

Supplement of

Anoxic conditions maintained high phosphorus sorption in humid tropical forest soils

Yang Lin et al.

Correspondence to: Yang Lin (yanglin@berkeley.edu)

The copyright of individual parts of the supplement might differ from the CC BY 4.0 License.

 Site	Position	Treatment	Е	P concentration in solution (mg P L ⁻¹)			
				500 mg P kg ⁻¹	1000 mg P kg ⁻¹	5000 mg P kg ⁻¹	10,000 mg P kg ⁻¹
 El	Slope	Anoxic	0.945	5.5±1.1a	26.4±1.2a	249.5±4.2a	571.3±8a
Verde		Oxic	0.967	11.2±0.9b	34.9±1.8b	278.8±4.6b	649.2±7.1b
	Valley	Anoxic	0.966	6.5±1.1b	17.7±1.2b	175.3±9.4a	497.4±22.5a
		Oxic	0.919	0.08±0.04a	7.8±1.4a	209.7±2.7b	541.1±13.2a
Rio	Slope	Anoxic	0.901	2.2±0.3a	13.4±1.6a	264.7±5.3a	610.5±4.3a
Icacos		Oxic	0.781	3.9±0.1b	23.1±0.3b	344.6±11.3b	723.7±7.8b
	Valley	Anoxic	0.866	1.2±0.1a	6.1±0.8a	215.9±4.8a	494.8±35a
		Oxic	0.838	0.8±0.1a	9.2±0.9b	244.4±11.7a	645.9±41.5b

2	Table S1. Model efficiency (E) and P concentration in solution (mg P L ⁻¹) of the P sorption
3	isotherms.

4 Different letters indicate significant differences between two redox treatments at $\alpha = 0.05$.

5 Table S2. Phosphorus sorption index (PSI, $L kg^{-1}$ soil) calculated at four levels of P addition

6 levels (n = 4).

Site	Position	Treatment	Е	PSI, L kg ⁻¹ soil			
				500 mg P kg ⁻¹	1000 mg P kg ⁻¹	5000 mg P kg ⁻¹	10,000 mg P kg ⁻¹
El	Slope	Anoxic	0.945	616±70a	505±14a	1018±19a	1513±31a
Verde		Oxic	0.967	363±18b	405±14b	877±29b	1236±27b
	Valley	Anoxic	0.966	637±86a	740±28b	1622±62a	2079±109a
		Oxic	0.919	-385±152b	1229±147a	1408±16b	1893±62a
Rio	Slope	Anoxic	0.901	1552±267a	785±59a	972±25a	1398±17a
Icacos		Oxic	0.781	783±21b	565±5b	614±48b	967±29b
	Valley	Anoxic	0.866	12143±4275a	1257±150a	1218±26a	1883±157a
		Oxic	0.838	-1635±2527b	954±53a	1073±59a	1266±157b

7 Different letters indicate significant differences between two redox treatments at $\alpha = 0.05$.

- 8 Table S2. Saturation index of vivianite calculated by Visual MINTEQ using soluble Fe(II),
- 9 inorganic P, and solution pH as input. Results from slope soils from El Verde under anoxic
- 10 conditions are shown. Bold values indicate oversaturation.

P loading rate	500	1000	5000	10,000
(mg P kg ⁻¹ soil)				
Average HCl-Fe(II) (mg g ⁻¹ soil)	3.4	3.4	3.4	3.4
Estimated water-soluble Fe(II) (mg L ⁻¹) ^a	34	34	34	34
Average P in solution (mg P L ⁻¹)	5.5	26.4	249.5	571.3
Soil pH ^b	5.9	5.9	5.9	5.9
Saturation index ^c	3.5	4.8	5.9	5.9

^a Peretyazhko and Sposito (2005) found that ~10% of the HCl-Fe(II) was soluble in H_2O in a

12 similar soil after anaerobic incubation, which is consistent with Fe(II) sorption reported by

13 Wilmoth et al. (2018); the soil:water ratio was 1:10 (mass:volume).

^b estimated based on similar soils (Lin et al. unpublished)

Figure S1. Preliminary results showing the effects of anoxic vs. oxic pre-incubation on the P sorption
isotherms of slope (left panel) and valley (right panel) soils from Rio Icacos. Levels of P addition

19 included 10, 100, 500, and 1000 mg P kg⁻¹. Means and standard errors of means are shown. Smax,

20 maximum P sorption capacity of the Langmuir equation.

Figure S2. Correlations between phosphorus sorption index (PSI) and soil HCl-extractable
Fe(III) (HCl-Fe(III)) and ammonium oxalate-extractable Al (AO-Al) concentrations at El Verde
and Rio Icacos. Dash lines indicate significant correlations.

26

27 Figure S3. Percent changes of soil NaHCO₃-extractable total P (NaHCO₃-P_t) concentration,

28 NaOH-extractable total P (NaOH-P_t) concentration, and phosphorus sorption index (PSI) in

29 response to anoxic conditions. Error bars indicate 95% confidence interval. EV-2 refers to the 2nd

30 sampling of El Verde soils for measuring the solubility of sorbed P.