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Abstract. A key challenge for biological oceanography is re-
lating the physiological mechanisms controlling phytoplank-
ton growth to the spatial distribution of those phytoplankton.
Physiological mechanisms are often isolated by varying one
driver of growth, such as nutrient or light, in a controlled
laboratory setting producing what we call “intrinsic relation-
ships”. We contrast these with the “apparent relationships”
which emerge in the environment in climatological data. Al-
though previous studies have found machine learning (ML)
can find apparent relationships, there has yet to be a sys-
tematic study examining when and why these apparent rela-
tionships diverge from the underlying intrinsic relationships
found in the lab and how and why this may depend on the
method applied. Here we conduct a proof-of-concept study
with three scenarios in which biomass is by construction a
function of time-averaged phytoplankton growth rate. In the
first scenario, the inputs and outputs of the intrinsic and ap-
parent relationships vary over the same monthly timescales.
In the second, the intrinsic relationships relate averages of
drivers that vary on hourly timescales to biomass, but the ap-
parent relationships are sought between monthly averages of
these inputs and monthly-averaged output. In the third sce-
nario we apply ML to the output of an actual Earth system
model (ESM). Our results demonstrated that when intrin-
sic and apparent relationships operate on the same spatial
and temporal timescale, neural network ensembles (NNEs)
were able to extract the intrinsic relationships when only
provided information about the apparent relationships, while
colimitation and its inability to extrapolate resulted in ran-
dom forests (RFs) diverging from the true response. When
intrinsic and apparent relationships operated on different

timescales (as little separation as hourly versus daily), NNEs
fed with apparent relationships in time-averaged data pro-
duced responses with the right shape but underestimated the
biomass. This was because when the intrinsic relationship
was nonlinear, the response to a time-averaged input dif-
fered systematically from the time-averaged response. Al-
though the limitations found by NNEs were overestimated,
they were able to produce more realistic shapes of the actual
relationships compared to multiple linear regression. Addi-
tionally, NNEs were able to model the interactions between
predictors and their effects on biomass, allowing for a qual-
itative assessment of the colimitation patterns and the nutri-
ent causing the most limitation. Future research may be able
to use this type of analysis for observational datasets and
other ESMs to identify apparent relationships between bio-
geochemical variables (rather than spatiotemporal distribu-
tions only) and identify interactions and colimitations with-
out having to perform (or at least performing fewer) growth
experiments in a lab. From our study, it appears that ML can
extract useful information from ESM output and could likely
do so for observational datasets as well.

1 Introduction

Phytoplankton growth can be limited by multiple environ-
mental factors (Moore et al., 2013) such as macronutri-
ents, micronutrients, and light. Limiting macronutrients in-
clude nitrogen (Eppley et al., 1973; Ryther and Dunstan,
1971; Vince and Valiela, 1973), phosphorus (Downing et
al., 1999), and silicate (Brzezinski and Nelson, 1995; Dug-
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dale et al., 1995; Egge and Aksnes, 1992; Ku et al., 1995;
Wong and Matear, 1999). Limiting micronutrients can in-
clude iron (Boyd et al., 2007; Martin, 1990; Martin and
Fitzwater, 1988), zinc, and cobalt (Hassler et al., 2012). Ad-
ditionally, limitations can interact with one another to pro-
duce colimitations (Saito et al., 2008). Examples of this in-
clude the possible interactions between the micronutrients
iron, zinc, and cobalt (Hassler et al., 2012) and the inter-
action between nitrogen and iron (Schoffman et al., 2016)
such that local sources of nitrogen can have a strong influ-
ence on the amount of iron needed by phytoplankton (Mal-
donado and Price, 1996; Price et al., 1991; Wang and Dei,
2001). Spatial and temporal variations, such as mixed layer
depth and temperature, affect such limitations and have been
related to phytoplankton biomass using different functional
relationships (Longhurst et al., 1995).

Limitations on phytoplankton growth are usually charac-
terized in two ways – which we term intrinsic and appar-
ent. Intrinsic relationships are those where the effect of one
driver (nutrient/light) at a time is observed, while all others
are held constant (often at levels where they are not limiting).
An example of such intrinsic relationships is the Michaelis–
Menten growth rate curves that emerge from laboratory ex-
periments (Eppley and Thomas, 1969). Apparent relation-
ships are those which emerge in the observed environment.
An example of apparent relationships are those that emerge
from satellite observations, which provide spatial distribu-
tions of phytoplankton on timescales (say a month) much
longer than the phytoplankton doubling time, which can be
compared against monthly distributions of nutrients. A sig-
nificant challenge that remains is determining how intrinsic
relationships found in the laboratory scale up to the appar-
ent relationships observed at the ecosystem scale (i.e., scal-
ing the small to the large). Differences may arise between
the two because apparent relationships reflect both intrin-
sic growth and loss rates, which are near balance over the
long monthly timescales usually considered in climatolog-
ical analyses. Biomass concentrations may thus not reflect
growth rates. Differences may also arise because different
limitation factors may not vary independently.

Earth system models (ESMs) have proved valuable in link-
ing intrinsic and apparent relationships. The intrinsic rela-
tionships are programmed into ESMs as equations that are
run forward in time, and the output is typically provided as
monthly-averaged fields. The output of these ESMs is then
compared against observed fields, such as chlorophyll and
nutrients, and can be analyzed to find apparent relationships
between the two. If the ESM output is close to the observa-
tions we find in nature, we say that the ESM is performing
well. However, as recently pointed out by Löptien and Di-
etze (2019), ESMs can trade off biases in physical parame-
ters with biases in biogeochemical parameters (i.e., they can
arrive at the same answer for different reasons). Using two
versions of the UVic 2.9 ESM, they showed that they could
increase mixing (thus bringing more nutrients to the surface)

while simultaneously allowing for this nutrient to be more
efficiently cycled – producing similar distributions of surface
properties. However, the carbon uptake and oxygen concen-
trations predicted by the two models diverged under climate
change. Similarly, Sarmiento et al. (2004) showed that phys-
ical climate models would be expected to produce different
spatial distributions of physical biomes due to differences in
patterns of upwelling and downwelling, as well as the annual
cycle of sea ice. These differences would then be expected to
be reflected in differences in biogeochemical cycling, inde-
pendent of differences in the biological models. These stud-
ies highlight the importance of constraining not just individ-
ual biogeochemical fields, but also their relationships with
each other.

To help with constraining these fields, some researchers
have turned to machine learning (ML) to help in uncover-
ing the dynamics of ESMs. ML techniques are capable of
fitting a model to a dataset without any prior knowledge of
the system and without any of the biases that may come
from researchers about what processes are most important.
As applied to ESMs, ML has mostly been used to con-
strain physics parameterizations, such as longwave radiation
(Belochitski et al., 2011; Chevallier et al., 1998) and atmo-
spheric convection (Brenowitz and Bretherton, 2018; Gen-
tine et al., 2018; Krasnopolsky et al., 2010, 2013; O’Gorman
and Dwyer, 2018; Rasp et al., 2018).

With regard to phytoplankton, ML has not been explic-
itly applied within ESMs but has been used on phytoplank-
ton observations (Bourel et al., 2017; Flombaum et al., 2020;
Kruk and Segura, 2012; Mattei et al., 2018; Olden, 2000;
Rivero-Calle et al., 2015; Scardi, 1996, 2001; Scardi and
Harding, 1999) and has used ESM output as input for a ML
model trained on phytoplankton observations (Flombaum et
al., 2020). Rivero-Calle et al. (2015) used random forest (RF)
to identify the drivers of coccolithophore abundance in the
North Atlantic through feature importance measures and par-
tial dependence plots. The authors were able to find an appar-
ent relationship between coccolithophore abundance and en-
vironmental levels of CO2, which was consistent with intrin-
sic relationships between coccolithophore growth rates and
ambient CO2 reported from 41 laboratory studies. They also
found consistency between the apparent and intrinsic rela-
tionships between coccolithophores and temperature. While
they were able to find links between particular apparent rela-
tionships found with the RFs and intrinsic relationships be-
tween laboratory studies, it remains unclear when and why
this link breaks.

ML has been used to examine apparent relationships of
phytoplankton in the environment (Flombaum et al., 2020;
Rivero-Calle et al., 2015; Scardi, 1996, 2001), and it is rea-
sonable to assume that ML could find intrinsic relationships
when provided a new independent dataset from laboratory
growth experiments. However, it has yet to be determined un-
der what circumstances the apparent relationships captured
by ML have significantly different functional forms com-
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pared to the intrinsic relationships that actually control phy-
toplankton growth.

To investigate when and why the link between intrinsic
and apparent relationships break, we try to answer two main
questions in this paper:

1. Can ML techniques find the correct underlying intrinsic
relationships and, if so, what methods are most skillful
in finding them?

2. How do you interpret the apparent relationships that
emerge when they diverge from the intrinsic relation-
ships we expect?

In addressing the first question, we first needed to demon-
strate that we had a ML method that would correctly ex-
tract intrinsic relationships from apparent relationships. We
constructed a simple model in which the biomass is directly
proportional to the time-smoothed growth rate. In this sce-
nario, intrinsic and apparent relationships operated on the
same time and spatial scale and were only separated by a
scaling factor, but the environmental drivers of phytoplank-
ton growth had realistic inter-relationships. Having a better
handle on the results from the first question, we were able to
move onto the second question where we looked at where the
link between intrinsic and apparent relationships diverged.
We modified the first scenario so that the apparent relation-
ships use a time-averaged input (similar to what would be
used in observations), but the intrinsic relationships operate
by smoothing growth rates derived from hourly input. Fi-
nally, we conduct a proof-of-concept study with real output
from the ESM used to generate the inputs for scenarios 1 and
2, in which the biomass is a nonlinear function of the time-
smoothed growth rate.

2 Methods

The main points of each scenario are summarized in Ta-
ble 1, including information on the predictors, target vari-
able, equations used to calculate biomass, source file, and
scenario description. For each of the three scenarios, three
ML methods were used (multiple linear regression (MLR),
random forests (RF), and neural network ensembles (NNE)).

2.1 Scenario 1: closely related intrinsic and apparent
relationships on the same timescale

In the first scenario, we wanted to determine how well differ-
ent ML methods could extract intrinsic relationships when
only provided information on the apparent relationships and
when the intrinsic and apparent relationships were operating
on the same timescale. In this scenario, the apparent relation-
ships between predictors and biomass were simply the result
of multiplying the intrinsic relationships between predictors
and growth rate by a scaling constant.

We designed a simple phytoplankton system in which
biomass was a function of micronutrient, macronutrient, and
light limitations based on realistic inter-relationships be-
tween limitations (Eq. 1):

B = S∗×min(Lmicro,Lmacro)×LIrr, (1)

where B is the value for biomass (mol kg−1); S∗ is a scaling
factor; and Lmicro, Lmacro, and LIrr are the limitation terms
for micronutrient (micro), dissolved macronutrient (macro),
and light (irradiance; irr), respectively. The scaling factor
(1.9×10−6 mol kg−1) was used, so the resulting biomass cal-
culation was in units of mol kg−1. While simplistic, this is
actually the steady-state solution of a simple phytoplankton–
zooplankton system when grazing scales as the product
of phytoplankton and zooplankton concentrations, and zoo-
plankton mortality is quadratic in the zooplankton concentra-
tion.

Each of the nutrient limitation terms (Lmicro,macro in Eq. 1)
were functions of Michaelis–Menten growth curves (Eq. 2):

LN =
N

KN +N
, (2)

where LN is the limitation term for the respective factor,
N is the concentration of the nutrient, and KN is the half-
saturation constant specific to each limitation. The light lim-
itation was given by (Eq. 3)

LIrr = 1− e
−

(
Irr
KIrr

)
, (3)

where LIrr is the light limitation term, Irr is the light inten-
sity, and KIrr is the light limitation constant. In terms of our
nomenclature, Eq. (1) defines the apparent relationship be-
tween nutrients, light, and biomass, such as might be found
in the environment, while Eqs. (2) and (3) are the intrinsic re-
lationships between nutrients/light and growth rate, such as
might be found in the laboratory or coded in an ESM.

For the concentrations of each factor (N in Eq. 2), we
took the monthly-averaged value for every latitude–longitude
pair (i.e., 12 monthly values for each latitude–longitude pair)
from the Earth system model ESM2Mc (Galbraith et al.,
2011). ESM2Mc is a fully coupled atmosphere, ocean, sea
ice model into which is embedded an ocean biogeochemical
cycling module. Known as BLING (Biogeochemistry with
Light, Iron, Nutrients, and Gases; Galbraith et al., 2010), this
module carries a macronutrient, a micronutrient, and light
as predictive variables and uses them to predict biomass us-
ing a highly parameterized ecosystem (described in more de-
tail below). The half-saturation coefficients (KN in Eq. 2)
for the macronutrient and micronutrient were also borrowed
from BLING with values of 1×10−7 and 2×10−10 mol kg−1,
respectively. The light-limitation coefficient KIrr was set at
34.3 W m−2, which was the global mean for the light lim-
itation factor in the ESM2Mc simulation used later in this
paper.
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Table 1. Details for each scenario that include the predictor variables, the target variable, the equations used to calculate biomass, the type
of source file used to acquire the values for the predictors, and a short description with important details about each scenario.

Scenario Predictors Target Equations
used

Source file
description

Scenario description

1 Macronutrient (mol kg−1);
micronutrient (mol kg−1);
irradiance (W m−2)

Biomass
(mol kg−1)

1, 2, 3 Monthly output
from BLING

(1) Nutrient distributions (predictors)
from BLING were run through
Eqs. (1), (2), and (3) to calculate the
biomass (target).

(2) The true relationships were calcu-
lated by using the range of the val-
ues for the predictors and calculating
the biomass based on Eqs. (1), (2),
and (3).

2 Macronutrient (mol kg−1);
micronutrient (mol kg−1);
irradiance (W m−2)

Biomass
(mol kg−1)

1, 2, 3, 6 Daily output
from BLING

(1) Hourly values for the predictors
were interpolated using the daily
output of BLING.

(1a) The macronutrient and micronu-
trient hourly values were calculated
using a standard interpolation be-
tween the daily points.

(1b) The irradiance hourly values
were calculated from Eq. (6) using
the value of the BLING daily input,
hour of day, time of year, and
location.

(2) Hourly values of the predictors were
fed to Eqs. (1), (2), and (3) to calcu-
late hourly values for the biomass
(target).

(3) Daily-averaged values were calcu-
lated by averaging 24 h for each lo-
cation through 1 year.

(4) Weekly-averaged values were calcu-
lated by averaging 168 h blocks of
time for each location through the
year.

(5) Monthly-averaged values were
calculated by averaging the num-
ber of hours in each month (days per
month · 24) for each location through
the year.

(6) The true relationships were calcu-
lated by using the range of the hourly
values for the predictors and calcu-
lating the biomass based on Eqs. (1),
(2), and (3).

3 Macronutrient (mol kg−1);
micronutrient (mol kg−1);
irradiance (W m−2)

Biomass
(mol kg−1)

7, 8 (equa-
tions within
BLING
used to de-
termine the
biomass)

Monthly output
from BLING

(1) Nutrient distributions from the
BLING output were used as the pre-
dictors; biomass from the BLING
output itself was used as the target.
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The final dataset consisted of three input/predictor vari-
ables and one target term with a total of 77 328 observations.
The input variables given to each of three ML methods (mul-
tiple linear regression (MLR), random forests (RF), and neu-
ral network ensembles (NNE), described in more detail be-
low) were the concentrations (not the limitation terms) for
the micronutrient, macronutrient, and light. The target vari-
able was the biomass we calculated from Eqs. (1)–(3). The
same three ML methods were applied to all three scenarios.

The dataset was then randomly split into training and test-
ing datasets, with 60 % of the observations going to the train-
ing dataset and the remainder going to the testing dataset.
This provided a standard way to test the generalizability of
each ML method by presenting them with new observations
from the test dataset and ensuring the models did not overfit
the data. The input and output values for the training dataset
were used to train a model for each ML method. Once each
method was trained, we provided the trained models with the
input values of the testing dataset to acquire their respective
predictions. These predictions were then compared to the ac-
tual output values of the test dataset. To assess model perfor-
mance, we calculated the coefficient of determination (R2)
and the root mean squared error (RMSE) between the ML
predictions and the actual output values for the training and
testing datasets.

Following this, a sensitivity analysis was performed on
the trained ML models. We allowed one predictor to vary
across its minimum–maximum range while holding the other
two input variables at specific percentile values. This was re-
peated for each predictor. This allowed us to isolate the im-
pact of each predictor on the biomass – creating cross sec-
tions of the dataset where only one variable changed at a
time. For comparison, these values were also run through
Eqs. (1)–(3) to calculate the true response of how the sim-
ple phytoplankton model would behave. This allowed us to
view which of the models most closely reproduced the un-
derlying intrinsic relationships of the simple phytoplankton
model.

For our main sensitivity analyses, we chose to hold the
predictors that were not being varied at their respective 25th,
50th, and 75th percentile values. We chose to use these par-
ticular percentile values for several reasons.

It allowed us to avoid the extreme percentiles (1st and
99th). As we approach these extremes, the uncertainty in the
predictions grows quite rapidly because of the lack of train-
ing samples within that domain space of the dataset. For ex-
ample, there are no observations which satisfy the conditions
of being in the 99th percentile of two variables simultane-
ously. This extreme distance outside of the training domain
generally leads to standard deviations in predictions that are
too large to provide a substantial level of certainty about the
ML model’s predictions.

Similar to the idea that we can avoid the extremes, we also
chose these values as they are quite typical values for the
edges of box plots. Generally, values within the range of the

25th to 75th percentiles are not considered outliers. Along
those lines, we wanted to examine the conditions in a do-
main space that are likely to be found in actual observational
datasets, with the reasoning that if there was high uncertainty
in the ML predictions at these more moderate levels, there
would be even higher uncertainty towards the extremes.

This method of sensitivity analysis contrasts with partial
dependence plots (PDPs), which are commonly used in ML
visualization. PDPs show the marginal effect that predictors
have on the outcome. They consider every combination of the
values for a predictor of interest and all values of the other
predictors, essentially covering all combinations of the pre-
dictors. The predictions of a model are then averaged and
show the marginal effect of a predictor on the outcome –
creating responses moderately comparable to averaged cross
sections. Because of this averaged response, PDPs may hide
significant effects from subgroups within a dataset. A sen-
sitivity analysis avoids this disadvantage by allowing sep-
arate visualization of subgroup relationships. For example,
if macronutrient is the primary limiter over half of the do-
main, but not limiting at all over the other half, PDPs of
the biomass dependence on micronutrient will reflect this
macronutrient limitation, while a sensitivity analysis at the
75th percentile of macronutrient will not.

Using the predictions produced from the sensitivity analy-
ses, we also computed the half-saturation constants for each
curve. A limitation of observational data is the frequency of
sampling, which limits the ability to estimate half-saturation
coefficients without performing growth experiments in a lab.
Calculating the half-saturation constants from the sensitivity
analysis predictions allowed us to investigate if ML methods
could provide a quantitative estimate from the raw observa-
tional data. The half-saturation constants were determined by
fitting a nonlinear regression model to each sensitivity anal-
ysis curve matching the form of a Michaelis–Menten curve
(Eq. 4):

B =
α1N

α2+N
, (4)

where B corresponds to the biomass predictions from the
sensitivity analyses, N represents the nutrient concentrations
from the sensitivity analyses, and α1 and α2 are the con-
stants that are being estimated by the nonlinear regression
model. The constant α2 was taken as the estimation of the
half-saturation coefficient for each sensitivity analysis curve.

Since colimitations can affect the calculation of half-
saturation coefficients, we also created interaction plots. This
is useful because trying to calculate the half-saturation con-
stant based on a nutrient curve that is experiencing limita-
tion by another nutrient could cause the calculation to be un-
derestimated. The interaction plots are a form of sensitivity
analysis where two predictor variables are varied across their
minimum–maximum range rather than one. This produces a
mesh of predictor pairs covering the range of possible combi-
nations of two predictors. With these interaction plots, it was
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possible to visualize the interaction of two variables and their
combined effect on the target variable. For each pair of pre-
dictors that were varying, we set the other predictor that was
not varying to its 50th percentile (median) value. As with the
sensitivity analysis for single predictors, these predictor val-
ues were run through Eqs. (1)–(3) so a comparison could be
made as to which method most closely reproduced the true
variable interactions.

2.2 Scenario 2: distantly related intrinsic and apparent
relationships on different timescales

In Scenario 1, the intrinsic relationships between environ-
mental conditions and growth rate and apparent relationships
between environmental conditions and biomass differed only
by a scale factor and operated at the same timescale. In real-
ity, input variables (such as light) vary on hourly timescales
so that growth rates vary on similar timescales. Biomass re-
flects the average of this growth rate over many hours to days,
while satellite observations and ESM model output are often
only available on monthly-averaged timescales. So the real-
ity is that, even if a system is controlled by intrinsic relation-
ships, the apparent relationships gained from climatological
variables on long timescales will not reproduce these intrin-
sic relationships since the average light (irradiance) limita-
tion is not equal to the limitation given the averaged light
value (Eq. 5).

LIrr =

(
1− e

−

(
Irr
KIrr

))
6= 1− e

−

(
Irr
KIrr

)
, (5)

where the overbar denotes a time average, and Irr stands for
irradiance (light). For Scenario 2, we wanted to investigate
how such time averaging biased our estimation of the intrin-
sic relationships from the apparent ones; i.e., how does the
link between the intrinsic and apparent relationships change
with different amounts of averaging over time?

For the short-timescale intrinsic relationships, we took
daily inputs for the three predictor variables for 1 year from
the ESM2Mc model. We further reduced the timescale from
days to hours to introduce daily variability for the irradiance
variable relative to the latitude, longitude, and time of year
(Eq. 6):

IrrInt (t)=
12π Irrdaily

TDay
sin
(
π (t − tSunrise)

TDay

)
when 0< t < TDay, (6)

where IrrInt is the hourly interpolated value of irradiance,
Irrdaily is the daily-mean value of irradiance, t is the hour
of the day being interpolated, tSunrise is the hour of sunrise,
and TDay is the total length of the day. The resulting curve
preserves the day-to-day variation in the daily mean irra-
diance due to clouds and allows a realistic variation over
the course of the day. The hourly values for the micronu-
trient and macronutrient were assigned using a standard in-
terpolation between each of the daily values. Thus, light was

the only predictor variable that varied hourly. These hourly
interpolated values were then used to calculate an hourly
biomass from Eqs. (1)–(3). Note that we are not claiming
real-world biomass would be zero at night but assume that
on a long enough timescale, it should approach the average
of the hourly biomass.

To simulate apparent relationships, we smoothed the
hourly values for both biomass and the input variables
into daily, weekly, and monthly averages for each latitude–
longitude point. To reiterate, the intrinsic and apparent rela-
tionships in Scenario 2 differed in timescales but not in spa-
tial scales. Each dataset was then analyzed following steps
similar to those outlined in Scenario 1; constructing train-
ing and testing datasets, using the same variables as inputs to
predict the output (biomass), and using the same ML meth-
ods. To assess each method’s performance, we calculated the
R2 value and the RMSE between the predictions and ob-
servations for the training and testing datasets. We also per-
formed a sensitivity analysis, calculated half-saturation con-
stants, and created interaction plots similar to those described
above.

2.3 Scenario 3: BLING biogeochemical model

As a demonstration of their capabilities, the ML methods
were also applied directly to monthly-averaged output from
the BLING model itself using the same predictors in scenar-
ios 1 and 2 but using the biomass calculated from the ac-
tual BLING model. As described in Galbraith et al. (2010),
BLING is a biogeochemical model where biomass is diag-
nosed as a nonlinear function of the growth rate smoothed
in time. The growth rates, in turn, have the same functional
form as in scenarios 1 and 2, namely (Eq. 7)

µ= µ0 · exp(k · T ) ·min
(

Nmicro

Kmicro+Nmicro
,

Nmacro

Kmacro+Nmacro

)
×

(
1− exp

(
−

Irr
IrrK

))
, (7)

where the first exponential parameterizes temperature-
dependent growth following Eppley (1972), Nmacro and
Nmicro are the macronutrient and micronutrient concentra-
tions, Kmacro and Kmicro are the half-saturation coefficients
for the macronutrient and micronutrient, Irr is the irradiance,
and Irrk is a scaling for light limitation. An important differ-
ence (to which we will return later in the paper) is that the
light limitation term is calculated using a variable Chl : C ra-
tio following the theory of Geider et al. (1997). The variation
of the Chl : C ratio would correspond to a KIrr in scenarios 1
and 2 which adjusts in response to both changes in irradi-
ance (if nutrient is low) or changes in nutrient (if irradiance
is high), as well as changes in temperature. Given the result-
ing growth rate µ the total biomass then asymptotes towards
(Eq. 8)

B =

(
µ̃

λ
+
µ̃3

λ3

)
S∗, (8)
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where λ= λ0 exp(k · T ) is a grazing rate, the tilde denotes an
average over a few days and S∗ is the biomass constant that
we saw in the previous two scenarios. Note that because graz-
ing and growth have the same temperature dependence, the
biomass then ends up depending on the nutrients and light in
a manner very similar to scenarios 1 and 2. Growth rates and
biomass are then combined to drive the uptake and water-
column cycling of micronutrient and macronutrient within a
coarse-resolution version of the GFDL ESM2M fully cou-
pled model (Galbraith et al., 2011), denoted as ESM2Mc.

As described in Galbraith et al. (2011) and Bahl et
al. (2019), ESM2Mc produces relatively realistic spatial dis-
tributions of nutrients, oxygen, and radiocarbon. Although
simpler in its configuration relative to models such as TOPAZ
(Tracers of Ocean Phytoplankton with Allometric Zooplank-
ton; Dunne et al., 2013), it has been demonstrated that in
a higher-resolution physical model BLING produces simu-
lations of mean nutrients, anthropogenic carbon uptake, and
oceanic deoxygenation under global warming that are almost
identical to such complicated models (Galbraith et al., 2015).

We chose to use BLING for three main reasons. The first
is that we know it produces robust apparent relationships
between nutrients, light, and biomass by construction – al-
though these relationships can be relatively complicated –
particularly insofar as iron and light colimitation is involved
(Galbraith et al., 2010). As such, it represents a reasonable
challenge for a ML method to recover such nonlinear re-
lationships. The second is that we know how these rela-
tionships are determined by the underlying intrinsic rela-
tionships between limiting factors and growth. Models with
more complicated ecosystems (including explicit zooplank-
ton and grazing interactions between functional groups) may
exhibit a more complicated time dependence that would con-
fuse such a straightforward linkage between phytoplankton
growth limitation and biomass. The third is that despite its
simplicity, the model has relatively realistic annual mean
distributions of surface nutrients, iron, and chlorophyll, and
under global warming, it simulates changes in oxygen and
anthropogenic carbon uptake that are similar to much more
complicated ESMs (Galbraith et al., 2015).

2.4 ML algorithms

We chose to use random forests (RFs) and neural network en-
sembles (NNEs) in this paper. Although other ML methods
exist, the list of possible choices is rather long. It was decided
that the number of ML algorithms being compared would be
limited to RFs and NNEs, given their popularity in study-
ing ecological systems. Additionally, we chose to compare
the performance of the ML techniques to the performance of
multiple linear regression (MLR), which allows us to quan-
tify the importance of nonlinearity. It should be noted that
we are not trying to suggest that MLR is always ineffective
for studying ecological systems. MLR is a very useful and
informative approach for studying linear relationships within

marine ecological systems (Chase et al., 2007; Harding et al.,
2015; Kruk et al., 2011).

2.4.1 Random forests

RFs are an ensemble ML method utilizing many decision
trees to turn “weak learners” into a single “strong learner”
by averaging multiple outputs (Breiman, 2001). In general,
RFs work by sampling (with replacement) about two-thirds
of a dataset and constructing a decision tree. This process is
known as bootstrap aggregation. At each split, the random
forest takes a random subset of the predictors and examines
which variable can be used to split a given set of points into
two maximally distinct groups. This use of random predic-
tor subsets helps to ensure the model is not overfitting the
data. The process of splitting the data is repeated until an op-
timal tree is constructed or until the stopping criteria are met,
such as a set number of observations in every branch (then
called a leaf/final node). The process of constructing a tree is
then repeated a specified number of times, which results in
a group (i.e., “forest”) of decision trees. Random forests can
also be used to construct regression trees in which a new set
of observations traverse each decision tree with its associated
predictor values, and the result from each tree is aggregated
into an averaged value.

Here, we used the same parameters for RF in the three sce-
narios to allow for a direct comparison between the scenar-
ios and to minimize the possible avenues for errors. Each RF
scenario was implemented using the TreeBagger function in
MATLAB 2019b, where 500 decision trees were constructed
with each terminal node resulting in a minimum of five ob-
servations per node (MATLAB, 2019). An optimization was
performed to decide the number of decision trees that mini-
mized the error while still having a relatively short runtime
of only several minutes. For additional details about the con-
struction and training of the RFs, please see Appendix B.

2.4.2 Neural network ensembles

Neural networks (NNs) are another type of ML that has be-
come increasingly popular in ecological applications (Flom-
baum et al., 2020; Franceschini et al., 2019; Guégan et
al., 1998; Lek et al., 1996a, b; Mattei et al., 2018; Olden,
2000; Özesmi and Özesmi, 1999; Scardi, 1996, 2001; Scardi
and Harding, 1999). Scardi (1996) used NNs to model
phytoplankton primary production in the Chesapeake and
Delaware bays. Lek et al. (1996b) demonstrated the ability of
NNs to explain trout abundance using several environmental
variables through the use of the “profiling” method, a type of
variable importance metric that averages the results of mul-
tiple sensitivity analyses to acquire the importance of each
variable across its range of values.

Feed-forward NNs consist of nodes connected by weights
and biases with one input layer, (usually) at least one hid-
den layer, and one output layer. The nodes of the input layer
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correspond to the input values of the predictor variables, and
the hidden and output layer nodes each contain an activation
function. Each node from one layer is connected to all other
nodes before and after it. The values from the input layer are
transformed by the weights and biases connecting the input
layer to the hidden layer, put through the activation function
of the hidden layer, modified by the weights and biases con-
necting the hidden layer to the output layer, and finally en-
tered into the final activation function of the output node.

The output (predictions) from this forward pass through
the network is compared to the actual values, and the error is
calculated. This error is then used to update the weights with
a backward pass through the network using backpropagation.
The process is repeated a specified number of times or until
some optimal stopping criteria are met, such as error mini-
mization or validation checks where the error has increased
a specified number of times. For a more in-depth discussion
of NNs, see Schmidhuber (2015).

For this particular study, we use neural network ensem-
bles (NNEs), which are a collection of NNs (each of which
uses a subsample of the data) whose predictions are averaged
into a single prediction. It has been demonstrated that NNEs
can outperform single NNs and increase the performance of
a model by reducing the generalization error (Hansen and
Salamon, 1990).

To minimize the differences between scenarios, we used
the same framework for the NNs in each scenario. Each NN
consisted of 3 input nodes (one for each of the predictor vari-
ables), 25 nodes in the hidden layer, and 1 output node. The
activation function within the hidden nodes was a hyperbolic
tangent sigmoid function, and the activation function within
the output node used a linear function. The stopping crite-
ria for each NN was set as a validation check, such that the
training stopped when the error between the predictions and
observations increased for six consecutive epochs. An op-
timization was performed to decide the number of nodes in
the hidden layer that minimized the error while maintaining a
short training time. A sensitivity analysis was also performed
using different activation functions to ensure the choice of
activation function had minimal effect on the outcome. Fur-
thermore, another sensitivity analysis was performed to en-
sure additional hidden layers were not necessary. The details
of the optimization and sensitivity analyses to determine the
NN parameters can be found in Appendix B.

Each NNE consisted of 10 individual NNs, and each
NN was trained using the feedforwardnet function in MAT-
LAB 2019b (MATLAB, 2019).

Each variable was scaled between −1 and 1 based on its
respective maximum and minimum (Eq. 9).

VS =
maxS−minS

maxU−minU
(VU−minU)+minS, (9)

where V is the value of the variable being scaled, S stands
for the scaled value (minimum is −1 and maximum is 1),
and U represents the unscaled value. This step ensures that

no values are too close to the limits of the hyperbolic tan-
gent sigmoid activation function, which would significantly
increase the training time of each NN. Additionally, this nor-
malization ensures that each predictor falls within a simi-
lar range, so more weight is not provided to variables with
larger ranges. Although scaling is not necessary for RF and
MLR, the scalings used for the NNE were still applied to
each method for consistency. The results presented in this
paper were then transformed back to their original scales to
avoid confusion from scaling (Eq. 10).

VU =
maxU−minU

maxS−minS
(VS−minS)+minU, (10)

where the letters represent the same values as in Eq. (9).

3 Results and discussion

3.1 Scenario 1: closely related intrinsic and apparent
relationships on the same timescale

In the first scenario, our main objective was to determine
if ML methods could extract intrinsic relationships when
given information on the apparent relationships and reason-
able spatiotemporal distributions of colimitation when the in-
trinsic and apparent relationships were operating on the same
timescale.

In Scenario 1, the RF and NNE both outperformed the
MLR as demonstrated by higher R2 values and lower RMSE
(Table 2). The MLR captured just under half of the variance
(R2
= 0.44–0.45; Table 2), while the RF and NNE essen-

tially captured all of it (R2 > 0.99; Table 2). The decreased
performance of the MLR is not inherently surprising, given
the nonlinearity of the underlying model, but it does demon-
strate that the range of nutrients and light produced as inputs
by ESM2Mc are capable of producing a nonlinear response.
Additionally, each method showed similar performances be-
tween the training and testing datasets, suggesting adequate
capture of the model dynamics in both datasets.

From the spatial distributions and error plots of the true
response and the predictions from each method, it can be
observed that the RF and NNE showed the closest agree-
ment with the true response (Fig. 1). The NNE showed the
lowest error and closest agreement with the true response
(Fig. 1g), followed closely by the RF with slightly higher
errors (Fig. 1f). Additionally, the RF and NNE were able to
reproduce the biomass patterns in the equatorial Atlantic and
Pacific, along with the low biomass concentrations at higher
latitudes (Fig. 1a, c, d). Although MLR was able to repro-
duce the general trend of the highest biomass in the low lati-
tudes and low biomass in the high latitudes, it was not able to
predict higher biomass values (Fig. 1b), and it exhibited the
highest errors of the three methods (Fig. 1e).

In addition to examining whether the different ML meth-
ods matched the correct response, we also interrogated these
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Table 2. Performance metrics (coefficient of determination (R2) and root mean squared error (RMSE)) for the training and testing datasets
of each scenario and the respective ML method (MLR – multiple linear regression; RF – random forest; NNE – neural network ensemble).
Scenario 2 had three time-averaged datasets (daily, weekly, and monthly). The target variable for all scenarios was phytoplankton biomass.

Training data Testing data

R2 RMSE R2 RMSE

Scenario 1 MLR 0.4528 1.32× 10−7 0.4471 1.33× 10−7

RF 0.9989 6.46× 10−9 0.9977 9.15× 10−9

NNE 0.9999 1.70× 10−9 0.9999 1.73× 10−9

Scenario 2 Daily MLR 0.3160 8.75× 10−8 0.3104 8.82× 10−8

RF 0.9841 1.35× 10−8 0.9684 1.90× 10−8

NNE 0.9686 1.88× 10−8 0.9681 1.90× 10−8

Weekly MLR 0.3054 8.35× 10−8 0.3059 8.31× 10−8

RF 0.9835 1.30× 10−8 0.9687 1.78× 10−8

NNE 0.9680 1.79× 10−8 0.9688 1.76× 10−8

Monthly MLR 0.3022 8.07× 10−8 0.3125 8.01× 10−8

RF 0.9859 1.16× 10−8 0.9729 1.60× 10−8

NNE 0.9722 1.61× 10−8 0.9722 1.61× 10−8

Scenario 3 MLR 0.0672 2.55× 10−8 0.0691 2.53× 10−8

RF 0.9727 4.49× 10−9 0.9445 6.26× 10−9

NNE 0.9417 6.38× 10−9 0.9386 6.50× 10−9

Figure 1. The contour plots in the top row show the yearly-averaged biomass of Scenario 1 for the true response (a) and the associated
predictions from MLR (b), RF (c), and NNE (d). The biomass was measured in units of mol kg−1. The contour plots in the bottom row show
the log10 absolute error between the true response and the predictions from MLR (e), RF (f), and NNE (g).

methods to look at how different predictors contributed to
the answer and whether these contributions matched the in-
trinsic relationships between the predictors and biomass as
we had put into the model (Fig. 2). The MLR (red dashed
lines) showed very little response to changes in macronu-
trient (Fig. 2a, d, g), an unrealistic negative response to in-
creases in micronutrient (Fig. 2b, e, h), and a reasonable (al-
beit linear) match to the light response (Fig. 2c, f, i). By con-
trast, the response to any predictor for the NNE (green dashed

lines) showed agreement with the true response of the model
(black lines) in all circumstances, insofar as the true response
was always within the standard deviation of the NNE predic-
tions (Fig. 2).

The RF prediction of the response to a given predictor
(blue dashed lines) showed agreement with the true response
when the other predictors were fixed at the lower percentiles
(Fig. 2a–c) but began deviating in the higher percentiles
(Fig. 2d–i). This was likely due to the range of the training
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Figure 2. Sensitivity analysis for Scenario 1 showing the true and predicted relationships for each ML method. The columns correspond to
the predictors, and the rows correspond to the percentile value at which the other predictors were set (e.g., panel a varies the macronutrient
across its minimum–maximum range, while the micronutrient and light are held at their 25th percentile values, respectively). The black
line shows the true intrinsic relationship calculated from Eqs. (1)–(3). The dashed lines show the predicted apparent relationships for each
method (MLR – red; RF – blue; NNE – green). The RF and NNE predicted relationships are the average of the individual predictions for each
method. The colored regions around the RF and NNE dashed lines show 1 standard deviation in the predictions (e.g., 1 standard deviation in
the 10 individual NN predictions of the NNE).

dataset and how RFs acquire their predictions. When pre-
sented with predictor information, RFs rely on the informa-
tion contained within their training data. If they are presented
with predictor information that goes outside the range of the
data space of the training set, RFs will provide a prediction
based within the range of the training set. When perform-
ing the sensitivity analysis, the values of the predictors in
the higher percentiles were outside the range of the training
dataset. For example, RF deviates from the true response as
the concentration of the macronutrient increases – actually
decreasing as nutrient increases despite the fact that such a
result is not programmed into the underlying model (Fig. 2g).
Although there may be observations in the training dataset
where the light and micronutrient are at their 75th percentile
values when the macronutrient is low, there likely are not
any observations where high levels of the macronutrient, mi-
cronutrient, and light are co-occurring. Without any observa-
tions meeting that criteria, the RF provided the highest pre-
diction it could based on the training information.

In contrast to the RF’s inability to extrapolate outside the
training range, the NNE showed its capability to make pre-
dictions on observations on which it was not trained (Fig. 2).
Note, however, that while we have programmed Michaelis–
Menten intrinsic dependencies for individual limitations into
our model, we did not get Michaelis–Menten type curves
back for macro- and micronutrients when the other variables
were set at low percentiles (Fig. 2a–c). The reason is that

Liebig’s law of the minimum applies to the two nutrient lim-
itations. When the micronutrient is low, it prevents the entire
Michaelis–Menten curve for the macronutrient from being
seen.

Although the NNEs captured the true intrinsic relation-
ships, we could not interpret these curves without remem-
bering that multiple limitations affect biomass. For example,
when we computed an estimated half-saturation for the nu-
trient curves in the top row of Fig. 2, we calculated values for
KN that were far lower than the actual ones specified in the
model (Table 3). The estimated half-saturation when other
predictors were held at their 25th percentile for the micro-
and macronutrient was underestimated by one and two orders
of magnitude, respectively. When higher percentiles were
used (Table 4), the estimated half-saturation was overesti-
mated for some predictors and underestimated for others.
At the 99th percentile, the macronutrient half-saturation was
underestimated by 49 %, and micronutrient and light were
overestimated by 77 % and 36 %, respectively (Table 4). It
is possible that, even at the higher percentiles, micronutrient
was still exerting some limitation on the macronutrient curve,
which would explain why the estimate for the macronutrient
half-saturation was underestimated. However, this does not
explain why the estimations for the micronutrient and light
half-saturations were overestimated by so much. Although
the ability to calculate half-saturation coefficients from the
sensitivity analysis curves seemed to be a way to quantify
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the accuracy of the ML predictions, colimitations lead to
high uncertainties in the estimates. While mathematically
obvious, this result has implications for attempts to extract
(and interpret)KN from observational datasets, such that one
would expect colimitation to produce a systematic underesti-
mation of KN .

In an effort to visualize the colimitations and to investi-
gate the extent to which any of the methods could reproduce
these interactions, we examined the interaction plots (Fig. 3).
MLR expectedly predicted linear relationships in which
higher-concentration pairs of irradiance–macronutrient and
irradiance–micronutrient lead to higher biomass (Fig. 3h, i),
but it incorrectly predicted the interaction between the micro-
and macronutrient such that decreasing concentrations of
macronutrient lead to higher biomass (Fig. 3g). Note that the
x and y axes in Fig. 3g were switched relative to the other
subplot axes, which was necessary to visualize the interac-
tion. RF incorrectly predicted the highest concentrations of
biomass at moderate levels of the micro- and macronutrient
in their interactions with irradiance (Fig. 3k, l). RF again in-
correctly predicted the greatest biomass in the micronutrient–
macronutrient interaction occurring at low levels of micronu-
trient across most levels of macronutrient (Fig. 3j). The NNE
was the only method that was able to reproduce the interac-
tions of the model (Fig. 3d–f, m–o). Although the NNE over-
estimated the biomass prediction when concentrations were
high for both predictors in the irradiance–micronutrient and
irradiance–macronutrient interactions (Fig. 3e, f, n, o), these
were also the areas of the data space without any observa-
tions to constrain the NNE (Fig. 3b, c). Similar to the sensi-
tivity analyses for single predictors, the NNE was capable of
extrapolating outside the range of the training dataset while
RF was not.

The NNE interaction plots (Fig. 3m–o) bear resemblance
to the colimitation plots seen in Fig. 2 of Saito et al. (2008)
and allowed for a qualitative comparison of the type of col-
imitation that two predictors have on the target variable.
For example, the micronutrient–macronutrient interaction in
Fig. 3m shows the same type of response as would be
expected in Liebig minimization (Saito et al., 2008, their
Fig. 2C). This result is what we would expect given that the
equations for Scenario 1 (Eqs. 1–3) were Liebig minimiza-
tion by construction between the macro- and micronutrient.
Additionally, Liebig minimization can be seen in the pattern
displayed in the interaction plot of the true expected response
(Fig. 3d).

The interactions of macronutrient–irradiance (Fig. 3n) and
micronutrient–irradiance (Fig. 3o) mirrored the colimitation
pattern of independent multiplicative nutrients (Saito et al.,
2008, their Fig. 2B) where neither predictor was limiting,
and the effects of the two predictors have a multiplicative
effect on the target variable. This was again consistent with
the equations that govern Scenario 1 (Eqs. 1–3). In Eq. (1),
the irradiance limitation was only multiplied by the lesser
limitation of the macro- and micronutrient and did not show

a pattern of Liebig minimization. It was interesting that
the macronutrient–irradiance interaction (Fig. 3n) almost ap-
peared to display a pattern of no colimitation (Saito et al.,
2008, their Fig. 2A), but this stark increase in the biomass
past low concentrations of the macronutrient can be partially
explained by the contour plot of observations (Fig. 3b; please
see Fig. C1 in Appendix C for individual box plots of the
predictor and target variables). The majority of observations
where macronutrient concentrations were low had a corre-
spondingly high value for irradiance. Additionally, when the
macronutrient passed a certain concentration (which hap-
pened to be very low in these conditions), the micronutri-
ent became the limiting nutrient, such that light was the only
variable that then affected the biomass (data not shown).

With respect to our main objective for Scenario 1, it was
evident that only the NNE was able to extract the intrinsic
relationships from information on the apparent relationships.
This was due in large part to its capability of extrapolating
outside the range of the training dataset, whereas RFs were
constrained by training data, and MLR was limited by its in-
herent linearity and simplicity. Furthermore, the attempts to
quantify the half-saturation coefficients from the sensitivity
analysis curves proved unreliable because of nutrient colim-
itations. However, we were able to use interaction plots to
qualitatively describe the type of colimitation occurring be-
tween each pair of predictors and support the result from the
single predictor sensitivity analyses that micronutrient was
most limiting in many situations.

3.2 Scenario 2: distantly related intrinsic and apparent
relationships on different timescales

In Scenario 1, the intrinsic and apparent relationships were
simply related by a scaling factor. In practice, the relation-
ships are more difficult to connect to each other. For the sec-
ond scenario, both the output biomass and predictors (light,
macronutrient, and micronutrient) were averaged over daily,
weekly, and monthly timescales. Our main objective was to
investigate how the link between intrinsic and apparent rela-
tionships changed when using climatologically averaged data
– as is generally the case for observational studies.

As in Scenario 1, the RF and NNE outperformed the MLR
based on the performance metrics for the daily, weekly, and
monthly time-averaged scenarios (Table 2), with linear mod-
els only able to explain about 30 % of the variance. The
comparable performances between the training and testing
datasets suggested a sufficient sampling of the data for each
method to capture the dynamics of the underlying model.

Examining the monthly apparent relationships found for
each method and comparing them to the true intrinsic rela-
tionships showed that none of the methods were able to re-
produce the true intrinsic relationships – in general system-
atically underestimating biomass at high levels of light and
nutrient (Fig. 4). The one exception was the 25th percentile
plot of the micronutrient (Fig. 4b). The underestimation was
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Table 3. The true value and estimated half-saturation coefficients for each scenario and predictor (macronutrient, micronutrient, and light)
based on the 25th, 50th, and 75th percentiles. The percentiles correspond to the values at which the other predictors were set (e.g., for the
25th percentile macronutrient value, the macronutrient varied across its minimum–maximum range, while micronutrient and light were set at
their respective 25th percentile values). The coefficients were estimated using a nonlinear regression function to fit a curve to the predictions
in the sensitivity analyses of the form in Eq. (4), where α2 was the estimate for each half-saturation coefficient.

NNE

Macronutrient Micronutrient Light

True value 1.00× 10−7 2.00× 10−10 34.30

Scenario 1 25th percentile 6.27× 10−9 1.29× 10−9 38.91

50th percentile 1.04× 10−8 1.44× 10−10 38.26

75th percentile 1.88× 10−8 2.86× 10−10 40.09

Scenario 2 Daily 25th percentile 9.87× 10−9
−9.85× 10−11 22.04

50th percentile 3.22× 10−8 1.88× 10−10 23.20

75th percentile 4.89× 10−8 3.51× 10−10 20.09

Weekly 25th percentile 1.08× 10−8
−6.48× 10−10 26.18

50th percentile 3.78× 10−8 1.92× 10−10 25.50

75th percentile 6.36× 10−8 1.11× 10−9 18.49

Monthly 25th percentile 7.64× 10−9
−6.90× 10−10 23.13

50th percentile 3.26× 10−8 1.63× 10−10 19.37

75th percentile 1.38× 10−7 1.04× 10−9 21.89

Scenario 3 25th percentile 3.50× 10−8 6.84× 102 1.85

50th percentile 8.89× 10−8 6.94× 10−10 5.80

75th percentile 1.64× 10−7 2.41× 10−9 7.78

consistent across the different timescales, and the sensitiv-
ity analysis showed little difference in the predicted rela-
tionships between the daily, weekly, and monthly-averaged
timescales for the NNEs (Fig. 5). Because the NNEs showed
the closest approximations to the correct shape and magni-
tude of the curves compared to RF and MLR (Fig. 4), the
remaining analysis of Scenario 2 is mainly focused on NNEs.

The underestimation was not entirely unexpected. The av-
eraging of the hourly values into daily, weekly, and monthly
timescales quickly leads to a loss of variability (Fig. 6), es-
pecially for light (Fig. 6c). A large portion of the variabil-
ity was lost in the irradiance variable going from hourly to
daily (Fig. 6c). The loss of variability meant that the light
limitation computed from the averaged light was systemat-
ically higher than the averaged light limitation. To match
the observed biomass, the asymptotic biomass at high light
would have to be systematically lower (see Appendix A for
the mathematical proof). Differences were much smaller for
macronutrient and micronutrient as they varied much less
over the course of a month in our dataset. Our results em-
phasize that when comparing apparent relationships in the

environment to intrinsic relationships from the laboratory, it
is essential to take into account which timescales of variabil-
ity that averaging has removed. Insofar as most variability is
at hourly timescales, daily-, weekly-, and monthly-averaged
data will produce very similar apparent relationships (Fig. 5).
But if there was a strong week-to-week variability in some
predictor, this may not be the case.

To understand how the apparent relationships were chang-
ing across different timescales, we averaged the hourly
dataset over a range of hourly time spans. Specifically, we
averaged over the timescales of 1 (original hourly set), 2,
3, 4, 6, 8, 12, 24, 48, 72, 168 (weekly), and 720 (monthly)
hours. This new set of averaged timescales was then used
to train NNEs with one NNE corresponding to each aver-
aged timescale. We then performed sensitivity analyses on
each of the trained NNEs to see the apparent relationships for
each averaged timescale and set the percentile vales for the
other variables at their 50th percentile (median). For more
details about this method, please see Appendix D. To visu-
alize all the timescales at once, we plotted them on surface
plots (Fig. 7). The greatest changes in the apparent relation-
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Table 4. The true value and estimated half-saturation coefficients for each scenario and predictor (macronutrient, micronutrient, and light)
based on the 97th, 98th, and 99th percentiles. The percentiles correspond to the values at which the other predictors were set (e.g., for the
97th percentile macronutrient value, the macronutrient varied across its minimum–maximum range, while micronutrient and light were set at
their respective 97th percentile values). The coefficients were estimated using a nonlinear regression function to fit a curve to the predictions
in the sensitivity analyses of the form in Eq. (4), where α2 was the estimate for each half-saturation coefficient.

NNE

Macronutrient Micronutrient Light

True value 1.00× 10−7 2.00× 10−10 34.30

Scenario 1 97th percentile 4.33× 10−8 4.73× 10−10 39.48

98th percentile 4.85× 10−8 4.68× 10−10 42.11

99th percentile 6.06× 10−8 4.49× 10−10 49.43

Scenario 2 Daily 97th percentile 2.28× 10−7 4.10× 10−10 217.3

98th percentile 2.99× 10−7 4.02× 10−10 254.0

99th percentile 3.93× 10−7 3.90× 10−10 276.2

Weekly 97th percentile 2.59× 10−7 7.23× 10−10 68.86

98th percentile 3.39× 10−7 6.33× 10−10 70.56

99th percentile 4.28× 10−7 5.19× 10−10 70.32

Monthly 97th percentile 3.56× 10−7 9.04× 10−10 85.22

98th percentile 3.96× 10−7 9.16× 10−10 82.73

99th percentile 5.17× 10−7 9.55× 10−10 82.61

Scenario 3 97th percentile 5.19× 10−7 2.00× 10−9 54.00

98th percentile 7.02× 10−7 1.89× 10−9 76.48

99th percentile 1.01× 10−6 1.74× 10−9 86.21

ships occurred in the first 24 h (Fig. 7b, d, f). Furthermore,
when focused on the first 24 h, the apparent relationships be-
low 12 h were relatively close to the hourly apparent rela-
tionships (Fig. 7a, c, e), suggesting that a large portion of
the variability may have been lost between the 12 to 24 h
averaged datasets. It may be possible to use this type of di-
agnostics test to find the sampling frequency which would be
needed to recover true relationships in other datasets or to see
how relationships change over different timescales. Although
we only averaged in time in Scenario 2, this diagnostics test
could also be applied to datasets that are averaged in space
only or in space and time.

Even though in Scenario 1 we showed estimating the half-
saturation coefficients from the sensitivity analysis curves
can be unreliable, we felt that it could be helpful to include
them in this paper so other researchers who may have a sim-
ilar idea in the future can be cautioned against it. It was not
surprising that the estimated half-saturation coefficients for
Scenario 2 were also incorrect (Tables 3 and 4). The inac-
curacies in Scenario 2 though were likely the result of col-
imitations and averaging, whereas Scenario 1 only dealt with

colimitations. Furthermore, even though the predicted curves
for the daily, weekly, and monthly NNEs were relatively sim-
ilar (Fig. 5), the estimated half-saturations varied quite a bit
between them (Table 3). This was even more pronounced for
the half-saturation estimates at the 97th, 98th, and 99th per-
centiles (Table 4). For example, the estimated half-saturation
for light from the daily-NNE at these upper percentiles was
an entire order of magnitude higher than the actual value (Ta-
ble 4).

As with Scenario 1, we visualized the variable interactions
in Scenario 2 with interaction plots and compared these to the
colimitation plots in Fig. 2 of Saito et al. (2008). As we ob-
served in Scenario 1, the interaction plots showed that when
the NNEs were tasked with making predictions outside the
range of their dataset, their predictions could be drastically
over or underestimated (Fig. 8d–l) because no observations
existed in that space to constrain the NNEs (Fig. 9). For ex-
ample, in the irradiance–micronutrient plot (Fig. 8l) when
high irradiance coincided with high micronutrient concen-
trations, the NNE predicted a rapid increase in the biomass
prediction. From Fig. 9i, which shows the density plot of the
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Figure 3. Contour and interaction plots for Scenario 1. The contour plots show the density of observations for each set of predictors (a–c),
where blue signifies very few observations and colors moving up the spectrum to red indicate many observations. The interaction plots (d–o)
show the biomass values for different combinations of the predictors on each x and y axis. The predictor that was not varying was set at its
50th percentile (median) value (e.g., panel d allows the micro- and macronutrient to vary across their respective minimum–maximum ranges,
while the irradiance is held fixed at its 50th percentile value). The top three interaction plots (d–f) show the true interactions calculated from
Eqs. (1)–(3). The remaining interaction plots show the predicted interactions for MLR (g–i), RF (j–l), and NNE (m–o). Note that the x and
y axes for panel (g) were switched so that the interaction could be visualized. The RF and NNE predicted relationships are the average of the
individual predictions for each method.

observations for irradiance and micronutrient, it can be seen
that this same area was far outside the range of the dataset,
where there were no observations to constrain the NNE.

Each of the NNEs for the daily, weekly, and monthly-
averaged datasets showed similar colimitation patterns
(Fig. 8d–l), which also agreed with the patterns of the true in-

teractions (Fig. 8a–c). The macronutrient–micronutrient in-
teraction plots (Fig. 8d, g, j) exhibited a pattern of Liebig
minimization as shown in Fig. 2C of Saito et al. (2008).
The irradiance–macronutrient (Fig. 8e, h, k) and irradiance–
micronutrient (Fig. 8f, i, l) interaction plots show a colimi-
tation pattern consistent with independent multiplicative nu-
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Figure 4. Sensitivity analysis for Scenario 2 showing the true and predicted relationships for each ML method. The columns correspond to
the predictors, and the rows correspond to the percentile value at which the other predictors were set (e.g., panel a varies the macronutrient
across its minimum–maximum range, while the micronutrient and light are held at their 25th percentile values, respectively). The black line
shows the true intrinsic relationship calculated from Eqs. (1)–(3). The dashed lines show the predicted monthly apparent relationships for
each method (MLR – red; RF – blue; NNE – green). The RF and NNE predicted relationships are the average of the individual predictions
for each method. The colored regions around the RF and NNE dashed lines show 1 standard deviation in the predictions (e.g., 1 standard
deviation in the 10 individual NN predictions of the NNE).

Figure 5. Sensitivity analysis for Scenario 2 showing the true and predicted NNE relationships for the different time-averaged datasets. The
columns correspond to the predictors, and the rows correspond to the percentile value at which the other predictors were set (e.g., panel a
varies the macronutrient across its minimum–maximum range, while the micronutrient and light are held at their 25th percentile values,
respectively). The black line shows the true intrinsic relationship calculated from Eqs. (1)–(3). The dashed lines show the predicted apparent
relationships for each time-averaged dataset (daily – red; weekly – blue; monthly – green). The conditions for the sensitivity analysis were
based on the values from the monthly-averaged dataset. It was necessary to give the same conditions to all the time-averaged datasets so
that a direct comparison could be made between the predictions of the respective NNEs. The predicted relationships are the average of
the individual predictions for each time-averaged NNE, respectively. The colored regions around the NNE dashed lines show 1 standard
deviation in the predictions (e.g., 1 standard deviation in the 10 individual NN predictions of each NNE).
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Figure 6. Box plots showing the variability in the predictor and target variables of Scenario 2 for the various time-averaged datasets. The
predictor variables include (a) macronutrient, (b) micronutrient, and (c) irradiance. The target variable was phytoplankton biomass (d). The
red line corresponds to the median (50th percentile), the box edges are the 25th and 75th percentile values, and the whiskers are the minimum
and maximum values.

trients (Saito et al., 2008, their Fig. 2B). These interaction
patterns are the same interaction patterns observed in Sce-
nario 1. Once again, these patterns would be expected be-
cause the equations contain these patterns by construction.
Surprisingly, these patterns held across time averaging even
as great as 1 month (720 h). Although the monthly interac-
tion underestimated the biomass, the general pattern, nonlin-
earity, and interaction of the variables remained consistent
across the different timescales. This could imply that the use
of monthly-mean observations could still allow researchers
to identify interactions that hold true at timescales as small
as 1 h.

Regarding our main objective for Scenario 2 to under-
stand how the link between intrinsic and apparent relation-
ships changed, only the NNEs were able to provide reliable
information. The sensitivity analysis with individual predic-
tors showed that variability could be lost in the span of a sin-
gle day when considering information on hourly timescales.
This caused an underestimation of the biomass values for
timescales that were averaged over ranges greater than and
equal to 24 h. However, it was possible to visualize how
the relationships changed from the hourly data to the 720 h
(monthly) data by training NNEs on different timescales of
the data. Additionally, the interaction patterns observed in
Scenario 1, where the intrinsic and apparent relationships
were closely related, were also observed in the interaction
patterns of Scenario 2, where the intrinsic and apparent re-

lationships were distantly related. This suggested that it may
be possible to capture variable interactions occurring at small
timescales, even when data are sampled at a frequency as in-
frequent as once per month.

3.3 Scenario 3: BLING biogeochemical model

When run in the full ESM the BLING biogeochemistry does
end up producing surface biomass, which is a strong function
of the growth rate (Fig. 10a) with a nonlinear relationship as
in Eq. (8). As the growth rate, in turn, is given by Eq. (7), we
can also examine how the monthly mean limitation terms for
nutrient and light compare with the means given by comput-
ing the limitations with monthly mean values of nutrients,
Irr, and Irrk . As shown in Fig. 10b, the nutrient limitation
is relatively well captured using the monthly mean values,
although there is a tendency for the monthly means to under-
estimate moderate values of nutrient limitation. Further anal-
ysis shows that this is due to the interaction between micro-
and macronutrient limitation – with the average of the min-
imum limitation being somewhat higher than the minimum
of the average limitation. However, using the actual monthly
mean values of Irr and Irrk (Fig. 10c) causes the light limita-
tion to be systematically biased high.

To demonstrate their capabilities, NNEs were applied di-
rectly to the monthly-averaged output of one of the BLING
simulations. The main purpose of the final scenario was to
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Figure 7. Surface plots showing the apparent relationships found across different averaged timescales for Scenario 2. The timescales range
from 1 (original hourly set) up to 720 h (monthly). The three plots on the right (b, d, f) show the relationships across the entire range of
timescales (1 through 720 h). The three plots on the left (a, c, e) show the timescales at and below 24 h. The top plots show the relationships
for the macronutrient (a, b), the middle plots show the relationships for the micronutrient (c, d), and the bottom plots show the relationships
for irradiance (e, f). Variables not varying across their range were set at their 50th percentile (median) value. The conditions of the sensitivity
analyses were based on the conditions of the monthly-averaged (720 h) dataset. It was necessary to give the same conditions to all the time-
averaged datasets so that a direct comparison could be made between the predictions of the respective NNEs. The predicted relationships are
the average of the individual predictions for each time-averaged NNE.

demonstrate the capabilities of NNEs when applied to actual
ESM output, with the reasoning that if it was unable to pro-
vide useful information on BLING (in which, by definition,
the biomass and limitations are closely related), it would also
fail on more complex models.

Scenario 3 showed similar results to those of scenarios 1
and 2, with respect to the performance metrics of the train-
ing and testing datasets (Table 2), the inaccuracy of the es-
timated half-saturation coefficients (Tables 3 and 4), and de-
viations in the interaction plots where no observations occur
(Fig. 12). The performance metrics for Scenario 3 showed
performances between the training and testing datasets indi-

cating sufficient sampling of the data (Table 2). Additionally,
the half-saturation coefficients were included here (Tables 3
and 4) for the same reasons as stated in Sect. 3.2 for Sce-
nario 2. The largest deviation in the interaction plots occurred
in the macronutrient–irradiance plot when both macronu-
trient and light concentrations were near their maximum
(Fig. 12e). However, this was not surprising since no obser-
vations existed in that range to constrain the NNE (Fig. 12b;
please see Fig. C2 in Appendix C for individual box plots of
the predictor and target variables).

In the sensitivity analysis, the macronutrient and light
plots (Fig. 11a, c, d, f, g, i) exhibited curves consistent with
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Figure 8. Interaction plots for Scenario 2. The interaction plots show the biomass values for different combinations of the predictors on
each x and y axis. The predictor that was not varying was set at its 50th percentile (median) value (e.g., panel d allows the micro- and
macronutrient to vary across their respective minimum–maximum ranges, while the irradiance is held fixed at its 50th percentile value). The
top three interaction plots (a–c) show the true interactions calculated from Eqs. (1)–(3). The remaining interaction plots show the predicted
interactions for the time-averaged datasets: daily (d–f), weekly (g–i), and monthly (j–l). The conditions for the sensitivity analysis were
based on the values from the monthly-averaged dataset. It was necessary to give the same conditions to all the time-averaged datasets so
that a direct comparison could be made between the predictions of the respective NNEs. The predicted relationships are the average of the
individual predictions for each time-averaged NNE.

colimitation where the curves reached an asymptote at a rela-
tively low concentration. Although this value increased with
the increasing percentiles, the asymptotic value was rather
low when compared to the curves in the micronutrient plots
(Fig. 11b, e, h). For example, the predicted curves for the
macronutrient (Fig. 11 green line) relative to the observa-
tions (Fig. 11 gray contours) showed that higher biomass
values were possible even when micronutrient and irradi-
ance were at their 75th percentile values and increases in
the macronutrient did not yield higher biomass (Fig. 11a, d,
g). Since the light curves (Fig. 11c, f, i) showed the same
trend as the macronutrient, this suggests that the micronutri-

ent was limiting in those circumstances. This is supported by
the micronutrient curves in which the asymptotic values oc-
curred at relatively higher concentrations of the micronutri-
ent (Fig. 11b, e, h). The predicted biomass for the micronu-
trient curves exceeded the highest observation even in the
50th percentile plot (Fig. 11e). Furthermore, the interaction
plots supported this where only interactions with increas-
ing micronutrient saw increases in biomass (Fig. 12d and f),
while the macronutrient–irradiance plot (in which micronu-
trient was held fixed) quickly plateaued (Fig. 12e). Conceptu-
ally this makes sense since the micronutrient limitation in the
BLING model hinders growth but also limits the efficiency
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Figure 9. Contour plots of Scenario 2 for the time-averaged datasets: daily (a–c), weekly (d–f), and monthly (g–i). The contour plots show
the density of observations for each set of predictors, where blue signifies very few observations and colors moving up the spectrum to red
indicate many observations.

Figure 10. Scatter plots from the BLING model (a: surface biomass vs. temperature-normalized growth rate; b: monthly-averaged nutrients
vs. mean nutrient limitation; c: monthly-averaged Irr and Irrk vs. mean light limitation).

of light harvesting (Galbraith et al., 2010). This result of mi-
cronutrient limitation was consistent with the other scenar-
ios and was not unexpected. The equations governing scenar-
ios 1 and 2 (Eqs. 1–3) were similar to the equation governing
BLING (Eq. 7). So, micronutrient limitation being present

across all three scenarios was consistent with what would be
expected.

The interaction plots for Scenario 3 (Fig. 12d–f) all appear
to show a colimitation pattern consistent with independent
multiplicative nutrients (Saito et al., 2008, their Fig. 2B).
This agrees with the patterns of the previous scenarios, ex-
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Figure 11. Sensitivity analysis for Scenario 3 showing the predicted relationships for the NNE. The columns correspond to the predictors,
and the rows correspond to the percentile value at which the other predictors were set (e.g., panel a varies the macronutrient across its
minimum–maximum range, while the micronutrient and light are held at their 25th percentile values, respectively). The green dashed line
shows the apparent relationships predicted by the NNE. The predicted relationships are the average of the individual predictions for each
NN. The colored regions around the NNE dashed lines show 1 standard deviation in the predictions (e.g., 1 standard deviation in the 10
individual NN predictions of the NNE). The contour plot behind the predicted relationships show the observations for each predictor against
the biomass. Lighter colors signify a higher density of observations, while darker regions correspond to fewer observations.

Figure 12. Contour and interaction plots for Scenario 3. The contour plots show the density of observations for each set of predictors (a–c),
where blue signifies very few observations and colors moving up the spectrum to red indicate many observations. The interaction plots (d–f)
show the biomass values for different combinations of the predictors on each x and y axis. The predictor that was not varying was set at its
50th percentile (median) value (e.g., panel d allows the micro- and macronutrient to vary across their respective minimum–maximum ranges,
while the irradiance is held fixed at its 50th percentile value). The interaction plots show the predicted interactions based on the NNE. The
predicted relationships are the average of the individual predictions for each NN.
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cept for the micronutrient–macronutrient interaction. In sce-
narios 1 and 2, the micronutrient–macronutrient interaction
showed a pattern matching Liebig minimization, while Sce-
nario 3 suggested independent multiplicative nutrients. This
result would not have been expected from simply looking at
the structure of the equations but arises in part from the cou-
pling between the nutrient and light limitations.

Since the objective of Scenario 3 was to apply what we
learned in scenarios 1 and 2 to output from an actual bio-
geochemical model, we believe we have demonstrated the
capabilities of the information one can extract. Although the
quantitative method of estimating the half-saturation coeffi-
cients proved unreliable, the qualitative information was in-
formative. This includes information on limitations and in-
teractions between variables, along with the ability to un-
derstand the level of variability explained by a given set of
predictors.

4 Conclusions

Although researchers have been able to find apparent rela-
tionships for phytoplankton in environmental datasets, it re-
mained unclear why and when the environmental apparent
relationships were no longer equal to the intrinsic relation-
ships that control phytoplankton growth. Our main objective
in this paper was to understand when and why the link be-
tween intrinsic and apparent relationships would break by
answering two questions:

1. Can ML techniques find the correct underlying intrinsic
relationships and, if so, what methods are most skillful
in finding them?

2. How do you interpret the apparent relationships that
emerge when they diverge from the intrinsic relation-
ships we expect?

In addressing the first question, we observed that NNEs were
far superior to RFs and MLR at extracting the intrinsic re-
lationships using information on the apparent relationships
when the intrinsic and apparent relationships were closely
related. RFs were unable to match the relationships because
of their inherent inability to extrapolate outside the range of
their training data. Additionally, even though NNEs matched
the true relationships well, we were unable to quantify half-
saturation coefficient estimates from the sensitivity analy-
sis curves because of colimitations between the predictors.
However, we were able to show that one can use interac-
tion plots to qualitatively visualize the type of colimitations
occurring between two predictors and identify the variables
causing limitations.

Regarding the second question, we demonstrated that time
averaging can lead to a loss of variability in the dataset
which, in turn, can greatly affect the predicted relationships
one can extract. For our particular system, we found aver-
aging over large time spans caused an underestimation of

the predicted relationships (as shown in Appendix A, this
will generally be the case for relationships which are con-
cave downward – the opposite will be true for relationships
that are concave upward). However, we showed that it was
possible to visualize how the relationships were changing
from intrinsic to apparent relationships by training NNEs on
different averaged timescales of the data. Furthermore, we
showed that the general trends, variable interactions, and nu-
trient limitations occurring when the intrinsic and apparent
relationships were closely linked (as in Scenario 1) could
propagate through to situations when the intrinsic and ap-
parent relationships operated over different timescales (Sce-
nario 2).

As a proof of concept, we also showed that it was possible
to extract information from the output of a biogeochemical
model (Scenario 3) using the information and techniques we
employed in scenarios 1 and 2.

This study suffers from two major limitations: the num-
ber of ML algorithms we investigated and the number of
predictor variables included for each scenario. We limited
the number of ML algorithms and predictors for simplicity
and easier visualization of the sensitivity analyses. In the real
world, phytoplankton may be limited by more physical and
biological processes, making the visualization of the sensi-
tivity analyses impractical due to the sheer number of pos-
sible interactions that would have to be considered. In cases
such as those, it would be beneficial to perform some form of
importance analysis or dimensionality reduction to remove
insignificant predictor variables, after which sensitivity anal-
yses could be done on the remaining predictors.

The results of this study have several potential applica-
tions for oceanographers, including marine ecologists and
Earth system modelers. For example, using output from
biogeochemical models or observations from environmental
datasets, researchers may now be able to

1. identify important interactions and colimitations occur-
ring between variables;

2. discern the type of colimitation occurring between nu-
trients;

3. find nutrient limitations without having to perform (or
at least being able to conduct fewer) nutrient growth ex-
periments in a lab;

4. identify apparent relationships between biogeochemical
variables, instead of using only spatiotemporal distribu-
tions;

5. understand how variable relationships change over dif-
ferent spatial and temporal scales.

Some potential future applications relevant to the results
we show here include

1. using these techniques to find and compare the appar-
ent relationships of different ESMs – this would allow
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the researcher to more specifically identify why differ-
ent ESMs produce different results;

2. applying these methods to compare the apparent rela-
tionships in observational data and ESM output – this
would allow for finer tuning of ESM parameters and re-
lationships, instead of only matching ESM spatial dis-
tributions to those of observational distributions.

Preliminary work on both applications shows them to have
promising results. We will report on these in future papers.
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Appendix A

Illustration of why time variation causes underestimation of
the dependence of biomass on a limiter
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where the overbar refers to a time average and the prime to a
variation from this time average. Insofar as the variations are
small, then
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Averaging yields
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so that if we are trying to fit a curve of the form

B ≈ Save
∗
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)}
, (A4)

we would expect that Save
∗ < S∗.

Appendix B

This appendix provides additional details of the training and
construction of the RFs and NNEs that may not have been
included in the main text of the paper.

B1 Random forests

The RFs were implemented in MATLAB 2019b using the
TreeBagger function (MATLAB, 2019). Each RF used three
predictors: macronutrient, micronutrient, and irradiance. The
target variable was phytoplankton biomass. At each split, one
random predictor variable was chosen, from which two max-
imally distinct groups were determined. The splits continued
until each terminal node contained a minimum of five obser-
vations. For reproducible results, the random number gener-
ator was set to “twister” with an integer of “123”. A total of
500 decision trees were constructed for each RF. This num-
ber was chosen because we wanted a sufficient number of
trees to minimize the error and still be able to run the train-
ing in a relatively short span of time on a standard com-
puter/laptop. The out-of-bag (OOB) error for each trained

Figure B1. The out-of-bag (OOB) error for the trained RFs of each
Scenario. The OOB error is shown as a function of the number of
trees for each RF (500 decision trees for each one). The y axis for
each plot is on a log scale. Additionally, the plot for Scenario 2
shows the OOB error curves for each of the time-averaged datasets
(daily, weekly, monthly).

RF can be seen in Fig. B1. Past about 100 trees, the OOB
error reaches an asymptote, such that more trees do not de-
crease the error. We chose to keep the number of trees at 500
because this helped to ensure generalization in the RF. Addi-
tionally, it did not significantly increase the training time and
it allowed for the RF structure to be the same across all the
scenarios.

Each variable was scaled between −1 and 1, correspond-
ing to each variable’s respective minimum and maximum,
respectively (Eq. 9). These scalings were applied for use
specifically in the NNEs, but for consistency they were also
applied to the MLR and RF. The values of the variables
and predictions of each method were unscaled for analysis
(Eq. 10).

B2 Neural network ensembles

The NNEs consisted of 10 individual NNs and each NN
was trained using the feedforwardnet function in MATLAB
2019b (MATLAB, 2019).

The framework of each NN had 3 input nodes, 25 nodes
in a single hidden layer, and 1 output node. The activation
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function for the hidden nodes was a hyperbolic tangent sig-
moid function, and the output node activation function was a
simple linear function. The training dataset was used in the
training of each NN, which consisted of 60 % of the total
observations in the entire dataset. For the training of each
individual NN, MATLAB further randomly partitioned the
training dataset into its own training subset, validation sub-
set, and testing subset (MATLAB, 2019). A total of 70 % of
the observations from the training dataset went to the train-
ing subset, 15 % went to the validation subset, and 15 % went
to the testing subset. To ensure that each NN was trained on
different observations, distinct combinations of observations
went into each subset for the training of each NN. This was
done using a different number for the random number seed
before the start of training for each NN. The random number
seed ahead of each NN was set to the respective number of
the NN. For example, the random number seed for the first
NN was set to 1, the seed for the second NN was set to 2,
etc. This random number seed ensured that the observations
from the training dataset were being partitioned into differ-
ent training, validation, and testing subsets for each individ-
ual NN. The stopping criteria for each NN was a validation
check, so training stopped when the error increased for six
consecutive epochs.

The sensitivity analysis used to determine the optimal
number of nodes in a single-layer NNE for the daily, weekly,
and monthly-averaged datasets for Scenario 2 can be seen
in Table B1. Separate NNEs were trained for each of the
time-averaged datasets (daily, weekly, monthly) for each set
of nodes. For example, separate NNEs were trained for the
daily-averaged dataset with 1 node, the weekly-averaged
dataset with 1 node, and the monthly-averaged dataset with
one node. Each NNE maintained the same construction as
those specified in the paper (10 individual NNs) and kept
the same training and stopping specifications outlined in the
paper. The trained NNEs made predictions on the testing
dataset, and the R2 values were calculated based on the com-
parison between those predictions and the actual values of
the testing dataset. These values are recorded in Table B1.
From the performance metrics, it was decided that 25 nodes
provided a sufficient level of performance while also main-
taining a reasonable time for training.

The sensitivity analysis determining if an additional hid-
den layer increased the performance of the time-averaged
datasets in Scenario 2 can be seen in Table B2. Each NNE
consisted of 10 individual NNs. The NNs were trained ac-
cording to the same criteria specified in the paper. The in-
clusion of an additional hidden layer did not significantly in-
crease the performance of the NNEs, but it did significantly
increase the time needed for training the NNs. We decided
to use only one hidden layer since the performance did not
increase significantly and to keep the training time within a
reasonable timeframe.

Table B1. The R2 values for the diagnostic test used to determine
how the number of nodes in the hidden layer of a single-layer neu-
ral network affected the performance of the time-averaged datasets
of Scenario 2. The target variable was biomass (mol kg−1). A sepa-
rate NNE was trained for each of the time-averaged datasets (daily,
weekly, monthly) for each set of nodes (i.e., a unique NNE for the
daily-averaged dataset with 1 node was trained, a unique NNE for
the weekly-averaged dataset with 1 node was trained, etc.). Each
NNE contained 10 individual NNs and kept the same training and
stopping specifications outlined in the paper. The trained NNEs
made predictions on the testing dataset, and the R2 values were
calculated based on the comparison between those predictions and
the actual values of the testing dataset.

R2 values

Daily Weekly Monthly

Number of nodes 1 0.5533 0.5472 0.5624
2 0.7655 0.7705 0.7806
5 0.9283 0.9248 0.9363
10 0.9633 0.9628 0.9673
15 0.9676 0.9678 0.9713
20 0.9693 0.9694 0.9727
25 0.9700 0.9702 0.9732
35 0.9709 0.9709 0.9737
50 0.9716 0.9715 0.9743

The sensitivity analysis assessing different activation func-
tions in the nodes of the hidden layer for the time-averaged
datasets of Scenario 2 can be seen in Table B3. Each NNE
contained 10 individual NNs. The NNs kept the same train-
ing criteria specified in the paper. We tested a total of seven
activation functions: hyperbolic tangent (symmetric) sig-
moid, logarithmic sigmoid, inverse, positive linear (ReLU),
linear, soft maximum, and radial basis. The linear and in-
verse activation functions showed the poorest performance.
The performance metrics were comparable for the other ac-
tivation functions. We decided to use the hyperbolic tangent
(symmetric) sigmoid activation function for the nodes in the
hidden layer.
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Table B2. The R2 values for the diagnostic test used to determine how the number of hidden layers and nodes within individual neural
networks affected the performance of the Scenario 2 time-averaged datasets. The target variable was biomass (mol kg−1). A separate NNE
was trained for each of the time-averaged datasets (daily, weekly, monthly) for each set of nodes (i.e., a unique NNE for the daily-averaged
dataset with 25 nodes was trained, a unique NNE for the weekly-averaged dataset with 25 nodes was trained, etc.). Each NNE contained 10
individual neural networks and kept the same training and stopping specifications outlined in the paper. The trained NNEs made predictions
on the testing dataset, and the R2 values were calculated based on the comparison between those predictions and the actual values of the
testing dataset. The layers and number of nodes in the table are specified as follows: number of nodes in the first layer–number of nodes in
the second layer. If only one number is listed, this specifies the number of nodes in the single hidden layer and that a second layer was not
used.

R2 values

Daily Weekly Monthly

Layers and number of nodes 25 0.9700 0.9702 0.9732
25–10 0.9722 0.9724 0.9750
25–25 0.9726 0.9727 0.9756

Table B3. The R2 values for the diagnostic test used to assess how different activation functions in the hidden layer affected the performance
of the Scenario 2 time-averaged datasets. The target variable was biomass (mol kg−1). A separate NNE was trained for each of the time-
averaged datasets (daily, weekly, monthly) for each activation function (i.e., a unique NNE for the daily-averaged dataset with the logarithmic
sigmoid activation function was trained, a unique NNE for the weekly-averaged dataset with the logarithmic sigmoid activation function was
trained, etc.). Each NNE contained 10 individual neural networks and kept the same training and stopping specifications outlined in the
paper. The trained NNEs made predictions on the testing dataset, and the R2 values were calculated based on the comparison between those
predictions and the actual values of the testing dataset.

R2 values

Daily Weekly Monthly

Activation functions Hyperbolic tangent (symmetric) sigmoid 0.9681 0.9688 0.9722
Logarithmic sigmoid 0.9679 0.9691 0.9722
Inverse 1.01× 10−5 0.7921 0.2455

(0.7236)∗

Positive linear (ReLU) 0.9652 0.9671 0.9704
Linear 0.3104 0.3059 0.3125
Soft maximum 0.9643 0.9649 0.9695
Radial basis 0.9671 0.9688 0.9716

∗ The low R2 value of the daily-averaged dataset for the inverse activation function (1.01×10−5) was because the first neural network of
that NNE stopped training after only 1 epoch due to the momentum parameter (“mu” in MATLAB) reaching its maximum value
(MATLAB, 2019). This significantly decreased the R2 performance of that particular NNE. Removing the first neural network from that
NNE increased the R2 value to 0.7236.
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Appendix C

Figure C1. Box plots showing the variability in the predictor and target variables of Scenario 1. The dataset consisted of monthly-averaged
variables. The predictor variables include (a) macronutrient, (b) micronutrient, and (c) irradiance. The target variable was phytoplankton
biomass (d). The red line corresponds to the median (50th percentile), the box edges are the 25th and 75th percentile values, and the whiskers
are the minimum and maximum values.

Figure C2. Box plots showing the variability in the predictor and target variables of Scenario 3. The dataset consisted of monthly-averaged
variables. The predictor variables include (a) macronutrient, (b) micronutrient, and (c) irradiance. The target variable was phytoplankton
biomass (d). The red line corresponds to the median (50th percentile), the box edges are the 25th and 75th percentile values, and the whiskers
are the minimum and maximum values.
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Appendix D

This appendix provides details about the method used to vi-
sualize how the apparent relationships in Scenario 2 were
changing from the hourly timescale through to the monthly-
averaged timescale.

To capture the apparent relationships ranging from the
hourly- to monthly-averaged timescales, we averaged the
hourly dataset over a range of time spans. Specifically, we
averaged over the time spans of 1 (original hourly dataset),
2, 3, 4, 6, 8, 12, 24, 48, 72, 168 (weekly), and 720 (monthly)
hours. The timescales had to be multiples of, or divisible by,
24 h. Hours that did not meet these criteria would mean that
hours from one day would be averaged with hours from an-
other day. For example, using a 7 h time span for averaging
would have meant that the last 3 h of Day 1 were being aver-
aged with the first 4 h of Day 2.

We trained one NNE for each of the averaged timescales.
Each NNE contained 10 individual NNs. The NNs kept the
same training criteria specified in the paper.

After training the NNEs, we performed a sensitivity anal-
ysis on each of them to visualize the predicted apparent re-
lationships. The percentile values for variables that were not
varying were set at their 50th percentile (median) values. We
then plotted all the predicted curves on a single surface plot
so we could view the relationships of all the timescales at
once. Additionally, because the greatest variability was lost
in the first 24 h, we also focused on the apparent relationships
for the time spans that were less than or equal to 24 h.
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