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Abstract. Monitoring leaf phenology tracks the progression
of climate change and seasonal variations in a variety of or-
ganismal and ecosystem processes. Networks of finite-scale
remote sensing, such as the PhenoCam network, provide
valuable information on phenological state at high tempo-
ral resolution, but they have limited coverage. Satellite-based
data with lower temporal resolution have primarily been used
to more broadly measure phenology (e.g., 16 d MODIS nor-
malized difference vegetation index (NDVI) product). Re-
cent versions of the Geostationary Operational Environmen-
tal Satellites (GOES-16 and GOES-17) can monitor NDVI at
temporal scales comparable to that of PhenoCam throughout
most of the western hemisphere. Here we begin to examine
the current capacity of these new data to measure the phenol-
ogy of deciduous broadleaf forests for the first 2 full calen-
dar years of data (2018 and 2019) by fitting double-logistic
Bayesian models and comparing the transition dates of the
start, middle, and end of the season to those obtained from
PhenoCam and MODIS 16 d NDVI and enhanced vegetation
index (EVI) products. Compared to these MODIS products,
GOES was more correlated with PhenoCam at the start and
middle of spring but had a larger bias (3.35± 0.03 d later
than PhenoCam) at the end of spring. Satellite-based autumn
transition dates were mostly uncorrelated with those of Phe-
noCam. PhenoCam data produced significantly more certain
(all p values ≤ 0.013) estimates of all transition dates than
any of the satellite sources did. GOES transition date un-
certainties were significantly smaller than those of MODIS
EVI for all transition dates (all p values ≤ 0.026), but they
were only smaller (based on p value <0.05) than those from
MODIS NDVI for the estimates of the beginning and middle
of spring. GOES will improve the monitoring of phenology

at large spatial coverages and provides real-time indicators
of phenological change even when the entire spring transi-
tion period occurs within the 16 d resolution of these MODIS
products.

1 Introduction

The influence of leaf phenology is ubiquitous across many
processes and relationships in ecology, local and regional
climates, and weather – for example leaf–trait relationships,
nutrients in leaf litter leachate, surface roughness, transpira-
tion, leaf–spectra relationships, albedo and energy budgets,
and annual primary productivity (Alekseychik et al., 2017;
Hudson et al., 2018; McKown et al., 2013; Piao et al., 2019;
Richardson et al., 2012; Schwartz et al., 2002; Xue et al.,
1996; Zhu and Zeng, 2017). In addition, since phenology is
often highly sensitive to climatic variables such as tempera-
ture and precipitation (Killingbeck, 2004), it has been a pri-
mary ecological indicator of climate change (Parmesan and
Yohe, 2003). Overall, spring in deciduous forests has been
found to advance and autumn has been found to delay (Gao
et al., 2019; Liu et al., 2016), but the results are heteroge-
neous, especially for autumn (Gill et al., 2015; Richardson et
al., 2013). These trends in changes are usually on the mag-
nitude of days (e.g., Keenan et al., 2014b, found an advance-
ment in spring of 0.48± 0.2 d/yr; Parmesan and Yohe, 2003,
an advancement of 0.23 d/yr). However, trends are often de-
pendent on the phenology index used (Keenan et al., 2014b).
This is particularly problematic for autumn when leaf color
change often precedes leaf abscission, affecting the similarity
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of autumn change in greenness indices (e.g., green chromatic
coordinate, GCC), the normalized difference vegetation in-
dex (NDVI), and the enhanced vegetation index (EVI). Sim-
ilarly, observation frequency can be particularly important in
spring, where the trend, the interannual variability, and time
required for green-up can all be smaller than common satel-
lite data product frequencies.

The longest vegetation phenological records date back to
the monitoring of the flowering of Japanese cherry trees in
the ninth century (Richardson et al., 2013). Since then many
naturalists have tracked phenology in a variety of ecosys-
tems, such as deciduous broadleaf (DB) forests. These hu-
man observations, though, are limited in scale and also rely
on extensive manpower, time, and consistency. The United
States National Phenology Network circumvents many of
these challenges by relying on citizen scientist data but is
still limited by the timeliness of observation uploads and the
inability to provide full, consistent coverage. Remote sens-
ing techniques, both near-surface and satellite-based, moni-
tor temporal changes in vegetation reflectance at a near-real
time and consistent frequency. Near-surface techniques in-
clude digital cameras, such as those that are part of the Phe-
noCam network, that take repeated imagery of canopies and
track how the ratios of red, green, and blue digital num-
bers change throughout the year (Richardson et al., 2007).
The PhenoCam network includes over 750 site years of data
across different biomes at the time of writing (Richardson et
al., 2018b), but it has inherently limited spatial coverage.

Satellites such as Aqua, Terra, Sentinel-2, and Landsat
provide full-coverage observations of phenologically sen-
sitive indices such as NDVI and EVI. However, in addi-
tion to being sensitive to clouds, these satellites are sun-
synchronous (i.e., their orbits are set to pass over a specific
local time rather than being fixed over a specific location),
and, thus, while observations have near global coverage, at
any given site they are at a limited frequency. In addition, to
cover the earth, these orbits are not exactly the same each
day, and, thus, images are taken from varying viewing an-
gles, which can add considerable complexity to the analy-
sis and interpretation of data (i.e., one needs to deconvolve
changes in vegetation state from changes in view angle). Be-
cause of this and challenges from frequent clouds, MODIS
(Moderate Resolution Imaging Spectroradiometer, which is
on Aqua and Terra) NDVI and EVI products are created by
compositing data over multi-day periods (e.g., 16 d). This
can be interpolated into daily estimates of NDVI and EVI
or can be provided as 16 d composites. While the daily in-
terpolated products are sometimes used in phenology (e.g.,
Ju et al., 2010; Keenan et al., 2014a; Liu et al., 2017), the
16 d composite NDVI and EVI products are also widely used
(e.g., Ahl et al., 2006; Hmimina et al., 2013; Richardson
et al., 2018b; Zheng and Zhu, 2017) and can be easily ac-
cessed though the MODIS web API and the MODISTools
R Package (Tuck et al., 2014). This lower temporal resolu-
tion results in MODIS NDVI- and EVI-based estimates of

phenological transition dates having larger uncertainties than
those derived from PhenoCam (Klosterman et al., 2014). Ad-
ditionally, while this temporal resolution may be adequate for
some applications of NDVI, spring transitions and climate-
change-induced changes, as already mentioned, can happen
at timescales much shorter than this 16 d resolution. This
has weakened how correlated the MODIS NDVI- and EVI-
observed start of spring estimates are with those from Pheno-
Cam (Filippa et al., 2018; Hufkens et al., 2012; Klosterman
et al., 2014; Richardson et al., 2018a). To accurately track
phenological transitions and changes at large scales, satellite-
based data at a finer temporal resolution are needed.

The United States’ National Oceanic and Atmospheric
Administration’s Geostationary Operational Environmental
Satellite (GOES) 16 and 17 are the first satellites in the
long-standing GOES series that possess a new sensor, the
Advanced Baseline Imager (ABI), that includes the neces-
sary bands to calculate NDVI (Schmit et al., 2016). As the
name implies, these satellites (one assumed the position of
GOES-East at 75◦W in December 2018 and one the po-
sition of GOES-West at 137◦W in February 2019; Schmit
et al., 2016) are geostationary and are thus not subject to
many of the same limitations as sun-synchronous satellites
because they take frequent measurements across their view
with constant viewing angles. While geostationary satellites
are still subject to clouds, the higher temporal resolution
of potential measurements results in a greater number of
non-cloudy measurements than sun-synchronous satellites.
GOES collects data every 5 min for the continental US and
every 10 min for much of the western hemisphere. These
high-frequency data can be noisy in deciduous forests, how-
ever, but statistical models that utilize the characteristic diur-
nal pattern of NDVI can estimate daily midday NDVI values
with uncertainty quantifications (Wheeler and Dietze, 2019).
Additional geostationary satellites that possess the ability to
monitor NDVI over other parts of the world include Meteosat
over Africa and Europe and Himawari over east Asia and
Oceania.

In this study, we investigated how GOES-16 (and by asso-
ciation GOES-17) compares to commonly-used 16 d MODIS
NDVI and EVI products in relation to PhenoCam through
estimations of phenology transition dates for DB forests
in the eastern US. We selected sites within the Pheno-
Cam network and fit phenological curves for the different
data sources (PhenoCam, MODIS NDVI, MODIS EVI, and
GOES NDVI) in a Bayesian context for the first full calendar
years of data (2018 and 2019). We calculated start, middle,
and end-of-season transition dates and compared those esti-
mates between the different data sources. We hypothesized
(1) GOES’s higher measurement frequency would generate
spring transition date estimates that are more similar than
MODIS to PhenoCam; (2) since DB canopy spring transi-
tions often occur faster than autumn, and changes in leaf
color and area are more synchronous, spring transition dates
would be more similar across the different data sources than
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the autumn ones; (3) since there exist differences in the sen-
sitivities of different sensors to leaf color versus leaf pres-
ence, GOES autumn transition dates would be most similar
to MODIS NDVI; and (4) because of the higher data vol-
umes, GOES would produce transition date estimates with
lower uncertainties than MODIS.

2 Methods

2.1 Site selection

From the PhenoCam Network, 15 DB sites were selected to
be compared to their associated MODIS and GOES pixels.
To attempt to maintain homogeneity in the associated pixels
of different spatial resolution (especially since the MODIS
pixels do not necessarily fall completely within the GOES
pixels), we used Google Earth to exclude PhenoCam sites
that were within the width of a GOES pixel (∼ 1 km) from
another land-cover type (e.g., grassland, urban, or large water
body). Distinguishing evergreen species using Google Earth
is more difficult, and, thus, several of the sites do likely
have nearby evergreen species that are included in the same
satellite pixels. However, these sites still display predomi-
nantly DB phenology curves and, thus, were still included in
this comparison. Specific site locations are given in Fig. 1
and Table 1. Additional metadata on the sites are available
on the PhenoCam network website (https://phenocam.sr.unh.
edu/webcam/, last access: 1 July 2020).

2.2 Data processing

2.2.1 GOES data download and quality control

The study time period of 1 January 2018 through 31 Decem-
ber 2019 was selected due to the availability of new GOES
data for the first 2 calendar years.

ABI L1b radiance values (“CONUS” coverage region)
were downloaded from NOAA’s Comprehensive Large
Array-data Stewardship System for GOES channel 3 (near
infrared) and channel 2 (red) for the study period (GOES-
R Calibration Working Group and GOES-R Series Program,
2017). After the ABI L2+ clear-sky mask (ACM) and data
quality flags were applied (GOES-R Algorithm Working
Group and GOES-R Series Program, 2018), radiance val-
ues were converted to reflectance factors under the guid-
ance of the GOES R Product Definition and Users’ Guide
(https://www.goes-r.gov/users/docs/PUG-L1b-vol3.pdf, last
access: 14 September 2019; pp. 27–28). Additional infor-
mation on accessing and processing the data is given in
Wheeler and Dietze (2019) and through our GitHub reposi-
tory: https://github.com/k-wheeler/NEFI_pheno/tree/master/
GOESDiurnalNDVI, last access: 17 May 2020. To account
for differences in spatial resolution, the four 0.5 km red re-
flectance factors that fell within a near-infrared (NIR) pixel
were averaged together, and NDVI was calculated on a 1 km

spatial resolution calculated following Eq. (1):

NDVI=
ρNIR− ρRed
ρNIR+ ρRed

, (1)

where ρNIR and ρRed refer to the reflectance factor at the
NIR band and red bands, respectively. While GOES does
provide a blue band, which would allow for the calculation
of EVI, additional calibration would likely need to be con-
ducted to establish coefficients needed in the EVI equation,
which is outside of the scope of this study. NDVI values that
occurred before 1.5 h after sunrise and after 1.5 h before sun-
set (calculated using the suncalc R package; Thieurmel and
Elmarhraoui, 2019) were removed due to high noise. Addi-
tionally, the NDVI values of 0.6040 were regularly and ab-
normally present in the dataset early in the morning or in
the evening throughout the study period and, thus, were re-
moved as noise (e.g., Supplement Fig. S1). All calculations
were performed in R (R Core Team, 2017).

2.2.2 Daily GOES NDVI estimates

Daily midday GOES NDVI values were estimated using
the Bayesian statistical model described in Wheeler and Di-
etze (2019). In summary, this model relies on the charac-
teristic diurnal NDVI pattern for DB pixels of increase in
the morning (represented with an inverted exponential de-
crease function) and decrease in the afternoon (represented
with an exponential decrease function), with a change-point
parameter between the two exponential functions (Supple-
ment Fig. S2). The error model accounts for negative bias in
noise due to atmospheric attenuation (e.g., from clouds and
aerosols) by calculating the probability that each observation
is clear or cloudy and the amount of atmospheric transmis-
sivity. Daily midday NDVI values with 95 % credible inter-
vals (CIs) were obtained from the GOES data for all days
with at least 10 observations (i.e., observations where both
radiance values had data quality flags of “acceptable” and
had an “acceptable” non-cloudy value from the ACM prod-
uct). We changed the prior on the parameter c (the midday
maximum NDVI estimate) from that reported in Wheeler
and Dietze (2019) to an uninformative Beta(1,1) instead of
Beta(2,1.5). With more data, it was clear that the original
prior was incorrectly pulling fits for winter days too high.
We also filtered out days that had <25 observations and did
not have observations in at least five different hours. These
thresholds were determined by examining various combina-
tions to minimize erroneous data and maintain most of the
fitted days. Additionally, after a visual inspection of the di-
urnal fits and data, 68 d of the total 3645 d (<2 %) that re-
mained after the previous filtering were removed due to poor
fits that were heavily influenced by one outlier point. As this
research scales up, implementing and testing automatic qual-
ity control methods will become more important, but that is
beyond the scope of this paper as here we want to focus on
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Figure 1. Map of 2016 National Land Cover Database (NLCD) classification (Jin et al., 2019; Yang et al., 2018) for the study region showing
the locations of the selected sites. Selected sites are located throughout the deciduous forested area in the United States. Specific locations
are given in Table 1.

Table 1. Characteristics of selected sites including the coordinates and some climate data from WorldClim (Hijmans et al., 2005), which
were assessed from the PhenoCam website (https://phenocam.sr.unh.edu/webcam/, last access: 1 July 2020).

Site name Latitude Longitude Mean annual Mean annual
temperature (◦C) precipitation (mm)

Marcell 47.514 −93.469 2.9 687.0
Willow Creek 45.806 −90.079 3.9 820.0
University of Michigan Biological Station (UMBS) 45.560 −84.714 5.9 797.0
Bartlett 44.065 −71.288 5.5 1224.0
Hubbard Brook 43.927 −71.741 4.6 1190.0
Harvard Forest 42.538 −72.172 6.8 1139.0
Green Ridge 39.691 −78.407 10.5 935.0
Morgan Monroe 39.323 −86.413 11.2 1087.0
Missouri Ozarks 38.744 −92.200 12.4 974.0
Shenandoah 38.617 −78.350 8.4 1222.0
Bull Shoals 36.563 −93.067 13.9 1084.0
Duke 35.974 −79.100 14.6 1166.0
Shining Rock 35.390 −82.775 9.3 1835.0
Coweeta 35.060 −83.428 12.5 1722.0
Russell Sage∗ 32.457 −91.974 18.1 1341.0

∗ Note: due to the cessation of PhenoCam data collection in 2019, Russell Sage was only included in the 2018 analysis.
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assessing phenological patterns and not remote sensing qual-
ity control algorithms.

Because overall atmospheric attenuation and differences
in viewing angles between the sites were not corrected for,
the NDVI values are not exactly equivalent to those mea-
sured at the ground. Thus, while we show comparisons across
days at the same site are possible, we advise further NDVI
processing is needed to make comparisons of NDVI values
across sites or use the underlying radiances in radiative trans-
fer models. Transition dates and the seasonal curves for in-
dividual sites should be minimally affected because the view
angle remains constant within a site, and the processing al-
gorithm does account for subdaily variability in atmospheric
attenuation.

2.2.3 MODIS and PhenoCam data download

The 250 m 16 d NDVI and EVI bands from the MODIS
product MOD13Q1 were used for the study period (Didan,
2015). This product was selected because it is easily accessi-
ble through the MODISTools R package (Tuck et al., 2014),
and the same temporal resolution for MODIS products has
been used in numerous other comparisons between phenol-
ogy data sources (e.g., Ahl et al., 2006; Hmimina et al., 2013;
Richardson et al., 2018b; Zheng and Zhu, 2017). Product
data quality flags were applied to MODIS data. Daily midday
PhenoCam GCC and standard deviation values were down-
loaded directly from the PhenoCam website archive (Pheno-
Cam, 2018 and 2019; Seyednasrollah et al., 2019). The Phe-
noCam at Russell Sage did not collect data for most of 2019,
and, thus, we only fit 1 year of data (2018) to this site.

2.3 Phenology model fitting

Phenological curves were fit for each source of data (GOES
NDVI, MODIS NDVI, MODIS EVI, and PhenoCam GCC).
Based on the highly cited Zhang et al. (2003) paper, spring
and autumn phenological changes were both modeled using
a logistic curve calculated following Eq. (2):

µt =
c

1+ ea+bt
+ d, (2)

where t is the time in days, µt is the phenology metric, a
and b are fitting parameters, c+d is the maximum value, and
d is the winter background value for the metric. The inter-
pretation and realistic limits of the parameters a and b are
somewhat obscure, so we reparametrized the model in terms
of the midpoint date (50 % change),M =−a/b. This gives a
double-logistic curve calculated following Eq. (3):

µt =

{
c

1+exp[bA(t−MA)]
+ dt > k

c
1+exp[bS(t−MS)]

+ dt ≤ k , (3)

where bA and bS indicate the b parameters (rate of change)
for the autumn green-down and the spring green-up, respec-
tively; MA and MS are the autumn and spring midpoints,

respectively; and k is the change-point day in the summer
where the function switches from the green-down logistic
curve to the green-up logistic curve, which we assumed to
be the 182nd day of the year (1 July) in order to separate the
year into two, which has been done elsewhere (e.g., Fu et al.,
2016). Spring green-up was completed by the end of June at
all of our sites; thus, the model fits were not heavily sensi-
tive to this assumption. We assumed that the minimum (d)
and the maximum (c+ d) phenological index values (GCC,
NDVI, EVI) would not change during this 1 year for all sites,
and, thus, both parts of the change-point function fit the same
c and d values. Years were fit independently for each site
and, thus, we did not assume that the c and d values were the
same between years. To compare the influence of the differ-
ent data sources on the uncertainty in the posterior, we used
relatively uninformative Gaussian priors for the parameters
(Table 2), which were created through simulating reasonable
data. Since the motivation for this study was to illustrate the
ability of GOES to monitor phenological change by com-
paring it to other remotely-sensed data sources, we focused
on only one transition date estimation method; though, addi-
tional methods are explored elsewhere (e.g., Klosterman et
al., 2014).

Additionally, since the diurnal fit method (Wheeler and
Dietze, 2019) produces estimates of uncertainty on daily
NDVI, the means and precisions were incorporated in a nor-
mally distributed errors-in-variable model within the phenol-
ogy model. Likewise, errors-in-variable models were applied
for the PhenoCam sites using the provided daily GCC stan-
dard deviation. Since the MOD13Q1 product does not pro-
vide a daily quantification of uncertainty (other than the qual-
ity flags that we separately applied), generic values were used
based on the standard deviations given in Miura et al. (2000)
of 0.01 and 0.02 for NDVI and EVI observations, respec-
tively.

The phenology models were fit in JAGS (Plummer, 2018;
version 4.3.0) using standard Markov chain Monte Carlo
(MCMC) approaches. JAGS was called from R (R Core
Team, 2017; version 3.4.1) using the rjags (Plummer, 2018;
version 4.7) and runjags (Denwood, 2016) packages. Five
chains were run and all models converged as assessed us-
ing Gelman–Brooks–Rubin statistic (GBR<1.05), and all
had effective sample sizes>5000 after burn-in was removed.
From the posterior outputs, 95 % of CIs were calculated. To
plot and compare the different data sources, which inherently
have different ranges, the predicted phenological curves for
all joint parameter posteriors were rescaled to have a range
of 0 to 1.

As explained in Zhang et al. (2003), the start- and end-of-
season transition dates for the double logistic fits were cal-
culated as the roots of the third derivative of Eq. (3), which
is illustrated in Fig. 2. The roots of the third derivative of
our reparametrized function (Eq. 3) were calculated follow-
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Table 2. Parameter priors. “Satellites” refers to all GOES, MODIS NDVI, and MODIS EVI. The priors on when the middle of spring and
autumn occurred were set as the day of year (DOY). Normal distribution is abbreviated with N .

Parameter Parameter Data Distribution
name abbreviation source (mean, standard deviation)

Middle of spring (DOY) MS All N (110, 40)
Middle of autumn (DOY) MA All N (300, 40)
Spring rate of change bS All N (−0.10, 0.05)
Autumn rate of change bA All N (0.10, 0.05)
Minimum of phenological curve d Satellites N (0.6, 0.2)
Minimum of phenological curve d PhenoCam N (0.35, 0.15)
Range of phenological data c Satellites N (0.4, 0.2)
Range of phenological data c PhenoCam N (0.3, 0.15)

ing Eqs. (4) and (5):

Root1=
b×M + log(

√
3+ 2)

b
, (4)

Root2=
b×M + log(2−

√
3)

b
, (5)

where Root1 signifies the transition dates of the start of sea-
son and end of season for spring and autumn, respectively.
Root2 signifies the end of season and start of season for
spring and autumn, respectively. A total of 95 % of CIs were
calculated from the 50 % midpoint transition date posteriors
and from the sample-specific Root1 and Root2 values.

2.4 Model comparison

Transition dates were compared between the different data
sources with an emphasis on how the transition date esti-
mates from the satellite-based data compared to PhenoCam.
We calculated the coefficient of determination (R2) and root-
mean-square error (RMSE) by comparing the means of the
transition dates from one data source with the means of the
transition dates from another source for all possible combina-
tions. It is important to note that these calculations are based
on the deviation from the one-to-one line and not the line of
best fit, which is often different from the predicted line. Since
we are testing the similarity of the transition date estimates
from the two sources, the predicted line is the one-to-one
line. Additionally, bias of the transition dates was assessed
by subtracting samples from the joint parameter posteriors
of one source from those of another source. The medians of
these differences (one median for each site) were then av-
eraged across sites for each comparison. Width of 95 % of
CIs was also compared between the different data sources
for each transition date using paired t tests.

Figure 2. Schematic based off of Fig. 2 in Zhang et al. (2003) de-
scribing the selection of transition dates (shown using the vertical
lines). Panel (a) illustrates an example phenological curve of green-
down and green-up. Panel (b) illustrates the first derivative. Panel
(c) illustrates the second derivative where the root (second deriva-
tive equals 0) gives the value of the date of the middle of season.
Panel (d) illustrates the third derivative where the roots give the
start and end of both seasons.

3 Results

3.1 Overall fits

The selected phenological model fit well to the GOES daily
data (Fig. 3a and b, Supplement Figs. S3 and S4). Credible
interval widths in the rescaled phenology fits were notice-
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ably narrower for PhenoCam models than GOES and similar
between the two MODIS products (Fig. 3a and b, Supple-
ment Figs. S5 and S6). Several sites (e.g., Green Ridge 2018;
Fig. 3e and g) had spring green-up periods that were shorter
than the 16 d temporal resolution of the MODIS products
but were shown in the GOES measurements (Fig. 3e). Based
on the output from the paired t tests, PhenoCam transition
date uncertainties were statistically narrower than those of
all satellite data for all transition dates (p value< 0.015 for
all comparisons; Table S2). All GOES transition dates were
statistically more certain (based on CI width) than the corre-
sponding MODIS EVI estimates (p value< 0.03) but were
only significantly more certain than MODIS NDVI for the
middle and end of spring (Fig. 4; Supplement Table S2).

3.2 Spring transition dates

GOES was correlated with PhenoCam for the start of spring
transition, where MODIS possessed an early bias (Fig. 5; Ta-
ble 3). GOES vs. PhenoCam (i.e., PhenoCam median tran-
sition dates were the independent variable and GOES me-
dian transition dates were the dependent variable) had the
highest R2 values (0.62 versus 0.00 and 0.00) and the lowest
RMSE and average bias (5.18± 0.03 earlier than PhenoCam;
Table 3). Both MODIS NDVI and EVI, on the other hand,
were biased earlier by 10.18± 0.1 and 11.66± 0.03 d on av-
erage, respectively. This bias was consistent amongst most
sites (Fig. 6a). GOES was also most correlated with Pheno-
Cam for the estimate of the middle of spring, with the high-
est R2 value (0.72), lowest RMSE (7.06 d), and lowest aver-
age bias of 0.92± 0.03 d earlier than PhenoCam (Table 3).
Most of the MODIS NDVI and EVI models were biased
early (Fig. 6b). Both MODIS data products were slightly
more correlated with PhenoCam for the end of spring than
GOES. MODIS NDVI had the highest R2 value of 0.80 but
had a slightly earlier bias than MODIS EVI (1.75± 0.04 d
vs. 0.79± 0.05 d). MODIS EVI and GOES had the same R2

values of 0.71, but GOES had a later bias of 3.35± 0.03 d
(Table 3). There existed less correlation between GOES and
the MODIS products (Supplement Table S3).

3.3 Autumn transition dates

Autumn transition dates agreed less across all sources of data
than in spring. Except for MODIS EVI at the end of autumn
(R2 of 0.36), none of the satellite-based data sources ex-
plained any variation in PhenoCam transition date estimates
(Table 3). Both NDVI sources (i.e., GOES and MODIS) were
consistently biased later (Table 3). MODIS EVI was biased
earlier than PhenoCam for the transition dates of the begin-
ning and middle of autumn. Except for the middle of autumn
where MODIS NDVI and GOES had a slight correlation (R2

of 0.34), satellite data sources were overall uncorrelated with
each other for all autumn transition dates (all had R2 val-
ues= 0.00). The biases were the smallest between MODIS

Table 3. Summary statistics for comparisons with PhenoCam tran-
sition dates.

Data source R2 RMSE (days) Average bias∗

(days; 95 % CI)

Start of spring

GOES 0.62 9.06 −5.18± 0.03
MODIS NDVI 0.00 13.53 −10.18± 0.1
MODIS EVI 0.00 13.4 −11.66± 0.03

Middle of spring

GOES 0.77 7.06 −0.92± 0.03
MODIS NDVI 0.00 10.86 −5.56± 0.04
MODIS EVI 0.5 9.42 −6.61± 0.03

End of spring

GOES 0.71 7.99 3.35± 0.03
MODIS NDVI 0.12 10.49 −0.95± 0.1
MODIS EVI 0.71 7.7 −1.57± 0.03

Start of autumn

GOES 0.00 32.3 12.59± 0.11
MODIS NDVI 0.00 34.2 17.84± 0.26
MODIS EVI 0.00 26.67 −7.5± 0.11

Middle of autumn

GOES 0.00 25.61 17.04± 0.07
MODIS NDVI 0.00 23.43 14.16± 0.08
MODIS EVI 0.00 15.64 −2.7± 0.07

End of autumn

GOES 0.00 26.58 21.5± 0.07
MODIS NDVI 0.00 16.17 10.47± 0.24
MODIS EVI 0.36 11.23 2.11± 0.06

∗ Negative indicates the data source is earlier than PhenoCam. The widths of
the 95 % credible intervals (CIs) of the biases are given.

NDVI and GOES for the first two transition dates (GOES
was 5.25± 0.24 d earlier and 2.89± 0.05 d later than MODIS
NDVI in the start and middle of autumn, respectively; Sup-
plement Table S3).

4 Discussion

4.1 Spring transition date similarity

Our hypothesis that GOES spring transition dates are more
similar than MODIS to PhenoCam ones was supported by
our results for the start and middle of spring. While the
MODIS earlier sensing start of spring compared to Pheno-
Cam has also been attributed to a variety of reasons ranging
from different viewing angles that sense the heterogeneity of
phenological change between different canopy layers (Ahl
et al., 2006; Richardson and O’Keefe, 2009; Keenan et al.,
2014b; Ryu et al., 2014; Schwartz et al., 2002), spatial scal-
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Figure 3. Time series of data from GOES NDVI daily data (a, b), PhenoCam GCC (c, d), MODIS NDVI (e, f), MODIS EVI (g, h), and
the rescaled credible intervals (i, j) for Green Ridge 2018 (left column) and Harvard Forest 2019 (right column). (a–h) Mean observations
in black dots with 95 % confidence intervals shown with vertical gray lines. The 95 % credible intervals (CIs) are given with the different
shading specific to each data source. The Green Ridge 2018 spring occurred more quickly than the MODIS temporal resolution but was
captured by the daily resolution of the GOES data.

ing affected by significant topography (Fisher et al., 2007),
snowmelt (Delbart et al., 2006), all these issues should af-
fect the GOES–PhenoCam comparison as well. Based off
of the similarity found here between GOES and Pheno-
Cam at marking the start and middle of spring, the mis-
match between MODIS and PhenoCam is likely largely due
to the temporal resolution of the MODIS products. Hufkens
et al. (2012) also point out that the temporal resolution of
MODIS products cannot be expected to precisely track rapid
leaf emergence in the spring due to the longer temporal
resolution. By averaging over a relatively long time period
(compared to the length of spring green-up), such techniques
likely prematurely inflate NDVI and EVI values, giving the
false impression that green-up occurred earlier. GOES, on
the other hand, allows for daily NDVI estimates that are in-
herently more capable of tracking the initial spring increase.

Contrary to our hypothesis, though, we found that both
MODIS indices were slightly less biased than GOES with
PhenoCam at the end of spring, even with a R2 value higher
than or similar to MODIS NDVI and EVI, respectively. Bias
is likely more reliable as a measure of similarity than R2 and
RMSE because it includes the uncertainties in the transition
dates for each site by utilizing the MCMC posterior sam-
ples instead of just comparing the median transition dates
for each site. The later bias of GOES compared to Phe-
noCam and the MODIS products could potentially be due
to an early bias in both PhenoCam and the MODIS prod-
ucts. PhenoCam GCC has been found previously to reach its
end of spring before many physiological traits such as to-
tal chlorophyll concentrations, leaf area and mass, leaf nitro-
gen and carbon concentrations, and leaf area index (Keenan
et al., 2014b; Yang et al., 2014). Thus, inherent differences
between GCC and NDVI could cause the slightly later bias
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Figure 4. The 95 % credible interval (CI) widths for the different
data sources for spring start (a), middle (b), and end (c) and autumn
start (d), middle (e), and end (f). Colors denote the different data
sources, which are labeled on the x axis. PhenoCam had the most
certain transition date estimates, and GOES was always more cer-
tain than MODIS EVI but only more certain than MODIS NDVI for
the middle and end of spring.

of GOES compared to PhenoCam at the end of spring. This
should not affect GOES’s ability to monitor interannual vari-
ability in this transition date as more years become avail-
able. MODIS could be biased early for the end of spring
in a similar way as that discussed in the previous paragraph
related to its temporal resolution. Klosterman et al. (2014)
found, however, that on average MODIS had a later end-of-
spring estimate than PhenoCam. One primary component of

their study was to investigate the impacts of land-cover het-
erogeneity on transition date comparisons between different
sources, and, thus, they included more heterogeneous land-
scapes in their dataset. They concluded that due to scaling
issues, MODIS pixels that have smaller proportions of de-
ciduous forests have MODIS end-of-spring estimates that are
later than near-surface estimates. Thus, it is reasonable to
assume that our attempt to not include any sites with sub-
stantial non-forest land-cover types within the MODIS and
GOES pixels would lower our average bias. The effects of
land-cover heterogeneity on the estimates of end-of-spring
transition should be kept in mind when using GOES to mon-
itor more heterogeneous sites.

As with many studies, the results and conclusions of this
study could depend on the methods used. It is possible that
a different transition date estimation method (e.g., the one
proposed by Klosterman et al., 2014, that also accounted for
summer green-down, which we were not focused on) would
result in different conclusions. If there is bias in the meth-
ods here to estimate transition dates, it is shared across data
sources, sites, and years. Similarly, using a different MODIS
product might also result in different conclusions. While a
daily MODIS product does exist, it is also created using
multi-day periods of measurements (Ju et al., 2010) and,
thus, is also possibly subject to similar constraints. We en-
courage others to consider more complex models and other
phenology products, but the primary aim of this study is to
demonstrate the value of GOES for studying phenology with
an initial comparison to PhenoCams and MODIS.

4.2 Spring and autumn compared

As we hypothesized, spring transition dates were more simi-
lar across data sources than autumn ones. This mismatch be-
tween PhenoCam GCC autumn transition dates and NDVI
and EVI (low R2 values and high biases) has been found in
numerous other studies (e.g., Hufkens et al., 2012; Keenan et
al., 2014a; Klosterman et al., 2014; Richardson et al., 2018b;
Zhang et al., 2018). This is most likely due to physiological
differences between the different metrics (i.e., GCC, NDVI,
and EVI) that become more apparent in the autumn, with
changes in color and canopy structure often occurring sepa-
rately. While all three metrics measure some combination of
greenness and canopy structure, only GCC directly considers
green reflectance in its calculation; leaf presence and canopy
structure (Kobayashi et al., 2007; Pettorelli et al., 2005) have
been found to impact NDVI and EVI more. The higher un-
certainties in the autumn transition dates, compared to spring
ones, across all data sources were expected given the longer
season length and the higher heterogeneity in autumn com-
pared to spring. For example, triggers of autumn phenology
are less understood and consistent than spring (Piao et al.,
2019), and the timing of autumn phenological events differs
more greatly between species than in spring (Richardson et
al., 2006). Like the other data sources, GOES spring tran-
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Figure 5. Scatter plots showing how the different data sources compare for their estimation of spring start (a), middle (b), and end (c) and
autumn start (d), middle (e), and end (f). Median transition dates are indicated by the point, and 95 % credible intervals are indicated by the
lines. The x axis gives the day of year of the PhenoCam (PC) transition and the y axis indicates the day of year of the different satellite data
sources, which are color-coded as indicated in the legend. Spring correlations are much higher than autumn ones, and GOES dates are more
correlated at the start and middle of spring (a, b) but are slightly biased late at the end of spring (c).

sition date estimates were most certain and most similar to
those derived from other data sources.

4.3 Autumn transition date similarity

We hypothesized that in the autumn, the transition dates
derived from GOES NDVI data are most similar to those
from MODIS NDVI data, which was mostly true. The low
biases that existed between the two at the start and mid-
dle of autumn (MODIS NDVI was 5.25± 0.24 d later and
2.89± 0.05 d earlier than GOES, respectively; Supplement
Table S3) are promising while the high end-of-autumn bias
(MODIS NDVI was 11.03± 0.24 d earlier than GOES) could
potentially be due to the high amount of noise in the GOES
data that remains in the winter at many sites (Supplement
Figs. S2 and S3). Future directions for GOES that should
help decrease these biases include developing a snow cover
mask (which is a planned GOES product), developing a more
sophisticated atmospheric correction algorithm for GOES
reflectance data, and developing methodology for correct-
ing for seasonal variations in solar angle. GOES will inher-
ently be better at establishing a winter baseline at sites with
less snowy days than sites that consistently have a layer of
snow obstructing accurate satellite measurements. Develop-
ing multi-year phenology models to increase the number of
winter observations by assuming the winter NDVI baseline
is similar between years would improve this. Furthermore,
more informative priors in the diurnal fit model for estimat-

ing daily NDVI values that change seasonally would also im-
prove the ability to estimate winter NDVI values with more
certainty. These will likely help improve the correlation be-
tween GOES NDVI and MODIS NDVI.

4.4 Uncertainty in transition date estimates

We hypothesized that the increased temporal frequency in
GOES data would produce more certain estimates of tran-
sition dates than MODIS. In practice, we found differences
between MODIS indices, with GOES transition dates being
significantly more certain than MODIS EVI for all transi-
tion dates but only significantly more certain than MODIS
NDVI for the start and middle of spring. However, as pre-
viously discussed, there are nontrivial differences between
what NDVI and GCC are measuring in the autumn and end
of spring that transcend simple issues of data quality and
quantity, which suggests GOES is providing important new
information about vegetation phenology. Once future work
further improves the GOES products, reducing noise due to
factors such as snow and atmospheric attenuation, the widths
of the CIs are expected to improve. Additionally, the lack
of a spatially and temporally varying MODIS uncertainty
product, as we have produced for GOES, provided a limi-
tation to this comparison, and it is possible that specific daily
MODIS uncertainties, congruent to that we used from the
GOES data, would affect this conclusion. In particular, many
of the MODIS validation efforts have focused on within-
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Figure 6. The different biases for the different satellite-based data
sources compared to PhenoCam for their estimation of spring start
(a), middle (b), and end (c) and autumn start (d), middle (e), and
end (f). A negative bias indicates the given data source was earlier
than PhenoCam. The red line denotes zero bias. Boxes are color
coded by the data source as indicated on the x axis. The biases are
larger in the autumn than in the spring. There are some with little
median bias.

season comparisons (e.g., Miura et al., 2000) not periods
of phenological transition, and, thus, MODIS uncertainties
are likely underestimated. Furthermore, the differences in re-
sults between comparing GOES transition dates’ CI widths
to those from MODIS NDVI and EVI are likely partially
due to the differences in observational error applied. Based
on Miura et al. (2000), a smaller observational error was ap-
plied to MODIS NDVI than MODIS EVI, which likely was
enough to make all GOES transition date estimates signif-
icantly more certain than the respective MODIS EVI esti-
mates, but not always MODIS NDVI. This emphasizes the
importance of providing uncertainty estimates with remotely
sensed phenology data, which fitting diurnal curves to GOES
data provides (Wheeler and Dietze, 2019).

4.5 Future phenological applications of GOES NDVI
data

With its full coverage and high temporal resolution, GOES-
16 and GOES-17 have the potential to revolutionize the study
of leaf phenology and allow for a variety of studies that pre-
viously would not have been possible at the extent they are
now. First, many studies have found that climate change is
altering phenology on the scale of days per decade (Cleland
et al., 2007; Keenan et al., 2014a; Parmesan and Yohe, 2003;
Root et al., 2003). The long temporal scale of the studied
MODIS NDVI and EVI products limits their ability to pre-
cisely and accurately monitor both these trends and interan-
nual variability. While a daily MODIS NDVI product is be-
coming more readily available (and MODIS measurements
are taken sub-daily, but at varying viewing angles), it still re-
mains more inaccessible than many of the lower-frequency
MODIS data products because it is relatively new. It is im-
portant to have additional remotely sensed data sources, es-
pecially ones that are not affected by changing viewing an-
gles.

Second, GOES provides real-time data of spring green-up
even for those springs that occur quicker than the 16 d res-
olution of this MODIS product (e.g., Green Ridge 2018 in
Fig. 3). These sites possessed no 16 d MODIS NDVI nor EVI
measurements during the green-up period. This limitation
would become even more severe when monitoring green-up
in real time, as the transition would only be detected after
the fact. The seasonal curve fitting methodology used here to
estimate transition dates is not suitable in real time, but alter-
native methods, such as determining that spring has started
if the phenological index is 10 % greater than the winter
baseline or iteratively assimilating data into a process model
(Viskari et al., 2015), could be used to provide insight into
whether or not certain transition dates have occurred in real
time. With the data that GOES supplies, it becomes more
possible to monitor and forecast the start and progression of
green-up at large scales using near-real-time data, instead of
having to wait for the next reliable MODIS product value,
which might be 15 d away.

A third beneficial future application of the high-temporal-
resolution GOES NDVI data is the ability to monitor the
effects of storms (e.g., hurricanes), droughts, and frosts on
phenology and NDVI. It is possible that the effects of some
of these disturbances are only present for less than the tem-
poral resolution of MODIS. For example, Richardson et
al. (2018b) found that the effect of a spring frost event
was visible within PhenoCam data but not clearly visible
within the 16 d MODIS data. By providing higher-temporal-
resolution spring NDVI data, it is more likely that the effects
of similar frost events could be observed at more areas that
do not have a PhenoCam present.

A fourth benefit is that by combining data from multi-
ple high-temporal-resolution sources (i.e., PhenoCam and
GOES), we may now ask questions related to differentiat-
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ing the physiological impacts of phenological change in dif-
ferent indices and at different spatial scales. For example,
with high-temporal-resolution NDVI data, we can now start
asking questions about what specific phenological processes
control the rate of spring increase (i.e., budburst vs. leaf ex-
pansion) and how these are affected by spatial scale. Simi-
larly, combining PhenoCam and GOES data has the potential
to help us better disentangle different autumn phenological
processes (i.e., leaf color change vs. leaf fall).

We are not suggesting that GOES should replace other
phenology data sources but rather that a combination of dif-
ferent data sources, which each have their own strengths and
weaknesses, is beneficial. MODIS has a much longer record
of data than GOES and still remains an important source of
information. Additionally, it has a different spatial scale that
is between PhenoCam and GOES, and a combination of the
three could help answer spatial questions related to NDVI
(e.g., how does NDVI scale between canopy level and land-
scape level and how does this change seasonally?).

In conclusion, we have shown that GOES-16 and GOES-
17 possess great potential at enhancing the monitoring of leaf
phenology, which will allow us to ask and answer new ques-
tions and improve our knowledge of this complicated but im-
portant aspect of ecology and environmental science.
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