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Abstract. Soil organic carbon (SOC) accounts for two-thirds
of terrestrial carbon. Yet, the role of soil physicochemi-
cal properties in regulating SOC stocks is unclear, inhibit-
ing reliable SOC predictions under land use and climatic
changes. Using legacy observations from 141584 soil pro-
files worldwide, we disentangle the effects of biotic, climatic
and edaphic factors (a total of 31 variables) on the global
spatial distribution of SOC stocks in four sequential soil lay-
ers down to 2m. The results indicate that the 31 variables
can explain 60 %—-70 % of the global variance of SOC in the
four layers, to which climatic variables and edaphic proper-
ties each contribute ~ 35 % except in the top 20 cm soil. In
the top 0—20 cm soil, climate contributes much more than soil
properties (43 % vs. 31 %), while climate and soil properties
show the similar importance in the 20-50, 50—-100 and 100-
200 cm soil layers. However, the most important individual
controls are consistently soil-related and include soil texture,
hydraulic properties (e.g. field capacity) and pH. Overall, soil
properties and climate are the two dominant controls. Ap-
parent carbon inputs represented by net primary production,
biome type and agricultural cultivation are secondary, and
their relative contributions were ~ 10 % in all soil depths.
This dominant effect of individual soil properties challenges
the current climate-driven framework of SOC dynamics and
needs to be considered to reliably project SOC changes for
effective carbon management and climate change mitigation.

1 Introduction

Soil organic carbon (SOC) represents the largest pool of ter-
restrial carbon (Le Quéré et al., 2016; Batjes, 2016) and plays
a key role in combating climate change and ensuring soil pro-
ductivity. To better manage land for maintaining SOC lev-
els or enhancing carbon sequestration, it is vital to eluci-
date controlling factors of SOC stabilization and stock. As
an important soil property, it is reasonable to expect that
SOC might be integrally influenced by five predominant fac-
tors controlling soil development and formation — namely,
climate, organisms, topography, parent materials and time
(Jenny, 1941). However, climate is usually prioritized and
considered to be critical (Carvalhais et al., 2014) because
of its direct effect on soil carbon inputs via photosynthetic
carbon assimilation and output via microbial decomposition.
But climate-driven predictions of SOC dynamics (e.g. using
Earth system models) remain largely uncertain, particularly
across large extents (Todd-Brown et al., 2013; Bradford et
al., 2016; Luo et al., 2017).

A primary source of the uncertainty is our poor under-
standing of how edaphic properties regulate SOC stabiliza-
tion and stock in soil (Davidson and Janssens, 2006; Dun-
gait et al., 2012). For example, SOC can be physically pro-
tected from decomposition via occlusion within soil aggre-
gates and adsorption onto minerals (Six et al., 2000), which
create physical barriers preventing microorganisms from de-
composing carbon sources (Doetterl et al., 2015; Schimel and
Schaeffer, 2012) regardless of climate conditions, but how
this protection influences global SOC stocks is unclear. Ad-
ditionally, the soil physicochemical environment controls the
supply of water, nutrients, oxygen and other resources, which

Published by Copernicus Publications on behalf of the European Geosciences Union.



2064

are required for microbial communities to utilize SOC as
well as for plant carbon assimilation to replenish soil carbon
pool. Considering the large spatial variability of soil prop-
erties globally, we need to understand the edaphic controls
of SOC better. By explicitly considering the effect of soil
physicochemical properties, we hope to promote a review of
climate-driven frameworks of SOC dynamics.

In addition to our incomplete understanding of the gen-
eral importance of soil properties in regulating SOC stocks,
whether and how their effects vary with soil depth are also
unclear. Most studies focus on topsoil layers (e.g. 0-30 cm),
even though, globally, deeper soil layers (below 30 cm) store
more carbon than topsoils (Jobbagy and Jackson, 2000; Bat-
jes, 2016). Like the topsoil SOC pool, the subsoil SOC pool
may actively respond to climate and land use changes. Stud-
ies of whole-soil profiles have observed increased loss of
subsoil SOC under warming (Pries et al., 2017; Melillo et al.,
2017; Zhou et al., 2018) as well as under additional supply of
fresh carbon (Fontaine et al., 2007). Land uses such as crop-
ping and grazing can also induce substantial subsoil SOC
loss (Sanderman et al., 2017), which is concerning because of
the potential adverse effects of climate and land use changes.
It is therefore imperative that we better understand the con-
trolling factors of SOC in deep soil layers as this will help to
develop unbiased strategies to effectively manage whole-soil
profile carbon.

Here, we aim to disentangle the relative importance of cli-
matic, biotic and edaphic controls on SOC stocks globally in
different soil layers. To do so, we assessed data from 141 584
whole-soil profiles across the globe including measurements
of SOC and other soil physicochemical properties, collated
by the World Soil Information Service (WoSIS) (Batjes et
al., 2017). For each profile, 19 climate-related covariates re-
flecting seasonality, intra- and inter-annual variability of cli-
mate were obtained from the WorldClim database (Fick and
Hijmans, 2017); the MODIS NPP (net primary productivity)
product (Zhao and Running, 2010) was used to infer appar-
ent carbon input into soil; and the MODIS land cover product
(Friedl et al., 2010) was used to obtain land use information.
Using these datasets, we disentangled the relative importance
of biotic, climatic and edaphic covariates (a total of 31 vari-
ables, Table 1) in controlling the spatial variance in SOC
stocks worldwide in four sequential soil layers (i.e. 0-20, 20—
50, 50-100 and 100-200 cm) and identified the correlations
between SOC stock and the most important variables.

2 Materials and methods
2.1 Observed soil profile data and harmonization

The World Soil Information Service (WoSIS) collates and
manages the largest database of explicit soil profile obser-
vations across the globe (Batjes et al., 2017) which forms
the foundation of a series of digital soil mapping products
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such as the global SoilGrids (Hengl et al., 2017). The WoSIS
dataset is still growing. When we visited the dataset last
on 25 March 2019, there were a total of 141584 profiles
which were used in this study. These profile observations
were quality-assessed and standardized, using consistent pro-
cedures (Batjes et al., 2017). In each soil profile, multiple lay-
ers were sampled for determining SOC content and/or other
soil properties. A total of 48 soil properties were recorded
with multiple variates of the same property (e.g. pH mea-
sured in HyO, CaCl,, KCI). In the data assessment, we con-
sidered nine principal soil physicochemical properties other
than SOC itself in the data analysis (Table 1). Taking the ad-
vantage of all measurements, however, other soil properties
were used for missing data imputation (see the Sect. 2.2).
The layer depths are inconsistent between soil profiles. We
harmonized all soil properties including SOC to four stan-
dard depths (i.e. 0-20, 20-50, 50-100 and 100-200 cm) us-
ing mass-preserving splines (Bishop et al., 1999; Malone
et al., 2009). This harmonization enables the calculation of
SOC stock in the defined standard layers, making it possible
to directly compare among soil profiles.

2.2 SOC stock calculation and filling missing values

We calculated SOC stock (SOCs, kg C m~2) in each standard
depth as

ocC G

where OC is the weight percentage SOC content in the fine
earth fraction <2 mm, D the soil depth (i.e. 0.2, 0.3, 0.5 or
1 m in this study), BD the bulk density of the fine earth frac-
tion <2mm (kgm~>) and G the volume percentage gravel
content (>2 mm) of soil. Amongst the 141 584 soil profiles,
unfortunately, only 9672 profiles have all the measurements
of OC, D, BD and G to enable direct calculation of SOC
stock. We call these profiles “stock profiles”.

Another 82 734 profiles have measured OC (i.e. the weight
percentage SOC content), but BD and/or G are missing.
We call these profiles “content profiles”. To utilize and take
advantage of all OC measurements, we used generalized
boosted regression modelling (GBM) to perform imputations
(i.e. fill missing data). As such, SOC; can be estimated. To do
so, for BD and G in each standard soil depth, GBM was de-
veloped based on all measurements of that property (e.g. BD)
in the 141 584 profiles with 32 other soil properties. Total car-
bon which includes organic and inorganic carbon and another
nine soil properties (Table 1) which were used as predictors
of SOC stocks were excluded as covariates (i.e. predictors).
The final GBM model was validated using 10-fold cross val-
idation repeated 10 times and applied to predict missing val-
ues of BD and G. A total of 92406 SOC profiles includ-
ing stock profiles and content profiles with relevant measure-
ments of nine soil properties (Table 1) was obtained and used
to assess the effects of various variables on SOC; (Sect. 2.4).
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Table 1. Covariates used in the modelling of soil carbon stocks across the globe.
Covariates  Code Description Unit Data sources
Soil TCEQ Calcium carbonate content g kg_1 Batjes et al. (2017)
properties  ECEC Effective cation exchange capacity cmol kg71
ELCO Electrical conductivity dSm™!
Clay Clay content %
Sand Sand content %
Silt Silt content %
pH pH measured in H,O -
LL15 Lower limit obtained at a matric potential of 1500 kPa %
DUL Drained upper limit obtained at a matric potential of 33kPa %
Climatic T1 Annual mean temperature °C WorldClim (Fick
variables T2 Mean diurnal range °C and Hijmans, 2017)
T3 Isothermality (72/T7 x 100) %
T4 Temperature seasonality (standard deviation x 100) °C
TS Max temperature of warmest month °C
T6 Min temperature of coldest month °C
T7 Temperature annual range (75-76) °C
T8 Mean temperature of wettest quarter °C
T9 Mean temperature of direst quarter °C
T10 Mean temperature of warmest quarter °C
T11 Mean temperature of coldest quarter °C
P1 Annual precipitation mm
P2 Precipitation of wettest month mm
P3 Precipitation of driest month mm
P4 Precipitation seasonality (coefficient of variation) %
P5 Precipitation of wettest quarter mm
P6 Precipitation of driest quarter mm
P7 Precipitation of warmest quarter mm
P8 Precipitation of coldest quarter mm
Other Biome Biome type - WWEF (Olson et
al., 2001)
NPP Net primary productivity kgC m~—2 yr—1 MODIS (Zhao and
Running, 2010)
Cultivation ~ Whether the land is cultivated (yes or no) - MODIS (Friedl et

al., 2010)

These soil profiles cover 13 major biome groups although the
profile numbers vary from 472 in flooded grasslands and sa-
vannas to 24 382 in temperate broadleaf and mixed forests
(Fig. 1). The profiles also cover various climate conditions
across the globe with the mean annual temperature ranging
from —19.6 to 30.7 °C and mean precipitation ranging from
0to 667.4cmyr~! (Fig. 1). The prediction error of the GBM
was propagated into the calculation of SOC; to account for
uncertainty resulting from data imputation (see Sect. 2.4).

2.3 Biotic and climatic covariates

For each SOC profile, NPP was extracted from the MODIS
NPP product (Zhao and Running, 2010). The NPP prod-
uct includes the annual NPP from 2001 to 2015 at the res-
olution of 1km?, which was estimated by analysing satel-
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lite data from MODIS using the global MODIS NPP algo-
rithm (Zhao et al., 2005; Zhao and Running, 2010). NPP
is the net carbon gained by plants (i.e. the difference be-
tween gross primary productivity and autotrophic respira-
tion). If assuming a steady state of the vegetation (i.e. no
long-term directional change of carbon biomass in plants),
NPP will end up in soil via rhizodeposition and litter fall
and will be equal to total carbon input into soil. Here we
calculated the average NPP based on the data from 2001
to 2015 and called this average NPP the apparent carbon
input to soil, acknowledging that not all ecosystems are at
strict steady state, particularly those ecosystems (e.g. crop-
lands) actively interacting with human activities. The WWF
(World Wildlife Fund) map of the terrestrial ecoregions of
the world (Olson et al., 2001; https://www.worldwildlife.org/
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Figure 1. Distribution of soil profiles with soil carbon data in re-
lation to mean annual air temperature and precipitation. Different
colours show the biome type to which the soil profile belongs to.
Numbers in parentheses show the number of soil profiles in the rel-
evant biome. Some soil profiles (1382) were not included as climate
and/or biome type could not be identified for them.

publications/terrestrial-ecoregions-of-the-world, last access:
18 March 2021) was used to extract the biome type for each
location. The MODIS land cover map (Friedl et al., 2010)
at the same resolution of NPP databases was used to iden-
tify whether or not the land is cultivated (i.e. land cover type
of croplands and cropland/natural vegetation mosaic) at the
location of each soil profile.

In addition to NPP, land cover and biome type, 19 cli-
matic variables (Table 1) for each SOC profile were obtained
from the WorldClim version 2 (Fick and Hijmans, 2017). The
WorldClim version 2 calculates biologically meaningful vari-
ables using monthly temperature and precipitation during the
period 1970-2000. The data at the same spatial resolution of
the NPP data (i.e. ~ 1km?) were used in this study. Eleven
of the 19 climatic variables are temperature-related (Table 1),
and eight are precipitation-related (Table 1). These variables
reflect the seasonality, intra- and inter-annual variability of
climate, which would have both a direct (via decomposition
thus carbon outputs from soil) and an indirect (via carbon
assimilation thus carbon inputs to soil) effect on SOC stock.

2.4 Data analysis

A machine learning-based statistical model — boosted regres-
sion trees (BRTs) — was performed to explain the variabil-
ity of SOC; across the globe and identify important control-
ling factors. A big advantage of the BRT model is its ability
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to model high-dimensional dataset, taking into account non-
linearities and interplay (Elith et al., 2008). Using the BRT
model, we modelled SOC; in each standard depth as a func-
tion of edaphic variables in that depth, climatic and biotic
variables (Table 1):

SOC; = f (edaphic, climatic, biome, NPP, cultivation) .
(2

We used a 10-fold cross validation to constrain the BRT
model in R 3.6.1 (R Core Team, 2019) using algorithms im-
plemented in the R package dismo. The amount of variance in
SOC; explained by the model was assessed by the coefficient
of determination (R?). To assess the potential uncertainty in-
duced by the uneven distribution of soil profiles across the
globe as well as the imputation of missing BD and G for es-
timating SOCg, we conducted 200 bootstrapping simulations
(i.e. resample all soil profiles with replacement). For each
bootstrap sample, SOCs, if BD and G are missing, was re-
calculated using BD and G imputed by GBM plus an error
randomly sampled from the distribution of imputation error.
Using the new SOC; estimations, then, a new BRT model
was fitted.

Considering the potential collinearity in the 19 climatic
variables as well as in the nine soil properties, the BRT model
was conducted using their principal components. That is, a
principal component analysis (PCA) was performed to elim-
inate potential correlations in the soil and climatic variables,
respectively. The important principal components (PCs) with
variances of greater than 1 were retained in the BRT model
based on Kaiser’s criterion (Kaiser, 1960). The PCA was per-
formed using the function prcomp in the package stats in
R 3.6.1 (R Core Team, 2019). In addition, in order to demon-
strate the importance of soil properties, we fitted another set
of BRT models without soil properties. The model perfor-
mance with and without soil properties were compared in
terms of explaining the variance of SOC stocks across the
globe.

The BRT model allows the estimation of the relative in-
fluence of each individual variable in predicting SOCs, i.e.
the percentage contribution of variables in the model. The
relative influence is calculated based on the times a vari-
able selected for splitting when growing a tree, weighted by
squared model improvement due to that splitting, and then
averaged over all fitted trees which were determined by the
algorithm when adding more trees cannot reduce prediction
residuals (Elith et al., 2008; Friedman and Meulman, 2003).
As such, the larger the relative influence of a variable, the
stronger the effect on SOC;. In addition, we also calculated
the 95 % confidence intervals as the 2.5 % and 97.5 quantiles
of the relative influence estimated by 200 bootstrapping sim-
ulations, which represent the uncertainty in the importance of
variables. To facilitate interpretation, the relative influence of
each variable is scaled so that the sum of the influence of all
variables is equal to 100. The overall relative influences of
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Figure 2. Loadings of 19 climatic variables (a) and nine soil properties (b) to the two most important principal components. 7’1, annual
mean temperature; 72, mean diurnal range; 7'3, isothermality; 74, temperature seasonality; 7’5, max temperature of warmest month; 7°6,
min temperature of coldest month; 77, temperature annual range; 7'8, mean temperature of wettest quarter; 79, mean temperature of driest
quarter; 7'10, mean temperature of warmest quarter; 711, mean temperature of coldest quarter; P1, annual precipitation; P2, precipitation
of wettest month; P3, precipitation of driest month; P4, precipitation seasonality; PS5, precipitation of wettest quarter; P6, precipitation of
driest quarter; P7, precipitation of warmest quarter; P8, precipitation of coldest quarter. DUL, drained upper limit of soil; LL.15, lower limit
of soil; ELCO, electrical conductivity; ECEC, effective cation exchange capacity; TCEQ, calcium carbonate content; sand, silt and clay, the
fraction of sand, silt and clay content of soil; pH, soil pH. See Table 1 for more details about the variables.

edaphic (i.e. the sum relative importance of all soil-related
variables) and climatic (i.e. the sum relative importance of
all climate-related variables) variables as well as biome type,
NPP and cultivation were also calculated and compared. As
we have 200 estimations (i.e. 200 bootstraps) of the relative
influence, we calculated a weighted average relative influ-
ence for each variable with weights based on the R? of each
BRT model.

3 Results

The 19 climatic variables could be represented by four prin-
cipal components (PCs, i.e. Climate1-4, which were selected
by Kaiser’s criterion) which could explain 88 % of their vari-
ance (Fig. 2; only the first two PCs were shown); and 72 %
of the variance in nine soil properties could be explained by
three PCs (i.e. Soil1-3, Fig. 2). For Climate1—4, the most im-
portant contributing variables were 711 (mean temperature
of coldest quarter), P6 (precipitation of driest quarter), 75
(max temperature of warmest month) and P7 (precipitation
of warmest quarter), respectively. For Soil1-3, the most im-
portant contributing variables were sand content, pH and silt
content, respectively (Fig. 2). Using Climate1—4, NPP, biome
type and cultivation as predictors, the BRT model could ex-
plain 53 %, 46 %, 42 % and 49 % of the variance of SOC
stocks in the 0-20, 20-50, 50-100 and 100-200 cm soil lay-
ers across the globe, respectively (Fig. 3). If Soill-3 were
included, an additional 18 %, 18 %, 20 % and 13 % of the
variance could be explained in the four layers, respectively
(Fig. 3). This result demonstrated that soil properties must
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be considered in order to explain the spatial variability of
SOC stocks across the globe. However, it is noteworthy that
the fitted model overestimated low SOC stocks and underes-
timated high SOC stocks. This bias of model performance at
both ends of observed SOC stocks is common across all four
depths (Fig. 3).

The results of the BRT model including soil properties
(i.e. Soill-3) indicated that Soill (i.e. the first PC of soil
properties) was consistently the most important individual
control of SOC stocks in the three deeper soil layers (i.e.
20-50, 50-100 and 100-200 cm; Fig. 4). On average, Soill
alone contributed 21 % (with 95 % confidence intervals rang-
ing from 17 %-24 %), 23 % (20 %—28 %) and 22 % (18 %—
26 %) to the explained variance of SOC stocks in the three
deeper soil layers, respectively (Fig. 4). In the top 20 cm soil
layer, Climate2 was the most important, contributing 19 %
(15 %-23 %) to the explained variance of SOC stocks, and
Soill was the second most important and contributed 18 %
(16 %—20 %). In the three deeper layers, the second most im-
portant contributors were NPP, biome type and Climate3, re-
spectively (Fig. 4).

Summing the relative importance of individual variables,
the overall effect of soil properties was relatively consis-
tent among the four layers, accounting for 30 %—40 % of
the overall influence of all assessed variables respectively,
but they were more important in the deepest two layers than
in the first top layer (Fig. 5). The overall relative influence
of climate was significantly higher than that of soil in the
top 20cm soil layer (43 % vs. 31 %; Fig. 5). In the three
deeper soil layers, the overall influences of climatic vari-
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Figure 3. An example of the performance of boosted regression
trees in explaining soil organic carbon stocks in four standard soil
depths across the globe. (a) 0-20 cm, (b) 20-50 c¢m, (¢) 50-100cm
and (d) 100-200 cm. The data were natural-logarithm-transformed.
The dashed line shows the 1:1 line. Chocolate and green circles
show the results without and with predictors of soil properties, re-
spectively.

ables and soil properties were comparable and did not show a
significant difference. Overall, climatic variables accounted
for 43% (38 %—47 %), 36 % (32 %—40 %), 33 % (28 %—
37 %) and 35 % (31 %—39 %) in the four layers, respectively;
and soil properties accounted for 30 % (27 %-33 %), 35 %
(30 %—-39 %), 39 % (35 %—43 %) and 37 % (33 %—41 %), re-
spectively (Fig. 5). The relevant influence of the remaining
three variables (i.e. NPP, biome type and cultivation) was
secondary and marginal (~ 10 % in terms of relevant influ-
ence) compared to climate and soil variables and together ac-
counted for the remaining ~ 30 % of the explained variance.
With increasing soil depth, in general, the relevant influence
of climate was decreased, while the influence of soil was in-
creased. However, the overall influences of climate and soil
remained relatively stable at the level of 70 %. These results
demonstrate the comparable and primary effects of climate
and soil properties on SOC stocks.

4 Discussion

4.1 The importance of soil properties

A series of soil properties may directly or indirectly affect
SOC dynamic processes via influencing carbon inputs to soil,
microbial activity and accessibility of carbon substrates to
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microbes and thereby SOC stocks. Sand content (which is
the most important contributor to the first PC of soil), for ex-
ample, has significant effects on the formation and transfor-
mation of soil aggregates which regulate the stability of SOC
as well as soil porosity and thereby oxygen availability for
microbial decomposition of SOC (Dungait et al., 2012; Six
et al., 2002). In addition, soil properties such as LL.15 and
DUL have dominant control over soil water dynamics, which
further influence water availability for plant growth. Theoret-
ically, LL15 is close to the permanent plant wilting point; it
thus may strongly regulate plant growth therefore carbon in-
puts into soil and final SOC stocks. Together with DUL (i.e.
drained upper limit — soil water content obtained at the ma-
tric potential of 33 kPa), LL15 determines the available water
capacity of soil (AWC, i.e. the difference between DUL and
LL15), and thus LL15 would affect SOC stock via its de-
termination on soil AWC, while AWC couples with a series
of soil hydrological processes such as runoff and drainage,
which have direct effects on the vertical/horizontal transloca-
tion of SOC (Luo et al., 2020; Kaiser and Kalbitz, 2012). Soil
properties are more important for controlling SOC stocks in
deeper layers than in upper layers. This phenomenon may be
due to the fact that soil structure may have substantial effects
on water and oxygen diffusion in deeper layers. Potentially
more frequent waterlogging and low oxygen in subsoil result
in additional environmental constraints inhibiting microbial
decomposition of SOC (Huang et al., 2020).

Our results demonstrate the primary control of soil prop-
erties on SOC stocks in the whole-soil profile across the
globe. Indeed, the results suggested that soil-related prin-
cipal components were consistently the most important in-
dividual influential variables in three deeper soil layers ex-
cept in the assessed 0-20cm soil layer. Soil physical and
chemical properties directly determine the activity of the
decomposer community which mediates the decomposition
of soil carbon (Derrien et al., 2014; Foesel et al., 2014;
Bernard et al., 2012). More importantly, soil carbon can be
physically protected from decomposition via occlusion with
soil aggregates and binding with minerals (Lehmann and
Kleber, 2015; Dungait et al., 2012; Schmidt et al., 2011),
while the protection capacity is largely determined by soil
physicochemical properties (Six et al., 2000). These physi-
cal protection processes may lead to soil-dependent stabiliza-
tion/destabilization of different soil carbon substrates (Wal-
drop and Firestone, 2004; Keiluweit et al., 2015; Six et al.,
2002). However, it should be noted that complex interplays
of various soil properties are involved in SOC stabilization
and destabilization processes. It is also difficult to obtain a
cause—effect conclusion on the relationship between a partic-
ular soil physicochemical property and SOC stocks.

4.2 The importance of climate

Few studies have paid particular attention to the dynamics
of SOC in subsoils across large scales. One might expect
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greater importance of climate in surface soils as topsoil is at
the frontline of the interaction with the atmosphere. But our
results do not show a clearly decreasing importance of cli-
mate with soil depth. Rather, the overall influence of climatic
variables on SOC stocks is statistically similar in all soil lay-
ers. In a forest soil, a recent study found that SOC in the
whole-soil profile down to 1 m is sensitive to warming (Pries
etal., 2017). This sensitivity may be general across the globe.
However, it is noteworthy that neither mean annual tempera-
ture nor mean annual precipitation was the most important
individual climatic variable. Rather, climatic variables re-
flecting seasonal variability were more important. This re-
sult may suggest that, except for average change trend, it is
important to understand the change patterns of temperature
and precipitation under climate change. For example, a num-
ber of studies have demonstrated that extreme climate events
(e.g. drought and heatwaves) have significant effects on the
carbon cycle, including soil carbon, due to their dramatic in-
fluence on the transport and availability of water and energy
as well as ecosystem functional processes (Reichstein et al.,
2013). Field observations, particularly via manipulative ex-
periments of whole-soil profile, are certainly needed to de-
tect how deep soil carbon responds to climate change as the
result may have significant implications on the fate of deep
soil carbon under future climatic conditions.

4.3 Secondary role of carbon inputs in determining
spatial variability of SOC stocks

The effect of apparent carbon input, NPP, on SOC stock is
generally small in all assessed soil layers (Fig. 5). This re-
sult is in line with findings from a continental-scale study
across sub-Saharan Africa where climate and geochemistry
are more important predictors of SOC content than above-
ground carbon inputs (von Fromm et al., 2020). The impor-
tance of NPP may largely depend on how much NPP ends
up in the soil and how it is translocated to different depths
(Wang et al., 2021). Total NPP may not be a useful indica-
tor of actual carbon inputs into different soil depths, partic-
ularly in deeper layers. Cultivation, for example, may sub-
stantially change the fate of plant biomass — a large fraction
of plant biomass may be harvested as yield or consumed by
livestock and thus does not contribute to soil carbon. This
could explain the phenomena that cultivation (cultivated vs.
non-cultivated in this study) and NPP show the similar im-
portance in general. In addition, the final importance of car-
bon inputs may also depend on their quality (e.g. carbon-to-
nitrogen ratio), while NPP alone does not bring such infor-
mation. The quality of carbon inputs represented by their nu-
trient content and chemical structure plays a vital role in SOC
formation and transformation (Hessen et al., 2004; Jastrow
et al., 2007). In our study, biome type (which shows similar
importance to NPP) would partially reflect the importance
of carbon input quality as different biome types have dis-
tinct carbon biomass quality (e.g. wood vs. leaf litter, which
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are the main component of NPP). However, here we must to
point out that the minor role of carbon inputs in determining
the global spatial distribution of SOC stocks does not mean
that they are not important for local carbon management. Un-
der the same climatic and edaphic conditions, indeed, carbon
inputs should be the predominant factor controlling if the soil
is a carbon sink or source (Luo et al., 2017).

4.4 Limitations and future research

Although we have used a diverse and representative dataset
across the globe for the analysis, there are still some limi-
tations in the datasets and assessment. First, our study did
not bring detailed land use history and intensity (such as the
time length of cropping and the intensity of grazing) into
the analysis, which may significantly affect SOC stabiliza-
tion processes and thus SOC stocks in managed landscapes
(Sanderman et al., 2017). As anthropogenic land use may
change from year to year, it is challenging to accurately ex-
plain SOC stock changes in those systems that experience
intensive human disturbances across large extents. Second,
all soil properties including SOC were treated as constant. In
reality, however, some soil properties, particularly chemical
variables such as pH, may actively respond to external distur-
bance including human activities. Treating these variables as
constant may result in under- or overestimations of the vari-
able importance if a variable shows marked temporal vari-
ability. Third, in managed systems, the apparent carbon input
represented by NPP may not accurately reflect the real car-
bon input into soil (Luo et al., 2018; Pausch and Kuzyakov,
2018) as discussed above, leading to biased estimation of the
importance of C inputs. In cropping areas, for example, yield
harvesting and crop residue removal certainly reduce the
fraction of NPP ending up in the soil. Fourth, we would like
to point out that, albeit edaphic factors appear to be the dom-
inant individual controls on SOC stock, climate might have
an impact on those edaphic factors and hence SOC stocks in
the long term (Jenny, 1941). Indeed, Luo et al. (2017) have
provided evidence that climate not only directly but also indi-
rectly (via its effect on edaphic factors) exerts significant ef-
fect on SOC dynamics. All these limitations should be over-
come to provide more robust predictions on the role of differ-
ent factors in SOC stabilization and stock, which will be par-
ticularly important for understanding long-term SOC dynam-
ics in managed systems. Fourth, we would like to note that
this study focused on the controls over the global spatial pat-
tern of SOC stocks and did not explicitly assess the potential
variability of controls at small scales. Under different land
use types, for example, factors controlling SOC stock would
change. A recent study focused on SOC component fractions
has found that continental drivers of SOC stocks were mod-
ulated by regional environmental factors (Viscarra Rossel et
al., 2019). In order to better understand regional-scale fac-
tors controlling SOC dynamics, we should further explore
the controls over different spatial scales. Considering that we
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only included limited soil properties in our assessment and
different soil properties may play different roles at differ-
ent scales, scale-dependent understanding of controls over
SOC stocks is important to make site-specific management
practices for sustainable soil use and carbon management.
Finally, soil samples are still limited in some areas (e.g. tun-
dra and flooded grasslands and savannas) (Batjes, 2016). We
do not know much about whether some of the relationships
we find between SOC stocks and predictor variables are uni-
versal or maybe fundamentally different in less studied soils.
The uneven distribution of soil samples may also help to ex-
plain the model bias in explaining low and high SOC stocks
(Fig. 3). Our results indicate that there are large uncertainties
in the relative importance of climate and soil depending on
the data used to fit the model (Fig. 5).

5 Conclusions

Quantitatively, we have demonstrated the primary role of soil
properties together with climate in regulating SOC stock in
the whole-soil profile across the globe. This result has im-
portant implications for understanding mechanisms of SOC
stabilization and destabilization. Previous modelling and ex-
perimental efforts have mostly focused on climatic and bi-
otic aspects, and many of the studies are over smaller scales.
We argue that soil physicochemical characteristics define the
boundary conditions for the climatic and biotic factors. That
is, climatic and biotic factors (e.g. carbon inputs) can regulate
the rate of SOC of shifting from one capacity to another, but
a soil’s physicochemical properties (e.g. soil structure) may
inherently determine the SOC stock capacity of soil. It is thus
critical to understand how soil processes mediated by differ-
ent soil properties in different soil layers respond to those cli-
matic and biotic factors and land management practices and
feed this information into the prediction of SOC stock capac-
ity in the whole-soil profile. However, individual soil vari-
ables work together involving complex interactions and non-
linear relationships with each other as well as with climate to
regulate SOC stock (Figs. 2 and 4). We need more and better
quality data (e.g. following the same soil sampling and mea-
suring procedure and using a novel approach for monitoring
of soil properties) and innovative methods (Viscarra Rossel
et al., 2017) for representing soil heterogeneity to facilitate
robust prediction of SOC dynamics over large extents. Re-
sults of this study further demonstrate that globally the influ-
ence of individual climatic variables on SOC stock is weaker
than the influence of individual soil properties regardless of
soil depth. Current Earth system models are mostly driven by
climate, with few cases having approximated the regulation
of soil properties on carbon stabilization and destabilization
(Tang and Riley, 2014; Riley et al., 2014). Undoubtedly, cli-
mate has direct effect on plant growth and thus potential car-
bon inputs to the soil, but our results demonstrate that soil
properties are also primary controls of global SOC stocks.
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Our research highlights the urgent need to consider soil prop-
erties and their interactions with climate to provide more re-
liable predictions of SOC stock and changes under climatic
and land use changes.
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