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Abstract. Climate variables carry signatures of variability at
multiple timescales. How these modes of variability are re-
flected in the state of the terrestrial biosphere is still not quan-
tified or discussed at the global scale. Here, we set out to gain
a global understanding of the relevance of different modes of
variability in vegetation greenness and its covariability with
climate. We used > 30 years of remote sensing records of the
normalized difference vegetation index (NDVI) to character-
ize biosphere variability across timescales from submonthly
oscillations to decadal trends using discrete Fourier decom-
position. Climate data of air temperature (75;;) and precipita-
tion (Prec) were used to characterize atmosphere—biosphere
covariability at each timescale.

Our results show that short-term (intra-annual) and longer-
term (interannual and longer) modes of variability make re-
gionally highly important contributions to NDVI variability:
short-term oscillations focus in the tropics where they shape
27 % of NDVI variability. Longer-term oscillations shape
9 % of NDVI variability, dominantly in semiarid shrublands.
Assessing dominant timescales of vegetation—climate covari-
ation, a natural surface classification emerges which cap-
tures patterns not represented by conventional classifications,

especially in the tropics. Finally, we find that correlations
between variables can differ and even invert signs across
timescales. For southern Africa for example, correlation be-
tween NDVI and Ty, is positive for the seasonal signal but
negative for short-term and longer-term oscillations, indicat-
ing that both short- and long-term temperature anomalies can
induce stress on vegetation dynamics. Such contrasting cor-
relations between timescales exist for 15 % of vegetated ar-
eas for NDVI with Ty; and 27 % with Prec, indicating global
relevance of scale-specific climate sensitivities.

Our analysis provides a detailed picture of vegetation—
climate covariability globally, characterizing ecosystems by
their intrinsic modes of temporal variability. We find that
(i) correlations of NDVI with climate can differ between
scales, (ii) nondominant subsignals in climate variables may
dominate the biospheric response, and (iii) possible links
may exist between short-term and longer-term scales. These
heterogeneous ecosystem responses on different timescales
may depend on climate zone and vegetation type, and they
are to date not well understood and do not always correspond
to transitions in dominant vegetation types. These scale de-
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pendencies can be a benchmark for vegetation model evalu-
ation and for comparing remote sensing products.

1 Introduction

Ecosystems and climate interact on multiple spatial and tem-
poral scales. For example, the main driver of photosynthe-
sis during the daily cycle typically is light availability, as-
suming no other resource limitation. At annual timescales,
temperature can limit growth and development during cer-
tain phases of the year, particularly in the extratropics. While
climate variability is traditionally very well characterized
across timescales (e.g., Viles, 2003; Cao et al., 2012; Bala
et al., 2010; Hannachi et al., 2017), it is less well known
how the biosphere responds to variations in climate on differ-
ent scales. Understanding the implications of such timescale
dependencies of climate—vegetation interactions is challeng-
ing due to the variety of interwoven processes. These de-
pendencies range from short-term climate extremes and bi-
otic stress (e.g., insect outbreaks) to seasonal dynamics in
climate-driven phenology and long-term dynamics that can
again either reflect intrinsic ecosystem dynamics (e.g., veg-
etation successional dynamics) or climate-change- or land-
use-induced process alterations. Investigating vegetation—
climate dynamics globally across multiple timescales re-
quires long-term observation on relevant vegetation dynam-
ics and climate variables in combination with a method to
separate ecosystem variability at different timescales.

The assessment of ecosystem variability, e.g., in responses
to climate at the global scale, has only become feasible in
the last decades. Long-term Earth observations (EOs) are
now allowing us to assess ecosystem states consistently over
more than 30 years. Vegetation indices such as the normal-
ized difference vegetation index (NDVI) have often been in-
terpreted as proxies for vegetation activity (Zeng et al., 2013;
De Keersmaecker et al., 2015; Hawinkel et al., 2015; Kogan
and Guo, 2017; Pan et al., 2018), despite well-known limi-
tations of only reflecting vegetation greenness. While novel
EOs may be more closely related to actual rates of photosyn-
thesis (Sun-induced fluorescence, SIF; Guanter et al., 2007),
NDVI from the Advanced Very High Resolution Radiome-
ter (AVHRR) has the advantage of offering the longest up-
dated records of vegetation remote sensing data every 15d
(d stands for day). In tandem with climate time series from
the same period, this record provides a solid basis to globally
assess biosphere—atmosphere interactions across timescales
ranging from weeks to decades.

Temporal biosphere dynamics carry the imprint of dif-
ferent drivers across timescales, yet EOs can only record
one integrated signal over time. This signal reflects a mix-
ture of processes acting on different scales, which cannot
be observed independently (Mahecha et al., 2007; Defriez
and Reuman, 2017; Pan et al., 2018). Therefore, short-term
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and long-term processes can be obscured by the dominant in-
fluence of the annual cycle (Braswell et al., 2005; Mahecha
et al., 2010c). In order to study relevant ecosystem—climate
interactions across temporal scales, information contained
for each timescale thus first needs to be extracted from this
integrated signal. Time series decomposition allows us to ex-
tract different frequencies such as annual, intra-annual, and
interannual oscillations from vegetation and climate time se-
ries. Such approaches have proven useful, e.g., to character-
ize at what scales vegetation responses are dampened or am-
plified in comparison with their climate forcing (Stoy et al.,
2009), how ecosystem variability is confined by hydrome-
teorological variability (Pappas et al., 2017), what scales of
variability need to be considered to relate forcing variables
and vegetation state comprehensively (Katul et al., 2001;
Braswell et al., 2005), or to remove confounding effects from
processes acting on longer timescales than the process in
question (Mahecha et al., 2010b). However, to date most
studies employing time series decomposition to study veg-
etation dynamics have focused on disentangling timescales
from minutes to a few years based on flux data (Stoy et al.,
2009; Katul et al., 2001; Mahecha et al., 2007, 2010c). Stud-
ies investigating long-term vegetation records by time se-
ries decomposition do exist but focus only on a specific re-
gion (Martinez and Gilabert, 2009; Canisius et al., 2007;
Hawinkel et al., 2015) or do not provide cointerpretation with
climate signals (Pan et al., 2018). Earth observation time se-
ries of vegetation and climate covering more than 30 years
now allow us to characterize the timescale-resolved variabil-
ity in the biosphere and its relation to climate globally across
several decades. Additionally, the global coverage of these
records allows one to attain a broader understanding in cli-
mate space and across vegetation types, which to date is
equally lacking.

In this study, we set out to gain a global understand-
ing of the relevance of the different modes of variabil-
ity in vegetation greenness and its covariability with cli-
mate at timescales from submonthly oscillations to long-
term trends. These timescale-specific vegetation—climate co-
oscillations are expected to serve as a reference benchmark
for comparing remote sensing products and terrestrial bio-
sphere models. Specifically, we aim to (i) characterize vari-
ability of biosphere and climate time series explicitly on
multiple timescales; (ii) understand spatial patterns of this
scale-resolved variability and covariability globally; (iii) as-
sess whether characteristic timescale-specific dynamics in
the biosphere and climate relate to established climate classi-
fications or land cover; and (vi) assess differences in correla-
tions of biosphere with climate on short-term, seasonal, and
longer-term timescales.
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2 Methods

The code to produce all primary figures is made available
as supplementary notebook (https://doi.org/10.5281/zenodo.
3611262, Linscheid et al., 2019).

2.1 Data

A global gridded dataset of AVHRR NDVI was retrieved
from the Global Inventory Monitoring and Modeling Sys-
tem (GIMMS, Pinzon and Tucker, 2014) at 15d tempo-
ral and 0.083° spatial resolutions (GIMMS NDVI v3.1).
Original data were aggregated to 0.5° by taking the mean
of the corresponding 0.083° pixels. Corresponding records
of air temperature (7,;) from the European Centre for
Medium-Range Weather Forecasts (ERA-Interim v4, Dee
et al., 2011) and precipitation (Prec) from the Multi-Source
Weighted-Ensemble Precipitation (MSWEP, Beck et al.,
2019) were aggregated to match temporal resolution by sum-
mation (Prec) or averaging (7yi;). Spatial resolution of Ty
was preserved (0.5°), while MSWEP values were averaged
for spatial resampling (0.083 to 0.5°). Spatial and temporal
resolution were fixed based on the coarsest resolution among
the input datasets to ensure conservative results. The time
period considered was from 1 January 1982 to 31 Decem-
ber 2015.

2.2 Preprocessing

Gaps in NDVI time series were filled with values from the
mean seasonal cycle computed separately for each grid cell.
Missing values were mostly present at high northern latitudes
(Fig. S1 in the Supplement). Each time series (for each pixel)
was normalized to zero mean and unit variance prior to per-
forming fast Fourier transformation (FFT). For further anal-
ysis, the gap-filled data were discarded. Normalization, gap-
filling, and FFT were performed in the Earth System Data
Lab (https://www.earthsystemdatalab.net/, last access: 1 Au-
gust 2019, Mahecha et al., 2019), using the implementation
based on the programming language Julia. Analyses were
performed on a latitude—longitude grid due to software and
data considerations. In all spatial analyses on the latitude—
longitude grid, the difference in size of grid cells between
high latitudes and the Equator was accounted for through
weighting values by grid cell size. Similarly, in all analyses
that involved sampling of data points, the sampling frequency
was weighted by grid cell size.

2.3 Time series decomposition

All pixel time series were first detrended using a linear
model. We then used discrete FFT to decompose the de-
trended time series into underlying harmonic functions at dif-
ferent frequencies (Brockwell and Davis, 2006). The result-
ing Fourier spectra (Fig. S2) were reconstructed by inverse
FFT into binned scale-specific subsignals for short-term, sea-
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sonal, and longer-term oscillations: the seasonal signal was
reconstructed from the Fourier spectrum at periods of 0.9—
1.1 years, plus semiannual and 4-monthly harmonics (i.e.,
0.5- and 0.33-year periods). The short-term signal was recon-
structed from the Fourier spectrum of all periods < 0.9 year,
except the two seasonal harmonics, representing interannual
oscillations that are not directly linked to periods of sea-
sonality. The longer-term signal was reconstructed from all
remaining periods > 1.1 year, representing interannual and
longer timescales. The subsignal binning was centered on the
definition of the seasonal/annual bin similarly to Mahecha
et al. (2010a) and Fiirst (2009). The bin ranges were slightly
adapted due to the FFT approach, which yields signals of
different frequencies compared to the approach chosen by
Mahecha et al. (2010a). To identify emerging features occur-
ring at different latitudinal bands, mean values weighted by
pixel area were calculated in the tropics (23.5° N to 23.5° S),
extratropics (above 23.5° N and below 23.5° S), and globally.

2.4 Variance per timescale and co-oscillation regimes

For each timescale-specific signal, we calculated the propor-
tion of variance of the original signal explained for each vari-
able per grid cell. Each pixel of the global land surface was
then classified into oscillation regimes depending on which
scale explained the largest amount of variance in each vari-
able (abbreviations: S — short term, A — seasonal, L — longer
term, T — trend). For example, if the variance was dominated
by the seasonal subsignal in NDVI and Ty;;, and by the short-
term scale in Prec, this pixel would be classified as AAS (in
the order of NDVI, Ty, and Prec). Theoretically, the super-
imposition yields 64 (4) possible combinations, of which
only 26 occurred. For simplicity, our analysis was focused
on the 11 most abundant oscillation regimes (99.7 % of pix-
els).

In order to complement static/traditional classifications,
we compared our oscillation regimes with the Global Land
Cover map project coordinated by the Joint Research Cen-
ter (GLC2000, Bartholomé and Belward, 2005) and climate
zones from the updated Koppen—Geiger global classification
(Kottek et al., 2006, see Fig. S1). Only those pixels that
contained data from all three data streams (Koppen—Geiger
classes A—D, GLC2000, and our oscillation regimes) were
considered in this analysis. Nonvegetated and nonnatural ar-
eas as defined by GLC2000 were disregarded for this analy-
sis and onward (Table S1 in the Supplement). The final land
surface assessed was 75 871 486 km?, corresponding to 70 %
of the vegetated GLC2000 area (Fig. S1). For the same area,
we calculated the V measure (V), a spatial association in-
dex based on homogeneity and complementarity criteria pro-
posed specifically for thematic map comparison (Nowosad
and Stepinski, 2018). The index ranges from 0 to 1, with 1
being a perfect association, and was used to provide an over-
all comparison between the co-oscillation regime map with
Koppen—Geiger and GLC2000 maps.

Biogeosciences, 17, 945-962, 2020
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To assess the influence of gap-filling performed in the orig-
inal GIMMS NDVI data due to influence of cloud cover or
snow, we excluded time points that were retrieved by splines
or mean seasonal cycle due to the lack of direct observation
in NDVI (Pinzon and Tucker, 2014) at five different qual-
ity flag thresholds in our classification of oscillation regimes.
Quality flags were aggregated from 0.083 to 0.5° by calculat-
ing the fraction of direct observations per 0.5° pixel at each
time step. Subsequently, the dominant classification was re-
peated, excluding time steps with less than 30 %, 50 %, 70 %,
90 %, and 95 % direct observations for each grid cell. Fur-
thermore, we repeated the time series decomposition method
for NDVI and the enhanced vegetation index (EVI) from the
Moderate Resolution Imaging Spectroradiometer (MODIS).
The vegetation indices product MOD13C1.006 is provided
by NASA EOSDIS LP DAAC at 0.05°. Data were aggregated
spatially by averaging valid pixels to 0.5° for the overlapping
period with GIMMS NDVI (2001-2015). A comparison of
the dominant oscillation regimes between products was car-
ried out at a pixel basis.

2.5 Correlations between variables at each timescale

We correlated timescale-specific subsignals of NDVI, Ty,
and Prec using Pearson’s correlation coefficient, Spearman
correlation, and partial correlation. For this analysis, all time
points with NDVI < 0.2 were masked in order to consider
only data points corresponding to active vegetation (Fig. S1).
NDVI was lagged one time step (15 d) behind Prec in order
to allow for the response time of vegetation to changes in
water availability. Due to the 15 d temporal resolution of the
data, a response time of up to 15d is intrinsically included
in our analyses. Each time lag is therefore an additional 15d,
and shorter responses cannot be assessed. We compared six
different lags (from 15 to 90d, Fig. S3). When correlating
NDVI and precipitation instantaneously, we found almost ex-
clusively negative correlations for the short-term scale. A lag
of one time step was sufficient to arrive at expected posi-
tive correlations between NDVI and precipitation, while in-
creasing the lag time did not substantially improve or alter
the results. We thus chose to globally use a lag of one time
step (representing a 15-30 d response time) between precip-
itation and NDVI across all scales. Globally, temperature
appeared to be most strongly correlated to NDVI instanta-
neously (not lagged); thus, no time lag was introduced be-
tween air temperature and NDVI. Recent studies assessing
time lags and memory effects between vegetation and cli-
mate also indicate that time lags of around 1 month gener-
ally carry most of the explanatory power for predicting veg-
etation dynamics (Krich et al., 2019; Kraft et al., 2019; Pa-
pagiannopoulou et al., 2017). Correlations of NDVI-Ty;; and
NDVI-Prec were binned into five quantiles and presented in
a bivariate color map (Teuling et al., 2011). In addition, we
compared differences in the sign of the correlation between
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seasonal and longer-term oscillations to detect areas where
the correlation was inverted between scales.

2.6 Assessment of land cover change on time series
decomposition

We assessed whether land cover change over the 30-year
time period influenced our results by extracting pixels with
substantial land cover change as determined by Song et al.
(2018). While linear trends were removed from the time se-
ries before decomposition, changes in amplitude or piece-
wise linear and nonlinear trends may have an impact on our
analyses. First, we aggregated original 0.05° data to match
our 0.5° spatial resolution by averaging. We then determined
0.5° pixels with > 25 % gain or loss of trees, short vege-
tation, or bare ground and assessed whether the observed
changes in land cover (Song et al., 2018) were reflected in
the NDVI time series to a degree that substantially affected
the classification of dominant oscillation regimes.

2.7 Comparison of Fourier transform with empirical
mode decomposition

While the FFT approach is the most classical time series
decomposition technique, there are more data-adaptive al-
ternatives available (Huang et al., 1998; Ghil, 2002; Palu§
and Novotnd, 2008). In order to understand whether differ-
ent methods would lead to different insight, we compared the
employed FFT approach with the more data-adaptive empir-
ical mode decomposition (EMD). EMD repeatedly extracts
subsignals (intrinsic mode functions, IMFs) from the time
series by interpolating a spline between local minima and
maxima until the residuals converge to approximately con-
stant values (Huang et al., 1998). We used an ensemble-based
modification of the EMD algorithm, the complete ensemble
empirical mode decomposition with adaptive noise (CEEM-
DAN, Colominas et al., 2014; Torres et al., 2011), and a
frequency-binning approach to obtain frequency bands com-
parable to the ones chosen for FFT. In contrast to the regular
EMD, CEEMDAN employs an ensemble approach in which
noise is added to the data before decomposition and ensem-
ble averages for each IMF are returned, so that a more ro-
bust end result is obtained (Colominas et al., 2014; Torres
et al., 2011). Briefly, in CEEMDAN each IMF is computed
as the mean of an ensemble of IMFs retrieved from noisy
data copies. This IMF is subtracted from the original signal,
and the residual signal is used as input for retrieving the next
IMF (Colominas et al., 2014; Torres et al., 2011). As such,
CEEMDAN is less prone to mode mixing than EMD while
still fulfilling the completeness property of EMD (i.e., the
sum of all IMFs equals the original signal). As IMFs result-
ing from EMD do not have a fixed frequency assigned, we
then associated each IMF with a timescale by measuring the
distance between all local maxima and minima as a proxy for
the dominating wavelength of the signal. Distances between
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each two maxima or minima were classified as short-term,
seasonal, or longer-term depending on their length. The IMF
was then categorized by the majority distance category and
added into the respective timescale bin. For example, if an
IMF contained 25 seasonal cycles and 5 short-term cycles, it
was classified as seasonal and added to the seasonal signal
bin. IMFs in each bin were combined by summation.

3 Results
3.1 Time series variance across timescales

Assessing the contribution of each timescale subsignal to the
signal variance at each grid cell, we find that for NDVI most
of the temporal variability is expectedly captured by the sea-
sonal cycle (71 % of the global variance), especially above
the Tropic of Cancer (23.5°N) (Fig. 1, Table S2). Short-
term oscillations contribute dominantly in parts of tropi-
cal America and Southeast Asia, while longer-term compo-
nents are mainly observed in Australia, South Africa, parts
of Argentina, and northern Mexico. Specifically, short-term
and longer-term signals together contribute 27 % of the to-
tal NDVI variance globally and 38 % in the equatorial region
(23.5°N to 23.5°S).

Similarly, Ty is strongly dominated by seasonal oscilla-
tions in the extratropics above/below 23.5° N/S (94 % and
90 %, respectively, Table S2) as would be expected. Even
in the tropics, short-term and longer-term components con-
tribute only 30 % of the variance (and 11 % and 4 % of global
variance, respectively, Table S2). In contrast, short-term os-
cillations dominate global precipitation variance before the
seasonal cycle (52 % and 41 % of global variance each, Ta-
ble S2). An east—west gradient of precipitation over Eurasia
stands out, changing from predominantly short-term to pre-
dominantly seasonal signal variance. In the tropics, a sim-
ilar contribution from both oscillations is found (42 % and
41 %, respectively, Table S2). Linear trends removed before
FFT decomposition had a minor influence on overall vari-
ance (Fig. 1). In summary, short-term and longer-term signals
show substantial, regionally focused contributions to signal
variance. These regions differ between variables, suggesting
complex patterns of temporal interaction.

3.2 Classification of co-oscillations regimes

Given the contrasting, spatially heterogeneous patterns ob-
served in different variables in Fig. 1, we investigated how
scale-specific oscillations of biosphere and climate co-occur
globally. We combined the dominant scale of variability for
each variable in each grid cell (Fig. S4) and found that 84.5 %
of the assessed area is dominated by seasonal oscillations of
NDVI, 9 % by short-term oscillations in NDVI, and 6.5 %
by longer-term oscillations in NDVI (0.03 % captured by the
trend). Combining the maps for all three variables into a
map of codominant oscillation regimes (Fig. 2, Table S3),
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we find that seasonal NDVI regimes co-occur predominantly
with seasonal Ty, as well as seasonal or short-term Prec
regimes (blue regions). Dominant seasonal cycles of NDVI
and Ty, as well as fast oscillation regimes in Prec, are ex-
pected over large parts of the globe, which is reflected by
the large extent of the AAS and AAA classes in this anal-
ysis. Beyond this expected solar-cycle-induced behavior, a
number of differentiated oscillation classes stand out: short-
term NDVI oscillations occur mainly in the South American
and Asian tropics, in a multitude of combinations with pre-
dominantly seasonal or short-term 7y;; and Prec (light-green,
red, and light-red regions). Longer-term oscillation regimes
of NDVI co-occur with seasonal T,;; and short-term Prec
regimes (dark green regions) around southwestern Africa,
southeastern South America, and Australia. Interestingly, the
dominant scales in climatic variables are not always associ-
ated with similar dominant regimes in NDVI dynamics, sug-
gesting complex or additional driving mechanisms in these
heterogeneous regions. In fact, even in areas where tempera-
ture or precipitation has a seasonal cycle, NDVI can be dom-
inated by short-term or longer-term oscillations: more than
90 % of the area with short-term NDVI regimes exhibits pre-
dominantly seasonal Ty;, of which 36 % also shows predom-
inantly seasonal Prec (SAA) and 55 % predominantly short-
term Prec (SAS, Table S3). All areas where NDVI is predom-
inantly longer term are classified as seasonal Ty;; and short-
term Prec regimes (LAS, Table S3).

To account for the influence of clouds and snow cover
in the GIMMS NDVI record, especially in the tropics and
northern regions, we excluded time points where pixels con-
tained a high proportion of gap-filled values. We found that
overall less than 1.5% of pixels changed their dominant
oscillation class when only pixels with more than 0.7 di-
rect observation fraction were considered. Even when the
highest-quality threshold was applied (0.95 direct observa-
tion fraction), only 2.6 % of pixels changed dominant oscil-
lation class (Fig. S5). Short-term pixels were the most af-
fected by changes in dominant oscillation (12.9 % and 20.8 %
for 0.7 and 0.95 direct observation thresholds respectively),
while seasonal pixels showed the highest fraction of gap-
filling overall (Fig. S5). As a further validation, we found
very similar results when repeating the time series decom-
position and the dominant oscillation regime classification
based on EVI and NDVI from MODIS (Didan et al., 2019;
Huete, 1997; Huete et al., 2002) for the years 2001-2015
(Fig. S6).

We investigated to what extent our classification into os-
cillation regimes shows patterns of temporal vegetation—
climate relations that are not represented by conventional
static classifications of the land surface. To determine over-
lap and differences between the classification of tempo-
ral vegetation—climate co-oscillations with static classifica-
tions of land cover (GLC2000) and Koppen—Geiger climate
classes, we assessed their spatial association by the V mea-
sure (Nowosad and Stepinski, 2018). The V measures of co-
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Figure 1. Global distribution of timescale-specific variance (relative spectral powers) of the normalized difference vegetation index (NDVI),
air temperature (74;;), and precipitation (Prec). Normalized time series of NDVI, T,;;, and Prec (columns) were decomposed by fast Fourier
transformation and reconstructed into short-term (intra-annual), seasonal (annual), and longer-term (interannual) components (rows). The
relative contribution of each scale-specific signal to overall variance was determined at each grid cell. Globally, most of the variance of
NDVI and Ty, is contained in the seasonal component (red colors), while Prec shows a high contribution of variance from the short-term
component. The semiannual cycle is included in the seasonal band. Upper-right-corner values show the percentage of overall variance

explained by each timescale.

oscillation regimes with Koppen—Geiger and GLC2000 were
V =0.17 and V = 0.11, respectively, indicating weak asso-
ciation with both static classifications. Hence, our classifica-
tion contains information largely complementary to the com-
pared climate and land cover classifications. Yet we observed
a slightly stronger association with Képpen—Geiger than with
GLC2000, also when comparing homogeneity and comple-
mentarity (Table S4). Comparing the three classifications
among each other, we find that dominant temporal patterns in
NDVI can be linked to certain land cover types such as shrubs
and broadleaf forest: Sankey diagrams (Fig. 2b and c) dis-
play which proportion of land surface is commonly classified
across different class combinations in the three data layers
of the co-oscillation regime, GLC2000, and K&ppen—Geiger
for evergreen broadleaf forest (EBF, Fig. 2b) and areas domi-
nated by longer-term NDVI (Fig. 2c). We find that EBF is the
most diverse among land cover classes in terms of our tempo-
ral classification, with 35 % dominated by short-term NDVI
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oscillation (Fig. 2b). In contrast, more than 95 % of decidu-
ous and evergreen needleleaf forests (DNF and ENF) and de-
ciduous broadleaf forests (DBF) are dominated by seasonal
NDVI regimes (Table S3). We further find a strong associa-
tion of longer-term NDVI regimes with shrubs (21 % of the
area dominated by longer-term NDVI), herbaceous (26 %),
and sparse shrubs/herbaceous (49 %) land cover types in arid
regions (Fig. 2c, overall 93 % of the LAS area coincides
with Koppen—Geiger class B). Thus, differences within and
among land cover and climate types exist when assessing
temporal co-oscillations of vegetation and climate.

3.3 Assessment of land cover change on time series
decomposition

In the above analyses we did not aim to explicitly detect the

effect of land cover or land use change (LCLUC), but never-
theless LCLUC could have an influence on our NDVI classi-

www.biogeosciences.net/17/945/2020/



N. Linscheid et al.: Multiscale vegetation—climate dynamics 951

(a)

80°N I Other
FASA G
o
o
3
40°N FASS
3
rS.L.S z
FrTAS <
2
$SS ®
0° S
SAA &
€
LAS &
£
SAS €&
o
G AAA B
AAS
180° 120°W 60°W 0° 60°E 120°E 180°
(b) (c)
SsS WarmTemp WarmTemp
[ ]
SAA > < | Hb_closedopen
&
o . _—
SAS
1 )
€
< ] =
b3 o |
; x (HbSh_sparse| [%] Arid
=l EBF g « [ ]
E (Equatorial] <
< AAA
® DSh
— o DBF_open . - -
AAS GLC FFT Képpen-
o Arid| Geiger
e - s Land cover ‘ Deciduous broadleaved forest open Herbaceous closed open
ggigz': classes Sparse herbaceous or shrubs Deciduous shrubs

Figure 2. Classification of land surface by dominant scale of variability in NDVI and climate, and its relation to land cover and mean
climate. (a) Dominant scale of variability was determined for NDVI, T, and Prec separately for each grid cell and summarized as unique
combinations between variables (S — short term, A — seasonal, L — longer term, T — trend, listed in the order of NDVI, Ty, and Prec). Only
the 11 most common classes are shown. The semiannual cycle is included in the seasonal band. (b, ¢) Sankey diagrams (river plots) showing
associations of pixels for (b) evergreen broadleaf forest (EBF) and (c¢) regions of dominant long-term oscillations in NDVI (LAS class) to
oscillation regime (FFT), land cover class (GLC2000), and K&ppen—Geiger (KG) climate class. The width of the ribbons is proportional
to the area that is commonly classified into the corresponding GLC2000, KG, or oscillation classes. DBF: deciduous broadleaf forest;
Hb_closedopen: herbaceous closed open land cover; DSh: deciduous shrublands; HbSh_sparse: sparse herbaceous and shrub vegetation;
Equatorial: KG class A; Arid: KG class B; WarmTemp: KG class C; NDVI: normalized difference vegetation index; T,j;: air temperature;
Prec: precipitation.

fication (Fig. 2). We assessed whether changes in vegetation Fensholt et al., 2015): at 0.5° resolution, most pixels rep-
cover over the 30-year period severely affected our classifi- resent mixed signals which obscure most of the details that
cation by inspecting pixels with > 25 % change in the frac- would allow for detecting land cover changes. In those pix-
tion of trees, short vegetation, or bare ground according to els where we did see a clear progression in NDVI over time,
Song et al. (2018). Notably, very few of such pixels showed the method did adequately capture this progression, e.g., by
marked signs of land cover change reflected in NDVI time correctly reflecting an increasing amplitude of the seasonal
series at all, which is likely due to the coarse spatial reso- cycle and/or shifting baseline (Fig. S7). However, the ma-
lution of the data used in this study as compared to previ- jority of such pixels with pronounced positive or negative
ous studies focused on detecting LCLUC (Song et al., 2018; NDVI progression were located in agricultural areas or ar-
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eas of urbanization, which had a priori been excluded from
downstream analyses. Overall, the change in vegetation over
time did not have a widespread influence on the classification
of dominant scale and oscillation regimes at the given spatial
resolution.

3.4 Correlations of NDVI with climate on multiple
scales

To inspect relationships of vegetation with climate at multi-
ple timescales, we correlated NDVI with Ty and Prec at each
pixel for each timescale (Fig. 3). We found different correla-
tion patterns depending on the timescale: while all possible
combinations of correlation between NDVI and T,;; or Prec
exist at the seasonal scale, short-term and longer-term scales
show predominantly 7y;; + /Prec— or Ty — /Prec+ relation-
ships. On the seasonal scale, NDVI correlates positively with
T,ir and Prec above 40° N, whereas in the other latitudes all
possible relations are observed. In particular, South America
shows a highly diverse pattern of correlations. Differences
exists across the tropics, where South America and Southeast
Asia display mainly negative correlation with Prec, whereas
African tropics display positive correlation with Prec. Semi-
arid regions show negative correlations with Ty;r as would be
expected. While some of the patters are known, this correla-
tion of decomposed oscillations reveals a more differentiated
picture of ecosystem variability in comparison with the un-
decomposed data (Fig. S8). Notably, correlations on short-
and longer-term scales partially show opposite signs com-
pared to the seasonal scale, e.g., in South America, south-
ern Africa, and Central America. Repeating the analysis with
Spearman correlation and partial correlation returned similar
results (Figs. S9 and S10). Due to the known saturation ef-
fects of NDVI against plant productivity over areas of dense
biomass, we repeated the analysis with MODIS EVI. We
found overall similar results across timescales, but correla-
tions with Ty turned from negative to positive in parts of
Central and South America, as well as India (Fig. S11), in-
dicating that NDVI saturation may affect the results obtained
from GIMMS long-term records in some areas.

We again compared the observed patterns with vegeta-
tion types, to understand how different ecosystems react
at different timescales, and found that different land cover
classes showed distinct correlation patterns (Fig. 3b and c).
Broadleaf evergreen forest shows the most diverse correla-
tions on a seasonal scale (Fig. 3b). For short-term oscil-
lations, the strongest correlations were found in semiarid
shrublands and savannas, which spatially coincide with pat-
terns observed in the longer term: for longer-term oscilla-
tions, the strong correlation Prec+ and T,;;— was again re-
lated primarily to shrublands and savannas (Fig. 3a blue ar-
eas, Fig. 3c). We also observed a widespread positive longer-
term correlation of NDVI with Ty, in the northern latitudes.

Comparing with static classifications, we found that
Koppen—Geiger climate classes had the most prominent dif-
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ferentiating effect for correlation patterns, and different cli-
mate classes occupy distinct patterns in this correlation space
across scales (Fig. S12). Different land cover types generally
show similar correlations within one climate zone, but ex-
ceptions exist (Fig. S13). Most prominently, EBF shows the
most heterogeneous, spatially varying correlations on a sea-
sonal scale. All land cover types show a confined correlation
pattern of mainly Tyi+ /Prec— or T,ir — /Prec+ at the longer-
term scale (Fig. 3¢), which is further differentiated by climate
zone (Fig. S14).

Assessing correlations across the different timescales, we
find that the majority of northern temperate regions (Koppen
class D) are positively correlated with Ty on all timescales,
but correlation with Prec varies (zero for short-term and
longer-term as well as seasonal scale: generally negative on
the coast, positive in the interior continent). The equatorial
region, South America, Africa, and Southeast Asia exhibit
different correlation patterns with climate despite similar
land cover types (tropical forest). In some regions, opposing
correlations can be observed across timescales (Fig. 4a). For
example, correlation of NDVI with Tj;; in southern Africa
varies from negative on the short-term scale to positive on the
seasonal scale and back to negative on the longer-term scale.
As another example, on the east coast of Australia, NDVI
has a low correlation with precipitation on the seasonal scale
but high in the longer term. Assessing this globally, corre-
lations between NDVI and T,; show inverted signs between
seasonal and longer-term scales in 15.4 % of the vegetated
land surface area (Fig. 4a and c). The same is true for NDVI
and Prec in 27.3 % of the vegetated land surface area (Fig. 4b
and ¢).

In summary, we find that correlations between NDVI and
climate variables can change strongly between timescales.
Semiarid ecosystems show most prominent short-term and
longer-term signatures, while tropical rainforest show the
most diverse relationships between variables. These patterns
point to complex ecosystem responses to climate at differ-
ent timescales, indicating that scale-specific ecosystem char-
acterization is necessary to fully understand their temporal
dynamics.

3.5 Comparison of fast Fourier transformation with
empirical mode decomposition

FFT decomposes a signal in the frequency domain under
the assumption that the underlying signals are sinusoidal,
time-invariant, and additive (Brockwell and Davis, 2006).
Although resulting power spectra and frequency-invariant
modes of oscillation are conveniently interpretable, not all
ecological processes can be expected to follow regular peri-
odic and additive oscillatory patterns approximated by sine
and cosine waves over time. We chose FFT decomposition
due to its superior computational speed and stable global ap-
plicability, i.e., its ability to return homogeneous spatiotem-
poral patterns in our analysis. To ensure that the above limita-
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Figure 3. Global distribution of timescale-specific correlation of NDVI with air temperature (7,j;) and precipitation (Prec). (a) Correlations
of NDVI with Tj;; and NDVI with Prec were calculated between decomposed signals at each grid cell. NDVI was lagged one time step
(15d) behind precipitation to allow for the response time; T,j was correlated instantaneously. Color scale represents both correlations,
binned into quantiles (e.g., purple — high positive correlation of NDVI with both T,;; and Prec, green — high negative correlation of NDVI
with both Ty;, and Prec). Data points with NDVI < 0.2 were excluded to avoid influence of inactive vegetation or nonvegetated time points.
(b, ¢) Correlations for different land cover classes (GLC2000) in the seasonal (b) and longer-term (c) scale.
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ature (a), NDVI and precipitation (b), and summary of both (¢). Areas in which the sign of the correlation is inverted between seasonal and
longer-term scales are highlighted in color, and areas where the sign of the correlation is identical between scales are highlighted in gray (a,
b). Areas with correlations between —0.2 and 0.2 were not considered.

tions did not confound our results, we compared the FFT ap-
proach to the data-adaptive empirical mode decomposition,
which could be expected to be better suited for exploring
nonstationary ecological processes over time. In a test case
over Europe, we found that our binning approach resulted
in comparable results for the two methods, in terms of both
spatial and temporal behavior of the signals (Figs. S15-S18).
CEEMDAN generally attributed slightly less signal variance

Biogeosciences, 17, 945-962, 2020

to the short-term and slightly more to the seasonal cycle for
both T,y and NDVI and generally showed less modulation
in the longer-term signals. Nevertheless, overall results were
remarkably comparable. However, because CEEMDAN is
a data-adaptive method a higher spatial heterogeneity and
spatially varying sensitivity to the noise parameter were ob-
served, which currently constrains a global implementation
of the analysis.
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4 Discussion

In this study, we present a global characterization of bio-
sphere variability at multiple timescales from weeks to
decades where a natural surface classification emerges. We
find that a substantial fraction of terrestrial ecosystems is
characterized by either short- or longer-term NDVI oscilla-
tions (27 % of variance globally). The grid cells dominated
by longer-term oscillations in NDVI concentrate mainly in
semiarid shrublands, and the short-term-dominated grid cells
concentrate mainly in equatorial latitude forests. Patterns in
NDVI, air temperature, and precipitation variability are spa-
tially heterogeneous: the classification of codominant oscil-
lations is particularly homogeneous for temperate and boreal
regions, while the tropics exhibit complex patterns of codom-
inating timescales in vegetation and climate. This lack of cor-
respondence in dominant temporal oscillations suggests that
certain modes of variability in ecosystem—atmosphere inter-
actions can be potentially induced by different exogenous, or
even endogenous, dynamics. This picture is further differen-
tiated by the finding that correlations between NDVTI and cli-
mate variables differ between timescales. This highlights the
need to assess vegetation sensitivity to climate specifically
on different scales in order to understand complex patterns of
atmosphere—biosphere interactions in time, where also con-
founding factors should be considered.

4.1 Comparison across timescales points to complex
temporal signatures

The combination of timescale-specific classification (Fig. 2)
and correlation (Fig. 3) allowed us to characterize the ma-
jor scales of vegetation variability in relation to climate.
The classification provides an additional layer of ecosystem
characterization beyond common classifications such as land
cover classes or the effective Koppen—Geiger climate classi-
fications (Kottek et al., 2006; Koeppen, 1900; Geiger, 1954),
which only consider seasonality besides mean climate states,
increasing our understanding of dynamic vegetation prop-
erties across timescales. The complementarity of this data-
driven classification of vegetation dynamics, extracted from
the time series and summarized in the co-oscillation classi-
fication, is supported by the low spatial association calcu-
lated from the V measure. Our findings show that the domi-
nant oscillation of NDVI is often, but not always, related to
dominant oscillations of Ty;; and Prec (Fig. 2). For example,
most of the land surface is dominated by annual oscillations
in NDVI and T,;;, combined with either seasonal or short-
term dominance of Prec (AAA and AAS classes). In many of
these regions, air temperature alone or both air temperature
and precipitation are limiting factors for plant growth (Ne-
mani, 2003; Seddon et al., 2016) and thus expected to drive
vegetation dynamics. In contrast, heterogeneous spatial pat-
terns are observed in equatorial and semiarid regions, where
different dominant scales of oscillation are found for NDVI
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and climatic variables. Here, the relationship between vari-
ables may depend on additional factors, and/or scales may
show interactive effects. In the tropics, radiation is proposed
to be one of the main drivers of NDVI (Nemani, 2003; Sed-
don et al., 2016), which could partially explain the lack of
temporal coherence between NDVI, Ty, and Prec. Dominant
short-term oscillations of NDVI (SSS, SAS, SAA) might be
explained by climate intraseasonality in the tropics due to
the Madden—Julian Oscillation (MJO). The MJO is defined
as anomalies in the atmospheric pressure between 10° N and
10° S in the Indian Ocean region that propagate eastward to
the eastern Pacific (Madden and Julian, 1971). Depending on
the region and phase, its oscillatory period ranges between
20 and 90d. MJO is considered the dominant component of
intraseasonal climate variability in the tropics (Zhang, 2013).
We see MJO as one feasible driver of short-term NDVI oscil-
lations through alterations of precipitation and temperature
(Zhang, 2013; Hidayat, 2016; Mayta et al., 2019). However,
MIJO impacts, teleconnections, and predictability are still in-
sufficiently understood (Zhang, 2013; Wang et al., 2019).
Short-term oscillations of vegetation in those regions need to
be further investigated, including other sources of intrasea-
sonal variation, connections with climatic events, and data
constraints. Additionally, regional analysis at higher spatial
resolution might reveal details in local climatic variability, as
well as other nonclimatic processes such as land use change
or crop rotations, among others. Comparing variables across
multiple timescales can point to areas with complex temporal
signatures that require further attention.

4.2 Nondominant subsignals reveal short- and
longer-term ecosystem dynamics

From assessing relationships among variables on multiple
timescales, we conclude that (i) nondominant subsignals in
climate variables may dominate the biospheric response,
(ii) possible links may exist between short-term and longer-
term scales, and (iii) correlations of NDVI with climate vari-
ables differ between scales.

The dominance of long-term NDVI in semiarid regions co-
incides with strong correlations of longer-term NDVI with
Prec (positive) and Ty;; (negative). This indicates that longer-
term variation in precipitation exerts a strong influence on
NDVI variability in these regions despite contributing a mi-
nor portion of precipitation variation itself. Overall, longer-
term correlation of precipitation with NDVI is higher than
seasonal correlation (by at least 0.2) in 73 % of the area
classified as LAS, where simultaneously longer-term vari-
ance of precipitation itself contributes < 20 % of the vari-
ance (3939362km?). Due to their highly plastic interan-
nual vegetation dynamics, semiarid ecosystems exert a strong
influence on interannual variability of the land CO; sink
(Ahlstrom et al., 2015; Poulter et al., 2014; Zhang et al.,
2016). Longer-term correlations between variables also show
broad patterns related to temperature-induced greening in the
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northern latitudes (Pan et al., 2018; Keenan and Riley, 2018;
Zhu et al., 2016; Park et al., 2016). This is in agreement
with previous findings using higher-resolution data (Clinton
et al., 2014). Thus, nondominant subsignals in climate vari-
ables may dominate the biospheric response, stressing their
possible long-term impact on vegetation dynamics.

Vegetation may respond to interannual climate variation
on both intra- and interannual scales (Meir et al., 2018). Such
interannual climate variation may occur, e.g., in the form of
precipitation variation or periodic atmospheric fluctuations
like the El Nifo—Southern Oscillation (ENSO, Poveda and
Salazar, 2004; Kogan and Guo, 2017; Liu et al., 2017), the
Pacific Decadal Oscillation (Chen et al., 2017), or Indian
Ocean dynamics (Hawinkel et al., 2015). As a prominent
example in our study, for semiarid regions both short- and
longer-term correlations indicate a strong coupling to vari-
ations in water availability for shrublands and herbaceous
land cover. These results harmonize with the observed fast
response of vegetation to water deficit in arid and semiarid
regions (Vicente-Serrano et al., 2013; Wang et al., 2016), as
well as the observation of strong water memory effects in
these regions (Liu et al., 2018). Some of these patterns match
regions where vegetation is stressed during ENSO events due
to precipitation decrease (Ahlstrom et al., 2015; Kogan and
Guo, 2017), generating a possible link between short-term
and longer-term scales. Previous studies suggest that climate
forcing on one timescale can be amplified or dampened in
corresponding vegetation responses (Stoy et al., 2009), or
transferred to another timescale (Katul et al., 2001), preserv-
ing the system’s entropy but creating complex interactions
across scales. This highlights the need to further investigate
interactions between different timescales globally in long-
term EO records.

Finally, for some regions the correlation of variables can
differ between timescales. In southern Africa, for example,
this may be due to a pronounced temperature-dependent an-
nual cycle of vegetation but a longer-term negative effect
of warming temperatures on vegetation productivity. Thus,
time series decomposition offers important differentiation of
atmosphere—biosphere covariation across scales. This may
serve as a platform for generating hypotheses in areas where
contrasting dominant oscillations and/or correlations across
scales are observed.

4.3 Differences between land cover classes highlight
the tropics

By characterizing the temporal behavior of NDVI and cli-
mate, we observed different vegetation dynamics between
land cover types. Differences in power spectra between
plant functional types have been shown before on shorter
timescales with flux data (Stoy et al., 2009). Assessing this
phenomenon globally, we find both homogeneous and het-
erogeneous behavior within land cover types, showing non-
trivial global patterns of the influence of land cover and cli-
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mate on vegetation variability across scales. For example,
36 % of evergreen broadleaf forests are dominated by short-
term oscillations in NDVI, while other forest types are dom-
inated almost exclusively by seasonal NDVI oscillations. In-
deed, the most heterogeneous patterns of codominating os-
cillations and correlations were found for tropical regions,
within and across continents. In African tropics, NDVI is
predominantly seasonal and correlation of NDVI with pre-
cipitation is always positive, while in most of the remaining
tropics, NDVI is dominated by short-term oscillations and
shows a predominantly negative correlation with Prec on a
seasonal scale in the central Amazon and Southeast Asian
tropical forests. This could be explained by different amounts
of mean annual precipitation (MAP) falling in these regions,
which cause a pronounced wet—dry seasonality in Africa and
the central Amazon but not in the northwest or outer regions
of the Amazon and SE Asia where MAP is in excess of an-
nual vegetation water demand (Guan et al., 2015). In such
areas, correlation with Prec may, e.g., become negative when
water is already in excess and clouded/rainy seasons cause
limitation in radiation available for plant growth. Similarly,
temperature is not usually limiting canopy development in
the tropics (rather the contrary, Huang et al., 2019), which
may explain negative correlations with Tyi. As NDVI sat-
urates over regions of dense vegetation, results in the trop-
ics need to be interpreted with caution, and negative corre-
lation with Ty could alternatively be explained by under-
estimation of the seasonal cycle over tropical EBF. In fact,
negative correlations with T,i were observed less frequently
when repeating the analysis with MODIS EVI (Fig. S11), in-
dicating that saturation of NDVI against plant productivity
might affect our results in densely vegetated areas such as
the tropics. Overall, despite known drawbacks of NDVI as a
proxy for plant productivity, the long-term NDVI record gen-
erally agrees well with results obtained from the considerably
shorter EVI time series, suggesting that it is a good proxy for
vegetation activity across timescales over large parts of the
global land surface.

It is relevant to emphasize that our results might be af-
fected by noise related to the continuous presence of clouds
in the tropics and other atmospheric artifacts. To estimate this
effect, we excluded pixels with a low number of direct ob-
servations and recalculated the dominant oscillation regime.
Short-term oscillations were most affected in this analysis,
but roughly 80 % were consistently dominated by short-term
oscillation under the strictest scenario, providing higher con-
fidence in our results for the tropics (Fig. S5).

The observed scale-specific patterns highlight the need to
assess dynamic vegetation properties in time as differentiat-
ing factors beyond land cover type and mean climate.
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4.4 Results prove robust against changes in data source
and decomposition method

We used long-term GIMMS NDVI records in combination
with Fourier transformation in this analysis, well aware of
their potential limitations (van Leeuwen et al., 2006; Beck
et al., 2011; Fensholt and Proud, 2012; Pinzon and Tucker,
2014). Further consolidating our results against methodolog-
ical artifacts of the data source and decomposition method,
we found that results were not broadly affected or conclu-
sions changed when repeating analyses with MODIS NDVI
and EVI or empirical mode decomposition, when exclud-
ing gap-filled values as discussed above, or when testing
the effect of land use change on decomposed oscillations.
Specifically, the analysis of MODIS NDVI and EVI returned
a similar classification of dominant timescales in vegeta-
tion (Fig. S6). Although short-term oscillations in tropical
NDVI may partly reflect noise introduced by cloud cover,
heavy aerosol conditions, and biomass burning, our results
based on EVI, which is less sensitive to aerosols and haze
(Miura et al., 2012), resulted in even more, rather than less,
pixels being classified into the short-term oscillation regime
(Fig. S6). However, dense clouds are still a limitation when
optical remote sensing data are used. EMD decomposition
consistently reproduced results of FFT in space and time
for all variables (Figs. S15-S18). Excluding gap-filled values
originating from snow or cloud inference from the GIMMS
NDVI dataset changed the dominant oscillation for only up
to 2.3 % of pixels overall, and 20 % of short-term classified
pixels, when the strictest threshold was applied (Fig. S5).
Land cover and land use change were hardly detectable at the
coarse spatial resolution of 0.5° employed and had a minor
effect on the distribution of signal variance to the different
timescale (Fig. S7). In summary, our results proved robust
against data source and decomposition method.

4.5 Limitations and outlook

The current study presents a first global characterization
of atmosphere—biosphere variability at multiple timescales
from weeks to decades. We chose the longest available
satellite-retrieved time series of vegetation, GIMMS NDVI,
to be able to assess relations of atmosphere—biosphere co-
variability over more than three decades. We find hetero-
geneous temporal patterns of biosphere—climate responses
across timescales. Known limitations of NDVI include sat-
uration effect at high canopy cover, especially relevant in the
tropics, as well as influence by soil reflectance in sparsely
vegetated areas. These effects could thus influence our re-
sults and the emerging patterns should be compared with
newer satellite products such as Sun-induced fluorescence
(SIF), which are coupled more directly to plant physiology
and photosynthesis (Badgley et al., 2017; Koren et al., 2018)
but are only available for short time periods. Considering fur-
ther variables influencing vegetation dynamics, such as radi-
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ation, cloud cover, soil moisture, fires, or storms could bring
additional insight into the drivers of vegetation dynamics, es-
pecially for poorly explained regions in the current analy-
sis, such as the tropics. In future studies, longer-term climate
signals could be compared with climate oscillations such as
ENSO to gain further understanding of their effect on long-
term ecosystem variability.

Analysis of time lag effects between atmospheric forcing
and vegetation response may bring additional valuable in-
sight into ecosystem functioning, yet assessing meaningful
time lags across timescales is challenging due to a variety
processes involved. Plausible time lags from months to years
have been suggested between climate forcing and vegetation
response and/or ecosystem carbon exchange through direct
and indirect effects (e.g., Braswell et al., 1997, 2005; Vuk-
icevic et al., 2001; Krich et al., 2019; Kraft et al., 2019; Papa-
giannopoulou et al., 2017). Assessing lagged vegetation re-
sponses across timescales may help to disentangle such co-
existing time lags to form a global, timescale-resolved pic-
ture of vegetation responses to climate. To account for the
confounding effect of autocorrelation and spurious links be-
tween variables, methods like causal inference (Runge et al.,
2013, 2019; Krich et al., 2019) should be applied in order to
retrieve causal time lags between variables.

Our analyses are conducted at 0.5° spatial and 15d tem-
poral resolution, which may obscure short-term and local
vegetation—climate relations, and instead only provide aver-
age relationships of variables within each grid cell. Our anal-
yses may thus not be representative in heterogeneous land-
scapes such as coastlines or mountains. Regions standing out
through heterogeneous patterns, such as the Amazon, should
be further investigated regionally at higher temporal and spa-
tial resolution whenever consistent data streams permit this
to better understand local influence of climate, vegetation and
topography on atmosphere—biosphere covariation. Recently,
studies in the Amazon based on products such as SIF have
detected differences in vegetation anomalies within the basin
during El Nifio events (Koren et al., 2018). The identified
asymmetry in the east—west gradient coincides with observed
changes in temperature, soil moisture, and GRACE-derived
water storage. Our results pave a way for better understand-
ing the spatial heterogeneity of ecosystem responses to cli-
mate variability (van Schaik et al., 2018). Here, assessing
temporal patterns beyond correlation (see Wu et al., 2015)
will provide additional insight into the temporal evolution of
vegetation dynamics and the carbon cycle variability.

5 Conclusions

In conclusion, decomposing vegetation and climate time
series into discrete subsignals allows us to disentangle
atmosphere—biosphere oscillations from short- to longer-
term timescales. A key finding is that short-term and longer-
term modes of variability can dominate regional patterns
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of ecosystem dynamics: 18 % of land area is effectively
characterized by intra-annual variability and 9 % by longer-
term modes of NDVI. We derived a global map of domi-
nant patterns of vegetation—climate covariability on multiple
timescales. The emerging classification of variability regimes
allows us to generate new hypotheses on land—atmosphere
interactions. In particular, we can now delineate areas with
complex spatiotemporal vegetation signatures. For exam-
ple, tropical evergreen forests are dominated by short-term
oscillations (36 %), while shrublands and herbaceous land
cover make up > 90 % of the area dominated by longer-
term NDVI, suggesting important roles in intra- and inter-
annual biosphere dynamics of these land cover classes. Im-
portantly, changing correlations of NDVI with climate across
timescales suggest that climate sensitivities of vegetation can
vary with timescale. Globally, 15.4 % of the land area shows
opposing correlation of NDVI to T, between annual and
long-term modes of variability, while 27.3 % shows opposite
correlations of NDVI and Prec. These findings underline the
relevance of advancing our understanding of scale-specific
climate sensitivities. In southern Africa, for instance, the re-
lation of vegetation to temperature is inverted across scales,
as well as in parts of Australia where the same is true for pre-
cipitation. Differentiating such responses is essential to fully
comprehend long-term biosphere dynamics and project them
into the future. Understanding the interaction of climate and
vegetation on separate timescales, warranting that indepen-
dent processes are not obscured by dominant ones, is essen-
tial in times where extreme climate conditions of increasing
frequency exert a repeated perturbing influence on ecosystem
dynamics (Defriez and Reuman, 2017). This needs to be con-
sidered for short- and long-term vegetation modeling under
changing climate scenarios.

Code and data availability. All remote sensing data are pub-
licly available from the respective supplier. The co-oscillation
classification (Fig. 2) is available as a NetCDF file from
https://doi.org/10.5281/zenodo.3611262 (Linscheid et al., 2019).
The code underlying all primary figures is made available as a sup-
plementary notebook from https://doi.org/10.5281/zenodo.3611262
(Linscheid et al., 2019) and in the Supplement.

Supplement. The supplement related to this article is available on-
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