELAG IAV persists across both wet
and dry tropical ecosystems. The magnitude of lagged effect
variations on NBE across the tropics is largely attributable to
lagged effects on net primary productivity (NPP; NPPLAG

IAV 113 % of NBELAG IAV, r =−0.93, p value < 0.05),
which emerge due to the dependence of NPP on inter-annual
variations in foliar C and plant-available H2O states. We con-
clude that concurrent and lagged effects need to be explicitly
and jointly resolved to retrieve an accurate understanding of
the processes regulating the present-day and future trajectory
of the terrestrial land C sink.

1 Introduction

Immediate ecosystem responses to external forcings are in-
variably followed by time-lagged ecosystem responses, at-
tributable to a continuum of lagged biotic and physical
processes. For example, contemporaneous ecosystem state
changes attributable to disturbances, climatic variability and
increasing atmospheric CO2 levels all induce a temporal
spectrum of lagged processes, such as diurnal to seasonal dy-
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namics in canopy and groundwater storage and multi-annual
changes in mortality rates, and induce ecosystem dynamics
relating to species distributions, nutrient availability and soil
properties on timescales spanning from decades to millennia
(Schimel et al. 1997; Smith et al., 2009; Reichstein et al.,
2013). Conversely, for a given time span, the sum of these
“lagged effects” on ecosystem states ultimately represents
the ecosystem dynamics attributable to a unique integrated
legacy of past phenomena, spanning from diurnal to geo-
logic timescales, making lagged effects a ubiquitous dynam-
ical property of any terrestrial ecosystem. As a consequence,
ecosystem function at any given time (such as photosynthetic
uptake, respiration and evapotranspiration rates) is an emer-
gent consequence of an ecosystem’s initial physical and bi-
otic states and the contemporaneous impact of meteorologi-
cal and disturbance forcings on these states.

Disentangling the cumulative lagged consequences of past
phenomena from contemporaneous impacts of external forc-
ings is a critical priority for understanding and quantifying
the contemporary terrestrial carbon (C) cycle responses to
climatic variability. Global-scale efforts to resolve the state
of the C cycle (Le Quéré et al., 2015) identify the tropical C
cycle as a dominant contributor to the inter-annual variabil-
ity (IAV) of the terrestrial C sink. Recent efforts to charac-
terize the tropical C sink IAV have been largely focused on
quantifying the role of concurrent responses to climatic vari-
ability, including the contribution of semi-arid ecosystems
(Poulter et al., 2014; Ahlström et al., 2015), ecosystem re-
sponses to drought (Gatti et al., 2014), and more generally
continental-scale sensitivities of photosynthesis, respiration
and fire fluxes to concurrent temperature and precipitation
anomalies (Cox et al., 2013; Andela and van der Werf, 2014;
Alden et al., 2016; Jung et al., 2017; Liu et al., 2017; Piao et
al., 2019). However, on comparable timescales, time-lagged
manifestations of climatic variability on the state of the ter-
restrial biosphere have been extensively theorized and ob-
served (Thompson et al., 1996; Schimel et al., 1996, 2005;
Richardson et al., 2007; Arnone et al., 2008; Sherry et al.,
2008; Saatchi et al., 2013; Frank et al., 2015; Doughty et al.,
2015; Baldocchi et al., 2017; Schwalm et al., 2017; amongst
many others). Specifically, lagged relationships between cli-
mate variability and the terrestrial C fluxes – namely medi-
ated through lagged impacts on photosynthetic uptake and
respiration fluxes, groundwater storage, mortality and subse-
quent shifts of ecosystem function – indicate that lagged ef-
fects may be a fundamental component in the inter-annual
evolution of the terrestrial C balance. Observational con-
straints on terrestrial ecosystem responses to climatic vari-
ability further suggest that time-lagged phenomena are a non-
negligible component of terrestrial ecosystem C dynamics on
continental-to-global scales (Braswell et al., 1997; Saatchi et
al., 2013; Anderegg et al., 2015; Detmers et al., 2015; Fang et
al. 2017; Yang et al., 2018; Yin et al., 2020). Therefore, while
recent efforts to diagnose inter-annual variations of the trop-
ical C balance overwhelmingly emphasize the roles of con-

current forcings, observed ecosystem responses to climatic
variability on multi-annual timescales indicate that the tropi-
cal C balance may be substantially affected – if not governed
– by lagged responses to inter-annual variations in meteoro-
logical and disturbance forcings across tropical ecosystems.

Accurate knowledge of both instantaneous sensitivities
and time-lagged processes of terrestrial C cycling to climate
is critical for constraining model representations of the ter-
restrial C cycle. Uncertainty in the long-term terrestrial C
flux imbalance and the associated carbon-climate feedbacks
is a prevailing source of uncertainty in Earth system projec-
tions (Friedlingstein et al., 2014; Friend et al., 2014), and
these are likely underestimated due to a range of under-
represented and/or poorly constrained C cycle responses to a
changing climate (Luo, 2007; Lovenduski and Bonan, 2017).
Furthermore, assessments of Earth system projections based
on present-day constraints (Cox et al., 2013; Mystakidis et
al., 2016) provide little insight into the integrated roles of
largely uncertain process controls, including C flux responses
to drought (Powell et al., 2013), under-determined C pool
dynamics (Bloom et al., 2016), nutrient dynamics and limi-
tations (Wieder et al., 2015), and higher-order dead organic
C dynamics (Schimel et al., 1994; Hopkins et al., 2014). In
tropical ecosystems, rapid turnover rates of live and dead
organic matter pools relative to extra-tropical ecosystems
(Carvalhais et al., 2014; Bloom et al., 2016) imply interac-
tions between uptake, respiration, and fires (Randerson et al.,
2005; Chen et al., 2013; Bloom et al., 2015) on comparable
timescales: specifically, given that (a) the mean C residence
time in tropical biomass and soil organic matter pools typ-
ically spans ∼ 5–50 years and (b) multi-year observational
constraints reveal rapid ecosystem vegetation/C responses to
climatic extremes (Saatchi et al., 2013; Alden et al., 2016),
sub-decadal timescales are likely critical for disentangling
concurrent and lagged effect impacts on the evolution of
tropical C balance. However, despite numerous studies on
the roles of productivity (Doughty et al., 2015), water stress
(Kurc and Small, 2007; Williams and Albertson, 2004), res-
piration (Trumbore, 2006; Exbrayat et al., 2013a, b; Guenet
et al., 2018) and mortality (Saatchi et al., 2013; Anderegg
et al., 2015; Rowland et al., 2015), there is currently a ma-
jor gap between knowledge of individual processes control-
ling the tropical C balance on inter-annual timescales and
the integrated impact process interactions leading to complex
net C exchanges represented in terrestrial biosphere models
(Huntzinger et al., 2013, 2017). As a result, while models
provide critical mechanistic insight into complex process in-
teractions, model representations of the net effect of com-
peting and interacting C flux responses to climate variabil-
ity and disturbance remain highly uncertain on regional and
pan-tropical scales. Ultimately, given that tropical ecosys-
tems account for 850 Pg of C and the majority of the Earth’s
photosynthetic uptake, plant respiration and fire C emissions
(Saatchi et al., 2011; Hiederer and Köchy, 2011; Beer et al.,
2010; van der Werf et al., 2010), quantitatively understanding
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the concurrent and long-lived impacts of climatic variability,
drought and anthropogenic disturbance is critical for predict-
ing their function in Earth system projections.

Recent inverse estimates of tropical C fluxes from satellite
CO2 measurements provide much-needed spatial and tempo-
ral constraints on continental-scale net biospheric exchange
(NBE; e.g. Takagi et al., 2014, Liu et al., 2014, 2017; Feng
et al., 2017, Detmers et al., 2015; amongst others). Satellite-
based NBE estimates – combined with land-surface obser-
vations of solar-induced fluorescence (SIF, Frankenberg et
al. 2011), leaf-to-soil constraints on total C stocks (Saatchi
et al., 2011) and disturbance (Giglio et al., 2013) – provide
a unique opportunity for quantitatively informing terrestrial
biosphere model representations of the tropical C balance;
recent continental- to global-scale model–data fusion efforts
have demonstrated the synergistic potential of the present-
day “carbon-observing system” to resolve the dynamics of
the terrestrial C balance (Liu et al., 2017; Bloom et al., 2016;
MacBean et al., 2018; Exbrayat et al., 2018; Quetin et al.,
2020; Yin et al., 2020). Ultimately, model–data fusion rep-
resentations of terrestrial ecosystem C cycling allow for an
explicitly mechanistic representation of the terrestrial C bal-
ance with in-built states and process parameterizations opti-
mized to represent the observed C cycle variability in the ob-
servations; contingent on their mechanistic accuracy of the
C cycle to external forcings, these terrestrial C balance mod-
els can be used to quantitatively diagnose the concurrent and
lagged sensitivities of terrestrial ecosystems to external forc-
ings.

In this study we present a framework for expressing the
ecosystem state changes in a given year as the sum of
(a) “concurrent effects”, attributable to concurrent forcing
anomalies, and (b) “lagged effects”, attributable to the cumu-
lative impacts of past forcings. We apply this framework on a
data-constrained ecosystem C balance modelling framework
to quantitatively diagnose the role of concurrent and lagged
effects on the 2001–2015 inter-annual tropical C balance.
Our analysis is motivated by some key unanswered questions
on the large-scale tropical C cycle variability: for instance,
are lagged effects significant contributors to inter-annual flux
variability on pan-tropical scales? Which C fluxes (e.g. pho-
tosynthetic or respiratory) explain the majority of NBE vari-
ability attributable to lagged phenomena? Are lagged ef-
fects a ubiquitous property across both dry and wet tropical
biomes? Here we hypothesize that on a pan-tropical scale, the
integrated impact of lagged effects is a critical component
of tropical NBE IAV. To test this hypothesis, we reconcile
large-scale C cycle processes and satellite-based estimates
of land-to-atmosphere CO2 fluxes using the CARbon DAta-
MOdel fraMework (CARDAMOM) diagnostic ecosystem C
balance model–data fusion approach. We outline our method
in Sect. 2, where we present an analytical methodology for
attributing inter-annual ecosystem state variability to concur-
rent and lagged effects; we present and discuss a quantifica-
tion of the relative role of concurrent and lagged effects on

continental-scale NBE and the attribution of lagged effects
to inter-annual variations in C stock and plant-available wa-
ter states in Sect. 3; we conclude our paper in Sect. 4.

2 Methods

To quantitatively diagnose concurrent and lagged effects on
the inter-annual variability of the tropical C balance, we
(i) present a conceptual framework for attributing annual
ecosystem state changes to concurrent and lagged compo-
nents, (ii) implement the CARDAMOM model–data fusion
framework at a 4◦×5◦ monthly resolution to observationally
constrain 2001–2015 C cycle states, fluxes and process con-
trols, and (iii) attribute ecosystem state changes to concur-
rent and lagged effects based on the CARDAMOM 2001–
2015 representation of the tropical C balance. In summary,
the CARDAMOM model–data fusion framework (Bloom et
al., 2016) employs a Bayesian inference approach to con-
strain model parameters and initial states within the prog-
nostic Data Assimilation Linked Ecosystem Carbon model
(DALEC, Williams et al., 2005), based on observation con-
straints – where and when these are available. Since DALEC
parameters are independently estimated at each location, the
4◦× 5◦ resolution was chosen to accommodate recent esti-
mates of land-surface CO2 and CO fluxes produced at the
GEOS-Chem atmospheric chemistry and transport model
4◦× 5◦ grid (Bowman et al., 2017; Liu et al., 2017; Jiang et
al., 2017). We implement the CARDAMOM analysis across
tropical and near-tropical latitudes (30◦ S–30◦ N) and eval-
uate the tropical C balance across six sub-continental re-
gions as well as the dry tropics and the wet tropics (Fig. A1
in the Appendix); we chose to focus the evaluation of our
results at sub-continental and pan-tropical scales to con-
form with the fundamental spatial resolution limitations of
satellite-based surface CO2 flux estimates (Liu et al., 2014;
Bowman et al., 2017). The following subsections describe
a conceptual framework for concurrent and lagged effect
attribution (Sect. 2.1), the DALEC ecosystem carbon bal-
ance model (Sect. 2.2), satellite and inventory-based ob-
servations (Sect. 2.3), the estimation of DALEC parame-
ters and states within the CARDAMOM model–data fusion
framework (Sect. 2.4), and the attribution of the observation-
informed DALEC C cycle dynamics to their concurrent and
lagged effect components (Sect. 2.5).

2.1 Concurrent and lagged effects

Ecosystem function – such as photosynthesis, respiration and
evapotranspiration rates – at all stages of ecological succes-
sion is both a consequence of an ecosystem’s initial physical
and biotic states and the contemporaneous impact of mete-
orological and disturbance forcings on these states. For ex-
ample, ecosystem water and nutrient availability along with
species demography and species composition – effectively
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amounting to the time-integrated ecosystem legacy – will
govern an ecosystem’s function under a nominal forcing.
The cumulative impact of both episodic or prolonged vari-
ability in external forcings will be “remembered” in ecosys-
tem states, thus shaping ecosystem function as an emergent
property of external forcing history. Ecosystem states un-
der a constant and perpetual environmental forcing will fol-
low a trajectory towards an equilibrium state (as has been
largely hypothesized as the typical outcome for ecosystem
C stocks; Luo and Weng, 2011; Luo et al., 2015) or more
generally a transient trajectory about a domain of attrac-
tion (Holling, 1973), with stable equilibria, stable limit cy-
cles, stable nodes and/or neutrally stable orbits as poten-
tial trajectories. Here, we define lagged effects as the sum
of ecosystem state changes induced by a reference clima-
tological mean forcing (Fig. 1); these include the func-
tional responses of ecosystems under climatological condi-
tions (e.g. joint photosynthesis, respiration and evapotran-
spiration responses to non-equilibrium plant-available water,
leaf area, biomass and dead organic C states) as well as func-
tional shifts (e.g. succession-induced changes in demogra-
phy and species composition and consequently changes in
ecosystem-scale photosynthetic capacity). In addition to an
attraction towards a fixed equilibrium or domain, ecosystem
states are perpetually disturbed by exogenous forces, such as
meteorological and disturbance forcing anomalies relative to
a climatological mean forcing. Here we define these concur-
rent effects as all anomaly-concurrent changes to ecosystem
states unaccounted for by climatology-induced state changes
(i.e. lagged effects); these include functional responses to
anomalous forcings (e.g. drought impact on photosynthetic
uptake and respiration in responses to meteorological phe-
nomena) as well as functional shifts on demographics and
species composition induced by concurrent mortality and
disturbance events. The combined state changes resulting
from both concurrent and lagged effects throughout a 1-
year time period will in turn propagate into future ecosys-
tem states. In this manner, forcing anomalies are perpetu-
ally propagated into ecosystem states, and lagged effects in
subsequent years represent an aggregate legacy of all prior
phenomena. The choices of (a) “concurrent effects” to de-
scribe effects contemporaneous to a meteorological event
and (b) “lagged effects” to describe all time-lagged processes
are consistent with Frank et al. (2015) definitions associated
with effects occurring during or after a climatic anomaly.
We note a distinction between (i) single-event lagged ef-
fects, which represent ecosystem state changes attributable
to a single past forcing event, and (ii) aggregate lagged
effects, which represent the sum and interactions between
past single-event lagged effects. For example, single-event
lagged effects might include the ecosystem state changes
attributable to a single drought or disturbance event, while
aggregate lagged effects can include the effects of cumula-
tive drought impacts, the interactions in between dry and wet
year events, and the longer-term succession processes (as de-

scribed in Fig. 1); we henceforth use “lagged effects” to re-
fer to aggregate lagged effects throughout the paper. Finally,
while in this study we confine our analysis to the estima-
tion of concurrent and lagged effects on annual timescales,
we note that the conceptual framework presented in Fig. 1
can be adapted to diagnose concurrent and lagged ecosystem
state changes on any timescale of relevance.

2.2 Model and drivers

We use the DALEC model (Williams et al., 2005) to rep-
resent the principal terms and major pathways of the terres-
trial C cycle. The DALEC model family has been extensively
used to diagnose terrestrial C cycle dynamics across a range
of site-level and spatially resolved approaches (Fox et al.,
2009; Rowland et al., 2014; Bloom et al., 2016; Smallman
et al., 2017; Exbrayat et al., 2018; amongst several others).
Here we use DALEC version 2a (henceforth DALEC2a): a
summary of the DALEC2a states and processes is depicted
in Fig. 2. For the sake of brevity, we solely report changes in
reference to DALEC2 (previously described by Bloom et al.,
2016) and refer the reader to the Supplement (and references
therein) for a complete description of the model.

We extended the DALEC2 structure to include the first-
order plant-available water (H2O) pool, where the hydro-
logical balance is defined as the sum of precipitation in-
puts (P) and evapotranspiration (ET) and runoff (R) out-
puts. In turn, the plant-available H2O limits gross primary
productivity through conservation of the inherent water-use
efficiency (Beer et al., 2009), where ET is calculated as a
function of gross primary production (GPP) and atmospheric
vapour pressure deficit (Appendix B1). Effectively, the inter-
action between plant-available H2O, GPP and ET constitutes
a first-order plant–soil carbon–water feedback. We further
appended the DALEC2 structure by including a parameteri-
zation of soil moisture limitation on heterotrophic respiration
(Appendix B2), given that heterotrophic respiration depen-
dence on soil moisture remains highly uncertain (Moyano et
al., 2013; Sierra et al., 2015) as well as a dominant source
of uncertainty amongst terrestrial C models (Falloon et al.,
2011; Exbrayat et al., 2013a, b).

Given a range of in situ and continental-scale studies high-
lighting the uncertainties of fire combustion factors across a
range of ecosystems (Ward et al., 1996; Bloom et al., 2015),
the errors involved in representing fine-scale fire-type vari-
ability (Giglio et al., 2013), and spatial variability of fuel
loads, we optimize fire C pool combustion factors (in con-
trast, combustion factors were prescribed as constants in
Bloom et al., 2016): specifically, we optimize the combus-
tion factors of foliar biomass (πfoliar), non-foliar biomass
pools (πnfb), soil C (πSOM) and the fire resilience factor
(we approximate the litter C combustion factor as the arith-
metic mean of πfoliar and πSOM, given that the DALEC2a
litter pool represents both above-ground and below-ground
C reservoirs). Prior ranges for all π and the fire resilience
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Figure 1. Conceptual figure denoting annual ecosystem state changes attributable to concurrent and lagged effects. Throughout a 1-year
cycle (circular arrows), lagged effects amount to the sum of ecosystem state changes induced by a reference climatological mean forcing,
and concurrent effects amount to ecosystem state changes solely attributable to a contemporaneous forcing anomaly. The total state changes
resulting from both concurrent and lagged effects will in turn determine the next year’s initial ecosystem states.

are conservatively defined as spanning 0.01 to 1. We im-
plement the ecological and dynamic constraints (Bloom and
Williams, 2015) to ensure that foliar C combustion factors
are greater than both non-foliar biomass and soil C com-
bustion factors (πfoliar >πnfb and πfoliar >πSOM), which are
comprehensively consistent with detailed measurements of
C pool combustion factors across a range of ecosystem fire
types (Shea et al., 1996; Araújo et al., 1999; van Leeuwen
et al., 2014; amongst others). Finally, we also represent the
uncertainty in the longevity of plant labile C; specifically, we
now optimize – rather than prescribe – the labile C lifespan
used during leaf flushing in DALEC2a (previously all labile
C was used during leaf flush; see Bloom and Williams, 2015).
The updated model structure is depicted in Fig. 2. We hence-
forth summarize the dynamical description of DALEC2a as

xt+1 = DALEC2a(xt ,M t ,p), (1)

where xt represents the ecosystem state vector at time t ,
M t represents the corresponding meteorological and distur-
bance forcings (namely monthly temperature, precipitation,
global radiation, vapour pressure deficit, burned area and at-

mospheric CO2), p represents a vector of time-invariant pro-
cess parameters and DALEC2a represents the DALEC2a op-
eration on states xt throughout time t→ t + 1. In summary,
DALEC2a optimizable quantities consist of 26 process pa-
rameters, p, and seven initial ecosystem states (C and H2O
pools; Fig. 2) at time step t = 0, x0. For the sake of brevity,
we include a complete description of DALEC2a state vari-
ables, process parameters and diagnostic C fluxes in the Sup-
plement, except where an explicit mention is necessary in the
paper.

2.3 Observations

The observations assimilated into CARDAMOM are summa-
rized in Table 1. Following Bloom et al. (2016) we assimilate
Moderate Imaging Spectroradiometer (MODIS) leaf area in-
dex (LAI) soil organic matter (SOM) from the Harmonized
World Soil Database (HWSD; Hiederer and Köchy, 2011)
and above- and below-ground biomass (ABGB, Saatchi et
al., 2011). Solar-induced fluorescence (SIF) – retrieved from
the Greenhouse Gases Observing Satellite (GOSAT) – is a
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Figure 2. Schematic of the CARbon DAta-MOdel fraMework (CARDAMOM) Bayesian model–data fusion approach: the DALEC2a model
(described in Sect. 2.2) represents the ecosystem C and plant-available H2O balance; the dashed blue boxes denote the observational con-
straints used in this study (see Table 1 for abbreviations and details). The solid lines denote C and H2O fluxes between pools and/or external
gains and losses. CARDAMOM is implemented at a 4◦× 5◦ resolution across the tropics (30◦ S–30◦ N). Within each 4◦× 5◦ grid cell,
DALEC2a model parameters and initial ecosystem states are optimized using an adaptive Metropolis–Hastings Markov chain Monte Carlo
algorithm.

robust proxy for photosynthetic activity: while non-linear
inter-relationships at plant level and flux-tower level have
been observed under certain conditions (Verma et al., 2017;
Magney et al., 2017), GPP is observed to be linearly inter-
related to SIF at ecosystem and regional scales (Frankenberg
et al., 2011; Sun et al., 2017). Given that SIF : GPP linear re-
lationships are known to vary substantially across individual
species and entire ecosystems, here we solely assume that
monthly SIF provides a constraint on the relative temporal
variability of GPP (following MacBean et al., 2018). The
monthly averaged 2010–2015 4◦× 5◦ SIF values were de-
rived with the polarizations and selection criteria described
by Parazoo et al. (2014). The assimilation of relative SIF
variability is described in Sect. 2.4.

We assimilate the GOSAT-derived 2010–2013 net bio-
spheric C exchange (NBE) dataset (NBE > 0 for a net
biosphere-to-atmosphere flux) estimated using the Carbon
Monitoring System Flux atmospheric CO2 inversion frame-
work (CMS-Flux; Liu et al., 2014, 2018). In summary, to-
tal monthly 4◦× 5◦ surface CO2 fluxes were scaled using
a Bayesian 4D variational (4D-Var) inversion approach in
order to minimize differences between GOSAT 2010–2013
observations and CMS-Flux representations of total column
CO2 (we refer the reader to Liu et al., 2018, for additional de-
tails on the derivation of surface CO2 fluxes). Following Liu
et al. (2017) and Bowman et al. (2017), we subtract prior esti-
mates of anthropogenic CO2 emissions from total CMS-Flux

total CO2 flux estimates, and we assume that prior anthro-
pogenic CO2 emissions errors are minimal compared to the
biospheric CO2 fluxes, given that these are typically much
smaller than natural CO2 fluxes at a 4◦×5◦ resolution across
the tropics. We withhold 2015 CMS-Flux NBE estimates –
constrained by Orbiting Carbon Observatory (OCO-2) to-
tal column CO2 observations (Liu et al., 2017) – to validate
CARDAMOM 2015 regional NBE estimates and their asso-
ciated uncertainties in the absence of CO2 constraints (OCO-
2 NBE estimates are therefore withheld from the CAR-
DAMOM NBE assimilation step described in Sect. 2.4); in
effect, we employ the validation of CARDAMOM NBE pre-
dictions against the withheld data effect as a means of eval-
uating the mechanistic representations of CARDAMOM’s
time-varying C cycle processes.

Finally, we assimilate mean 2001–2015 fire C emission
estimates derived from monthly 4◦× 5◦ satellite-based esti-
mates of fire CO emissions (Jiang et al., 2017; Worden et al.,
2017; Bloom et al., 2019): the estimates of biomass burning
CO emissions were derived based on an ensemble of atmo-
spheric CO inversions of column CO measurements from the
Measurements of Pollution in the Troposphere (MOPITT) in-
strument onboard the NASA EOS/TERRA satellite (Deeter
et al., 2014). We refer the reader to Jiang et al. (2017) for
the details of the atmospheric CO inversion using the GEOS-
Chem adjoint model and to Worden et al. (2017) for the attri-
bution of optimized CO fluxes to biomass burning. Biomass
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Table 1. Observational constraints assimilated into the 4◦× 5◦ CARDAMOM simulation.

Observation (abbreviation) Dataset description Uncertainty1 Number of
observational
Constraints6

Leaf area index (LAI) MODIS LAI retrievals2. ±log(1.2) 1

Soil organic matter (SOM) Soil C inventory (Hiederer and Köchy,
2011)

±log(1.5) 1

Above- and below-ground biomass (ABGB)3 GLAS-informed biomass map (Saatchi
et al., 2011)

≥±log(1.5)4 1

Solar-induced fluorescence (SIF) Monthly averaged 2010–2015 GOSAT
retrievals of fluorescence (Frankenberg
et al., 2011)5

±log(2) ≤ 72

Fire C emissions (BB) Mean 2001–2015 4◦× 5◦ inverse esti-
mates of fire C emissions (Worden et
al., 2017; Bowman et al., 2017)

± 20 % 1

Net biospheric exchange (NBE) Monthly 2010–2013 GOSAT CO2 de-
rived 4◦× 5◦ inverse estimates of
terrestrial NBE (Liu et al., 2018)

Seasonal=± 2 gC/m2 d−1

Annual=± 0.02 gC/m2 d−1

48

1 Uncertainties denoted as ±log() indicate log-transformed model and observed quantities (i.e. m and o in Eq. 4). 2 Only mean 2001–2015 LAI is assimilated into
CARDAMOM, in order to mitigate the influence of seasonal LAI retrieval biases (Bi et al., 2015). 3 The ABGB estimate is applied as a constraint on the sum of all
CARDAMOM live biomass pools (Fig. 1). 4 See Bloom et al. (2016) for details on biomass uncertainties. 5 Time-resolved SIF is assimilated as a relative constraint on the
temporal variability of GPP (see Sect. 2.4). 6 See Fig. S1 for observational constraint spatial coverage.

burning CO emission estimates by Worden et al. (2017) were
then used to derive total biomass burning C emissions based
on monthly estimates of CO2 : CO; the approach is detailed
in Bowman et al. (2017). We note that NBE estimates exhibit
substantial spatial error covariance structures across individ-
ual 4◦× 5◦ grid cells, and the effective information content
of the NBE inversions is larger than the 4◦× 5◦ resolution.
To mitigate the spatial error correlation features identified in
the NBE dataset (Bowman et al., 2017; Liu et al., 2017), we
employed a 3× 3 grid-cell smoothing window for monthly
NBE estimates, following the approach by Liu et al. (2018).

2.4 Model–data fusion

Within each 4◦× 5◦ grid cell, the C cycle dynamics in
DALEC are a function of meteorological and disturbance
drivers M , model parameters p and initial conditions x0 (as
summarized in Eq. 1). We use a Bayesian inference formula-
tion to independently retrieve the optimal distribution of x0
and p given observations O for each 4◦×5◦ grid cell, where

p(y|O)∝ p(y)p(O|y). (2)

y is the control vector {x0,p}, p(y) is the prior probabil-
ity distribution of y, and p(O|y) is proportional to the like-
lihood of y given O, L(y|O). At any given grid cell, the
observation vector O consists of LAI, SOM, ABGB, SIF,
NBE and CO-derived fire CO2 emissions (henceforth OLAI,
OSOM, OABGB, OSIF, ONBE, and OCO, respectively), and –

assuming errors are uncorrelated – the overall likelihood of
y given O can be expressed as

L(y|O)= LLAILSOMLABGBLSIFLNBELCO. (3)

For LAI, SOM, ABGB and CO,we derive the correspond-
ing likelihood function L∗ (i.e. LLAI, LSOM, LABGB and
LCO, respectively) as follows:

L∗ = e
−

1
2
∑
i

(
mi (y)−oi

σi

)2

, (4)

where oi and mi(y) correspond to the ith observation and
corresponding modelled quantity derived from control vector
y, respectively; σi represents the combined errors of model
and data, namely the combined effects of DALEC model
structural error, model driver errors and observation errors.
In contrast to Bloom et al. (2016), given that MODIS LAI re-
trievals have exhibited systematic seasonal biases across the
wet tropics (Bi et al., 2015), we solely use mean LAI as a
constraint on the mean DALEC2a LAI values (therefore, for
the derivation of LLAI, m and o in Eq. (3) correspond to the
2001–2015 mean modelled and observed LAI).

To constrain the relative variability of GPP based on SIF
without imposing constraints on the absolute GPP magni-
tude, we derive LSIF – based on Eq. (4) – by formulating
m and o as follows:

mi(y)=
GPPi
GPP

, (5)
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oi =
SIFi
SIF

, (6)

where SIFi and GPPi are SIF and corresponding DALEC2a
GPP values at time index i and SIF and GPP are the cor-
responding means during the 2010–2015 time period.

We constrain CARDAMOM NBE using 4◦× 5◦ monthly
CMS-Flux NBE estimates, derived from GOSAT atmo-
spheric total column CO2 retrievals (Liu et al., 2018) span-
ning 2010–2013. At each 4◦× 5◦ location, we define the
LNBE as the product of mean annual NBE and seasonal NBE
anomalies using the following equation:

LNBE = e
−

1
2
∑
a

(
m′a(y)−o

′
a

σ ′

)2

e
−

1
2
∑
i,a

(
m′′
i,a
(y)−o′′

i,a

σ ′′

)2

, (7)

wherem′a denotes the annual mean DALEC2a NBE value for
year a and m′′i,a denotes DALEC2a NBE seasonal deviations
from their annual means; specifically, for a given month i
with corresponding year a,

m′a(y)=
1

12

∑12
i=1

NBEi,a, (8)

m′′i,a(y)= NBEi,a −m′a, (9)

where NBEi,a is the DALEC2a NBE; observations o′a and
o′′i,a were derived identically tom′a andm′′i,a . Similarly to De-
sai (2010), we implement the likelihood function outlined in
Eq. (7) in order to capture both the seasonal and inter-annual
modes of NBE variability; we found that solely minimizing
the monthly NBE residuals following the formulation based
on Eq. (4) led to disparate inter-annual variations between the
model and observation-constrained NBE. Effectively the for-
mulation in Eq. (7) – in comparison to Eq. (4) – increases the
relative weight of mean annual CMS-Flux NBE constraints
on DALEC2a NBE.

The uncertainty for each observational constraint (i.e. σ
values in Eqs. 4 and 7) implicitly represents the combined
impacts of observational random errors, systematic errors,
and model structural error. In the absence of knowledge on
the relative roles of observation errors in the monthly 4◦×5◦

observation uncertainties and explicit knowledge of model
structural error, we prescribed σ values through trial and er-
ror in order to (a) ensure that model states and diagnostic
variables capture the predominant variability of the observa-
tional constraintsO while (b) ensuring that σ values are com-
parable to the observational uncertainty. For all land surface
variables (namely LAI, ABGB, SOM and SIF), m and o were
log-transformed (following Bloom et al., 2016). For the mean
2001–2015 LAI constraint, we assumed log-normal uncer-
tainty of σ =± log(1.2); we prescribed a σ =± log(2) log-
normal uncertainty structure for each SIF observation. We
approximated the uncertainty of the CO-derived mean 2001–
2015 fire C values as σ =±20 %, which is broadly consis-
tent with the monthly 4◦× 5◦ CO uncertainty estimates and
the corresponding CO2 : CO uncertainty estimates reported

by Bowman et al. (2017) and Worden et al. (2017). For NBE
we prescribed σ ′ = 0.02 and σ ′′ = 2 gC/m2 d−1; we found
that these were suitable for capturing the first-order 2010–
2013 seasonal and inter-annual components of continental-
scale NBE variability. The uncertainties assumed for each
observational constraint are summarized in Table 1; we note
that these implicitly include the combined assumption about
observational random errors, systematic errors, and model
structural error. We discuss the potential impacts of obser-
vation uncertainty assumptions and make recommendations
for future efforts in Sect. 3.3.

To retrieve the distribution of p(y|O), we employed an
adaptive Metropolis–Hastings Markov chain Monte Carlo
(MHMCMC) approach following Bloom et al. (2016) to
sample the objective function, namely the product of p(y)
and p(O|y); for reference, we list the individual compo-
nents of the objective function in the paper’s Supplement
(Sect. S3). We generally found that the computational costs
required to meet the MHMCMC convergence criterion re-
ported by Bloom and Williams (2015) for each 4◦× 5◦ grid
cell were prohibitively expensive. We updated the adaptive
MHMCMC to the Haario et al. (2001) MHMCMC approach,
where the MHMCMC proposal distribution is adapted as a
function of previously accepted samples (see Haario et al.,
2001, for algorithm details). We ran four adaptive MHM-
CMC chains for 108 iterations in each 4◦× 5◦ grid cell. We
found that the latter half of the chains converged within a
Gelman–Rubin convergence criterion value of < 1.2 in 75 %
of the grid cells. For the subsequent analysis, we use a subset
of 500 samples of y from the latter half of each MHMCMC
chain, totalling 4× 500 samples of y per 4◦× 5◦ grid cell.

2.5 Dynamical formulation of concurrent and lagged
effects

Here we present a dynamical formulation for the derivation
of concurrent and lagged effects on the inter-annual ecosys-
tem state changes. To explicitly quantify the concurrent ef-
fects and lagged effects, we define the trajectory of the mod-
elled dynamic state variables x at year a+ 1 as

xa+1 = D(xa,Ma,p), (10)

where the state vector xa+1 – which is comprised of
DALEC2a states at the beginning of year a+ 1 – is com-
puted from the DALEC2a model operator D(), which is a
function of the previous state xa at the beginning of year
a, the meteorological and disturbance forcing history of the
previous year Ma , and time-invariant ecosystem parameters
p. We note that Eq. (10) is resolved on an annual time step;
however, the DALEC2a operator time step is monthly, hence
the operator in Eq. (10) is a composite of monthly operators
as denoted in Eq. (1). To isolate the role of concurrent mete-
orological and disturbance anomalies in Ma , we define the C
trajectory under a reference climatological mean forcing M ′
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as

x′a+1 = D(xa,M
′,p). (11)

Here we define M ′ as the monthly climatological mean of
the 2001–2015 meteorological and disturbance drivers and
δMa as the corresponding anomaly in year a, where

Ma = M ′+ δMa . (12)

With Eqs. (10) and (11), we can define the change in the
state x in year a, δxa , as

δxa = xa+1− xa =
(
xa+1− x′a+1

)
+
(
x′a+1− xa

)
. (13)

This formulation allows us to define the lagged effect on
ecosystem states in year a as

δxLAG
a = x′a+1− xa, (14)

the concurrent effect on ecosystem states in year a as

δxCON
a = xa+1− x′a+1, (15)

and the sum of concurrent and lagged effects in Eqs. (14) and
(15) as

δxa = δx
LAG
a + δxCON

a . (16)

We conceptually illustrate the derivation of annual con-
current and lagged effects on a given ecosystem state x in
Fig. 3. Under a climatological mean forcing (blue line), the
ecosystem state trajectory – solely induced by lagged pro-
cesses – would diverge from an externally forced ecosystem
state trajectory (black line) and would eventually converge
to an equilibrium state or oscillate about a domain of attrac-
tion (Fig. 3a). For a 1-year time span, the change in ecosys-
tem state x throughout year a, δxa , can be decomposed into
a climatology-induced lagged effect change δxLAG

a and an
anomaly-induced concurrent effect change δxCON

a (Fig. 3a,
inset).

From a mechanistic standpoint, the variability of δxLAG
a

is independent of meteorological forcing anomalies and is
therefore solely dependent of all ecosystem states xa . For
example, in a hypothetical scenario where a climatologi-
cal mean forcing induces no net ecosystem state changes,
δxLAG

a = xa−x′a+1 = 0 and δx = δxCON. In a more general
scenario, δxLAG

a = xa−x′a+1 ∼ constant for all a: in this in-
stance xLAG

a is non-zero but largely insensitive to variations
in xa within a typical range of ecosystem states x; therefore,
(i) the year-to-year variability of δx is largely dependent on
the variability of δxCON and (ii) δxLAG amounts to an ap-
proximately constant offset term (Fig. 3b). Alternatively, if
δxLAG is sufficiently sensitive to the variability of x, the vari-
ability of δx will be a function of both δxLAG and δxCON: in
this instance, year-to-year variations in x are influencing both
the sign and magnitude of lagged effects (Fig. 3c).

Here we investigate the possible contributions of the an-
nual variability of δxCON and δxLAG to δx for the 2001–2015
time period across tropical ecosystems. Specifically, we test
the following two hypotheses.

– Hypothesis 1: var
(
δxLAG)

� var
(
δxCON). In this in-

stance, the impact of M ′ on x is largely independent
of the variability of x; consequently the year-to-year
variability of the lagged effect force δxLAG is relatively
small, and the year-to-year changes in ecosystem states,
δx, are dominated by δxCON (Fig. 3b).

– Hypothesis 2: var
(
δxLAG)

∼ var(δxCON). In this in-
stance, the impact of M ′ on x is dependent on the vari-
ability of x; consequently, the year-to-year variability of
the lagged effects δxLAG is substantial, and the year-to-
year changes in ecosystem states, δx, are substantially
attributable to both δxCON and δxLAG (Fig. 3c).

The mechanistic nature of the DALEC2a model within
CARDAMOM (namely the representation of allocation frac-
tions, residence times, meteorological sensitivities and ex-
plicit representation of dynamical states) allows for a data-
constrained probabilistic assessment of the relative role
of lagged and concurrent effects on net ecosystem state
changes. The disaggregation of δxa into δxCON

a and δxLAG
a

(and the associated hypotheses 1 and 2) can be projected onto
any subset of net ecosystem fluxes or additive combination
of gross fluxes. For example, the NBE in year a (NBEa) cor-
responds to the net C loss between xa and xa+1; in turn,
NBEa can be decomposed into its lagged effect component
(NBELAG

a ) and the concurrent effect component (NBECON
a ),

where

NBEa = NBECON
a +NBELAG

a . (17)

NBEa and NBELAG
a can be directly calculated from

D(xa,Ma,p) and D(xa,M ′,p), respectively, and NBECON
a

is calculated as NBEa–NBELAG
a . By definition in the

DALEC2a model, NBE is the sum of primary productivity
(NPP), heterotrophic respiration (RHE) and fire (FIR) fluxes,
where

NBEa = RHEa +FIRa −NPPa . (18)

In turn, disaggregation of RHE, FIR and NPP into their
respective concurrent and lagged components gives

NBECON
a = RHECON

a +FIRCON
a −NPPCON

a , (19)

NBELAG
a = RHELAG

a +FIRLAG
a −NPPLAG

a . (20)

To diagnose relative inter-annual variations of a given flux
F (namely the 2001–2015 time series of NBE, RHE, FIR and
NPP), we derive annual anomalies 1F relative to the mean
2001–2015 flux F , where, for a given year a,

1Fa = Fa −F . (21)
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Figure 3. (a) Schematic of meteorology-forced trajectory of ecosystem state x (solid black line) and trajectory of x under a climatological
mean forcing (light blue solid line). Inset: state trajectory xa→ xa+1 (δxa), decomposed as the sum of climatology-induced lagged effect
vector xa→ x′a+1 (δxLAG

a ) and anomaly-induced concurrent effect vector x′a+1→ xa+1 (δxCON
a ). (b) Hypothetical scenario depicting

approximately time-invariant annual lagged effects δxLAG (blue dashed arrows), in reference to changes in transient states x0, x1, x2, etc.;
the temporal changes in x for each time interval, δx, δxLAG and δxCON, are shown in the underlying bar chart. In this scenario, δxLAG is
relatively constant and its variability (denoted as “var()” in the schematic equation) is negligible relative to δxCON. (c) Hypothetical scenario
depicting time-varying annual lagged effects δxLAG, in reference to transient states x0, x1, x2, etc.; in this scenario, the variability of δxCON

is comparable to the variability of δxLAG.

The 1 operation in Eq. (21) can be implemented in
each term in Eqs. (18)–(20) without loss of equivalence
between the left-hand and right-hand sides (for example,
1NBELAG

a =1RHELAG
a +1FIRLAG

a −1NPPLAG
a ).

Finally, we diagnose the 2001–2015 1NBELAG
a variabil-

ity as a function of the inter-annual anomalies in individual
ecosystem states, 1xa(∗) = {1xa(1),1xa(2), . . .,1xa(N)},
relative to the mean ecosystem state x. For DALEC2, these
consist of annual anomalies in initial C and H2O states
(see Fig. 2). For a given year, the total NBE lagged effect
anomaly, 1NBELAG

a , can be decomposed into

1NBELAG
a =

N∑
n=1

1NBELAG
a(n) +1I a . (22)

1NBELAG
a(n) represents the NBE lagged effect compo-

nent solely attributable to an anomaly in ecosystem state n
(1xa(n)), and 1I a collectively accounts for the contribu-

tion of higher-order interactions between individual ecosys-
tem states. In other words, given that 1NBELAG

a is solely at-
tributable to variability of annual initial conditions xa , the
decomposition of 1NBELAG

a to individual pool contribu-
tions provides a first-order attribution of lagged effect IAV
to underlying C and H2O pool dynamics. The derivation of
Eq. (22) is explicitly described in Appendix C.

To derive uncertainty estimates for each annual flux Fa or
corresponding anomaly 1Fa , we calculate each term based
on the 2000 samples of y at each grid cell (see Sect. 2.4),
and we calculate the corresponding median and inter-quartile
range (25th–75th percentiles) for each term. Inter-annual
variations in 2001–2015 F and 1F time series are reported
as standard deviations of median values. We conservatively
assume that F and1F errors are fully correlated when prop-
agating these uncertainties across each region.
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3 Results and discussion

3.1 Evaluation of observation-constrained tropical C
balance

Ultimately inferences about the concurrent and lagged ef-
fects on NBE can only be drawn if the CARDAMOM anal-
ysis is able to both (i) accurately represent observed NBE
and (ii) accurately represent underlying states and processes
controlling IAV. To assess the CARDAMOM 2001–2015 re-
analysis, here we present an evaluation of CARDAMOM
against (a) the assimilated 2010–2013 GOSAT-derived NBE
dataset, (b) the withheld OCO-2-derived 2015 NBE dataset,
and (c) assimilated and independent datasets of tropical ter-
restrial ecosystem states and fluxes.

Optimized CARDAMOM NBE (a function of the op-
timized DALEC2a parameters and initial 2001 ecosys-
tem states) broadly represents the monthly variability of
the 2010–2013 regional-scale assimilated GOSAT-retrieved
NBE (Fig. 4; Table 2). In individual regions, monthly CAR-
DAMOM versus CMS-Flux NBE r ≥ 0.69, with the excep-
tion of the South-East Asia and Indonesia region (r = 0.57),
where the CARDAMOM and GOSAT-retrieved NBE ex-
hibits a relatively small seasonality compared to other re-
gions. Evaluation of CARDAMOM NBE against withheld
NBE estimates from OCO-2 exhibits a degradation in the
correlation and RMSE values but agrees favourably on the
amplitude and timing of the NBE variability (Table 2). We
find that the CARDAMOM analysis is able to robustly
capture the 2010–2013 GOSAT-derived annual NBE esti-
mates at regional scales (see Fig. 5 and Table 2; regional
CARDAMOM versus CMS-Flux NBE r ≥ 0.9). On an an-
nual basis, all regional OCO-2 NBE estimates for 2015 ex-
cept Northern Hemisphere South America are within the
90 % CARDAMOM prediction confidence intervals (Fig. 5);
furthermore, all OCO-2 annual NBE estimates are within
CARDAMOM 2015 prediction confidence intervals for the
wet tropics, dry tropics and the entire tropical study re-
gion. We found generally lower seasonal correlations be-
tween CARDAMOM NBE and GOSAT retrieved across
4◦×5◦ grid cells (Fig. S2; 25th–75th percentile= 0.19–0.63)
and corresponding annual mean correlations (25th–75th per-
centile= 0.31–0.89) relative to the sub-continental and pan-
tropical regions (Table 2); the lower correlative agreement
is likely due to the limited 4◦× 5◦ information content of
satellite-based NBE flux estimates (Liu et al., 2014; Bowman
et al., 2017).

We also evaluate the 2001–2015 CARDAMOM NBE
against the inter-annual variability of the NOAA ESRL
surface-based global atmospheric CO2 growth rate observa-
tions (https://www.esrl.noaa.gov/gmd/ccgg/trends/, last ac-
cess: 5 May 2020; see Supplement for dataset details). We
assume that the atmospheric CO2 growth rate variability –
once detrended to remove decadal trends in fossil fuel emis-
sions and biogenic CO2 uptake – predominantly exhibits

inter-annual variations of the tropical C balance (Baker et
al., 2006; Cox et al., 2013; Sellers et al., 2018). We find that
2001–2015 detrended CARDAMOM NBE (Fig. 5, bottom-
right panel) exhibits broad consistency with the atmospheric
CO2 growth rate; the detrended datasets exhibit compa-
rable levels of inter-annual variability (atmospheric CO2
growth rate IAV=±0.62 PgC yr−1, CARDAMOM tropical
NBE IAV=±0.80 PgC yr−1) as well as a significant corre-
lation between annual NBE growth rate anomalies (r = 0.62,
pval= 0.01).

The spatial variability of CARDAMOM state variables
and fluxes constrained by static datasets, namely LAI,
biomass, soil C and mean fire C emissions (Table 1), is
broadly correlated with the observational constraints by the
CARDAMOM analysis (r = 0.7–0.98; p<0.05; Fig. S2); for
the above-mentioned quantities total median errors amounted
to <10 %, with the exception of soil C (median error CAR-
DAMOM soil C= 25 %). The correlation between CAR-
DAMOM GPP and GOSAT SIF is positive and significant
(p value < 0.05) in 67 % of 4◦×5◦ pixels, with higher corre-
lations in the dry tropics (25th–75th percentile= 0.41–0.78)
relative to the wet tropics (25th–75th percentile= 0.13–
0.63); the lower correlations in the wet tropics are generally
expected, given that wet tropical ecosystems fundamentally
exhibit a weaker GPP seasonal cycle.

We also evaluate the mean and inter-annual variabil-
ity of CARDAMOM GPP, ET and LAI outputs against
(i) two independent measurement-based GPP estimates
for 2007–2015 (FLUXCOM GPP, Jung et al., 2020; and
FLUXSAT GPP, Joiner et al., 2018), (ii) two independent
measurement-based ET estimates (FLUXCOM ET, Jung et
al., 2019; MODIS ET, Mu et al., 2011) for 2001–2013, and
(iii) 2001–2015 MODIS LAI (we note that only mean 2001–
2015 MODIS LAI was assimilated into CARDAMOM; see
Sect. 2.3). Dataset details and regional evaluations are in-
cluded Sect. S2 and Tables S2–S3 in the Supplement. In sum-
mary, we find that mean CARDAMOM pan-tropical GPP
is within 20 % of both independent estimates and that re-
gional estimates are within 40 % of both independent esti-
mates; regional GPP IAV in CARDAMOM (0.8 %–7.4 %) is
broadly consistent with FLUXSAT GPP (1.3 %–10.7 %) and
FLUXCOM GPP (0.3 %–4.2 %). Pan-tropical GPP correla-
tions are positive and significant (p value < 0.05) among all
three estimates (r = 0.69–0.74); regional correlations are by
and large positive but not significant. CARDAMOM mean
ET values are lower but within 25 % of independent ET
estimates, and differences in regional mean ET are within
50 % of independent estimates; regional ET IAV in CAR-
DAMOM (2.3 %–5.5 %) is broadly consistent with FLUX-
COM ET (0.3 %–5.9 %) and MODIS ET (1.3 %–13.4 %).
Correlations between three datasets span positive and neg-
ative values but are mostly not significant; regional CAR-
DAMOM ET correlations against MODIS and FLUXCOM
(r =−0.64–0.41) are generally lower than inter-agreement
between the two datasets (r =−0.27–0.94). Mean CAR-
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Table 2. CARDAMOM NBE evaluation against assimilated and predicted NBE.

Monthly RMSEa (Pearson’s r) Annual RMSEa,b (Pearson’s r)

Assimilated NBE Predicted NBE Assimilated NBE Predicted NBE
(2010–2013) (2015) (2010–2013) (2015)

SH South America 0.08 (0.84∗) 0.08 (0.87∗) 0.03 (0.99∗) 0.29 (–)
NH South America 0.06 (0.74∗) 0.09 (−0.13) 0.04 (0.90) 0.37 (–)
Southern Africa 0.08 (0.94∗) 0.13 (0.78∗) 0.07 (0.92) 0.28 (–)
Northern sub-Saharan Africa 0.08 (0.87∗) 0.13 (0.96∗) 0.08 (0.99∗) 0.07 (–)
Australia 0.04 (0.69∗) 0.05 (0.88∗) 0.03 (0.98∗) 0.21 (–)
SE Asia and Indonesia 0.03 (0.57∗) 0.05 (0.55) 0.02 (0.99∗) 0.21 (–)

Tropics 0.20 (0.51∗) 0.27 (0.55) 0.19 (1.00∗) 0.05 (–)
Wet tropics 0.12 (0.58∗) 0.14 (0.53) 0.12 (0.99∗) 0.64 (–)
Dry tropics 0.12 (0.80∗) 0.20 (0.59∗) 0.13 (0.99∗) 0.58 (–)

a RMSE units are PgC yr−1. b Prediction RMSE values are equivalent to absolute errors, since only one error value is considered.
∗ Correlation p value < 0.05.

DAMOM LAI is within 15 % of MODIS LAI across all
regions. Regional CARDAMOM LAI values (1.6 %–4.8 %)
are broadly consistent with the range of MODIS LAI val-
ues (0.7 %–5.2 %); none of the regional correlation values
were significant. The notable lack of correlative agreement
between CARDAMOM and independent LAI and ET esti-
mates is potentially due to (a) the lack of direct observational
constraints on the temporal variability of ET and LAI in
CARDAMOM, (b) systematic errors or limitations of inde-
pendent LAI and ET estimation approaches on inter-annual
timescales (Bi et al., 2015; Pan et al., 2020), and/or (c) fun-
damental limitations of CARDAMOM ET and LAI estimates
(further discussed in Sect. 3.3).

Overall, we argue that (i) CARDAMOM NBE and associ-
ated uncertainties compare favourably against withheld and
independent data on seasonal and inter-annual timescales,
and (ii) the spatial variability and the IAV magnitude of
CARDAMOM ancillary states and fluxes are in general
agreement with a range of assimilated and independently es-
timated quantities. We discuss noteworthy caveats and lim-
itations of retrieved CARDAMOM ecosystem dynamics –
and the implications of inferred variability of concurrent and
lagged effects – in Sect. 3.3. We anticipate that the ever-
growing satellite CO2 record, along with increasing volume
and quality of terrestrial ecosystem observations, will ulti-
mately lead to improved seasonal and inter-annual process
representations in future model–data fusion analyses of the
terrestrial C balance.

3.2 Concurrent and lagged effects on the tropical C
balance

The attribution of annual 1NBE into its concurrent and
lagged components (1NBECON and 1NBELAG) reveals that
both are prominent contributors to regional and pan-tropical
1NBE (Fig. 6). On a regional scale, 1NBECON IAV and

1NBELAG IAV during 2001–2015 amount to 61 %–107 %
and 41 %–122 %, respectively, relative to 1NBE IAV (Ta-
ble 3). Notable 1NBECON anomalies include (i) the pos-
itive 1NBECON values in both South American regions
during drier conditions in 2005, 2007 and 2010, in con-
trast with negative 1NBECON responses during wetter con-
ditions in 2009 and 2011, and (ii) negative 1NBECON

values during the relatively wet 2010–2011 conditions in
Australia; both continental-scale responses corroborate the
generally hypothesized responses of tropical ecosystems
to wet and dry extreme events (Lewis et al., 2011; Bas-
tos et al., 2013). For the most part, both 1NBECON

and 1NBELAG contribute substantially to the year-to-year
1NBE anomaly changes on a regional scale. Across the
wet tropics, the signs of the largest 1NBE anomalies are
predominantly explained by 1NBECON; in contrast, dry
tropics 1NBELAG IAV and 1NBECON IAV both substan-
tially contribute to annual1NBE anomalies. Instances where
1NBELAG or 1NBECON IAV values amount to > 100 %
of 1NBE IAV are attributable to regional and pan-tropical
anti-correlations between1NBELAG and1NBECON: specif-
ically, 1NBELAG and 1NBECON are anticorrelated across
the tropics (r =−0.05) and all regions except SE Asia
and Indonesia (r =−0.56–0.14); the consistent anticorrela-
tion across five out of six regions suggests that lagged ef-
fects may significantly and systematically dampen the im-
pact of 1NBECON. On a pan-tropical scale, we found that
1NBECON IAV and1NBELAG IAV are both substantial con-
tributors to NBE IAV (80 % and 64 %); the relative impor-
tance of 1NBELAG IAV relative to 1NBECON is largest
in the dry tropics (83 % and 99 %, respectively) and re-
mains substantial albeit smaller in the wet tropics (79 %
and 45 %, respectively). Uncertainties in 1NBE, 1NBECON

and 1NBELAG (Fig. 6) are generally linked to confound-
ing NBE trend uncertainties throughout 2001–2015 (Fig. 4),
particularly on a pan-tropical scale, where NBE uncertain-
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Figure 4. CARDAMOM monthly analyses of 2001–2015 median NBE (red line) and associated uncertainty intervals (25th–75th percentiles
in dark pink and 5th–95th percentiles in light pink). The analyses were constrained by CMS-Flux GOSAT-derived top-down fluxes (Liu et
al., 2018) for the 2010–2013 period; CMS-Flux OCO-2-derived 2015 NBE fluxes were withheld for validation. The geographical definitions
for each region are shown in Fig. A1 in the Appendix.

Table 3. 2001–2015 regional 1NBE IAV and corresponding contributions of concurrent effects (1NBECON) and lagged effects
(1NBELAG); IAV values are represented here as standard deviations of annual 2001–2015 NBE values; bracketed values represent Pearson’s
correlation coefficients between total NBE and concurrent and lagged effect IAV. The regional masks are depicted in Fig. A1.

1NBE IAV 1NBECON IAV 1NBELAG IAV
(PgC yr−1) (as % of 1NBE IAV) (as % of 1NBE IAV)

(Pearson’s r) (Pearson’s r)

SH South America 0.21 107 % (0.81∗) 63 % (0.18)
NH South America 0.08 61 % (0.16) 105 % (0.83∗)
Southern Africa 0.14 83 % (0.10) 122 % (0.76∗)
Northern sub-Saharan Africa 0.19 74 % (0.70∗) 71 % (0.68∗)
Australia 0.12 63 % (0.56∗) 84 % (0.78∗)
SE Asia and Indonesia 0.15 84 % (0.91∗) 41 % (0.54∗)

Wet tropics 0.42 79 % (0.89∗) 45 % (0.63∗)
Dry tropics 0.28 99 % (0.65∗) 83 % (0.43)
Tropics 0.62 80 % (0.76∗) 64 % (0.61∗)
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Figure 5. CARDAMOM yearly analyses of 2001–2015 NBE (red line) and associated uncertainty intervals (25th–75th percentiles in dark
pink and 5th–95th percentiles in light pink). The analyses were constrained by CMS-Flux GOSAT-derived top-down fluxes (Liu et al.,
2018) for the 2010–2013 period. CMS-Flux OCO-2-derived 2015 NBEs (blue squares) are withheld for regional and pan-tropical NBE
validation. CARDAMOM NBE and NOAA ESRL atmospheric CO2 growth rates were detrended for inter-comparison (bottom-right panel).
The geographical definitions for each region are shown in Fig. A1.

ties are considerably larger than median NBE IAV. To di-
rectly assess the uncertainty of1NBELAG IAV contributions
to NBE IAV irrespective of annual NBE uncertainties, we
(a) rank all 4◦×5◦ grid-cell CARDAMOM samples by their
corresponding 2001–2015 1NBELAG IAV and (b) combine
CARDAMOM samples by ranking to generate a correspond-
ing ensemble of regional and pan-tropical 1NBELAG IAV
estimates (summarized in Table S5). We find that the re-
gional 95 % confidence ranges are all within 50 % of the
median 1NBELAG IAV values reported in Table 3. Notably,
the ensemble of pan-tropical1NBELAG IAV estimates spans

42 %–97 % of NBE IAV (2.5th–97.5th percentile range), in-
dicating that – even under overwhelmingly conservative as-
sumptions about grid-cell 1NBELAG IAV – lagged effects
are invariably a prominent component of tropical NBE IAV.

Variations in 1NBELAG throughout 2001–2015 include a
range of lagged processes spanning between (a) 1NBELAG

changes induced by recent forcing events and (b) the grad-
ual changes in 1NBELAG attributable to an ecosystem’s
approach or oscillation around a domain of attraction (see
Sect. 2.1). Notably, even in the absence of a recent forc-
ing event, 1NBELAG will potentially continue to change
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Figure 6. Regional and pan-tropical median annual 1NBE (blue bars) and its attribution to concurrent effects (1NBECON, green bars) and
lagged effect (1NBELAG, orange bars) components. The geographical definitions for each region are shown in Fig. A1. Error bars denote
the 25th–75th percentile uncertainty estimates for each flux anomaly.

in magnitude from year to year as ecosystem states ap-
proach or oscillate around a domain of attraction. We
conducted a sensitivity test for the Southern Hemisphere
South America region (top-left panel of Fig. 6) to disen-
tangle the range of contributions to 2001–2015 1NBELAG

values: specifically, we (a) resolve 1NBELAG in the ab-
sence of 2001–2015 forcing anomalies and (b) sequentially
add 2001–2015 forcing anomalies to resolve 1NBELAG at-
tributable to annual forcing events (Fig. S6). In the absence
of 2001–2015 forcing anomalies, lagged effects account for
a ±0.11 PgC yr−1 variability in total NBE, explained by
an approximately linear +0.02 PgC yr−1 increase through-
out the 2001–2015 time period. The sequential addition of
2001–2015 forcing anomalies indicates the sign and mag-
nitude of lagged effects are substantially influenced by an-
nual forcing events; while the inter-annual variability mod-
estly increased to ± 0.13 PgC yr−1, year-to-year changes ex-
ceed 0.3 PgC yr−1 (Fig. 6). Furthermore, while most years in-

duced relatively short-lived (1–2-year) contributions to sub-
sequent 1NBELAG values, 2007 and 2010 – both notably
dry years – induced more long-lasting impacts on 2010–
2015 1NBELAG (Fig. S6). Given the combined importance
of short- and long-lived impacts of forcing anomalies on
lagged effects, we highlight the need to further investigate
the relative contributions and potential interactions between
single-event lagged effects (e.g. lagged effects attributable to
a single forcing anomaly), their longevity, and their net con-
tribution to 1NBELAG and 1NBE IAV.

The decomposition of1NBECON into constituent fluxes –
namely net primary productivity (1NPPCON), heterotrophic
respiration (1RHECON) and fires (1FIRCON) – reveals that
1NPPCON is the largest contributor to 1NBECON IAV
(Fig. 7; Table 4), while 1FIRCON and 1NPPCON are com-
parable contributors to 1NBECON in Australia. In Northern
Hemisphere South America and South-East Asia and Indone-
sia,1RHECON variability is a smaller but substantial contrib-
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utor to 1NBECON, indicating that the integrated impacts of
meteorological and disturbance forcing IAV on respiration
are comparable to those on photosynthetic uptake. In Aus-
tralia, the concurrent impact of fires on 1NBECON is com-
parable to1NPPCON (Table 4). Similarly, the decomposition
of 1NBELAG into constituent fluxes (1NPPLAG, 1RHELAG

and 1FIRLAG) reveals that 1NBELAG is ubiquitously domi-
nated by1NPPLAG variability, followed by modest contribu-
tions from 1RHELAG variability and minimal contributions
by 1FIRLAG variability (see Table 4). The prominence of
1NPPLAG is attributable to faster continental-scale response
of C uptake following year-to-year variations in initial C
and H2O states (relative to 1RHELAG), indicating that live
biomass dynamics (rather than dead organic C states) dom-
inate initial ecosystem responses to external forcing anoma-
lies. The relatively small contribution of 1FIRLAG values to
1NBELAG indicates that the magnitude of fires is, to first or-
der, dominated by variability in the forcing rather than vari-
ability in fuel load within fire-prone ecosystems.

We find that variability in foliar C, plant-available H2O
and soil C contributes to the majority of regional and pan-
tropical 1NBELAG variability (Fig. 8). For example, both
the enhanced foliar C and plant-available H2O in 2011 over
the Australian continent (relative to 2010) – attributable to
a combination of reduced fires and increased productivity
due to anomalously wet 2010 conditions over the Australian
continent (Fig. S3) – each contributed to a 0.1 PgC yr−1 net
uptake increase (i.e. NBE reduction) relative to 2010. Sim-
ilarly, we found that reduced foliar C in Southern Hemi-
sphere South America following dry conditions in 2005,
2007 and 2010 induced a 0.1 PgC yr−1 NBE response in
2006, 2008 and 2011, respectively. We find that the sum of all
the pool-specific 1NBELAG anomalies approximately adds
up to 1NBELAG (Fig. S3), indicating that – insofar as these
are represented in DALEC2a – 1NBELAG is (a) to first or-
der equivalent to the sum of NBELAG sensitivities to individ-
ual initial states and that (b) cross-pool interactions (“I” in
Eq. 22) are a secondary component of 1NBELAG. In aggre-
gate, we find that foliar C variability contributes 41 %–120 %
of 1NBELAG variability across all regions and 58 % of the
pan-tropical 1NBELAG. Northern Hemisphere sub-Saharan
Africa and South-East Asia and Indonesia are the only re-
gions where inter-annual variations in soil C and plant-
available H2O (respectively) contribute more variability than
foliar C (Table 5). Notably, our results indicate that under
a climatological mean forcing, (a) year-to-year changes in
foliar C and plant-available H2O initial conditions are suffi-
cient to induce substantial year-to-year changes in C uptake
and (b) year-to-year changes in soil C are sufficient to sub-
stantially influence total heterotrophic respiration rates; we
find that the remaining states (labile C, wood C, fine root C
and litter C) explain < 0.2 PgC yr−1 variability of 1NBELAG

across all regions. We also find that the sum of regional foliar
C and plant-available H2O impacts on1NBELAG (Fig. 8) are
approximately equivalent to 1NPPLAG (Fig. 7); in turn, the

considerable contributions of both1NPPLAG and1NPPCON

across tropical ecosystems indicate that both climatic vari-
ability and initial ecosystem states are substantial contrib-
utors to tropical 1NPP IAV. Inter-annual variations of fo-
liar C, soil C and plant-available H2O states exhibit substan-
tial correlations with their corresponding1NBELAG compo-
nents (Fig. S5): regional correlations are negative for foliar
C (r =−0.6 to −1.0) and plant-available H2O (r =−0.7 to
−0.2) and positive for soil C (r = 0.6–1.0). We note that the
general agreement between regional 2001–2015 foliar C IAV
(1.1 %–4.0 %), CARDAMOM LAI IAV (1.6 %–4.8 %) and
MODIS LAI IAV(0.7 %–5.2 %) corroborates the estimated
impact of CARDAMOM C foliar dynamics on 1NBELAG.
In contrast to foliar C and plant-available H2O, soil C im-
pacts on1NBELAG are predominantly induced by long-term
soil C trends rather than year-to-year variability. Soil C re-
gional trend signs (Fig. 7) are generally opposite to mean
2001–2015 NBE signs within each region (Fig. 5), indicat-
ing that the observed regional C imbalances are substantially
mediated by 2001–2015 soil C trends.

Overall, our results indicate that (i) 1NBELAG IAV
is a prominent component of NBE IAV across tropical
ecosystems; (ii) 1NBELAG IAV is largely mediated by
changes in ecosystem NPP capacity (1NPPLAG IAV); and
(iii) 1NPPLAG variability is regulated by inter-annual varia-
tions in ecosystem canopy and plant-available H2O states. In
other words, our results highlight that inter-annual changes in
1NBE – regardless of external forcing anomalies – are sub-
stantially determined by inter-annual anomalies in ecosystem
H2O and canopy states. Lagged heterotrophic respiration re-
sponses (1RHELAG) are mediated by soil C states changes
and are secondary component of NBE IAV; the dampened
role of 1RHELAG (relative to 1NPPLAG) is likely due to
the inherent lags between biomass growth and subsequent
mortality inputs to soil C states, combined with ∼ 5–50-year
mean dead organic C residence times across tropical ecosys-
tems (Bloom et al., 2016). The relative importance of NPP-
mediated lagged effects in responses to climatic anomalies
has also been inferred on from in situ and continental-scale
measurements (Sherry et al., 2008; Detmers et al., 2015;
Wolf et al., 2016). Our findings also suggest that tracking
the long-term evolution of tropical ecosystem canopy cover
(Saatchi et al., 2013; Shi et al., 2017) and reducing the
process-level uncertainties associated with foliar C dynam-
ics relationships to meteorological and disturbance forcings
(discussed in Sect. 3.3) are potentially critical for advanc-
ing process-level understanding of tropical NBE IAV. We an-
ticipate that continued monitoring of NBE (e.g. following
the 2015–2016 ENSO event) and subsequent attribution to
concurrent and lagged effects will also be critical to better
quantify the longevity NPP recovery (e.g. Schwalm et al.,
2017) and to improve confidence in characterizing concur-
rent and lagged NPP impacts on the tropical C balance. Fi-
nally, while our analysis is focused on the 1NBELAG sensi-
tivity to year-to-year ecosystem state changes, we note that
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Table 4. Concurrent and lagged effect NBE attributed to constituent fluxes (net primary production, heterotrophic respiration and fires,
abbreviated as NPP, RHE and FIR, respectively): IAV values are represented here as the ratio of constituent flux standard deviation to NBE
standard deviations of annual 2001–2015 NBE values; bracketed values correspond to Pearson’s correlation coefficients between constituent
flux and NBE (“∗” denotes p values < 0.05). The underlined values denote the largest % IAV contribution to 1NBECON and 1NBELAG.

IAV as % of 1NBECON (Pearson’s r) IAV as % of 1NBELAG (Pearson’s r)

1NPPCON 1RHECON 1FIRCON 1NPPLAG 1RHELAG 1FIRLAG

SH South America 83 % (−0.83∗) 38 % (−0.46) 42 % (−0.26) 81 % (−0.62∗) 78 % (0.68∗) 1 % (0.15)
NH South America 159 % (−0.69∗) 115 % (0.23) 11 % (0.59∗) 116 % (−0.98∗) 26 % (−0.34) 1 % (−0.91∗)
Southern Africa 66 % (−0.74∗) 48 % (−0.66∗) 31 % (−0.73∗) 61 % (−0.79∗) 60 % (0.83∗) 7 % (0.68∗)
Northern sub-Saharan Africa 64 % (−0.82∗) 43 % (0.50) 38 % (0.47) 196 % (−0.68∗) 136 % (−0.24) 11 % (−0.20)
Australia 82 % (−0.71∗) 15 % (0.05) 74 % (0.05) 113 % (−0.95∗) 29 % (−0.16) 3 % (−0.36)
SE Asia and Indonesia 79 % (−0.60∗) 67 % (0.04) 49 % (−0.09) 112 % (−0.80∗) 63 % (0.15) 3 % (0.32)

Wet tropics 87 % (−0.64∗) 68 % (0.24) 30 % (0.21) 147 % (−0.93∗) 52 % (−0.54∗) 4 % (−0.75∗)
Dry tropics 73 % (−0.93∗) 30 % (−0.28) 33 % (−0.39) 102 % (−0.86∗) 49 % (0.25) 2 % (0.18)
Tropics 95 % (−0.86∗) 52 % (0.18) 28 % (0.43) 113 % (−0.93∗) 35 % (−0.05) 2 % (−0.49)

Table 5. IAV of 2001–2015 regional and pan-tropical NBE lagged effects attributable to annual anomalies in column-denoted ecosystem
states (Eq. 22) as % of total NBE lagged effects (1NBELAG) IAV; bracketed values correspond to Pearson’s correlation coefficients between
single-state NBE lagged effects and total 1NBELAG; “∗” denotes p values < 0.05. The underlined values denote the maximum contribution
in each region.

Labile C Foliar C Fine root C Wood C Litter C Soil C Plant-av. H2O

SH South America 9 % (0.88∗) 48 % (0.69∗) 15 % (0.12) 2 % (−0.80∗) 27 % (0.43) 41 % (0.85∗) 30 % (0.28)
NH South America 3 % (0.88∗) 98 % (0.94∗) 6 % (0.48) 6 % (−0.91∗) 12 % (0.17) 34 % (−0.17) 28 % (0.45)
Southern Africa 6 % (0.17) 41 % (0.69∗) 3 % (0.66∗) 1 % (0.58∗) 15 % (0.85∗) 40 % (0.78∗) 17 % (0.85∗)
Northern sub-Saharan Africa 35 % (0.45) 120 % (0.64∗) 2 % (−0.01) 4 % (−0.16) 12 % (−0.03) 125 % (−0.22) 50 % (0.58∗)
Australia 8 % (0.71∗) 58 % (0.68∗) 3 % (−0.61∗) 1 % (−0.53∗) 11 % (−0.02) 10 % (0.17) 54 % (0.88∗)
SE Asia and Indonesia 7 % (0.14) 43 % (0.16) 18 % (−0.63∗) 5 % (0.29) 35 % (0.07) 62 % (0.45) 64 % (0.94∗)
Wet tropics 8 % (0.66∗) 99 % (0.84∗) 14 % (0.18) 8 % (−0.73∗) 27 % (0.12) 56 % (−0.55∗) 37 % (0.79∗)
Dry tropics 16 % (0.71∗) 47 % (0.70∗) 6 % (−0.09) 1 % (0.37) 17 % (0.38) 13 % (0.58∗) 43 % (0.83∗)
Tropics 12 % (0.82∗) 58 % (0.83∗) 10 % (0.03) 3 % (−0.51) 21 % (0.23) 20 % (−0.26) 39 % (0.82∗)

the magnitude of 1NBECON is also in principle dependent
on time-varying ecosystem states (Fig. 1); we recognize that
further investigation on whether 1NBECON IAV is (a) pre-
dominantly sensitive to forcing anomalies, or (b) sensitive to
year-to-year ecosystem state changes, could amount to a crit-
ical step towards accurately characterizing the climate sensi-
tivity of 1NBE.

3.3 Observation and model uncertainty caveats

The prescribed observation uncertainty characteristics (Ta-
ble 1) are potentially a critical source of error in the data-
informed representation of terrestrial C cycle dynamics and
its subsequent partitioning into concurrent and lagged ef-
fects. For example, relative differences in the mean NBE val-
ues retrieved from aircraft and satellite CO2 measurements
over the Amazon Basin (Alden et al., 2016; Bowman et al.,
2017) highlight the need to determine the sensitivity of our
results to top-down estimates of NBE. While the uncertainty
structures of top-down CO2 inversion estimates are beyond
the scope of our paper, we recognize the need to robustly

assess and characterize uncertainties in seasonal and inter-
annual variations in NBE. Potential limitations in the lin-
ear SIF : GPP assumption include (i) systematic underesti-
mations of afternoon GPP stress, given that the GOSAT over-
pass time is∼ 1 pm, and (ii) uncharacterized biases emerging
from non-linear SIF : GPP under extreme conditions (Verma
et al., 2017). We highlight that recent efforts to merge multi-
ple SIF datasets (Zhang et al., 2018) and process-based rep-
resentations of SIF : GPP (Bacour et al., 2019) can together
be used to improve the accuracy of SIF : GPP representation
in CARDAMOM. We also note that the CARDAMOM like-
lihood function (Eq. 3) fundamentally assumes all errors are
independent; however, commonalities in the derived datasets
– such as systematic representation errors across all datasets
and transport errors in the GEOS-Chem-derived CO2 and CO
emissions – may lead to unrepresented error correlations in
the likelihood functions.

We generally acknowledge that more elaborate approaches
and a more comprehensive treatment of model and data error
characteristics are necessary to understand the contribution
of individual data stream error (Keenan et al., 2011; Heald
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Figure 7. Regional and pan-tropical median annual net primary productivity (left column), heterotrophic respiration (centre column) and fire
(right column) anomalies (1NPP, 1RHE and 1FIR, respectively). Blue bars represent total anomalies and green and orange bars represent
the corresponding annual concurrent and lagged effects. 1NPP anomaly signs were reversed such that all anomalies are represented as
positive for net land-to-atmosphere C flux. The sum of annual 1NPP, 1RHE and 1FIR is equivalent to annual 1NBE values presented in
Fig. 6. Error bars denote the 25th–75th percentile uncertainty estimates for each flux anomaly.

et al., 2004; MacBean et al., 2016, 2018). Specifically, the
explicit and accurate representation of model structural error
is critical for both accurate retrievals of physical parameters
and accurate model predictions (Brynjarsdottir and O’Hagan,
2014) and solving for error model parameters (Schoups and
Vrugt, 2010; Xu et al., 2017) is potentially advantageous for
physical parameter retrievals and prediction purposes. For
example, we note that without an error model structure we
cannot explicitly account for cross-correlations in the errors
between observations or the impacts of heteroscedasticity
(Schoups and Vrugt, 2010). While the identification and opti-

mization of an appropriate structural error model are beyond
the scope of this paper, we highlight that this as an important
priority for future CARDAMOM analyses.

Unrepresented processes DALEC2a model structure – par-
ticularly processes that are potentially substantial contrib-
utors to 1NBECON and 1NBELAG – amount to an addi-
tional source of uncertainty in our analysis. Potentially crit-
ical processes include time-varying autotrophic respiration
(Rowland et al., 2014), plant C allocation and plant mortal-
ity, as well as explicit representation of coarse woody de-
bris (Smallman et al., 2017). In particular, given that our re-
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Figure 8. Attribution of 2001–2015 annual regional and pan-tropical NBE lagged effect estimates (1NBELAG) to individual ecosystem
state anomalies (i.e. the lagged effect in year a solely attributable to anomaly in ecosystem state n, 1NBELAG

a(n)
; see Eq. 22). In addition to

foliar C (green circles), soil C (dark pink triangles), and plant-available H2O (blue squares), the grey areas (labelled as “Other” in the figure
legend) denote the collective range of 1NBELAG anomalies attributable to labile, wood, root and litter C. Percentage values indicate the
inter-annual variability (reported as standard deviation) of median foliar C, soil C and plant-available H2O states throughout the 2001–2015
period, relative to mean 2001–2015 values within each region. The sum of annual state-specific 1NBELAG values is approximately equal to
the 1NBELAG (see Fig. S4). Error bars denote the 25th–75th percentile uncertainty estimates for each flux anomaly.

sults suggest that foliar C is a major contributor to 1NBE,
unrepresented processes relating to tropical leaf phenology
may substantially impact the accuracy of lagged effect at-
tribution, including phenological processes regulating leaf
onset, leaf lifespan and litterfall seasonality (Chave et al.,
2010; Caldararu et al., 2012; Xu et al., 2016), as well as the
time-varying allocation regimes (Doughty et al., 2015). Fur-
thermore, while the DALEC2a phenology assumes a time-
invariant ratio between LAI and foliar C (i.e. a time-invariant
ecosystem-level leaf carbon mass per area), the joint roles
of leaf demographics and species distribution on the tem-
poral variability of leaf carbon mass per area could poten-
tially amount to a significant impact on photosynthetic ca-

pacity, and subsequently on the variability of 1NBECON

and 1NBELAG. We also highlight year-to-year changes in
species composition (such as C3 : C4 plants) and the tem-
poral dynamics of vegetation and soil nutrients as potential
contributors to 1NBELAG (Sherry et al., 2008; Schimel et
al., 1997) are potentially unrepresented but critical processes,
particularly in fire-prone regions (Pellegrini et al., 2018) and
nutrient-limited tropical forest ecosystems (Wieder et al.,
2015). A potential limitation in CARDAMOM ET estimates
is the assumed inherent water-use efficiency relationship be-
tween GPP, ET and VPD (Eq. B4); recent efforts (Zhou et
al., 2015; Boese et al., 2017) advocate for improved parame-
terizations for semi-empirical GPP : ET relationships, which
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could ultimately impact the sign and magnitude of inter-
annual CARDAMOM ET variations – and the associated
plant-available H2O balance – across tropical ecosystems.
Finally, we highlight the need to investigate the sensitivity
of our results to the 2001–2015 climatological mean forcing:
while to first order the diagnosis of lagged effect anomalies
from the mean (rather than absolute values) are insensitive
to the reference forcing, further efforts are required to de-
termine whether non-linear impacts of an alternative refer-
ence forcing (e.g. a climatological mean forcing based on a
30-year climate normal) may amplify or dampen 1NBELAG

IAV estimates.
Our continental-scale results indicate that DALEC2a

model complexity is adequate to both represent NBE vari-
ability and accurately predict NBE outside the training win-
dow on a pan-tropical scale (2015), which provides a first-
order assessment of the adequacy of the DALEC2a model
structure. A notable exception is the substantial underestima-
tion of CARDAMOM 2015 NBE within the Northern Hemi-
sphere South America region (Fig. 5); given the consider-
able impact of the 2015 ENSO event within the region (Liu
et al., 2017), the biased CARDAMOM NBE prediction sug-
gests that either (a) the DALEC2a model structure cannot
adequately represent NBE responses to climatic extremes
or (b) the 2010–2013 NBE observational constrains are in-
sufficient to accurately inform the regional DALEC2a states
and process parameters. To determine the relative impact of
model error, we anticipate that additional insights could be
obtained by retrieving 1NBECON and 1NBELAG based on
alternative DALEC model structures (Fox et al., 2009; Small-
man et al., 2017). The implementation of DALEC2a assim-
ilation and prediction evaluation across long-term records
eddy covariance CO2 and H2O fluxes would amount to a use-
ful evaluation of the model structure constrained by multiple
data streams (e.g. following Richardson et al., 2010; Keenan
et al., 2013; Smallman et al., 2017), and the potential sensi-
tivities of 1NBECON and 1NBELAG to underlying model
structures. While there are currently few tropical ecosys-
tem sites where multi-year NBE constraints are available,
we highlight that the analysis of 1NBECON and 1NBELAG

at eddy covariance sites would also benefit from the rela-
tive wealth of ancillary site-level repeat measurements of
C and H2O states and fluxes, and would ultimately allow
more in-depth evaluation and hypothesis tests on lagged ef-
fect processes and their role on 1NBE dynamics. Finally,
to diagnose the potential role of higher-order process inter-
actions on lagged and concurrent effects – such as nutrient
limitations, ecosystem demography and explicit representa-
tions of carbon–water–energy interactions – we highlight that
the 1NBECON and 1NBELAG attribution methodology in-
troduced here can in principle be applied using higher com-
plexity terrestrial biosphere models (e.g. Huntzinger et al.,
2013, 2017; Macbean et al., 2018; Longo et al., 2019).

4 Conclusions

The prominent role of1NBELAG across the tropics through-
out 2001–2015 supports our second hypothesis (Sect. 2.5),
namely that concurrent and lagged effect variations are com-
parable on inter-annual timescales. By constraining a diag-
nostic ecosystem C balance model with an array of terres-
trial C cycle observations (LAI, biomass, soil C, SIF, CO-
derived fire C emissions and CO2-derived NBE), we show
that on annual timescales both 1NBECON and 1NBELAG

effects are substantial contributors to the 2001–2015 tropi-
cal C balance. The IAV of 1NBECON is largely accounted
for by NPP, with sizeable fire contributions from Aus-
tralia, South-East Asia, Indonesia and South America and
heterotrophic respiration contributions from wet tropical
ecosystems. 1NBELAG variability is overwhelmingly domi-
nated by the impact of inter-annual variations in lagged NPP
effects, followed by a modest contribution from the state de-
pendence of heterotrophic respiration. In aggregate, anoma-
lies in foliar C, plant-available H2O, and soil C were identi-
fied as the primary influences on 1NBELAG variability. Our
findings therefore highlight a critical need to explicitly ac-
count for lagged effects when investigating the process-level
tropical NBE responses to climatic variability on inter-annual
timescales. Furthermore, our findings highlight the need to
accurately and continuously resolve NBE at sub-continental
scales in order to advance our mechanistic and process-level
understanding of terrestrial C cycling and its evolving sensi-
tivity to climate.
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Appendix A: Regional definitions

Figure A1. Regional masks used in this study. The 1500 mm yr−1 precipitation thresholds were based on the ERA-Interim mean annual
precipitation rates throughout the 2001–2015 study period.
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Appendix B: Model description

The following sections provide a summary of the process
parameterizations introduced in the DALEC version imple-
mented in the Bloom et al. (2016) study. For completeness, a
full description of DALEC2a is provided in the paper’s Sup-
plement.

B1 DALEC2a water balance and GPP water stress

The DALEC2a plant-available water balance at time step
t+1 is derived as

Wt+1 = Wt + (Pt −Rt −ETt ) 1t, (B1)

where W denotes total plant-available H2O (in mm H2O
storage equivalent) and P , R and ET precipitation, runoff
and evapotranspiration fluxes (mm d−1) over the time pe-
riod 1t (d). We note that this equation represents a water
balance in the dynamic plant-available H2O pool and does
not include deep groundwater, confined aquifers or other un-
connected/static storages. Following a generalized non-linear
reservoir formulation, we parameterize monthly runoff losses
as a second-order decay function with respect to storage,Wt ,
as

Rt = αW
2
t , (B2)

where α is a second-order decay constant (mm−1 d−1). The
dependence of runoff on W 2 – instead of W – ensures that
the fractional rate of plant-available H2O loss is proportional
to W ; relative to a first-order linear kinetics model, this pro-
vides a better representation of faster relative plant-available
H2O depletion following high precipitation events, followed
by slower losses during lower precipitation time spans (e.g.
Matteucci et al., 2015) and serves a functional approxima-
tion of both storage-excess and infiltration-excess runoff gen-
eration mechanisms in most cases. Following previous re-
sults from land surface model development experiments (e.g.
Liang et al., 1994; Lawrence et al., 2011), we assume that
net runoff inputs from adjacent pixels are a negligible term
in the lumped grid-scale H2O budget at 4◦× 5◦ spatial reso-
lution. By construction, Rt values predicted at Wt >

1
a1t

are
unphysically high (Wt−Rt1t < 0), while loss rates atWt >

1
2a1t produce implausibly low residual storage (Wt −Rt1t)
values. Therefore, in the eventuality of Wt >

1
2a1t , we cal-

culate runoff as Rt =Wt −
1

2a1t , effectively representing a
storage-excess overflow mechanism by introducing a tran-
sition between a state-dependent regime to a direct runoff
regime.

We apply a linear scaling on GPP with respect to the plant-
available H2O, where

GPPt = GPPmax(t)max
(

1,
Wt

ω

)
, (B3)

where ω represents the plant-available H2O stress threshold;
Eq. (B3) effectively imposes a stress factor on GPP spanning

between 0 and 1, and offers a simplified representation of the
integrated effects of leaf–soil H2O potential differences and
their impact on canopy conductance. Evapotranspiration at
time t is derived as

ETt = GPPt
VPDt
υe

, (B4)

where υe is the inherent water-use efficiency (Beer et al.,
2009) and VPD is the vapour pressure deficit derived from
ERA-Interim monthly reanalysis datasets. Equations (B1)–
(B4) amount to a plant–water feedback parameterization,
and together represent a reduced complexity version of the
DALEC water module implemented by Spadavecchia et
al. (2011). All parameters involved in the above-mentioned
parameterization – namely α, υe, ω and W0 – are optimized
along with other DALEC2a parameters in CARDAMOM;
the prior ranges are described in Table S1.

B2 Heterotrophic respiration

We parameterize the meteorological dependence of het-
erotrophic respiration ρ at time t as follows:

ρt = e
2(Tt−T )

((
Pt

P
− 1

)
sp + 1

)
, (B5)

where T and P represent the monthly temperature and
precipitation vectors. We chose to use P as a driver for
heterotrophic respiration sensitivity to moisture, given that
(a) the majority of heterotrophic respiration is expected to
occur in the near-surface soil layer, and (b) near-surface soil
moisture strongly covaries with P – rather than water storage
– at monthly timescales. Previous versions of DALEC solely
parameterized ρt as a function of temperature (e.g. Bloom et
al., 2016 and references therein); effectively, the formulation
in Eq. (B5) induces a joint sensitivity to relative changes in
both temperature and near-surface moisture. The prior ranges
for the respiration temperature and precipitation sensitivity
parameters (2 and sp) are reported in Table S1.

Appendix C: Sensitivity of lagged effects to individual
ecosystem states

In the DALEC2a representation of the ecosystem C balance,
the state vector xa consists of the C and H2O pool values at
the start of year a. To diagnose the sensitivity of 2010–2015
lagged effects to the variability of ecosystem states, we con-
duct a sensitivity analysis to explicitly quantify the impact of
individual ecosystem state anomalies – relative to their 2010–
2015 mean values – on the variability of δxLAG throughout
2010–2015. To do this, we define the anomaly of the nth indi-
vidual state in year a as the sum of finite differences relative
to the mean state:

xa = x+
∑N

n=1
[xa(n)− x], (C1)
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where x is an N -element vector of the mean 2010–2015
states; N is the number of model state variables; xa(n) is
an N -element vector of ecosystem states, where for the ith
element xa(n) (i)= xa(i) for i= n, and xa(n) (i)= x(i) for
i 6= n. Based on Eqs. (11) and (14), we can derive the state
change under a climatological mean forcing of each term in
Eq. (C1), and therefore

δxLAG
a = δxLAG

+

∑N

n=1

[
δxLAG

a(n) − δx
LAG

]
+ I a. (C2)

I a collectively accounts for the unaccounted contribution of
higher-order interactions between individual pool anomalies
[xa(n)− x] on δxLAG

a . As outlined in Sect. 2.5, the “δx”
terms in Eq. (C2) can be mapped onto any DALEC2a flux
variable; specifically, NBELAG

a can be defined as the sum
of lagged effect NBE components attributable to δxLAG

a(n) and
δxLAG as follows:

NBELAG
a = NBELAG

+

∑N

n=1

[
NBELAG

a(n) − NBELAG
]
+ I a. (C3)

NBELAG and NBELAG
a(n) can be directly calculated from

D(x,M ′,p) and D(xa(n),Ma,p), respectively. More suc-
cinctly, we summarize Eq. (B3) as

NBELAG
a = NBELAG

+

∑N

n=1
δNBELAG

a(n) + I a, (C4)

where δNBELAG
a(n) represents the lagged effect anomaly at-

tributable solely to the initial condition anomaly in ecosys-
tem state n. By applying the “1” operator (Eq. 21) on
Eq. (C3), Eq. (C4) can alternatively be expressed as

1NBELAG
a =

∑N

n=1
1NBELAG

a(n) +1I a. (C5)

Effectively, the lagged effect partitioning formulation out-
lined in Eq. (C5) allows us to quantitatively diagnose the
NBE lagged effect dependence on the inter-annual dynam-
ics of individual C and H2O states depicted in Fig. 2.
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Data availability. ECMWF re-analysis datasets were ob-
tained from https://www.ecmwf.int/en/forecasts/datasets/
reanalysis-datasets/era-interim (Berrinsford et al., 2011). Burned
area was obtained from https://globalfiredata.org/pages/data/
(Giglio et al., 2013). MODIS LAI data were obtained from
https://e4ftl01.cr.usgs.gov/MOLT/ (Myneni et al., 2015). CMS-Flux
datasets are available at cmsflux.jpl.nasa.gov. Biomass is available
from Sassan Saatchi (sasan.s.saatchi@jpl.nasa.gov) upon reason-
able request. The HWSD soil data was obtained from https://esdac.
jrc.ec.europa.eu/content/global-soil-organic-carbon-estimates
(Hiederer and Kochy, 2012). Gridded GOSAT fluorescence
datasets used in this analysis are available from Nicholas
Parazoo (nicholas.c.parazoo@jpl.nasa.gov) upon reason-
able request. Biomass burning CO fluxes data was obtained
from https://dashrepo.ucar.edu/dataset/CO_Flux_Inversion_
Attribution.html (Bloom et al., 2019). FLUXCOM datasets
were obtained from https://www.bgc-jena.mpg.de/geodb/
(Jung 2018, Jung 2020). FLUXSAT data were obtained
from https://avdc.gsfc.nasa.gov/pub/tmp/FluxSat_GPP/
(Joiner et al., 2018). MODIS ET data are available from
http://files.ntsg.umt.edu/data/NTSG_Products/MOD16/ (Run-
ning, 2020). The NOAA ESRL dataset was obtained from
https://www.esrl.noaa.gov/gmd/ccgg/trends/ (Dlugokencky and
Tans, 2020). The CARDAMOM results presented throughout the
paper are available upon request.

Supplement. The supplement related to this article is available on-
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