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Abstract. Wildfires in sagebrush (Artemisia spp.)-dominated
semi-arid ecosystems in the western United States have in-
creased dramatically in frequency and severity in the last
few decades. Severe wildfires often lead to the loss of na-
tive sagebrush communities and change the biogeochemi-
cal conditions which make it difficult for sagebrush to re-
generate. Invasion of cheatgrass (Bromus tectorum) accentu-
ates the problem by making the ecosystem more susceptible
to frequent burns. Managers have implemented several tech-
niques to cope with the cheatgrass–fire cycle, ranging from
controlling undesirable fire effects by removing fuel loads
either mechanically or via prescribed burns to seeding the
fire-affected areas with shrubs and native perennial forbs.
There have been a number of studies at local scales to un-
derstand the direct impacts of wildfire on vegetation; how-
ever there is a larger gap in understanding these impacts at
broad spatial and temporal scales. This need highlights the
importance of dynamic global vegetation models (DGVMs)
and remote sensing. In this study, we explored the influence
of fire on vegetation composition and gross primary produc-
tion (GPP) in the sagebrush ecosystem using the Ecosystem
Demography (EDv2.2) model, a dynamic global vegetation
model. We selected the Reynolds Creek Experimental Wa-
tershed (RCEW) to run our simulation study, an intensively
monitored sagebrush-dominated ecosystem in the northern

Great Basin. We ran point-based simulations at four existing
flux tower sites in the study area for a total of 150 years after
turning on the fire module in the 25th year. Results suggest
dominance of shrubs in a non-fire scenario; however under
the fire scenario we observed contrasting phases of high and
low shrub density and C3 grass growth. Regional model sim-
ulations showed a gradual decline in GPP for fire-introduced
areas through the initial couple of years instead of killing
all the vegetation in the affected area in the first year itself.
We also compared the results from EDv2.2 with satellite-
derived GPP estimates for the areas in the RCEW burned by
a wildfire in 2015 (Soda Fire). We observed moderate pixel-
level correlations between maps of post-fire recovery EDv2.2
GPP and MODIS-derived GPP. This study contributes to un-
derstanding the application of ecosystem models to investi-
gate temporal dynamics of vegetation under alternative fire
regimes and post-fire ecosystem restoration.

1 Introduction

The number and intensity of wildfires in the sagebrush
steppe of the semi-arid Great Basin, western USA, have
increased dramatically (Keane et al., 2008). Studies have
shown that sagebrush (Artemisia spp.) has declined signif-
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icantly across the Great Basin due to fire and other distur-
bances (Knick et al., 2003; Pilliod et al., 2017; Rigge et al.,
2019; Schroeder et al., 2004). The low stature of sagebrush
makes it less adapted in morphological terms to survive fires
as most of the flammable fuels are close to the ground (Hood
and Miller, 2007; McArthur and Stevens, 2004; Welch and
Criddle, 2003). In addition, ongoing research indicates that
sagebrush regeneration is complicated by changes in cli-
mate, long germination and growth times, and seed dispersal
(Chambers, 2000; Shriver et al., 2018; Walton et al., 1986).
Even though fire is often recognized as a natural ecosys-
tem process, it reduces woody shrub biomass while increas-
ing herbaceous biomass (Ellsworth et al., 2016). Invasion
of nonnative cheatgrass (Bromus tectorum) alters the com-
petitive balance between woody and herbaceous plants and
also makes the ecosystem more susceptible to frequent and
larger fires (Baker, 2006; Building et al., 2013; Whisenant,
1990). A recent study has shown that this cheatgrass–fire cy-
cle has resulted in more than one-third of the Great Basin be-
ing invaded by cheatgrass (Bradley et al., 2018), which repre-
sents an enormous community shift with potentially large yet
unknown effects on ecosystem function at a regional scale
(Bradley et al., 2006; Bradley, 2010; Fusco et al., 2019).

Land managers and scientists have identified potential
techniques to cope with the problems related to the altered
fire regime in the Great Basin, ranging from controlling fire
incidents with removing fuel loads either mechanically or us-
ing prescribed burns to seeding the burned areas with shrubs
and native perennial forbs. There have been a number of
studies (e.g., Diamond et al., 2012; Ellsworth et al., 2016;
Miller et al., 2013; Murphy et al., 2013) at the local scale
to understand fire impacts, with many studies suggesting fire
suppression as a technique to preserve the sagebrush ecosys-
tem. However, there is a gap in understanding the influence at
broader spatial scales. Remote sensing studies provide con-
temporary insights into ecosystem changes at broad spatial
scales (e.g., Bradley et al., 2018). However, longer temporal-
scale studies in the context of future climate scenarios are
needed to better understand fire effects on shrub-dominated
ecosystems like the sagebrush steppe (Knutson et al., 2014;
Nelson et al., 2014).

One method to consider long timescales in the effects of
fire on sagebrush ecosystems is to utilize dynamic global
vegetation models (DGVMs) (Lenihan et al., 2007; Li et al.,
2012). A DGVM can be placed anywhere along the contin-
uum of individual-based to area-based models (Fisher et al.,
2010; Smith et al., 2001). Individual-based models (IBMs)
represent vegetation at the individual plant level incorporat-
ing complex community processes like growth, mortality, re-
cruitment, and disturbances. Area-based models, on the other
hand, represent plant communities with area-averaged rep-
resentation making them more efficient for broad-scale ap-
plications (Bond-Lamberty et al., 2015; Fisher et al., 2010;
Smith et al., 2001). DGVMs are now increasingly inter-
twined with land surface models in ways that facilitate the

integrated simulation of changes in vegetation community
composition and surface water, energy, and biogeochemical
cycles in response to changes in climate, land use, and fire
regimes. Fisher and Koven (2020) provide a review of the in-
creasingly sophisticated treatment of land surface processes
in global land models, highlighting in particular the complex
ways that vegetation influences fluxes and stores of water, en-
ergy, and carbon within these models. In the last 2 decades,
fire sub-models in various DGVMs have evolved through
time from simple statistical methods to more complicated ap-
proaches with induced ignition and process-based spread and
intensity (Thonicke et al., 2001, 2010; Knorr et al., 2016).

Ecosystem Demography (EDv2.2) is a DGVM originally
developed in 2001 (Moorcroft et al., 2001). EDv2.2 is a
cohort-based model that seeks to balance the fidelity of pro-
cess representation in individual-based models with the com-
putational efficiency of area-based models, wherein individ-
ual plants with similar properties, in terms of size, age, and
function, are grouped together to reduce the computational
cost while retaining most of the dynamics of IBMs (Fisher
et al., 2010). Because of this balance between process fidelity
and computational burden, demography-based models are
becoming increasingly popular versions of DGVMs within
global land models (Fisher et al., 2018). While EDv2.2 was
originally developed for a tropical forest ecosystem, it has
since been updated for broader use (Medvigy et al., 2009),
including to understand fire behavior under different proba-
ble scenarios in tree-dominated ecosystems (Trugman et al.,
2016; Zhang et al., 2015).

In this study, we used the Ecosystem Demography
(EDv2.2) model with a recently developed plant functional
type (PFT) parameterization of shrubs (Pandit et al., 2019)
with the objective to examine model-derived effects of fire on
a shrubland ecosystem in the Reynolds Creek Experimental
Watershed (RCEW), Idaho, USA. We developed and ran a
two-step numerical experiment to accomplish this. First, we
explored the projected gross primary production (GPP) of a
sagebrush-steppe ecosystem (in terms of shrub and C3 grass
PFTs) in EDv2.2 for two different fire disturbance scenar-
ios and a no-fire or control scenario (performed at the point
level). Second, we compared the model-simulated spatiotem-
poral variability in GPP to a remotely sensed estimate of GPP
(Wylie et al., 2003; Running et al., 2004) prior to and after a
2015 fire that burned a portion of the RCEW study area.

2 Methods

2.1 Ecosystem Demography (EDv2.2) model

EDv2.2 is a process-based dynamic global vegetation model
which takes cohorts (a group of individuals with similar
properties) as the smallest units of simulation. It is com-
posed of a series of gridded cells, which experience mete-
orological forcing from corresponding gridded data or from
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a coupled atmospheric model (Medvigy, 2006). It captures
both vertical and horizontal distributions of vegetation struc-
ture and compositional heterogeneity better than most of the
area-based models (Kim et al., 2012; Moorcroft et al., 2001;
Moorcroft, 2003; Sellers et al., 1992). EDv2.2 has a fire sub-
routine which evaluates conditions leading to potential fire
ignition and quantifies fire disturbance effects on vegetation.
A detailed description of the EDv2.2 model structure in-
cluding its fire subroutine is available in earlier publications
(Longo et al., 2019b; Moorcroft et al., 2001; Medvigy et al.,
2009). Here we present a brief summary of the fire subrou-
tine.

In this model, fire ignition probability is based on soil dry-
ness which is local (within-gap) in origin but can spread into
adjacent areas given favorable conditions for fire. Burn rate
or fire severity is proportional to local fuel availability or to-
tal aboveground biomass (AGB). Under the current model
settings, all plants in a burned patch are killed while parts
of carbon and nitrogen are transferred into the belowground
biogeochemical module (Moorcroft et al., 2001). The area
of burned patches within grids can increase linearly through
years as a function of aboveground biomass (AGB). New
burned patches are created every year when the minimum
area necessary to generate a new patch is available through
the loss of affected cohorts. Along with other disturbance
factors in EDv2.2, the fire sub-module creates and main-
tains age- and size-based heterogeneity at sub-grid levels to
closely resemble a broad range of structures and composi-
tions in a disturbed ecosystem. For example, a study from
South America by Longo et al. (2019a) showed that this
model represented a fire-disturbed ecosystem like woody sa-
vanna very well. Users can adjust the dryness threshold for
fire ignition and fire severity parameters (defined between
0 and 1) to determine the level of fire-related disturbance
depending upon available fuel. The fire-related disturbance
rate (λFR

µ,µ0
) affecting patch u (and potentially creating new

patches u0) is given by the following equation (Eq. 1) as orig-
inally defined by Moorcroft et al. (2001) and later revisited
by Longo et al. (2019b).

λFR
µ,µ0
= I

Np∑
u=1

NTu∑
k=1

{[
Culk +FAGuk (Cuσk +Cuhk )

]
γuαu

}
, (1)

where patches are denoted by subscript u, Np is number of
patches,NTu is number of cohorts in patch where patches are
denoted by u, γu is the binary ignition function as defined in
Eq. (2), αu is relative area of patch u, I is fire intensity, FAGuk
is fraction of tissue aboveground, Culk is leaf biomass, Cuσk
is sapwood biomass, and Cuhk is structural biomass. The bi-
nary ignition function (Eq. 2) represents the local dryness
of environment which depends on the average soil moisture
within a chosen soil depth.

γu =

{
1 if ( 1

|ZFr|

∫ 0
ZFr
νgdz) < νFr

0 otherwise,
(2)

where νgdz is soil moisture at given soil layer thickness dz,
ZFr is the maximum soil depth considered in analyzing dry-
ness, and νFr is an average soil moisture below which ignition
is assumed to occur.

2.2 Study area

We ran the EDv2.2 model at the Reynolds Creek Experimen-
tal Watershed (RCEW), located in the northern Great Basin
region of the western United States (Fig. 1a). The RCEW is
operated by the USDA Agricultural Research Service and is
also a Critical Zone Observatory (CZO). The watershed is
approximately 240 km2 in area with elevation ranging from
about 900 to 2200 m. With an increase in elevation, there
is an increase in mean annual precipitation and a decrease
in mean annual temperature (Flerchinger et al., 2020; Ren-
wick et al., 2019). Mean annual temperature ranges from
5 to 10 ◦C, and mean annual precipitation ranges from 250
to 1100 mm in the watershed. Because of the strong oro-
graphic gradient in temperature in the watershed, most pre-
cipitation at lower elevations falls as rain, whereas precipi-
tation at higher elevations is dominated by snow. The higher
elevations in the southern areas of the watershed are domi-
nated by quaking aspen (Populus tremuloides), Douglas fir
(Pseudotsuga menziesii), and western juniper (Juniperus oc-
cidentalis) (Seyfried et al., 2000). The lower elevations are
primarily covered with Wyoming big sagebrush (Artemisia
tridentata spp. wyomingensis), low sagebrush (Artemisia ar-
buscula), rabbitbrush (Ericameria nauseosa), and bitterbrush
(Purshia tridentata). Perennial herbs like bluebunch wheat-
grass (Pseudoroegneria spicata), needle and thread (Hesper-
ostipa comata), western wheatgrass (Pascopyrum smithii),
tapertip hawksbeard (Crepis acuminata), and yarrow (Achil-
lea millefolium) are also present (Pyke et al., 2015). The
2015 Soda Fire burned over 1000 km2 in southeast Oregon
and southwest Idaho, including approximately 32 % of the
RCEW in its northern region (Fig. 1b). Collaborative efforts
between federal, state, and private agencies have been ap-
plied to assess risk and devise a plan to implement treatments
to stabilize burned areas, promote recovery of native plant
communities, increase perennial grasses, and reduce invasive
annual species (BLM, 2016).

We used EDv2.2 to run both point-based and regional
analyses in the RCEW. For the point-based runs, we used
four 200m× 200m polygons centered at four eddy covari-
ance (EC) tower sites in the RCEW to represent the tower
footprints. The four sites include Wyoming Big Sagebrush
(WBS), Lower Sheep (LS), Upper Sheep (US), and Reynolds
Mountain Sagebrush (RMS) (Table 1). Wyoming big sage-
brush is the dominant shrub at the WBS site with perennial
grasses like bluebunch wheatgrass (Pseudoroegneria spi-
cata), squirreltail (Elymus elymoides), and Sandberg blue-
grass (Poa secunda). The dominant shrub at the LS site is
low sagebrush (Artemisia arbuscula) along with Sandberg
bluegrass, squirreltail (Elymus elymoides), and Idaho fescue
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(Fescue idahoensis). Mountain big sagebrush (Artemisia tri-
dentata spp. vaseyana) is the common shrub cover at the
US and RMS sites, where there is also a strong presence
of forbs including longleaf phlox (Phlox longifolia), pale
agoseris (Agoseris glauca), and silvery lupine (Lupinus ar-
genteus) (Flerchinger et al., 2020). For regional runs, we dis-
cretized the watershed into a 1 km rectangular grid covering
the entirety of the watershed, consistent with the resolution
of the meteorological forcing input to the model described
below. The study area in the regional runs consisted of the
Soda Fire region of the RCEW (Soda Fire region contained
within the black polygon in Fig. 1b) and the whole of the
RCEW (contained within the black polygon in Fig. 1b).

2.3 Meteorological forcing data

Meteorological forcing data input to the EDv2.2 model con-
sisted of output from a multi-decadal run of the Weather
Research and Forecasting (WRF) model (Skamarock et al.,
2008), which was used to dynamically downscale data from
the North American Regional Reanalysis (National Cen-
ters for Environmental Prediction, National Weather Service,
NOAA, U.S. Department of Commerce, 2005) to a spatial
resolution of 1 km (Pandit et al., 2019) (Table 2). WRF out-
puts correspond to atmospheric outputs at a standard height
of 2 m for temperature and specific humidity; 10 m for wind
speed and direction; and the ground surface for downward
shortwave and longwave radiation, surface pressure, and pre-
cipitation (Flores et al., 2016). The temporal resolution of the
WRF data is 1 h, and they are available for the period from
1 October 1986 to 30 September 2018. We partitioned short-
wave radiation into direct and diffuse and visible and near-
infrared components as summarized by Weiss and Norman
(1985).

2.4 Multi-decadal simulation at point scale

We ran point-based simulations at four EC tower sites in the
RCEW to understand the multi-decadal temporal dynamics
of PFTs for alternative fire conditions. We initialized ecosys-
tem conditions using representative existing vegetation con-
ditions with equal densities (0.25 plants m−2) of shrubs and
grasses as PFTs. The shrub density was based on field stud-
ies in the area (Glenn et al., 2017). For the shrubs, we used
a PFT especially developed for sagebrush in the study area
based on our previous work (Pandit et al., 2019), whereas
for the grasses, we used the temperate C3 grass PFT which
is the closest match from among available PFTs in EDv2.2.
We assumed that this existing temperate grass PFT in the
model would represent common perennial grass species in
the study area. We minimized interannual climate variability
by calculating mean monthly precipitation from 30 years of
WRF data (1988–2017) and then selecting the year 2012 as
the year that most closely matched the 30-year mean precip-
itation record. All four sites were run for an initial 25 years,

after which each site was run with three different scenarios
for the next 125 years: (i) no fire, (ii) low fire severity, and
(iii) high fire severity. In the fire scenario simulations, we ran
the model with active fire for these later 125 years. The fire
severity parameter in the model which specifies intensity of
disturbance from fire can range from 0 to 1, where we ap-
plied 0.5 and 0.9 values for low- and high-severity fires, re-
spectively. We observed GPP trends of shrub and grass PFTs
for these three scenarios at all four EC sites and compared
results with GPP data from the sites (Fellows et al., 2017).

2.5 Multi-year simulation at regional scale

We performed regional- (watershed-)scale simulations to
perform comparisons across simulations for fire and no-
fire conditions and between model simulations and satellite-
derived estimates of ecosystem productivity. First, we com-
pared the fire-caused vegetation disturbance and recovery
at the regional scale by allowing EDv2.2 to run with both
fire and no-fire (control) conditions. Second, we compared
the model-predicted GPP (for both burned and unburned ar-
eas in the region) with MODIS-derived GPP from the study
area. To perform these simulations, we initialized EDv2.2
with a near-bare-earth scenario of 0.1 plants m−2 for all al-
lowed PFTs (i.e., C3 grass, shrubs, northern pines, and late
conifers) from 1990 and ran it for the following 25 years.
Our analysis indicated that 25 years of spin-up was suffi-
cient for GPP to reach equilibrium (Fig. S1 in the Supple-
ment). For these model runs, we used meteorological data
from the years corresponding with the simulation years, ex-
cept for 2018 and 2019 when WRF data were not available.
For these two years, we imputed WRF data from other years
which closely resembled monthly total precipitation with the
observations (NOAA, 2019).

For the first experiment, we ran fire and no-fire model sim-
ulations for a region inside the RCEW which was affected by
the Soda Fire in 2015 (hereafter Soda Fire scenario). For the
fire scenario, we activated the fire subroutine in the model
from 2015 and ran it until 2019. In this run, we adopted a
high fire severity (0.9) to relate closely to the severity ob-
served in the Soda Fire. For the no-fire (control) scenario,
we allowed the model to continue without fire until 2019.
We compared differences between the fire and no-fire simu-
lations for each year.

For the next experiment, we ran EDv2.2 in a manner that
would best represent the true circumstances for the entire
study area (hereafter RCEW scenario). To perform this, we
introduced fire (with the same parameter as above) only into
that portion of the RCEW which actually burned in 2015
and simulated the remaining portion of the watershed with-
out fire. The purpose of this experiment was to compare the
GPP predicted from EDv2.2 (for burned and unburned areas)
with GPP derived from MODIS images. The unburned area
in this simulation is used as a benchmark for comparisons
and to offset annual variations. As before, we ran the model
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Figure 1. (a) Location of the four EC flux tower sites within the Reynolds Creek Experimental Watershed (RCEW) study area. The inset
map shows the location of the RCEW within the northern Great Basin (LCC, 2015). The Great Basin area is shown in grey shading. (b) Map
showing area affected by the Soda Fire, 2015 (red boundary), boundary of the RCEW (blue boundary), and rectangle covering the RCEW
(black polygon) used to run the regional EDv2.2 simulations. Normalized difference vegetation index (NDVI; Landsat image, August 2015)
map in the background shows the disturbance from fire in the Soda Fire area.

Table 1. Description of EC sites used in the point-based analysis.

Site AmeriFlux ID Location [lat, long] Elevation [m] Mean annual Mean annual
precipitation [mm] temperature [◦C]

WBS US-Rws 43.1675, −116.7132 1425 290 8.9
LS US-Rls 43.1439, −116.7356 1608 333 8.4
US US-Rwf 43.1207, −116.7231 1878 505 6.5
RMS US-Rms 43.0645, −116.7486 2111 800 5.4

with these conditions for the next 5 years (2015 to 2019). We
produced GPP from MODIS GPP CONUS datasets (Robin-
son et al., 2018), using Google Earth Engine. The mean of all
available MODIS images for July of each year was calculated
and clipped and resampled to match the spatial coverage and
grid resolution (1 km) of the EDv2.2 simulation, before com-
paring it against simulated mean monthly GPP values of July
from the model.

3 Results

3.1 Multi-decadal GPP prediction at point scale

Temporal dynamics of the GPPs for shrub and C3 grass PFTs
were similar for the LS, WBS, and US sites, while they were
slightly different for the RMS site (Fig. 2), which is located
at a higher elevation (Fig. 1a). Without fire, shrubs eventually
dominated to comprise the entirety of GPP persisting through
the end of the simulation period. GPP for C3 grass was high
during the initial years but decreased rapidly after about 2–
3 years of simulation, while shrub GPP increased gradually
and became more dominant than grass after ∼ 10–15 years.

Between 30 and 40 years, shrub GPP peaked, C3 grass
GPP completely disappeared, and GPP reached an approx-
imate equilibrium at or slightly above 0.3 kgCm−2 yr−1 for
the three lower-elevation sites (LS, US, WBS) and at about
0.55 kgCm−2 yr−1 for the highest-elevation site (RMS). We
observed that during its initial rapid growth phase (Fig. 2),
some portion of the total aboveground biomass (AGB) is also
covered by C3 grass (Fig. A1), which in the latter years was
completely wiped out by shrub AGB. We did not observe
any growth of conifer PFTs throughout the simulation pe-
riod, even for the no-fire scenario.

Upon activation of the fire module after 25 years of sim-
ulation, shrub GPP declined abruptly and C3 grass GPP in-
creased dramatically in all four study sites. However, around
25 years after fire activation, shrubs initiate a recovery and
maintain a gradual increase until reaching a peak in 50–
75 years; at the same time C3 grass GPP gradually decreased
to a minimal level. We observed lower overall GPP during
the years when shrub GPP was at the peak, since at this
time C3 grass productivity was at its minimum. Disturbance
rates from fire spiked in the first couple of years after fire
was first introduced and later stabilized to closely follow the
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Table 2. Meteorological data from the WRF model used for simulation. Adapted from Pandit et al. (2019).

Variable description Name Unit

2 m temperature T2 K
Surface pressure PSFC Pa
Accumulated precipitation RAINNC mm
Terrain height HGT m
10 m u wind (zonal) component U10 ms−1

10 m v wind (meridional) component V10 ms−1

2 m specific humidity Q2 kgkg−1

Downward longwave flux at ground surface GLW Wm−2

Downward shortwave flux at ground surface SWDOWN Wm−2

trend of shrub AGB (Fig. A1), suggesting the highest dis-
turbance rate at the peak of shrub AGB leading to a de-
cline in shrub GPP (and shrub AGB) afterwards. A simi-
lar cycle was observed for the remainder of the simulation
years. In most of the cases, we observed the peaks of to-
tal GPP approaching total GPP from the no-fire scenario (at
a cycle of about 60–75 years). For most of the sites, while
shrub GPP remained lower compared to the no-fire scenario
C3 in the post-fire years, grass GPP dominates the overall
shape of total GPP. However, cycles of total AGB after fire
matched well with the trend of shrub AGB which in turn in-
fluences the approximate fire return interval (with maximum
fire disturbance rate in about 50–75 years) in the ecosystem.
We identified some differences between low-fire-severity and
high-fire-severity conditions, even though the general tempo-
ral pattern of GPP dynamics was similar for both. Compared
to the low-fire-severity scenario, high-fire-severity simula-
tions suggested lower peaks of shrub GPP, despite having
approximately equal (or even higher for some) levels of to-
tal GPP due to higher levels of grass GPP. We can see clear
differences in total AGB (Fig. A1) with lower peaks for high-
fire-severity conditions for all four sites. With high fire sever-
ity, we observed longer fire return intervals for the LS and
RMS sites (about 60 years for both LS and RMS) compared
to the lower-fire-severity condition (> 100 years for LS and
> 75 years for RMS). We compared average annual GPP
from EDv2.2 for different scenarios (at an equilibrium state
for no-fire conditions and at the peak level for fire conditions)
with the observed GPP from EC flux tower sites from 2015,
2016, and 2017 for all four sites (Fig. 3). EDv2.2 underesti-
mated GPP for all sites, with the lowest error for the WBS
site (≈ 12 %) and the highest error for the US site (≈ 100 %)
for the no-fire scenario.

3.2 Multi-year GPP prediction at regional scale

3.2.1 EDv2.2 GPP for fire and no-fire scenarios, Soda
Fire scenario

We observed annual variation in GPP predictions for both
fire and no-fire scenarios (Fig. 4). Annual variation in GPP

in the no-fire model simulation could be mostly attributed
to annual climatic variations. Despite the climatic influence,
differences between fire and no-fire GPP outputs are appar-
ent, especially from 2017 to 2019. High-GPP areas in the
southwestern regions (in the no-fire simulations) are nearly
absent from the fire simulations. The maps in the bottom row
of Fig. 4 clearly show the differences between the two sce-
narios. For the first year after fire, there is only a slight reduc-
tion in GPP and no clear spatial pattern. In the second year
after fire (2017), GPP was reduced in the fire simulation, at
least in some parts (e.g., western region), and shows a clear
spatial pattern. From the third year after fire (2018), the re-
duction in GPP intensified in certain locations while most of
the other areas remained similar. In the fourth year (2019),
the intensity of GPP reduction became even worse in certain
areas while we could also see certain pockets with positive
GPP, meaning some recovery for these areas.

We observed obvious differences in EDv2.2 prediction of
GPP for the shrub PFT and C3 grass PFT for post-fire years
(Fig. A2). Since the shrub PFT covers the major portion of
the overall GPP, the latter is highly influenced by the shrub
PFT patterns. While shrub GPP gradually decreased through
these years after fire, in contrast, C3 grass started to recover
by the third year after the initial reduction in the first and sec-
ond years (Fig. A2). The pockets of slight recovery in GPP
seen in the overall GPP (Fig. 4) appears to be the effect of
this C3 grass recovery. These results are in agreement with
our results from point-scale fire simulations.

3.2.2 EDv2.2 GPP and MODIS GPP, RCEW scenario

Introduction of fire in the northern portion of the study area
to the EDv2.2 simulation resulted in an observable reduction
in and recovery of GPP in the burned area (Fig. 5). Mod-
eled GPP reduction in the fire-affected area is a gradual pro-
cess spanning several years following fire. The first year after
the fire showed evidence of some disturbance; however the
impact was most evident only during the second (2017) and
third years (2018) after fire, based on changes between pre-
and post-fire GPP output (Fig. 5). The spatial variation in
fire-induced disturbance has close association with elevation
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Figure 2. Mean annual trends in shrub, C3 grass (temperate C3 grass), and total GPP (kgCm−2 yr−1) (shrub and C3 grass GPP shown
stacked) simulated at four EC flux tower sites (LS, WBS, US, and RMS). Panels in the left column represent the trend in the no-fire
condition; the middle column represents the low-fire-severity conditions; and the right column represents the high-fire-severity conditions.
For the model runs with fire conditions, fire was introduced in the 25th year of simulation. The dashed red line is scaled by the secondary
y axis (right), which shows mean fire disturbance rate for the simulation years.

(Fig. 1a), which largely influences the precipitation pattern
in the study area. Recovery in GPP for the fire-affected area
was seen only after the fourth year (2019), even though GPP
in the burned area still lagged behind the unburned area.

Comparing the pre-fire (2015) EDv2.2 GPP prediction
with MODIS GPP revealed an under-prediction across the
study area, with major differences towards southern regions
(higher-elevation areas) of the study area (Fig. 5). The re-
sults corroborate our understanding from point-based results

https://doi.org/10.5194/bg-18-2027-2021 Biogeosciences, 18, 2027–2045, 2021



2034 K. Pandit et al.: Understanding the effect of fire on vegetation composition and gross primary production

Table 3. Pearson’s correlation coefficient calculated between modeled GPP and MODIS GPP for the burned, unburned, and whole area.

Year Burned area Unburned area Whole area

Number of Pearson’s correlation Number of Pearson’s correlation Number of Pearson’s correlation
grids (n) coefficient (r) grids (n) coefficient (r) grids (n) coefficient (r)

2015 336 0.58* 464 0.40* 800 0.50*
2016 336 0.63* 464 0.46* 800 0.55*
2017 336 0.57* 464 0.50* 800 0.63*
2018 336 0.52* 464 0.49* 800 0.63*
2019 336 0.54* 464 0.55* 800 0.66*

* Correlation p value< 0.05.

Figure 3. Comparison of simulated average annual GPP from
EDv2.2 for alternative fire scenarios (no fire, low fire severity, and
high fire severity) with observations (from 2015, 2016, 2017) from
all four EC tower sites.

where we found better predictions for lower-elevation study
points compared to those at higher elevations. We observed
a clear reduction in EDv2.2 GPP within the fire-affected re-
gion only in the second year after fire (2017), with signs of
recovery in 2019. On the other hand, only a slight reduction
in MODIS-derived GPP was noted, particularly for the years
2017 and 2018, for burned areas, in the post-fire years. By the
year 2019, a good recovery for MODIS GPP was observed.

We calculated Pearson’s correlation coefficients to further
explore the association between modeled GPP and MODIS
GPP, which suggested moderate correlations for different ar-
eas (Table 3 and Fig. A3). For the entire area and for the un-
burned area correlation increased through the years. Weaker
correlations for the unburned area in the beginning years
(2015 and 2016) could be because of higher variation in veg-
etation productivity in this area. In contrast, correlation for

the burned area slightly increased after fire and dropped back
again, revealing more homogeneity and close comparisons
immediately after fire.

When mean GPP values from the EDv2.2 simulation and
MODIS were plotted for the entire burned area, unburned
area, and whole area (Fig. 6), there was moderate year-to-
year agreement between the two sources in terms of GPP for
the entire area. However, there was clear under-prediction of
GPP with EDv2.2 compared to that from MODIS, in gen-
eral. Moreover, while there was not much difference in GPP
between burned and unburned areas for EDv2.2 in the pre-
fire conditions, there was already a huge difference between
these areas for MODIS GPP.

EDv.2.2 GPP in the burned area started to reduce signif-
icantly in the second year after fire (2017), continued to re-
main low until 2018, and showed some recovery in the fourth
year. For the modeled GPP, the burned region had 20 % less
GPP than the unburned area in the pre-fire year (2015), but
this gap changed to 22 %, 53 %, 50 %, and 44 % through the
first (2016), second (2017), third (2018), and fourth (2019)
post-fire years, respectively (Table A1). Though not much
variation was observed with MODIS GPP when considering
the absolute numbers, as we looked into percent difference in
GPP between burned and unburned areas, we noticed slight
changes through the years. The pre-fire (2015) gap between
burned and unburned areas for MODIS GPP was 50 %, which
increased slightly to 55 %, 61 %, and 62 % through the first,
second, and third post-fire years, respectively, before this gap
reduced to 45 % in 2019.

Modeled GPP for shrubs followed the pattern of total GPP
showing considerable loss in post-fire years. One difference
with the total GPP was observed during the fourth year af-
ter fire, which was prior to shrub recovery. In contrast, we
observed different effects on C3 grass GPP. The GPP for C3
grass in burned areas was slightly higher than in unburned
areas immediately after fire in 2016 and showed upward
growth trends until 2019. Although the percent of C3 grass
is very low in total GPP, some recovery seen in total GPP in
2019 was primarily associated with the C3 grass growth.
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Figure 4. EDv2.2-predicted mean monthly GPP (kgCm−2 yr−1) for the Soda Fire scenario for July, showing outputs from the model with
fire (upper row) and without fire (middle row), and the difference between the two scenarios for the years 2016 to 2019 (representing post-fire
years after the Soda Fire).

4 Discussion

In general, the shrub and grass dynamics modeled in our
study are similar to those documented in the literature. With
a sustained absence of fire or other disturbance, shrub cover
and biomass can dominate herbaceous species in shrub-
steppe ecosystems (Bukowski and Baker, 2013; Cleary et al.,
2010; West and Young, 2000), although the complete disap-
pearance of the grass component suggested by our models is
unlikely without the influence of other stressors (e.g., live-
stock grazing).

Thus, this latter dynamic suggests a need for further re-
finements in PFT development within the EDv2.2 frame-

work, particularly for the C3 grass that we used to represent
perennial grasses in the study area. Nevertheless, the EDv2.2
model captures the prevailing trend in ecosystem response to
fire, giving it credibility and potential utility as a planning
tool. Our modeled fire effects in these ecosystems are also
mostly corroborated by the literature in terms of the vegeta-
tion loss, PFT competition, and recovery. Variation in growth
and productivity for C3 grass and shrubs after fire distur-
bance can be understood in terms of their role during differ-
ent stages of secondary succession. Being an early succes-
sional PFT, C3 grass grows quickly and produces high GPP
by exploiting favorable growing conditions following distur-
bance (Moorcroft et al., 2001). As shrubs start to recover,
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Figure 5. Mean monthly GPP (kgCm−2 yr−1) for July for the RCEW scenario for the pre-fire (2015) and post-fire (2016 to 2019) years,
predicted from EDv2.2 (top row) and derived from MODIS (middle row), and the difference between the two sources (bottom row). Area
surrounded by red polygon represents the area burned by the Soda Fire.

competition increases at both above- and belowground levels
for light, water, and nutrients, thereby reducing the growth of
grass and causing a net loss in total GPP despite an increase
in shrub GPP. Most sagebrush species are easily top-killed
by fire, do not resprout, and have poor seed viability and
dispersal capacity; thus, species of big sagebrush typically
require several decades or more to recover to mature con-
ditions post-fire (Baker, 2006; Lesica et al., 2007; Shinne-
man and McIlroy, 2016). If fire becomes too frequent, shrubs
may be prevented from reestablishing, especially in the pres-
ence of fire-adapted, nonnative, annual grasses (Brooks et al.,

2004). However, even in the presence of nonnative plants,
field-based observations suggest that with enough time be-
tween fires, shrubs may gradually recover as the dominance
of nonnative herbaceous species declines (Rew and Johnson,
2010; Shinneman and Baker, 2009).

Despite the interannual variability in the observed GPP as
evident from the flux tower observation, poorer comparisons
for the higher-elevation sites (US and RMS) than for the
lower-elevation sites (LS and WBS) could be explained by
the fact that the shrub parameters we used were mainly devel-
oped and calibrated for the lower-elevation sites with reason-
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Figure 6. Average GPP from EDv2.2 and from MODIS calculated for all the burned (red), unburned (green), and total (blue) grids for annual
July snapshot maps from 2015 to 2019 (a–b). Average GPP from EDv2.2 for shrubs (c) and C3 grass (d). Error bars in the figure represent
±1 standard deviation.

able agreement (Pandit et al., 2019) and thus may not have
accounted for regional variability. Higher ecosystem produc-
tivity and quick post-fire recovery at the RMS site compared
to the other three sites can be associated with higher site
productivity, higher precipitation, and lower temperature, as
shown in previous studies (Keane et al., 2008; Nelson et al.,
2014; Shriver et al., 2018).

With the introduction of fire, we observed drastic change
in model-predicted GPP values for the burned area for about
4 years post-fire. An increased reduction in GPP values in
burned area until the third year after fire could be the result
of fire behavior in the EDv2.2 model (Longo et al., 2019a),
wherein there is a linear increase in burned area through
years given the availability of fuel. There was some recov-
ery in the GPP in the fourth year after fire, mostly because of
the increase in C3 grass GPP. Absence of major reduction in
MODIS GPP in the burned area in the post-fire years could
be mainly because of perennial grasses and shrubs. Grasses
(perennial) could be growing in the second year after fire
when conditions are favorable for their growth. The season-

ality of the fire also affects how quickly perennial grasses
grow back, as a late-summer or early-fall fire might cause
less damage to these grasses (White et al., 2008; Wright
and Klemmedson, 1965). A prompt recovery of grass veg-
etation in the ecosystem was probably not well captured by
the EDv2.2 with the default PFT parameters based on a tem-
perate C3 grass.

Fire disturbance phenomena in the EDv2.2 model could
not truly represent the true circumstances in the affected
area, even though we tried to parameterize the fire severity
to match the real scenario. The fire disturbance function in
the model did not burn the entire area at once; rather, it se-
lected grids randomly that met the potential fire criteria and
killed the vegetation. In addition, this process was gradual
and spread over the subsequent years; therefore, we saw the
most obvious differences between burned and unburned ar-
eas before the end of the third year (2018) post-fire. Zou et al.
(2019) in their study on the REgion-Specific ecosystem feed-
back Fire (RESFire) model with the Community Earth Sys-
tem Model also found a decline in GPP until the second year
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after fire, with a recovery in about 8 years. Li et al. (2012)
also found a similar pattern predicted by CLM-DGVM in
burned areas while testing different fire parameters (Levis
et al., 2004; Thonicke et al., 2001) in the model, showing
annual variability in the burned area that was at a maxi-
mum only in the fifth year post-fire. Updating of fire- and
PFT-related parameters along with functional structures for
fire–vegetation interactions in the model could better predict
burned areas and vegetation recovery. These findings based
on a regional application of a fire module developed explic-
itly for global applications of a DGVM suggest that future
effort is needed to develop more realistic treatments of fire
when models like EDv2.2 are applied over smaller regions.

Our GPP outputs from spin-up simulations by EDv2.2 in
a near-bare-earth scenario were influenced largely by meteo-
rological forcing data. Our use of modeled meteorological
data from the WRF model rather than any field measure-
ments may be an additional source of error. While making
these comparisons, we need to consider that there are sources
of uncertainty associated with MODIS-derived GPP such as
mismatching resolutions and limited optimizations (Robin-
son et al., 2018).

5 Conclusions

In this study, we explored fire-induced alterations to GPP
in a dryland shrub ecosystem, in terms of shrub and C3
grass PFTs. Results show that the fire model in EDv2.2 cap-
tures multi-decadal vegetation dynamics fairly well. While
on average the model underestimated GPP compared to flux
tower data (≈ 45 %), we observed that the model performed
well for the lower-elevation sites compared to the higher-
elevation sites. In these simulations, variations due to the ele-
vation gradient were not well captured as the model parame-
ters we used were primarily developed for lower-elevation
sites. Under the no-fire conditions, shrubs were dominant
and C3 grasses disappeared while approaching an equilib-
rium state of only shrubs. Simulation results from the WBS
site matched well with observations, whereas model results
from the remaining three sites underestimated observed GPP
data from flux towers. With the introduction of fire, we saw a
decline in shrubs and a simultaneous rise in C3 grasses for
approximately 3 to 4 decades, followed by slow recovery
of shrubs at the expense of grasses. Regional simulation of
GPP with EDv2.2 showed continued reduction in GPP for
several years post-fire, which only started to increase again
with some increase in C3 grass GPP by the fourth year after
fire. These modeled GPP trends moderately correlate to what
actual GPP trends may be, as indicated by the post-fire GPP
response observed from 4 years of post-fire MODIS imagery.

This study documents an application of EDv2.2 to under-
stand vegetation productivity trends in a semi-arid shrub-
land ecosystem under alternative fire scenarios at the point
scale and provides spatiotemporal trends in vegetation dis-
turbance due to fire disturbance and subsequent recovery at
the regional scale. We could reduce uncertainties in compar-
ing model outputs with EC tower observation and satellite-
derived products by improving representation of fire and veg-
etation characteristics and through a more detailed account-
ing of the errors in input forcing data.
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Appendix A

Figure A1. Mean annual trends in shrub, C3 grass (temperate C3 grass), and total AGB (kgCm−2) (shrub and C3 grass AGB shown stacked)
simulated at four EC flux tower sites (LS, WBS, US, and RMS). Panels in the left column represent the trend in the no-fire conditions; the
middle column represents the low-fire-severity conditions; and the right column represents the high-fire-severity conditions. For the model
runs with fire conditions, fire was introduced in the 25th year of simulation. The dashed red line is scaled by the secondary y axis (right),
which shows mean fire disturbance rate for the simulation years.
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Figure A2. EDv2.2-predicted mean monthly GPP (kgCm−2 yr−1) for July for the Soda Fire scenario, separated for shrub and C3 grass PFTs
with fire and without fire, and the difference between the two scenarios for the years 2016 to 2019 (representing post-fire years after the Soda
Fire).
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Figure A3. Correlation plots between mean monthly GPP (kgCm−2 yr−1) values derived from EDv2.2 and MODIS for July of every pre-fire
(2015) and post-fire (2016–2019) years, categorized by overall, burned, and unburned grids.

Table A1. Percent difference in GPP between burned and unburned areas ((GPP in unburned area−GPP in burned area) /GPP in unburned
area) for pre-fire and post-fire years.

Year MODIS GPP EDv2.2 GPP (total) EDv2.2 shrub GPP EDv2.2 C3 grass GPP

2015 0.50 0.20 0.20 0.05
2016 0.55 0.22 0.33 −0.74
2017 0.61 0.53 0.55 −0.35
2018 0.62 0.50 0.58 −8.71
2019 0.45 0.44 0.55 −34.32
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