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Figure S1: Masks and Classification schemes used in the analyses. a. Mask for deserts and
oceans, b. Mask for natural vegetated area based on GLC2000, c. Fraction of non–gapfilled NDVI
values per grid cell based on GIMMS NDVI, d. Fraction of valid values per grid cell after filtering for
NDVI > 0.2, e. Simplified Köppen–Geiger Classification, A: equatorial, B: arid, C: warm temperate,
D: snow, f. Classification of land cover classes after Global Land Cover 2000 (GLC2000). Numbers
from 1–23 represent: 1 – Tree Cover broadleaved evergreen, 2 – Tree Cover broadleaved deciduous
closed, 3 – Tree Cover broadleaved deciduous open, 4 – Tree Cover needle leaved evergreen, 5 – Tree
Cover needle leaved deciduous, 6 – Tree Cover mixed leaf type, 7 – Tree Cover regularly flooded
fresh water, 8 – Tree Cover regularly flooded saline water, 9 – Mosaic: Tree Cover and other natural
vegetation, 10 – Tree Cover burnt, 11 – Shrub Cover closed open evergreen, 12 – Shrub Cover closed
open deciduous, 13 – Herbaceous Cover closed open, 14 – Sparse herbaceous or sparse shrub cover, 15
– Regularly flooded shrub and or herbaceous cover, 16 – Cultivated and managed areas, 17 – Mosaic:
Cropland Tree Cover Other natural vegetation, 18 – Mosaic: Cropland Shrub and or grass cover, 19 –
Bare Areas, 20 – Water Bodies, 21 – Snow and Ice, 22 – Artificial surfaces and associated areas, 23 –
no data.
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Figure S2: Representative power spectra of Fourier decomposed NDVI (a), air temper-
ature (b) and precipitation (c) time series. Mean and 10th–90th percentile of power spectra
are plotted as black line (mean) and band (percentiles), overlaid by 10000 sample spectra. Shortest
signal periods (fastest frequencies) are plotted on the left side of the x–axis, longest periods on the
right side of the x–axis. The annual period is located at 100.
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Figure S3: Lag of maximum absolute correlation between NDVI and air temperature (T, left
panel) and NDVI and precipitation (P, right panel) at each grid cell. The time step used is 15 days,
which is equivalent to a 0.5–month lag in the color key.
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Figure S4: Dominant Oscillation of NDVI, air temperature (Tair) and precipitation
(Prec) per grid cell. Dominant scale of variability was determined from normalized, detrended
and decomposed time series as the time scale containing highest relative variance (cf. Fig. 1).
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Figure S5: Assessment of NDVI GIMMS quality flags; direct observations and effect of
retrieval values. a. Median of fraction of direct observations at 0.5◦ per grid cell calculated overall
time period (1982–2015). Fraction of direct observations ranges from 0 to 1, and corresponds to the
number of pixels with direct observation after data aggregation (from 0.083◦ to 0.5◦). Quality flag
1 is obtained when all aggregated pixels are direct observations, 0 if none are direct observations,
b. Pixels that change NDVI dominant oscillation class when 0.3, 0.5, 0.7, 0.9, and 0.95 quality
threshold is applied (quality is defined as the fraction of pixels originating from direct observations
after aggregation), c. Percentage of pixels with change per dominant oscillation class. S: Short–term,
A: Seasonal, L: Longer–term, T: Trend, in order from / to. Categories with change <0.05% are
omitted. d. Median fraction originating from direct observation per pixel shown as box plot per
oscillation regime. Lowest percentage of direct observation is found in seasonal NDVI regimes.
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Figure S6: Comparison of dominant oscillation classification between vegetation indices.
Dominant scale of variability for GIMMS NDVI from 1982 to 2015 (top), MODIS NDVI from 2001
to 2015 (center), and EVI MODIS from 2001 to 2015 (bottom). Dominant scale of variability was
determined per pixel from normalized, detrended and Fourier–decomposed time series as the time
scale containing highest relative variance.
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Figure S7: Assessment of the effect of land cover change over time on decomposition
results of NDVI time series Four pixels with >25% change in vegetation type according to Song
et al. (2018) are displayed (columns), representing from left to right: (i) short vegetation gain,
(ii) bare ground loss, (iii) bare ground gain, and (iv) tree loss. Rows from top to bottom: integrated
NDVI signal (black), short–term oscillation (blue), seasonal oscillation (red), longer–term oscillation
(green), and trend (yellow). Time series were normalized and detrended before Fourier decomposition.
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Figure S8: Bicolor map of undecomposed time series (top) and detrended, deseasonalized
anomalies (bottom). Pearson correlation of NDVI with precipitation (Prec, legend x axis) and air
temperature (Tair, legend y axis) is shown at each grid cell. NDVI was lagged one time step (15
days) behind precipitation to allow response time, Tair was correlated instantaneously. Color scale
represents both correlations, binned into quantiles (e. g. purple – high positive correlation of NDVI
with both Tair and Prec, green – high negative correlation of NDVI with both Tair and Prec). Data
points where NDVI < 0.2 were excluded to avoid influence of inactive vegetation or non–vegetated
time points.
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Figure S9: Bicolor map of Spearman correlations between NDVI, air temperature (Tair)
and precipitation (Prec). Correlation of NDVI with Tair (legend y axis) and NDVI with Prec
(legend x axis) were calculated between decomposed signals at each grid cell for each time scale (rows).
NDVI was lagged one time step (15 days) behind precipitation to allow response time, Tair was
correlated instantaneously. Color scale represents both correlations, binned into quantiles (e. g. purple
– high positive correlation of NDVI with both Tair and Prec, green – high negative correlation of
NDVI with both Tair and Prec). Data points where NDVI < 0.2 were excluded to avoid influence of
inactive vegetation or non–vegetated time points. The semi–annual cycle is included in the seasonal
band.
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Figure S10: Bicolor map of Partial correlations between NDVI, air temperature (Tair)
and precipitation (Prec). Correlation of NDVI with Tair (legend y axis) and NDVI with Prec
(legend x axis) were calculated between decomposed signals at each grid cell for each time scale (rows).
NDVI was lagged one time step (15 days) behind precipitation to allow response time, Tair was
correlated instantaneously. Color scale represents both correlations binned into quantiles (e. g. purple
– high positive correlation of NDVI with both Tair and Prec, green – high negative correlation of
NDVI with both Tair and Prec). Data points where NDVI < 0.2 were excluded to avoid influence of
inactive vegetation or non–vegetated time points. The semi–annual cycle is included in the seasonal
band.
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Figure S11: Bicolor map of Pearson correlations between MODIS EVI, air temperature
(Tair) and precipitation (Prec). Correlation of EVI with Tair (legend y axis) and MODIS EVI
with Prec (legend x axis) were calculated between decomposed signals at each grid cell for each time
scale (rows) for the years 2007–2015. EVI was lagged one time step (15 days) behind precipitation to
allow response time, Tair was correlated instantaneously. Color scale represents both correlations
binned into quantiles (e. g. purple – high positive correlation of EVI with both Tair and Prec, green
– high negative correlation of with both Tair and Prec). The semi–annual cycle is included in the
seasonal band.
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Figure S13: Land cover classes in “correlation space” across Köppen–Geiger classes for
seasonal scale. Correlations of NDVI with precipitation (x axis) and air temperature (y axis) as
determined for Fig. 3 were plotted for major land cover classes (GLC2000, columns) across Köppen–
Geiger classes (rows). Each point represents one 0.5◦ grid cell from the global map. Transparency
was scaled with the area represented by the grid cell, colors represent both correlations in accordance
with Fig. 3 binned into quantiles (e. g. purple – high positive correlation of NDVI with both Tair

and Prec, green – high negative correlation of NDVI with both Tair and Prec). A – equatorial, B –
arid, C – warm temperate, D – snow)
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Figure S14: Land cover classes in “correlation space” across Köppen–Geiger classes for
longer–term scale. Correlations of NDVI with precipitation (x axis) and air temperature (y axis)
as determined for Fig. 3 were plotted for major land cover classes (GLC2000, columns) across Köppen–
Geiger classes (rows). Each point represents one 0.5◦ grid cell from the global map. Transparency
was scaled with the area represented by the grid cell, colors represent both correlations in accordance
with Fig. 3 binned into quantiles (e. g. purple – high positive correlation of NDVI with both Tair

and Prec, green – high negative correlation of NDVI with both Tair and Prec). A – equatorial, B –
arid, C – warm temperate, D – snow)
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Figure S15: Temporal comparison of Fourier transformation (FFT) and Empirical Mode
Decomposition (EMD). Time series examples for a. Germany (lon. 11◦, lat. 51◦), and b. south-
ern Portugal (lon. –8◦, lat. 38◦) of decomposed time series of NDVI, air temperature (Tair) and
precipitation (Prec) from 2000–2014. FFT signals are colored green, EMD signals are colored blue.
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Figure S16: Spatial comparison of Fourier transformation (FFT) and Empirical Mode
Decomposition (EMD). Comparison of variance explained per pixel as determined for NDVI time
series (2000–2014) by Fourier transformation (FFT, upper row) and empirical mode decomposition
(EMD), as well as their difference (lower row) over Europe.
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Figure S17: Spatial comparison of Fourier transformation (FFT) and Empirical Mode
Decomposition (EMD). Comparison of variance explained per pixel as determined for air tem-
perature time series (2000–2014) by Fourier transformation (FFT, upper row) and empirical mode
decomposition (EMD), as well as their difference (lower row) over Europe.
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Figure S18: Spatial comparison of Fourier transformation (FFT) and Empirical Mode
Decomposition (EMD). Comparison of variance explained per pixel as determined for precipi-
tation time series (2000–2014) by Fourier transformation (FFT, upper row) and empirical mode
decomposition (EMD), as well as their difference (lower row) over Europe.

20



Supplementary Tables

Table S1: Selected and excluded classes from GLC 2000.

Selected land cover classes (natural vegetation)
Herbaceous cover closed open Tree cover broadleaved deciduous open
Mosaic: Tree cover other natural vegetation Tree cover broadleaved evergreen
Regularly flooded shrub and or herbaceous cover Tree cover mixed leaf type
Shrub cover closed open deciduous Tree cover needle leaved deciduous
Shrub cover closed open evergreen Tree cover needle leaved evergreen
Sparse herbaceous or sparse shrub cover Tree cover regularly flooded fresh water
Tree cover broadleaved deciduous closed Tree cover regularly flooded saline water

Excluded land cover classes

Artificial surfaces and associated areas
Mosaic: Cropland / Tree cover /
Other natural vegetation

Bare areas Snow and ice (natural & artificial)
Cultivated and managed areas Tree cover burnt
Mosaic: Cropland / Shrub or grass cover Water bodies (natural & artificial)
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Table S2: Global weighted mean of decomposed oscillations and three latitudinal bands (i) extratropics
northern hemisphere (above 23.5◦ N), (ii) tropics (23.5◦ N to 23.5◦ S) and (iii) extratropics southern
hemisphere (below 23.5◦ S). The mean weights are based on pixel area.

Variable Region
Short-
term

Seasonal
Longer-
term

Trend

NDVI Global 0.18 0.71 0.09 0.02
NDVI Above 23.5◦ N 0.1 0.84 0.05 0.01
NDVI Tropics 0.27 0.59 0.11 0.02
NDVI Below 23.5◦ S 0.25 0.46 0.25 0.03
Tair Global 0.11 0.83 0.04 0.01
Tair Above 23.5◦ N 0.05 0.94 0.01 0
Tair Tropics 0.21 0.68 0.09 0.02
Tair Below 23.5◦ S 0.08 0.9 0.02 0
Prec Global 0.52 0.41 0.06 0
Prec Above 23.5◦ N 0.57 0.36 0.06 0
Prec Tropics 0.42 0.51 0.06 0
Prec Below 23.5◦ S 0.68 0.24 0.09 0
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Table S3: Summary statistics of total area assessed and percentage of dominant NDVI oscillations
by Köppen–Geiger, vegetated land cover classes and dominant oscillations of climatic variables.
A: Annual, L: Longer–term, S:Short–term, T: Trend. Values of T are solely presented for area
calculations.
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Table S4: Spatial association between co–oscillation regimes and Köppen–Geiger or Global Land
Cover (GLC2000), respectively. c = complementarity, h = homogeneity, m = number of classes , V
= V–measure.

Co-oscillations regime (11 classes)
Static maps m h c V

Köppen–Geiger 4 0.19 0.16 0.17
Global land cover 9 0.16 0.09 0.11
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Data Analysis

Towards a global understanding of vegetation–climate dynamics at multiple time
scales.

Linscheid, Estupinan-Suarez, et al., Biogeoscience https://doi.org/10.5194/bg-2019-321 (https://doi.org/10.5194
/bg-2019-321)

correspondence to: nlinsch@bgc-jena.mpg.de, lestup@bgc-jena.mpg.de

Time series decomposition by Fourier, analysis of variance per time scale, dominant time
scales, and difference in sign of vegetation-climate correlation across time scales

This notebook exemplifies the main analysis in the paper "Towards a global understanding of vegetation–climate

dynamics at multiple time scales"

The notebook is written in Julia 0.6

"#" comments in the code are intended to explain specific aspects of the coding

"##" comments in the code are intended to describe datasets or objects for clarification

New steps in workflows are introduced with bold headers

Map plots are used to illustrate the outcomes. They graphically differ from figures in the paper (e.g. colormaps, axis)

which were mainly produced in Python.

Datasets pre-processing is not included on this notebook but introduced briefly. Access to the code or data is available

by the correspondance authors.

June 2019, Max Planck Insitute of Biogeochemistry, Jena, Germany

Load required packages

In [1]: # for operating the Earth system data lab (ESDL v0.4.15)
using ESDL, ESDLPlots

# for tracking process progress
using ProgressMeter

# for loading aggregated data from home directory into ESDL (BGIData v0.1.3)
using BGIData

# for working with missing values
using Missings

# for reading CSV files
using CSV

In [2]: # for heatmaps
using Plots
gr(html_output_format=:png)

INFO: Interact.jl: using new nbwidgetsextension protocol

Out[2]: Plots.GRBackend()
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In [3]: missing_to_nan!(x::Array{Union{Missing, T}}) where T = map!(y -> y === missing
? T(NaN) : y, x, x)
missing_to_nan(x::Array{Union{Missing, T}}) where T = map(y -> y === missing ?
T(NaN) : y, x)
missing_to_nan(x::Array{T}) where T = x
missing_to_nan!(x::Array{T}) where T = x
missing_to_zero!(x::Array{Union{Missing, T}}) where T = map!(y -> y === missin
g ? T(0) : y, x, x)
missing_to_zero(x::Array{Union{Missing, T}}) where T = map(y -> y === missing
? T(0) : y, x)

Data and preprocessing

Load 15-daily data (NDVI, Tair, Prec)

In [4]: path_ndvi, path_tair, path_prec, path_oce_des = readlines("datapaths.txt");

In [5]: ## Data: NDVI - Source: GIMMS v3.1 (Pinzon and Tucker, 2014) 
## pre-processing: data was previously resampled from 0.083°
## to 0.5° by averaging

ds_ndvi = bgi_from_dir(path_ndvi, "NDVI")

In [6]: ## Data: air temperature - Source: ERA Interim v4 (Dee et al., 2011) 
## pre-processing: data was previously aggregateted to 15-daily time steps
## by averaging

ds_temp = bgi_from_dir(path_tair, "Tair")

In [7]: ## Data: precipitation - Source: MSWEP (Beck, Wood, et al., 2019)
## pre-processing: data was previously aggregateted to 15-daily time steps
## by summation, and resampled from 0.083° to 0.5° by averaging

ds_mswep = bgi_from_dir(path_prec, "prec")

Load cubes

In [8]: # define time period

t = (Date(1982,1,1),Date(2015,12,31))

Out[3]: missing_to_zero (generic function with 1 method)

Out[5]: NDVI NDVI Resolution: 0.5deg; Years 1982.0-2016.0

Out[6]: Tair Tair Resolution: 0.5deg; Years 1982.0-2016.0

Out[7]: prec prec Resolution: 0.5deg; Years 1982.0-2016.0

Out[8]: (1982-01-01, 2015-12-31)

28



In [9]: # get cubes independently for each variable 

c_vegidx = getCubeData(ds_ndvi, time=t)
c_prec = getCubeData(ds_mswep, time=t)
c_temp = getCubeData(ds_temp, time=t)

In [10]: # plotting first time step of NDVI data cube "c_vegidx"

heatmap(missing_to_nan(c_vegidx[:,:,1])'[end:-1:1,:])

Gapfilling

In [11]: # here only for NDVI, the others do not have gaps

c_fill_vegidx = gapFillMSC(c_vegidx)

Normalization

(Z-scoring per pixel)

Out[9]: BGIData variable Tair with the following dimensions
Lon                 Axis with 720 Elements from -179.75 to 179.75
Lat                 Axis with 360 Elements from 89.75 to -89.75
Time                Axis with 816 Elements from 1982-01-01 to 2015-12-15
Total size: 1.77 GB

Out[10]:

Progress: 100%|█████████████████████████████████████████| Time: 0:01:49:33

Out[11]: Memory mapped cube with the following dimensions
Time                Axis with 816 Elements from 1982-01-15T00:00:00 to 2015-12
-31T00:00:00
Lon                 Axis with 720 Elements from -179.75 to 179.75
Lat                 Axis with 360 Elements from 89.75 to -89.75
Total size: 1.77 GB
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In [12]: c_norm_vegidx = normalizeTS(c_fill_vegidx)
c_norm_prec = normalizeTS(c_prec)
c_norm_temp = normalizeTS(c_temp)

FFT decomposition

In [13]: ## Fast Fourier decomposition

c_fft_vegidx = filterTSFFT(c_norm_vegidx)
c_fft_prec = filterTSFFT(c_norm_prec)
c_fft_temp = filterTSFFT(c_norm_temp)

Percent missing values in NDVI

In [14]: using Missings
"""
Calculate proportion valid (not 'missing' or 'NaN') values along a vector

r = rand(10)
r[10] = NaN
percentvalid(r) # => 0.9

"""
function percentvalid(xin) # where xin is a timeseries

a=count(.!ismissing.(xin) .& .!isnan.(xin)) # count number of valid values
b=length(xin) # length of TS
return a/b # fraction of valid values

end

In [15]: c_gapmask = mapslices(percentvalid, c_vegidx, "Time")

Progress: 100%|█████████████████████████████████████████| Time: 0:00:25
Progress: 100%|█████████████████████████████████████████| Time: 0:01:470:19
Progress: 100%|█████████████████████████████████████████| Time: 0:01:46

Out[12]: Memory mapped cube with the following dimensions
Time                Axis with 816 Elements from 1982-01-01 to 2015-12-15
Lon                 Axis with 720 Elements from -179.75 to 179.75
Lat                 Axis with 360 Elements from 89.75 to -89.75
Total size: 1.77 GB

Progress: 100%|█████████████████████████████████████████| Time: 0:01:20:19
Progress: 100%|█████████████████████████████████████████| Time: 0:01:21
Progress: 100%|█████████████████████████████████████████| Time: 0:01:22

Out[13]: Memory mapped cube with the following dimensions
Time                Axis with 816 Elements from 1982-01-01 to 2015-12-15
Scale               Axis with elements: Trend Long-Term Variability Annual Cyc
le Fast Oscillations 
Lon                 Axis with 720 Elements from -179.75 to 179.75
Lat                 Axis with 360 Elements from 89.75 to -89.75
Total size: 7.09 GB

Out[14]: percentvalid

Progress: 100%|█████████████████████████████████████████| Time: 0:01:47

Out[15]: In-Memory data cube with the following dimensions
Lon                 Axis with 720 Elements from -179.75 to 179.75
Lat                 Axis with 360 Elements from 89.75 to -89.75
Total size: 2.22 MB 30



In [16]: # map of the fraction of valid values

heatmap(missing_to_nan(c_gapmask[:,:])'[end:-1:1,:])

Masks

In [17]: # mask out gapfilled values again for downstream analyses

mask_gaps = permutedims(c_vegidx[:,:,:],[3,1,2]) .== c_fill_vegidx[:,:,:];

In [18]: # ndvi cutoff mask at 0.2 (remove time points with non-active vegetation)

mask_ndvi = map(i-> isnan.(i) ? false : i.<0.2 ? false : true,
c_fill_vegidx[:,:,:]);

In [19]: # combine both masks in one

mask_combined = mask_gaps .& mask_ndvi;

In [20]: # mask for ocean and desert

oce_des_df = CSV.read(path_oce_des, header = false);

In [25]: # converting ocean desert mask data frame into a matrix

oce_des = missing_to_nan(oce_des_df[:,:] |> Matrix |> permutedims)
oce_des_mask = convert(Array{Float64,2}, map(x -> x==0 ? NaN : x, oce_des));

Out[16]:
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In [26]: # map ocean & dessert mask

heatmap(oce_des'[end:-1:1,:])

Make into a cube

In [21]: # create a cube for gapfilled mask 

cubemask_gapfilled = ESDL.CubeMem(
CubeAxis[c_fill_vegidx.axes[1], c_fill_vegidx.axes[2], c_fill_vegidx.axes

[3]],
map(i->i ? 1.0 : NaN, mask_gaps),
map(i->i ? ESDL.Mask.VALID : ESDL.Mask.MISSING, mask_gaps))

In [22]: # create a cube for combined mask

cubemask = ESDL.CubeMem(
CubeAxis[c_fill_vegidx.axes[1], c_fill_vegidx.axes[2], c_fill_vegidx.axes

[3]],
map(i->i ? 1.0 : NaN, mask_combined),
map(i->i ? ESDL.Mask.VALID : ESDL.Mask.MISSING, mask_combined))

Out[26]:

Out[21]: In-Memory data cube with the following dimensions
Time                Axis with 816 Elements from 1982-01-15T00:00:00 to 2015-12
-31T00:00:00
Lon                 Axis with 720 Elements from -179.75 to 179.75
Lat                 Axis with 360 Elements from 89.75 to -89.75
Total size: 1.77 GB

Out[22]: In-Memory data cube with the following dimensions
Time                Axis with 816 Elements from 1982-01-15T00:00:00 to 2015-12
-31T00:00:00
Lon                 Axis with 720 Elements from -179.75 to 179.75
Lat                 Axis with 360 Elements from 89.75 to -89.75
Total size: 1.77 GB
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In [23]: # calculate number of valid values over time after applying all filtering

c_percmask = mapslices(percentvalid, cubemask, "Time")

In [24]: heatmap(c_percmask[:,:]'[end:-1:1,:])

Fig. 1 - Variance per time scale

In [27]: import ESDL.NaNMissing
indims = InDims(TimeAxis, miss=NaNMissing())
outdims = OutDims()

In [28]: # calculate variance for a cube taking into account a mask (here for NDVI)

function cubevar_mask(xout, xin, mask; nmin=10)
# find indices with valid values, which are not masked
xidx = .!isnan.(xin) .& .!isnan.(mask)
# return NaN if less than nmin value pairs are valid, else return variance
xout[:] = count(xidx) < nmin ? NaN : var(xin[xidx])
return xout[:]

end

Progress: 100%|█████████████████████████████████████████| Time: 0:00:06

Out[23]: In-Memory data cube with the following dimensions
Lon                 Axis with 720 Elements from -179.75 to 179.75
Lat                 Axis with 360 Elements from 89.75 to -89.75
Total size: 2.22 MB

Out[24]:

Out[27]: ESDL.DAT.OutDims((), (), ESDL.DAT.DataArrayMissing(), zero, identity, :auto, f
alse, ESDL.DAT.AsArray(), 1)

Out[28]: cubevar_mask (generic function with 1 method)
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In [29]: # calculate variance for a cube without need for masking (Prec, Tair)

function cubevar(xout, xin; nmin=10)
# find indices with valid values, which are not masked
xidx = .!isnan.(xin)
# return NaN if less than nmin value pairs are valid, else return variance
xout[:] = count(xidx) < nmin ? NaN : var(xin[xidx])
return xout[:]

end

In [30]: # variance of NDVI using a mask of valid values

c_fft_var_vegidx = mapCube(cubevar_mask, (c_fft_vegidx,cubemask_gapfilled), in
dims=(indims,indims), outdims=outdims)

In [31]: c_fft_var_prec = mapCube(cubevar, c_fft_prec, indims=indims, outdims=outdims)
c_fft_var_temp = mapCube(cubevar, c_fft_temp, indims=indims, outdims=outdims)

In [32]: # Example maps:
# NDVI longer-term variability map
heatmap(c_fft_var_vegidx[2,:,:]'[end:-1:1,:])

Out[29]: cubevar (generic function with 1 method)

Progress: 100%|█████████████████████████████████████████| Time: 0:01:00:29

Out[30]: In-Memory data cube with the following dimensions
Scale               Axis with elements: Trend Long-Term Variability Annual Cyc
le Fast Oscillations 
Lon                 Axis with 720 Elements from -179.75 to 179.75
Lat                 Axis with 360 Elements from 89.75 to -89.75
Total size: 8.9 MB

Progress: 100%|█████████████████████████████████████████| Time: 0:00:45
Progress: 100%|█████████████████████████████████████████| Time: 0:00:45

Out[31]: In-Memory data cube with the following dimensions
Scale               Axis with elements: Trend Long-Term Variability Annual Cyc
le Fast Oscillations 
Lon                 Axis with 720 Elements from -179.75 to 179.75
Lat                 Axis with 360 Elements from 89.75 to -89.75
Total size: 8.9 MB

Out[32]:
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In [33]: # precipication seasonal(annual) variability map masked by ocean and desert ma
sk
heatmap((c_fft_var_prec[3,:,:].*oce_des_mask)'[end:-1:1,:])

In [34]: # temperature short-term variability map
heatmap((c_fft_var_temp[4,:,:].*oce_des_mask)'[end:-1:1,:])

Fig. 2 - Dominant Scale of Variation

Out[33]:

Out[34]:
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In [35]: # Find TS of maximum variance, ignoring NaN

function findmax_nan(x)
if all(isnan.(x))

return NaN
else

return findmax(x)[2]
end

end

In [36]: c_fft_max_vegidx = mapslices(x->findmax_nan(x), c_fft_var_vegidx, "Scale")
c_fft_max_prec = mapslices(x->findmax_nan(x), c_fft_var_prec, "Scale")
c_fft_max_temp = mapslices(x->findmax_nan(x), c_fft_var_temp, "Scale")

In [37]: # map dominant scale of variability in NDVI
# 1 = Trend; 2 = Longer-term, 3 = Annual cycle, 4 = Short-term 

heatmap(c_fft_max_vegidx[:,:]'[end:-1:1,:])

Out[35]: findmax_nan (generic function with 1 method)

Progress: 100%|█████████████████████████████████████████| Time: 0:00:05
Progress: 100%|█████████████████████████████████████████| Time: 0:00:05
Progress: 100%|█████████████████████████████████████████| Time: 0:00:05

Out[36]: In-Memory data cube with the following dimensions
Lon                 Axis with 720 Elements from -179.75 to 179.75
Lat                 Axis with 360 Elements from 89.75 to -89.75
Total size: 2.22 MB

Out[37]:
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In [38]: # map dominant scale of variability in precipitation
# 1 = Trend; 2 = Longer-term, 3 = Annual cycle, 4 = Short-term

heatmap((c_fft_max_prec[:,:].*oce_des_mask)'[end:-1:1,:])

In [39]: # map dominant scale of variability in temperature
# 1 = Trend; 2 = Longer-term, 3 = Annual cycle, 4 = Short-term

heatmap((c_fft_max_temp[:,:].*oce_des_mask)'[end:-1:1,:])

Create combinations of classes

In [40]: x1 = c_fft_max_vegidx.data
x2 = c_fft_max_temp.data
x3 = c_fft_max_prec.data;

Out[38]:

Out[39]:
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In [41]: using RCall

# combine dominant scales

# get numeric variable for dominant scales
x123 = rcopy(R"as.numeric(interaction($x1, $x2, $x3))")
xclasses_numeric = reshape(x123, size(x1,1), size(x1,2));

In [43]: # map combination of dominant scales of variability 
heatmap((xclasses_numeric[:,:].*oce_des_mask)'[end:-1:1,:])

In [44]: # translate numeric to osciallation class
x_comb = unique(rcopy(R"interaction($x1, $x2, $x3)"))

x_comb_leg = x_comb |>
(y->replace.(y,"1" => "T")) |>
(y->replace.(y,"2" => "L")) |>
(y->replace.(y,"3" => "A")) |>
(y->replace.(y,"4" => "S"));

Out[43]:
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In [45]: domscale_leg = Dict(zip(unique(rcopy(R"as.numeric(interaction($x1, $x2, $x
3))")),x_comb_leg))

# delete unwanted categories containing NaN
get.(domscale_leg,collect(0:5:60),0)
delete!.(domscale_leg,collect(0:5:60))

domscale_leg

In [46]: #using ESDL

c_dom_scale = ESDL.CubeMem(
CubeAxis[c_vegidx.axes[1],c_vegidx.axes[2]],
xclasses_numeric,
# mask categories containing NaN
map(i->i in (10,20,25,30,35,40,45,50,55,60) ? ESDL.Mask.MISSING : ESDL.Mas

k.VALID,xclasses_numeric))

Out[45]: Dict{Float64,String} with 26 entries:
  18.0 => "A.L.L"
  54.0 => "S.A.S"
  39.0 => "S.A.A"
  21.0 => "T.A.L"
  43.0 => "A.S.A"
  58.0 => "A.S.S"
  34.0 => "S.L.A"
  59.0 => "S.S.S"
  8.0  => "A.A.T"
  51.0 => "T.A.S"
  6.0  => "T.A.T"
  44.0 => "S.S.A"
  49.0 => "S.L.S"
  37.0 => "L.A.A"
  24.0 => "S.A.L"
  22.0 => "L.A.L"
  53.0 => "A.A.S"
  38.0 => "A.A.A"
  57.0 => "L.S.S"
  23.0 => "A.A.L"
  31.0 => "T.L.A"
  36.0 => "T.A.A"
  48.0 => "A.L.S"
  56.0 => "T.S.S"
  52.0 => "L.A.S"
  ⋮    => ⋮

Out[46]: In-Memory data cube with the following dimensions
Lon                 Axis with 720 Elements from -179.75 to 179.75
Lat                 Axis with 360 Elements from 89.75 to -89.75
Total size: 2.22 MB
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In [47]: # map dominant co-oscillation regimes

heatmap(c_dom_scale[:,:]'[end:-1:1,:])

Fig. 3 - Correlations between variables

In [48]: import ESDL.NaNMissing
indims = InDims("Time", miss=NaNMissing()), InDims("Time", miss=NaNMissing()),
InDims("Time", miss=NaNMissing())
outdims = OutDims()

In [49]: function cubecor_mask(xout,xin1,xin2,mask;nmin=10)
# find indices with valid values, which are not masked
xidx = .!isnan.(xin1) .& .!isnan.(xin2) .& .!isnan.(mask)
# return NaN if less than nmin value pairs are valid, else return correlat

ion
xout[:] = count(xidx) < nmin ? NaN : cor(xin1[xidx],xin2[xidx])
return xout[:]

end

In [50]: cor_vegidx_temp = mapCube(cubecor_mask, (c_fft_vegidx, c_fft_temp,cubemask), i
ndims = indims, outdims = outdims)

Out[47]:

Out[48]: ESDL.DAT.OutDims((), (), ESDL.DAT.DataArrayMissing(), zero, identity, :auto, f
alse, ESDL.DAT.AsArray(), 1)

Out[49]: cubecor_mask (generic function with 1 method)

Progress: 100%|█████████████████████████████████████████| Time: 0:01:268:16

Out[50]: In-Memory data cube with the following dimensions
Scale               Axis with elements: Trend Long-Term Variability Annual Cyc
le Fast Oscillations 
Lon                 Axis with 720 Elements from -179.75 to 179.75
Lat                 Axis with 360 Elements from 89.75 to -89.75
Total size: 8.9 MB
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In [51]: # correlation between NDVI and air temperature at the annual scale

heatmap(cor_vegidx_temp[3,:,:]'[end:-1:1,:])

In [52]: function cubecor_lagged_mask(xout,xin1,xin2,mask;nmin=10,lag=1)
x = xin1[1+lag:end] # lag first time series (and corresponding mask)
m = mask[1+lag:end]
y = xin2[1:end-lag] # cut second time series by lag
xidx = .!isnan.(x) .& .!isnan.(y) .& .!isnan.(m) # indices with valid valu

e pairs, not masked
# return NaN if less than nmin value pairs are valid, else return correlat

ion  
xout[:] = count(xidx) < nmin ? NaN : cor(x[xidx],y[xidx])
return xout[:]

end

In [53]: cor_vegidx_prec_lag1 = mapCube(cubecor_lagged_mask,(c_fft_vegidx,c_fft_prec,cu
bemask),

indims = indims, outdims = outdims)

Out[51]:

Out[52]: cubecor_lagged_mask (generic function with 1 method)

Progress: 100%|█████████████████████████████████████████| Time: 0:01:35

Out[53]: In-Memory data cube with the following dimensions
Scale               Axis with elements: Trend Long-Term Variability Annual Cyc
le Fast Oscillations 
Lon                 Axis with 720 Elements from -179.75 to 179.75
Lat                 Axis with 360 Elements from 89.75 to -89.75
Total size: 8.9 MB
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In [54]: # correlation between NDVI and precipitation at the annual oscillation (lagged 
1 time-step)
heatmap(cor_vegidx_prec_lag1[3,:,:]'[end:-1:1,:])

Fig. 3 - Bicolor Maps

In [55]: # function to separate data within different quantiles 

function quaId2(arr, qtls)
y = zeros(size(arr))./0 # NaN output array of size input array
for i=(size(qtls)[1]):-1:2 # each quantile boundary, counting downwards

y[arr .< qtls[i]] = i.-1 # wherever x-value .< quantile[i] is true, 
set y to i-1 

# (below boundary 2 == 1st quantile)
end
return y

end

In [56]: ## quantile boundaries 
qua=[-1,-0.6,-0.2,0.2,0.6,1]

Out[54]:

Out[55]: quaId2 (generic function with 1 method)

Out[56]: 6-element Array{Float64,1}:
 -1.0
 -0.6
 -0.2
  0.2
  0.6
  1.0
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In [57]: ## Generate different quatiles ID for all variables and each time scale

precTrend = quaId2(cor_vegidx_prec_lag1[1,:,:],qua)
precLongTerm = quaId2(cor_vegidx_prec_lag1[2,:,:],qua)
precAnnual = quaId2(cor_vegidx_prec_lag1[3,:,:],qua)
precFastOs = quaId2(cor_vegidx_prec_lag1[4,:,:],qua)

tempTrend = quaId2(cor_vegidx_temp[1,:,:],qua)
tempLongTerm = quaId2(cor_vegidx_temp[2,:,:],qua)
tempAnnual = quaId2(cor_vegidx_temp[3,:,:],qua)
tempFastOs = quaId2(cor_vegidx_temp[4,:,:],qua);

In [58]: # based on the X and Y variables the color ID is defined, later translated int
o color for plotting
colId = reshape(1:25,5,5)'

In [59]: ## This function establishes the respective combinations between 
## quantiles and bicolor scale for two input maps

function BicolorMap(A,B)
xout = fill(NaN, size(A)) # empty output array
for x in 1:(size(A)[1]) # looping through latitudes

for y in 1:(size(A)[2]) # looping through longitudes
if !isnan(A[x,y]) && !isnan(B[x,y])
i = Integer(A[x,y])
j = Integer(B[x,y])
colIdPx = colId[i,j]
xout[x,y] = colIdPx
end

end    
end
return(xout)

end

In [60]: trendCor=BicolorMap(tempTrend, precTrend)
longTermCor=BicolorMap(tempLongTerm, precLongTerm)
annualCor=BicolorMap(tempAnnual, precAnnual)
fastOsCor=BicolorMap(tempFastOs, precFastOs);

Out[58]: 5×5 Array{Int64,2}:
  1   2   3   4   5
  6   7   8   9  10
 11  12  13  14  15
 16  17  18  19  20
 21  22  23  24  25

Out[59]: BicolorMap (generic function with 1 method)
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In [61]: # "bicolor-map" of longer-term correlation of temperature
# and precipitation

heatmap(longTermCor[:,:]'[end:-1:1,:])

Fig. 4 - Comparison of differences in the correlation sign

In [62]: # reclassify values into a binary map, 1 = positive correlations and -1 = nega
tive correlations
# correlations between -0.2 and 0.2 are ommited (NaN)

cor_vegidx_temp_sign = map(x-> x > 0.2 ? 1 : x < -0.2 ? -1 : NaN, cor_vegidx_t
emp[:,:,:]);
cor_vegidx_prec_sign = map(x-> x > 0.2 ? 1 : x < -0.2 ? -1 : NaN, cor_vegidx_p
rec_lag1[:,:,:]);

Out[61]:
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In [63]: # comparison of differences in the sign of correlation between annual and long
-term scales
# for air-temperature. 1 = equal correlation sign. -1 = different correlation 
sign

cor_vegidx_temp_sign_ch = (cor_vegidx_temp_sign[2,:,:].*cor_vegidx_temp_sign
[3,:,:].*oce_des_mask)
heatmap(cor_vegidx_temp_sign_ch'[end:-1:1,:], color=cgrad([:red, :grey]))

In [64]: # comparison of differences in the sign of correlation between annual and long
-term scales
# for precipiatation. 1 = equal correlation sign. -1 = different correlation s
ign 

cor_vegidx_prec_sign_ch = cor_vegidx_prec_sign[2,:,:].*cor_vegidx_prec_sign
[3,:,:].*oce_des_mask
heatmap(cor_vegidx_prec_sign_ch'[end:-1:1,:], color=cgrad([:blue, :grey]))

Out[63]:

Out[64]:
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In [65]: # reclassify values of air temperature and preciptation for global comparison

# 2 = pixels with different correlation sign, otherwise O
cor_vegidx_temp_ch_reclass = map(x-> x == -1.0 ? 2.0 : x == 1 ? 0.0 : NaN, cor
_vegidx_temp_sign_ch[:,:]);

# -1 = pixel with different correlation sign, otherwise O
cor_vegidx_prec_ch_reclass = map(x-> x == -1.0 ? -1.0 : x == 1 ? 0.0 : NaN, co
r_vegidx_prec_sign_ch[:,:]);

In [66]: # map for differences in the correlation sign between annual and long-term sca
le for NDVI and air 
# temperature (red), precipitation (blue), and both (purple).

heatmap((cor_vegidx_prec_ch_reclass[:,:] .+ cor_vegidx_temp_ch_reclass
[:,:])'[end:-1:1,:], color=cgrad([:blue, :white, :purple, :red]))

Out[66]:
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