

Supplement of

Evaluation of bacterial glycerol dialkyl glycerol tetraether and ²H–¹⁸O biomarker proxies along a central European topsoil transect

Johannes Hepp et al.

Correspondence to: Johannes Hepp (johannes-hepp@gmx.de)

The copyright of individual parts of the supplement might differ from the CC BY 4.0 License.

Supplementary method description

We used a random forest approach in order to predict the long term weighted means of precipitation δ^{2} H and the long term weighted means of precipitation δ^{18} O for each site. To implement the model, we used the cforest function of the party package (Hothorn et al., 2006; Strobl et al., 2007, 2008) of the software R (R Core Team, 2015). Predictor variables were latitude, squared latitude, longitude and altitude. The explained variance of the random forest for long term weighted means of precipitation δ^{18} O was 77.5 % and the explained variance of the random forest for long term weighted means of precipitation δ^{2} H was 82.3%.

- Hothorn, T., Bühlmann, P., Dudoit, S., Molinaro, A. and Van Der Laan, M. J.: Survival ensembles, Biostatistics, 7(3), 355–373, doi:10.1093/biostatistics/kxj011, 2006.
- R Core Team: R: A Language and Environment for Statistical Computing, [online] Available from: https://www.r-project.org/, 2015.
- Strobl, C., Boulesteix, A. L., Zeileis, A. and Hothorn, T.: Bias in random forest variable importance measures: Illustrations, sources and a solution, BMC Bioinformatics, 8, doi:10.1186/1471-2105-8-25, 2007.
- Strobl, C., Boulesteix, A. L., Kneib, T., Augustin, T. and Zeileis, A.: Conditional variable importance for random forests, BMC Bioinformatics, 9, 1–11, doi:10.1186/1471-2105-9-307, 2008.

Supplementary figures

Fig. S1. Comparison between $\delta^{18}O_{GIPR,OIPC}$ values vs. P_{MA} for the three different vegetation types along the transect. All data points are marked with the location names. Abbreviations: con = coniferous forest sites (n=9); dec = deciduous forest sites (n=11); grass = grassland sites (n=4).

Fig. S2. Comparison between $\delta^{18}O_{GIPR,OIPC}$ values vs. location altitudes for the three different vegetation types along the transect. The red line represents the regression line throughout all German sites. All data points are marked with the location names. Swedish and Danish sites are boarded with a black circle. Abbreviations: con = coniferous forest sites (n=9); dec = deciduous forest sites (n=11); grass = grassland sites (n=4).

Fig. S3. Comparison between $\delta^{18}O_{GIPR,OIPC}$ values vs. T_{MA} for the three different vegetation types along the transect. The red line represents the regression line throughout all sites. Abbreviations: con = coniferous forest sites (n=9); dec = deciduous forest sites (n=11); grass = grassland sites (n=4).

Fig. S4. $\delta^2 H_{GIPR,OIPC}$ vs. $\delta^{18}O_{GIPR,OIPC}$ diagram along the transect. The black line represents the global meteoric water line (GMWL; $\delta^2 H = 8 \times \delta^{18}O + 10$; Dansgaard, 1964).

Based on the values quoted in the Tabs. S1 and S2, δ^{18} O is plotted as functions of the reported environmental parameters (climate station P_{MA}, location altitude and T_{MA}; Figs. S1 to S3). It is worth to note that the five points representing Danish and Swedish sites (L12 to L16) form a separate group in Figs. S2 and S3, with clear more negative δ^{18} O values. All other (continental) sites show a regular altitude effect (decreasing δ^{18} O values with increasing altitude; red trend in Fig. S3). All Danish and Swedish isotope signatures of precipitation are shifted from the trend line by ca 2 to 2.5% towards more negative δ^{18} O values. One would rather expect more enriched values due to relative proximity to the sea. It should be noted that those values were derived from OIPC, while the δ^{18} O data for the German sites is derived from GNIP/ANIP data (see section 2.2 for more details). The precipitation δ^{18} O shows the expected relationship with T_{MA} (Fig. S4). The slope of this relationship (ca. 0.54‰/°C) is in the range of the slope of δ -T spatial relationship observed at mid latitudes of the northern hemisphere (e.g. Rozanski et al., 1993). It is apparent from the above Fig. S5 that the data points plot along the GMWL. Only more positive δ^{18} O values cluster below the line, indicating most probably some evaporation enrichment effects (partial evaporation of raindrops and/or evaporation effects in the rain gauges).

Fig. S5. Structures of brGDGTs and Crenarchaeol mentioned.

Literature

- Dansgaard, W.: Stable isotopes in precipitation, Tellus, 16(4), 436–468, doi:10.1111/j.2153-3490.1964.tb00181.x, 1964.
- Rozanski, K., Araguás-Araguás, L. and Gonfiantini, R.: Isotopic patterns in modern global precipitation, Climate change in continental isotopic records, 1–36, 1993.

cgeration C	haracterization		rouginade	Altitude	Precipitation o m	Precipitation 6 0	
		(decimal °)	(decimal °)	(m)	(‰)	(%o)	
ds l	pruce forest, steep hillside	47.4	10.3	886	-78.9	-10.9	GIPR ^{A,B,C,D}
ğ	eech forest, close to fir stand	47.4	10.3	899	-78.9	-10.9	GIPR ^{A,B,C,D}
ij	r forest	47.8	11.0	889	-73.8	-10.3	GIPR ^{A,B,C,D}
β	eeches, oaks, limes, sparse pines	49.1	8.2	131	-56.6	-7.9	GIPR ^{A,B,C,D}
5 8	ade, next to farmland and fruit trees (apple, plum)	49.1	8.2	121	-56.6	-7.9	GIPR ^{A,B,C,D}
ìq	eech forest, sparse firs and oaks	49.2	9.5	247	-58.3	-8.1	GIPR ^{A,B,C,D}
6	assland in the valley, next to beech forest	49.2	9.5	214	-58.0	-8.1	GIPR ^{A,B,C,D}
ŏ	ak forest, sparse beeches, elms and pines	49.6	8.6	96	-55.7	-7.8	GIPR ^{A,B,C,D}
þ	eech forest, steep hillside	50.6	10.4	421	-64.5	-9.2	GIPR ^{A,B,C,D}
L sp	barse pine forest with grass layer	50.6	10.4	450	-64.5	-9.2	GIPR A,B,C,D
5 st	barse larch forest with grass layer	50.6	10.4	487	-64.5	-9.2	GIPR ^{A,B,C,D}
þ	eeches, acers, elms, oaks	50.8	7.2	78	-52.8	-7.4	GIPR ^{A,B,C,D}
s he	eath	50.8	7.2	107	-54.4	-7.7	GIPR ^{A,B,C,D}
n	ixuriant spruce forest	51.2	8.5	753	-62.0	-9.2	GIPR ^{A,B,C,D}
λ	oung beech forest at hillside, close to spruce stand	51.2	8.5	720	-62.0	-9.2	GIPR ^{A,B,C,D}
ů,	eath, small shrubs, close to spruce stand, initially cleared	51.2	8.5	829	-62.0	-9.2	GIPR A,B,C,D
ĺq	irch forest with small oaks, sparse poplars, surrounded by farmland	52.5	9.7	48	-56.1	-7.8	GIPR ^{A,B,C,D}
žu S	ext to farm track	52.5	9.7	52	-56.2	-7.8	GIPR ^{A,B,C,D}
þ	eech-oak-forest	53.0	8.7	31	-52.3	-7.5	GIPR ^{A,B,C,D}
st	pruce forest with larches	54.4	9.6	30	-56.0	-7.9	GIPR ^{A,B,C,D}
s	ow pasture, sparse oaks	54.4	9.6	23	-56.0	-7.9	GIPR ^{A,B,C,D}
ac	cer forest with poplars, ashes and elder	55.4	10.5	16	-61.0	-8.7	OIPC ^{E,F,G}
ų	r forest with swampy underground	56.0	12.1	20	-67.0	-9.5	OIPC ^{E,F,G}
þí	eech forest with sparse acers, birches, loamy underground	56.0	12.1	30	-67.0	-9.5	OIPC ^{E,F,G}
ds	oruce-pine-forest with moss layer	57.6	14.2	208	-71.0	-10.1	OIPC ^{E,F,G}
ds	pruce forest, sparse birches, used as cattle run	58.9	14.9	110	-76.0	-10.7	OIPC ^{E,F,G}
l ac	cers, oaks, beeches, sparse firs, on partly pebbly, partly humus-rich floor	58.9	14.9	104	-76.0	-10.7	OIPC ^{E,F,G}
bi	irch- and oak-belt at spruce forest edge, grass layer, also used as cattle run	58.9	14.9	104	-76.0	-10.7	OIPC ^{E,F,G}
20	ak forest, sparse birches and larches	58.5	15.0	06	-73.0	-10.4	OIPC ^{E,F,G}

located at Erlangen city center, in: In Supplement to: Van Geldern, R et Al. (2014): Pleistocene Paleo-Groundwater as a Pristine Fresh Water Resource in Southern Germany – Evidence from Stable and Radiogenic Isotope van Geldern, R., Baier, A., Subert, H.L, Kowol, S., Balk, L., Barth, J.A.C., 2014. (Table S1) Stable isotope composition of precipitation sampled at Erlangen, Germany between 2010 and 2013 for station GeoZentrum Science of the Total Environment, 496, 107-115, Https://Doi.Org/10.1016/J. PANGAEA.

^D Umweltbundesamt GmbH, 2018. Erhebung der Wassergüte in Österreich gemäß Hydrographiegesetz i.d.F. des BGBI. Nr. 252/90 (gütitig bis Dezember 2006) bzw. Gewässerzustandsüberwachung in Österreich gemäß

Wasserrechtsgesetz, BGBI. I Nr. 123/06, i.d.g.F.; BMLFUW, Sektion IV / Abteilung 3 N, Öffentliche Qualitätsdaten-Abfrage.

^E Bowen, G.J., 2018. The Online Isotopes in Precipitation Calculator, version 3.1, http://www.waterisotopes.org.

⁶ IAEA/WMO, 2015. Global Network of Isotopes in Precipitation. The GNIP Database, https://nucleus.iaea.org/wiser. ^G Bowen, G.J., Revenaugh, J., 2003. Interpolating the isotopic composition of modern meteoric precipitation. Water Resources Research 39, 1–13.

Supplementary data

Location	Vegetatio	in Station IL	D Name	Latitude	Longitude	Altitude Ot	perservation begin	Oberservation end	T _{MA}	T _{MV}	Oberservation begin	Oberservation end	T _{MDV} Station IC	Name	Latitude
				(decimal °)	(decimal °)	(m)	(даммүүүү)	(даммүүүү)	(°C)	(°C)	(даммүүүү)	(даммүүүү)	(°C)		decimal °)
L01	con	3730	Oberstdorf	47.40	10.28	806	19480101	20171231	6.5 ^A	11.5 ^A	n.n.	n.n.	14.2 ^A n.n.	n.n.	n.n.
L01	dec	3730	Oberstdorf	47.40	10.28	806	19480101	20171231	6.5 ^A	11.5 ^A	n.n.	n.n.	14.2 ^A n.n.	n.n.	n.n.
L02	con	2290	Hohenpeißenberg	47.80	11.01	977	19470101	20171231	7.0 ^A	11.4 ^A	n.n.	n.n.	12.7 ^A n.n.	n.n.	n.n.
L03	dec	2522	Karlsruhe	49.04	8.36	112	19480101	20081102	10.5 ^A	15.3 ^A	n.n.	n.n.	17.8 ^A n.n.	n.n.	n.n.
L03	grass	2522	Karlsruhe	49.04	8.36	112	19480101	20081102	10.5 ^A	15.3 ^A	n.n.	n.n.	17.8 ^A n.n.	n.n.	n.n.
L04	dec	3761	Öhringen	49.21	9.52	276	19550101	20171231	9.6 Å	14.4 ^A	n.n.	n.n.	16.8 ^A n.n.	n.n.	n.n.
L04	grass	3761	Öhringen	49.21	9.52	276	19550101	20171231	9.6 ^	14.4 ^A	n.n.	n.n.	16.8 ^A n.n.	n.n.	n.n.
L05	dec	5906	Mannheim	49.51	8.56	98	19480101	20171231	10.6 ^A	15.4 ^A	n.n.	n.n.	17.9 ^A n.n.	n.n.	n.n.
106	dec	3231	Meiningen	50.56	10.38	450	19790101	20171231	7.8 ^A	12.7 ^A	n.n.	n.n.	14.7 ^A n.n.	n.n.	n.n.
L06-1	con1	3231	Meiningen	50.56	10.38	450	19790101	20171231	7.8 ^A	12.7 ^A	n.n.	n.n.	14.7 ^A n.n.	п.п.	n.n.
L06-2	con2	3231	Meiningen	50.56	10.38	450	19790101	20171231	7.8 ^A	12.7 ^A	n.n.	n.n.	14.7 ^A n.n.	n.n.	n.n.
L07	dec	2667	Köln-Bonn	50.86	7.16	92	19600101	20171231	10.1 ^A	14.4 ^	n.n.	n.n.	16.7 ^A n.n.	n.n.	n.n.
L07	grass	2667	Köln-Bonn	50.86	7.16	92	19600101	20171231	10.1 ^A	14.4 ^A	n.n.	n.n.	16.7 ^A n.n.	n.n.	n.n.
108	con	2483	Kahler Asten	51.18	8.49	839	19510101	20171231	5.3 ^A	9.6 ^	n.n.	n.n.	10.9 ^A n.n.	n.n.	n.n.
L08	dec	2483	Kahler Asten	51.18	8.49	839	19510101	20171231	5.3 ^A	9.6 ^	n.n.	n.n.	10.9 ^A n.n.	n.n.	n.n.
L08	grass	2483	Kahler Asten	51.18	8.49	839	19510101	20171231	5.3 ^A	9.6 Å	n.n.	n.n.	10.9 ^A n.n.	n.n.	n.n.
601	dec	2014	Hannover	52.46	9.68	55	19490101	20171231	9.2 ^A	13.7 ^A	n.n.	n.n.	15.9 ^A n.n.	n.n.	n.n.
601	grass	2014	Hannover	52.46	9.68	55	19490101	20171231	9.2 Å	13.7 ^A	n.n.	n.n.	15.9 ^A n.n.	n.n.	n.n.
L10	dec	691	Bremen	53.05	8.80	4	19490101	20171231	9.2 ^A	13.6 ^A	n.n.	n.n.	15.7 ^A n.n.	n.n.	n.n.
L11	con	4466	Schleswig	54.53	9.55	43	19510101	20171231	8.4 ^A	12.6 ^A	n.n.	n.n.	14.4 ^A n.n.	n.n.	n.n.
111	grass	4466	Schleswig	54.53	9.55	43	19510101	20171231	8.4 ^A	12.6 ^A	n.n.	n.n.	14.4 ^A n.n.	n.n.	n.n.
L12	dec	06120	Odense Lufthavn	55.48	10.33	15	19610101	20001231	8.3 ^{C,D}	12.5 ^{C,D}	n.n.	n.n.	n.a. n.n.	n.n.	n.n.
L13	con	30110	Spodsbjerg	55.98	11.85	34	19610101	19901231	8.0 ^c	12.5 ^c	n.n.	n.n.	n.a. n.n.	n.n.	n.n.
L13	dec	30110	Spodsbjerg	55.98	11.85	34	19610101	19901231	8.0 ^c	12.5 ^c	n.n.	n.n.	n.a. n.n.	n.n.	n.n.
L14	con	74180	Hagshult Mo	57.29	14.13	169	19430101	20180601	5.8 ^F	10.8 ^F	19490101	20180601	14.5 ^F n.n.	n.n.	n.n.
L15	con	84580	Snavlunda	58.97	14.90	144/140	19440101	19830901	5.4 ^F	10.8 ^F	19941014	19830831	13.9 ^F 85460	Kettstaka A	58.72
L15-1	dec1	84580	Snavlunda	58.97	14.90	144/140	19440101	19830901	5.4 ^F	10.8 ^F	19941014	19830831	13.9 ^F 85460	Kettstaka A	58.72
L15-2	dec2	84580	Snavlunda	58.97	14.90	144/140	19440101	19830901	5.4 ^F	10.8 ^F	19941014	19830831	13.9 ^F 85460	Kettstaka A	58.72
L16	dec	85330	Motala Kraftverk	58.55	15.08	94	19340101	19901228	6.4 ^F	11.6 ^F	19610101	19851024	14.9 ^F 84310	Karlsborg Mo	58.51
n.n. = not	t needed/se	se informatic	on further left												
n.a. = not	t available														
^A DWD Cli	mate Data	Center, 2018	8a. Historical hourly st	ation observ	vations of 2m	air temperat	ture and humidity fo	r Germany. version v	006.						

~

⁸ DWD Climate Data Center, 2018b. Historical annual precipitation observations for Germany, version v007.

^C Laursen, E.V., Thomsen, R.S., Cappelen, J., 1999. Observed Air Temperature, Humidity, Pressure, Cloud Cover and Weather in Denmark - with Climatological Standard Normals, 1961-90. ^D Cappelen, J., 2002. Danish Climatological Normals 1971-2000 - for selected stations. ^F Frich, P., Rosenørn, S., Madsen, H., Jensen, J.J., 1997. Observed Precipitation in Denmark, 1961-90. ^F Swedish Meteorological and Hydrological Institute, 2018. SMHI Open Data Meteorological Observations, https://opendata-download-metobs.smhi.se/explore/.

Course	2041 CE	DWD	DWD	DWD	DWD	DWD	DWD	DWD	DWD	DWD	DWD	DWD	DWD	DWD	DWD	DWD	DWD	DWD	DWD	DWD	DWD	DWD	DMI	DMI	DMI	SMHI	SMHI	SMHI	SMHI	SMHI
•	mm)	1769 ^в	1769 ^в	1173 ^B	758 ^B	758 ^B	816 ^B	816 ^B	658 ^B	660 ^B	660 ^B	660 ^B	809 ⁸	809 ⁸	1417 ^B	1417 ^B	1417 ^B	650 ^B	650 ^B	₈ 669	900 ⁸	900 ⁸	572 ^E	554 ^E	554 ^E	717 ^F	693 ^F	693 F	693 ^F	557 ^F
Oherconstion and	(YYYYMMDD)	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	20180601	20150101	20150101	20150101	20180501
Oberconstion barin	(YYYYMMDD)	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	19430101	19440101	19440101	19440101	19310101
Altitude	(m)	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	135/144/140	135/144/140	135/144/140	95/95/94
Longitudo	(decimal °)	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	14.91/14.90/14.90	14.91/14.90/14.90	14.91/14.90/14.90	15.02/15.01/15.08
Intitude	(decimal °)	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	58.95/58.97/58.97	58.95/58.97/58.97	58.95/58.97/58.97	58.56/58.55/58.55
omen		n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	Snavlunda D	Snavlunda D	Snavlunda D	Motala
10	VDM (%)	70 ^A	70 ^A	73 ^A	63 ^A	63 ^A	65 ^A	65 ^A	61^{A}	67 ^A	67 ^A	67 ^A	65 ^A	65 ^A	78 ^A	78 ^A	78 ^A	68 ^A	68 ^A	₄ 69	72 ^A	72 ^A	63 ^c	74 ^c	74 ^c	68 ^F	68 ^F	68 ^F	68 ^F	71 ^F
10	۸۳ (%)	80 ^A	80 ^A	77 ^A	73 ^A	73 ^A	74 ^A	74 ^A	71 ^A	75 ^A	75 ^A	75 ^A	74 ^A	74 ^A	84 ^A	84 ^A	84 ^A	76 ^A	76 A	A 77	80 ^A	80 ^A	76 ^c	80 ^c	80 ^c	79 ^F	75 ^F	75 ^F	75 ^F	78 ^F
П	(%)	82 ^A	82 ^A	78 ^A	77 ^A	77 ^A	77 ^A	77 ^A	75 ^A	79 ^A	79 ^A	79 ^A	77 ^A	77 ^A	87 ^A	87 ^A	87 ^A	80 ^A	80 ^A	80 ^A	83 ^A	83 ^A	81°	84 ^c	84 ^c	86 ^F	82 ^F	82 ^F	82 ^F	83 ^F
Ohoreorustion and	(AYYYMMDD)	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	19971231	19921231	19921231	20180601	20180601	20180601	20180601	20180601
Oberconstion herein	(YYYYMMDD)	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	19800101	19690101	19690101	20130101	19950801	19950801	19950801	20130101
Itituda	(m)	u.u	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	225	225	225	95
I oncitudo	(decimal °)	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	n.n.	15.03	15.03	15.03	14.51

Tab. S2. continuation...

Location	Vegetation	n pH (H ₂ O)	Crenarcheol ^A	IIIa ^A	IIIb ^A	IIIc A	lla ^A	IIb ^A	llc ^A	la ^A	Ib ^A	lc ^A
			(ng/g dry weight)	(ng/g dry weight)	(ng/g dry weight)	(ng/g dry weight)	(ng/g dry weight)	(ng/g dry weight)	(ng/g dry weight)	(ng/g dry weight)	(ng/g dry weight)	(ng/g dry weight)
L01	con	4.5	2	194	ε	0	845	34	1	531	38	7
L01	dec	4.0	1	109	1	0	536	7	3	687	37	10
L02	con	6.5	38	128	6	1	329	81	4	160	86	79
L03	dec	4.3	16	55	0	0	617	17	5	1289	30	6
L03	grass	5.2	12	28	0	0	142	8	1	124	12	2
L04	dec	5.9	13	60	4	1	185	37	3	137	33	9
L04	grass	6.0	208	54	7	3	131	105	80	79	92	27
L05	dec	4.1	15	25	0	0	204	2	1	380	5	1
106	dec	7.3	16	226	26	1	304	184	9	78	66	5
L06-1	con1	4.5	2	116	0	0	585	18	2	549	21	1
L06-2	con2	6.0	19	332	24	2	695	197	7	295	97	12
L07	dec	3.6	149	67	1	1	506	10	4	677	16	5
L07	grass	4.2	18	19	0	0	141	1	1	183	2	1
L08	con	3.3	29	213	0	0	2265	26	19	3287	32	13
L08	dec	3.6	11	84	0	0	821	12	5	1450	21	8
108	grass	4.3	0	232	0	0	966	11	2	884	21	9
601	dec	3.6	64	101	1	0	943	13	5	1513	19	80
F09	grass	4.3	16	26	1	0	169	1	1	275	5	1
L10	dec	3.0	1084	157	33	4	463	68	17	816	23	8
L11	con	3.5	512	76	0	1	353	9	0	406	00	2
L11	grass	5.9	19	89	0	0	579	26	2	714	44	5
L12	dec	4.9	735	450	16	2	2219	418	36	1642	476	142
L13	con	3.2	0	56	0	ю	619	0	9	993	13	20
L13	dec	3.7	0	150	0	0	1422	28	16	3165	46	19
L14	con	3.6	0	103	2	0	1180	5	6	2077	17	4
L15	con	3.6	0	207	3	1	2866	48	26	5695	98	35
L15-1	dec1	5.0	7	192	2	0	933	41	4	658	58	22
L15-2	dec2	4.1	5	210	1	0	1896	24	14	2541	41	13
L16	dec	4.3	0	54	0	0	349	5	1	424	6	2
A structur	es can be for	und in Fig. S!	5									
^B BIT inde	ex was calcula	ated accordi.	ing to Hopmans, E.C.	., Weijers, J.W.H., Sc	chefuß, E., Herfort, L	., Sinninghe Damst	é, J.S., Schouten, S.,	2004. A novel proxy	for terrestrial organ	nic matter in sedime	ints based on branche	pa
and isopr	enoid tetraet	ther lipids. E	arth and Planetary	Science Letters 224,	, 107–116.							
							:					

Tab. S3. GDGT data. Crenarcheol and brGDGTs in $\mu g/g$ dry weight.

⁶ MBT', CBT, reconstructed T_{MA} and pHCBT according to Peterse, F., van der Meer, J., Schouten, S., Weijers, J.M.H., Fierer, N., Jackson, R.B., Kim, J.H., Sinninghe Damsté, J.S., 2012. Revised calibration of the MBT-CBT paleotemperature proxy based on branched tetraether membrane lipids in surface soils. Geochimica et Cosmochimica Acta 96, 215–229.

brGDGT concentration	BIT	MBT	CBT	reconstructed T _{MA}	рН _{свт}
(µg/g dry weight)				(°C)	
1.65	1.00	0.35	1.3	4.3	5.37
1.39	1.00	0.53	1.4	9.0	5.05
0.88	0.94	0.37	0.5	9.8	6.98
2.02	0.99	0.66	1.6	12.1	4.74
0.32	0.96	0.43	1.1	7.9	5.69
0.47	0.97	0.38	0.7	8.9	6.59
0.51	0.56	0.40	0.0	13.0	7.84
0.62	0.98	0.63	2.0	9.0	4.01
0.90	0.97	0.17	0.2	5.1	7.54
1.29	1.00	0.44	1.5	6.3	5.04
1.66	0.99	0.25	0.5	5.5	6.86
1.29	0.89	0.54	1.7	8.2	4.63
0.35	0.95	0.53	2.0	5.9	3.90
5.86	1.00	0.57	2.0	7.2	4.00
2.40	1.00	0.62	1.8	9.4	4.26
2.15	1.00	0.42	1.8	3.8	4.39
2.60	0.98	0.59	1.9	8.5	4.19
0.48	0.97	0.59	1.9	8.5	4.23
1.59	0.57	0.55	1.2	11.2	5.63
0.85	0.62	0.49	1.7	6.2	4.50
1.46	0.99	0.52	1.3	9.8	5.40
5.40	0.85	0.42	0.6	10.2	6.65
1.71	1.00	0.60	2.1	7.6	3.78
4.85	1.00	0.67	1.8	11.3	4.37
3.40	1.00	0.62	2.2	7.7	3.64
8.98	1.00	0.65	1.8	10.9	4.42
1.91	1.00	0.39	1.2	6.0	5.52
4.74	1.00	0.55	1.8	7.4	4.29
0.84	1.00	0.52	1.7	6.9	4.46

Tab. S3. continuation...

Location	Vegetation	<i>n</i> -alkane δ ² H	sugar δ ¹⁸ Ο ε _"	1 -alkane/orecipitation	Esugar/orecipitation	reconstructed 5 ² H _{source-water}	reconstructed 5 ¹⁸ Osource-water	reconstructed RH _{MDV}
		(%)	(%)	(%o)	(%)	(%)	(%0)	(%0)
L01	con	-216.2	34.17	-149	45.5	-139	-18.7	34
L01	dec	-190.6	35.95	-121	47.3	-100	-13.8	42
L02	con	-169.4	32.95	-103	43.7	-49	-7.3	99
L03	dec	-176.8	34.54	-127	42.8	-67	-9.6	56
L03	grass	n.a.	29.96	n.a.	38.1	n.a.	n.a.	n.a.
L04	dec	n.a.	35.30	n.a.	43.7	n.a.	n.a.	n.a.
L04	grass	-208.6	30.80	-160	39.2	-110	-14.9	52
L05	dec	-169.6	32.95	-121	41.1	-47	-7.1	99
106 L06	dec	n.a.	34.30	n.a.	43.9	n.a.	n.a.	n.a.
L06-1	con1	-201.5	34.27	-146	43.9	-113	-15.3	42
L06-2	con2	-191.0	34.39	-135	44.0	-94	-13.0	48
L07	dec	-170.4	36.07	-124	43.8	-62	-9.0	54
L07	grass	n.a.	31.28	n.a.	39.2	n.a.	n.a.	n.a.
L08	con	-168.3	38.42	-113	48.1	-72	-10.2	45
L08	dec	-156.3	36.19	-101	45.8	-40	-6.2	61
L08	grass	-184.2	31.51	-130	41.1	-71	-10.1	63
F09	dec	-177.8	31.66	-129	39.8	-57	-8.4	99
F09	grass	-191.6	28.30	-144	36.4	-69	-9.8	71
L10	dec	-171.6	39.45	-126	47.3	-79	-11.1	40
L11	con	-183.6	33.56	-135	41.8	-17-	-10.8	55
L11	grass	-194.1	27.67	-146	35.8	-71	-10.1	72
L12	dec	-177.4	37.30	-124	46.4	-83	-11.6	44
L13	con	-182.9	36.62	-124	46.6	06-	-12.5	44
L13	dec	-183.8	28.79	-125	38.7	-57	-8.4	74
L14	con	-190.3	36.85	-128	47.4	-103	-14.1	39
L15	con	-201.1	32.13	-135	43.3	-103	-14.1	51
L15-1	dec1	-201.6	33.41	-136	44.6	-110	-15.0	45
L15-2	dec2	-209.7	33.05	-145	44.2	-123	-16.6	42
L16	dec	-191.6	28.41	-128	39.2	-69	-9.9	71
n.a. = not available								

Tab. S4. Measured *n*-alkane δ^2 H and sugar δ^{18} O data along with calculations and reconstruction results.