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Abstract. The El Niño--Southern Oscillation (ENSO) influ-
ences the global climate and the variability in the terrestrial
carbon cycle on interannual timescales. Two different expres-
sions of El Niño have recently been identified: (i) central Pa-
cific (CP) and (ii) eastern Pacific (EP). Both types of El Niño
are characterised by above-average sea surface temperature
anomalies at the respective locations. Studies exploring the
impact of these expressions of El Niño on the carbon cycle
have identified changes in the amplitude of the concentra-
tion of interannual atmospheric carbon dioxide (CO2) vari-
ability following increased tropical near-surface air temper-
ature and decreased precipitation. We employ the dynamic
global vegetation model LPJ-GUESS (Lund–Potsdam–Jena
General Ecosystem Simulator) within a synthetic experimen-
tal framework to examine the sensitivity and potential long-
term impacts of these two expressions of El Niño on the ter-
restrial carbon cycle. We manipulated the occurrence of CP
and EP events in two climate reanalysis datasets during the
latter half of the 20th and early 21st century by replacing all
EP with CP and separately all CP with EP El Niño events.
We found that the different expressions of El Niño affect in-
terannual variability in the terrestrial carbon cycle. However,
the effect on longer timescales was small for both climate
reanalysis datasets. We conclude that capturing any future
trends in the relative frequency of CP and EP El Niño events
may not be critical for robust simulations of the terrestrial
carbon cycle.

1 Introduction

The terrestrial carbon cycle varies markedly on interannual
timescales and is significantly influenced by the El Niño–
Southern Oscillation (ENSO) at global scales. Around 20%
of the vegetated land shows a significant negative correlation
with the ENSO cycles, predominantly in the tropics and in
arid areas. Around 12% of vegetated land is positively corre-
lated with ENSO cycles, with this correlation dominated by
arid areas (Zhang et al., 2019). In general, ENSO is positively
skewed such that El Niño events have a stronger effect on
the terrestrial carbon cycle than La Niña events (e.g. Haverd
et al., 2017; Ahlström et al., 2015). During El Niño events,
terrestrial ecosystems typically act as a carbon source, while
during La Niña events carbon uptake is enhanced, particu-
larly in semi-arid ecosystems (e.g. Ahlström et al., 2015).
Multiple studies have examined the effect of El Niño on
the terrestrial carbon cycle using observations and ecosys-
tem models (e.g. Bastos et al., 2018; Rödenbeck et al., 2018;
Zhang et al., 2019; Fang et al., 2017). Given the influence of
ENSO on the interannual variability (IAV) of the terrestrial
carbon cycle, representing ENSO and associated teleconnec-
tions is important in coupled Earth system modelling (e.g.
Kim et al., 2016; Qian et al., 2008).

Each El Niño event varies in terms of the pattern and in-
tensity of sea surface temperature anomalies. Recent analy-
ses have highlighted two distinct expressions or flavours of
El Niño: the (i) central Pacific (CP) and (ii) eastern Pacific
(EP) El Niño (Donguy and Dessier, 1983; Ashok et al., 2007;
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Weng et al., 2007). Both expressions of El Niño are char-
acterised by above-average sea surface temperature anoma-
lies at their respective locations. Depending on the location
of the sea surface temperature anomalies, these different ex-
pressions of El Niño are associated with different impacts
on the Walker circulation, different teleconnection patterns,
and therefore different regional-scale rainfall and tempera-
ture anomalies (e.g. Taschetto and England, 2009; Ashok
et al., 2009; Weng et al., 2007; Ashok et al., 2007). For ex-
ample, Taschetto and England (2009) found that maximum
rainfall decreases associated with EP El Niño events tend to
occur over northeastern and southeastern Australia, while CP
El Niño events are associated with a negative precipitation
response in northwestern and northern Australia. Further, the
timing of the maximum precipitation anomalies varied with
the expression of El Niño. Given the different expressions of
El Niño, and the consequential differences in regional rain-
fall and temperature, a different ecosystem response might
be expected between CP and EP El Niño events. A shift in El
Niño patterns could change cumulative net biome production
(NBP), which may alter competitive patterns of plant func-
tional types, both of which may influence the carbon stored in
vegetation and soil (e.g. Park et al., 2020). Similarly, interan-
nual variability in precipitation patterns induced by different
types of El Niño might result in a shift in vegetation distri-
butions, particular at climatic transition zones or in water-
limited environments, for example semi-arid areas and sa-
vanna ecosystems (cf. Scheiter and Higgins, 2009; Whitley
et al., 2017). Recent studies have found that, depending on
the expression of El Niño, different time lags, amplitudes and
duration in the carbon cycle anomalies occur (Wang et al.,
2018; Chylek et al., 2018). Wang et al. (2018) and Chylek
et al. (2018) link the effects of different expressions of El
Niño on the terrestrial carbon cycle to variability at interan-
nual timescales, but the impact on longer timescales is not
well understood.

While it is clear that El Niño has an impact on the ter-
restrial carbon cycle, analyses that have demonstrated this
mostly have not attempted to separate El Niño into CP and
EP types. Understanding the sensitivity of the terrestrial car-
bon cycle to these distinct El Niño expressions is a key
knowledge gap, specifically because there is evidence that
the relative frequency of CP and EP El Niños may be chang-
ing. There is emerging evidence that in the late 20th and early
21st century the occurrence of CP El Niño events increased
in frequency (Yu and Kim, 2013), and some studies using cli-
mate projections suggest that this trend will continue as the
atmospheric carbon dioxide (CO2) concentration increases
(e.g. Yeh et al., 2009). Despite recent research finding that the
expression of El Niño is important at interannual timescales
(Wang et al., 2018; Chylek et al., 2018; Pan et al., 2018), it is
not known how and where the recent trend towards more CP
El Niño events would impact the terrestrial carbon cycle.

This re-focussing towards the specific expression of El
Niño is potentially problematic for global climate models,

which currently struggle to correctly resolve El Niño–La
Niña cycles with the correct persistence and teleconnections
(Bellenger et al., 2014). If the expression of El Niño, as dis-
tinct from El Niño in general, is shown to affect IAV as well
as the longer-timescale terrestrial carbon balance, this would
place a significantly higher demand on climate models to ac-
curately reproduce both the persistence and teleconnections
of the El Niño–La Niña cycles, and the relative frequency
in the future of CP and EP El Niño events. This could sig-
nificantly constrain our capacity to predict the future of the
terrestrial carbon cycle.

To explore whether the expression of El Niño affects
the global and regional terrestrial carbon cycle on multi-
decadal timescales, we use a dynamic global vegetation
model (DGVM) forced by the climate data obtained from
two reanalysis datasets. We generate two synthetic forcing
datasets: one where, starting 1968, all El Niño events are a
CP type and one where all El Niño events are an EP type.
We then use our DGVM experiments to examine the impact
of the expression of El Niño on the global terrestrial carbon
cycle.

2 Methods

2.1 Model

LPJ-GUESS (Lund–Potsdam–Jena General Ecosystem Sim-
ulator; Smith et al., 2001, 2014) is a DGVM extensively
used for climate–carbon studies (Smith et al., 2014; Sitch
et al., 2003). LPJ-GUESS is used as the land surface scheme
in the global Earth system model EC-Earth3 (Weiss et al.,
2014; Alessandri et al., 2017) and in the regional Earth sys-
tem model RCA-GUESS (Wramneby et al., 2010; Zhang
et al., 2014). LPJ-GUESS dynamically simulates the ex-
change of water, carbon and nitrogen through the soil–
plant–atmosphere continuum (Smith et al., 2014), resolving
the vegetation’s resource competition for light and space.
LPJ-GUESS groups the vegetation into 12 plant functional
types (PFTs), simulating differences in growth form (grasses,
broadleaved trees or deciduous trees), photosynthetic path-
way (C3 or C4), phenology (evergreen, summer green or rain
green), tree allometry and life history strategy, fire sensitiv-
ity, and bioclimatic limits for establishment and survival.

We use LPJ-GUESS version 4.0.1 in “cohort mode”,
where woody plants of the same size and age co-occurring
in a local neighbourhood or “patch” are represented by a sin-
gle average individual. Each PFT is represented by multiple
average individuals, and one PFT cohort is defined as the av-
erage of several individuals. Assuming that all individuals
of the same age in a particular patch have the same structure,
then several cohorts form a single patch. Establishment, mor-
tality and disturbance are stochastic processes. Fire is sim-
ulated annually (stochastically) based on temperature, fuel
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availability and the moisture content of upper soil layer as a
proxy for litter moisture content (Thonicke et al., 2001).

2.2 Forcing

LPJ-GUESS requires soil texture (Zobler, 1986; Sitch et al.,
2003), daily temperature, precipitation, incoming shortwave
radiation and the annual mean atmospheric carbon dioxide
(CO2) concentration. The atmospheric CO2 concentration,
varying annually, was compiled from atmospheric measure-
ments (McGuire et al., 2001; Smith et al., 2014). We used
the CRUNCEP V7 dataset (Viovy, 2018) as the meteorolog-
ical forcing input for LPJ-GUESS. CRUNCEP is based on
a merged observed monthly climatology product of the Cli-
mate Research Unit (CRU) and the high-temporal-resolution
reanalysis by the National Centers for Environmental Predic-
tion (NCEP). The spatial resolution is 0.5◦ and the temporal
resolution is 6 h for the time period 1901–2016. From the
CRUNCEP data, we calculated daily averages of the temper-
ature and incoming shortwave radiation and daily sums of
the precipitation as inputs for LPJ-GUESS.

To explore the sensitivity of our results to differences
in the meteorological forcing, we repeated our experiments
using the Global Soil Wetness Project Phase 3 (GSWP3)
dataset (Kim, 2017). GSWP3 is based on the 20th Century
Reanalysis (20CR; Compo et al., 2011), which is dynami-
cally downscaled from a global 2◦ resolution with a 3 h tem-
poral resolution into a T248 (∼ 0.5◦) grid using a spectral
nudging technique (Yoshimura and Kanamitsu, 2008) in a
global spectral model. Since GSWP3 only covers the time
period of 1901–2010, we choose the CRUNCEP-based simu-
lations for the main analysis and use the GSWP3-based sim-
ulations to determine if the meteorological forcing leads to
major differences in our results.

2.3 Model set-up

LPJ-GUESS was spun up for 500 years using the first
30 years of the climate forcing (1901–1930) to allow the car-
bon pools to reach equilibrium. During the spin-up, tempera-
ture is detrended and the climate forcing is cycled repeatedly
with a constant atmospheric CO2 concentration of 296 ppm.
After the spin-up, the simulation continues with the historical
climate and transient atmospheric CO2 forcing (e.g. Smith
et al., 2014). For this study, we allow for fire and stochas-
tic disturbance. We do not account for recent anthropogenic
changes in global land use cover.

2.4 Identification of El Niño events

We base the identification of El Niño events on a study by Yu
and Kim (2013). They first classified El Niño events based
on the Oceanic Niño Index (ONI), which comprises both CP
and EP El Niño events. Based on four indices, they then fur-
ther differentiate between CP and EP El Niño events. For
this study, we define a CP or EP El Niño event when three

out of these four indices agree on the same El Niño type. The
remaining events are defined as mixed events (“MIX”; see
Appendix Table A1; compare Table 1 in Yu and Kim, 2013).

Note that our approach defines the 1968–1969 El Niño
event as the first CP El Niño event and consequently the first
year of our experiment set-up. Given the climate forcing is
limited to 1901–2015, we exclude the 2015–2016 El Niño
event and choose the ENSO-neutral year 2013 as the final
year. We analyse the effect that a climate with only CP El
Niño or only EP El Niño events might have on terrestrial
vegetation after 45 years by comparing the final year of the
two different scenarios to that of the control run (where both
expressions of El Niño occur).

2.5 Experiment design

In the control run, we ran LPJ-GUESS with the original
CRUNCEP forcing for the period 1901–2015. For the exper-
iment simulations, we created two climate forcing datasets
containing either only CP or only EP El Niño events starting
from 1968, hereafter referred to as CP-only and EP-only. To
do this, we replaced climate anomalies associated with CP El
Niño events with those of EP El Niño events and vice versa
for the three climate variables temperature, precipitation and
incoming shortwave radiation. In this study, we focussed our
analysis on the tropics (23◦ S–23◦ N) and Australia in addi-
tion to a global analysis.

To generate the synthetic CP and EP forcing datasets,
we take the reanalysis forcing (displayed schematically in
Fig. 1a) and first calculate eight 30-year averages that are
used as base periods (see Fig. 1b) for every grid point based
on the original climate forcing (see Fig. 1a). Each base pe-
riod is used to calculate the anomalies for successive 5-year
periods; i.e. we compare the years from 1966–1970 to the
average over 1951–1980, the years from 1971–1975 to the
average over 1956–1985 and so on. The last 15 years (2001–
2015) are compared to the average over 1986–2015 (see
Fig. 1c; compare calculation of ONI in Lindsey, 2013). We
subtract these base periods from the original forcing for each
pixel and identify anomalies associated with the type of El
Niño according to Table A1 (see Fig. 1d). We used the ONI
to define the start, end and strength of the individual El Niño
events and resampled the climate anomalies based on the
ONI. We replaced anomalies in the climate forcing associ-
ated with El Niño events according to the best fit in duration
and amplitude in ONI, i.e. events that start and end at a sim-
ilar time in the year and have a similar timing and magni-
tude of the peak in ONI. For the replacement of the climate
anomalies, we defined the start of an El Niño event as the
second month of the first ONI season and the end as the sec-
ond month of the last ONI season for each El Niño event
(see Fig. 1e and f). For example, the El Niño event from
1968–1969 started in the ONI season September–October–
November and ended in April–May–June, so the first month
of the 1968–1969 El Niño event is October in 1968 and the
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last month is March in 1969. Finally, we added the new
anomalies and the original base periods to create the manip-
ulated climate forcing.

This approach only isolates the effect of different expres-
sions of El Niño to a limited extent since the calculated
anomalies can also be influenced by other climate modes of
variability. For example in Australia and Indonesia, differ-
ent expressions of El Niño and different phases of the Indian
Ocean Dipole can combine to drive the fire season (e.g. Pan
et al., 2018). Given we create two synthetic forcings with 15
CP (nine events replaced) and 15 EP (eight events replaced)
El Niño events, we assume that the emerging signal in the
model results will be representative of the effect of different
expressions of El Niño on the carbon balance.

We use an identical approach for the GSWP3 dataset. The
only difference is the shorter length of the time period cov-
ered: GSWP3 ends in 2010; hence the last base period calcu-
lated is the average over 1981–2010 instead of 1985–2015 as
for CRUNCEP.

We processed the data with netCDF Operators (ver-
sion 4.7.7, http://nco.sf.net, last access: 27 October 2020) and
Climate Data Operators (version 1.9.5, http://mpimet.mpg.
de/cdo, last access: 27 October 2020). The data analysis is
conducted with Python version 3.

3 Results

Figure 2 shows the effect of different expressions of El Niño
on the NBP. The upper three panels (Fig. 2a, b, c) display to-
tal global NBP as well as tropical and Australian NBP for the
control run and for the two experiments. All three runs have
a similar magnitude in the IAV of NBP. Both the CP- and EP-
only scenarios can increase or dampen the peaks in NBP for
the different regions. For all three regions, NBP accumulates
to around 120 PgC globally, 80 PgC for the tropics and 6 PgC
for Australia (see Fig. 2d–f). Overall, cycling of carbon (IAV
of NBP) through the terrestrial biosphere was most marked
in CP years relative to EP years (see Fig. 2g, h and i). The
magnitude in the difference of annual NBP in the CP- and
EP-only scenarios compared to the control run is compara-
ble to the total IAV of NBP (compare Fig. 2a, b, c). Overall,
global changes in NBP accumulate to 9.6 and 4.5 PgC for the
CP- and the EP-only scenario, respectively (see Fig. 2g).

Figure 3 breaks down the NBP response to the three terres-
trial ecosystem fluxes gross primary production (GPP), ter-
restrial ecosystem respiration (TER, the sum of autotrophic
and heterotrophic respiration) and fire emissions. Prior to
1997, individual CP events led to large IAV, with increases
in global GPP in some years of up to 7 PgC yr−1 and
reductions in some years of around −0.5 PgC yr−1 (see
Fig. 3a). Changes in tropical GPP were mostly positive (up to
3.1 PgC yr−1; see Fig. 3b). By contrast, in drier regions, for
example in Australia, the year-to-year variability ranged be-
tween −0.9 and 1.6 PgC yr−1 (see Fig. 3g). By comparison,

TER varied by smaller amounts for all regions (see Fig. 3b, e,
h). Carbon fire emissions responded weakly to the expression
of the El Niño (see Fig. 3c, f, i). All fluxes show higher vari-
ability through to the end of the 20th century compared to the
early 21st century. The lower variability in the 21st century
coincides with a period of a positive phase in the Interdecadal
Pacific Oscillation.

However, the IAV does not lead to sustained trends in the
ecosystem fluxes. The spatial distribution of the flux anoma-
lies in the final year of the experiment (2013) displays spa-
tial variability rather than systematic patterns, implying that
the imposed changes also did not lead to long-term shifts
in ecosystem processes at regional scales (see Appendix
Fig. B1).

Figure 3 also shows the accumulated change in fluxes be-
tween 1968 and 2013. The cumulative sums of the absolute
differences for fire carbon emissions are between −0.8 and
0.3 PgC for the CP- and the EP-only scenario, respectively
(see Fig. 3c). Over the 45 years, the accumulated GPP leads
to a difference of 60.2 and 35.8 PgC for the CP- and the EP-
only scenario, respectively, and this is largely balanced by
the accumulated TER, 50.3 and 26.6 PgC for the CP- and
the EP-only scenario, respectively (see Fig. 3a, b). For NBP,
GPP and TER, a CP-only scenario leads to stronger increases
compared to an EP-only scenario both globally and for trop-
ical regions (see Figs. 2g, h, 3a, b, d, e). In Australia, the cu-
mulative sums of GPP and TER anomalies in a CP-only sce-
nario start to converge with the cumulative anomalies in an
EP-only scenario in 2005 for GPP and TER so that they reach
similar values in 2013 (CP-only scenario: 7.4 PgC for GPP
and 6.2 PgC for TER; EP-only scenario: 7.3 PgC for GPP
and 5.9 PgC for TER; see Fig. 3g, h). The cumulative car-
bon lost through fires declines in a CP-only scenario globally
and in the tropical regions and is close to zero for Australia
(see Fig. 3c, f, i). In contrast to the absolute differences in
the fluxes in the year 2013 (see above), cumulative GPP and
TER show a clear(er) pattern with increases for both fluxes
in southern South America and over Australia (see Appendix
Fig. B3). The accumulated increases in GPP however are bal-
anced by increases in TER so that cumulative NBP shows
strong spatial variability similar to the fluxes in Appendix
Fig. B1.

At the global scale, the CP-only simulations led to an in-
crease in the total land carbon storage (see Fig. 4a). Between
1968 and 2013, the total carbon stored increased by 9.6 PgC
compared to the control run (see Fig. 4a, “Total”; i.e. the
sum of carbon stored vegetation, litter and soil). The EP-
only simulations led to a gain of ∼ 4.5 PgC relative to the
control run (see Fig. 4d). Figure 4 also shows the breakdown
of the change in carbon storage between the vegetation, litter
and soil pools. In the CP-only simulation, the total change is
dominated by an increase in vegetation carbon of ∼ 5.5 PgC
originating from cumulative changes in GPP outbalancing
those of TER. By contrast, in the EP-only simulations, any
short-term increases in vegetation biomass are balanced by

Biogeosciences, 18, 2181–2203, 2021 https://doi.org/10.5194/bg-18-2181-2021

http://nco.sf.net
http://mpimet.mpg.de/cdo
http://mpimet.mpg.de/cdo


L. Teckentrup et al.: Examining the sensitivity of the terrestrial carbon cycle 2185

Figure 1. Schematic figure for the generation of the synthetic CP and EP forcing datasets (see text for details).

increased respiration, tissue turnover and mortality, leading
to a negligible change in ecosystem carbon storage. In both
the CP- and EP-only scenario, the total differences in terres-
trial carbon pools are largely the result of the responses of
tropical ecosystems. Similar to the carbon fluxes, no clear
patterns in the spatial distribution of the carbon pool anoma-
lies emerge (see Appendix Fig. B4).

4 Discussion

The El Niño–Southern Oscillation strongly influences global
and regional climate and has the potential to modify the re-
gional and global carbon balance. Here, we examine whether
two expressions of El Niño (CP and EP), as distinct from the
El Niño phenomenon itself, modify the regional and global
carbon balance. This is timely: EP El Niño events might be-
come more extreme in the future (e.g. Wang et al., 2019; Cai
et al., 2018), and the occurrence of CP El Niño events seems
to have increased over the latter half of the 21st century
and may increase further in the future (e.g. Yeh et al., 2009;

Ashok et al., 2009). While the impact of more extreme (EP)
El Niño events has been examined (e.g. Kim et al., 2017),
there are few studies exploring the impact of different ex-
pressions of El Niño on the terrestrial carbon cycle. Previous
work has focussed on short timescales and explored time lag
effects on the carbon growth rate (Chylek et al., 2018), single
regions and/or single events (Amazonia, Li et al., 2011; In-
donesia, Pan et al., 2018), or the composite anomalies in the
carbon fluxes (Wang et al., 2018) in a larger spatial context.
In effect, the response of ecosystems to different expressions
of El Niño on longer timescales is not well understood.

In this study we show that, in line with previous studies
(e.g. Wang et al., 2018; Chylek et al., 2018), climate anoma-
lies associated with different expressions of El Niño have a
strong impact on the IAV of ecosystem carbon fluxes. The
El Niño-associated climate anomalies in our experiments do
not show a consistent pattern but rather display high tempo-
ral variability between individual El Niño events (see Ap-
pendix Fig. B5). Wang et al. (2018) showed that between
El Niño events the atmospheric CO2 growth rate varied by
4 PgC yr−1 at the peak for EP events and ∼ 2 PgC yr−1 for
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Figure 2. Total net biome production (NBP) (a–c), cumulative NBP (d–f), and absolute difference and cumulative sums of the difference
between CP-only scenario and control climate and EP-only scenario and control climate (g–i).

CP events. Consequently, the ecosystem fluxes vary strongly
in their response to different expressions of El Niño for indi-
vidual years.

Despite the large resulting IAV in ecosystem carbon
fluxes, the changes in GPP show a clear cumulative global in-
crease of about 60 PgC (CP-only scenario) and 36 PgC (EP-
only scenario) over the 45 years simulated (see Fig. 3 a, d,
g). In both scenarios, additional photosynthetic carbon up-
take was mostly balanced by terrestrial ecosystem respiration
(50 PgC for CP-only scenario, 27 PgC for EP-only scenario;
see Fig. 3 b, e, h). This, and the strong interannual variability,
leads to small net changes in cumulative NBP over 45 years.
The strong IAV in NBP therefore only results in a minor
change in the total carbon storage simulated over 45 years,
with 9.6 PgC more in a CP-only scenario and∼ 4.5 PgC more
in the EP-only scenario (see Fig. 4 a, d).

Overall, the high spatial and temporal variability in the
changes suggest that the effect of different expressions of
El Niño on the terrestrial carbon cycle is important for pre-
dicting responses on interannual timescales (e.g. the atmo-
spheric CO2 growth rate) but is unlikely to affect the terres-
trial carbon balance on longer timescales. Our model results
imply that the anomaly patterns in the El Niño expression on
climate forcing were too variable (and short-lived) to result
in systematic shifts in vegetation composition. Nevertheless,
the marked IAV of carbon fluxes implies an underlying sensi-
tivity that may be particularly important for predictability of

the carbon balance in drier ecosystems and/or water-limited
agricultural regions. Interconnections between the terrestrial
carbon cycle and ENSO have been widely explored (e.g.
Zhang et al., 2019; Rödenbeck et al., 2018; Chylek et al.,
2018). While we also find key NBP variability on annual-to-
decadal timescales (see Fig. 2), particularly in CP years (ac-
cumulated NBP= 9.6 PgC), we did not find that this shorter
timescale variability translated into sustained trends (1968–
2013) in ecosystem fluxes, or shifts in vegetation distribu-
tions (see Fig. 3).

4.1 Future directions

In our study we used a dynamic global vegetation model
to examine the sensitivity of the terrestrial carbon cycle to
changes in El Niño patterns. In response to climate, DGVMs
predict global vegetation distributions based on plant phys-
iology, competition, demography and vegetation structure
(Sitch et al., 2003; Woodward and Lomas, 2004). In par-
ticular, these models also consider how fire dynamics and
vegetation composition may respond to a shift in climate.
In the past DGVMs have been widely used to examine how
vegetation distributions may change in response to climate
(Hickler et al., 2012; Martens et al., 2020) and fire (Kel-
ley and Harrison, 2014). Since we only use a single model,
we cannot quantify uncertainties associated with alternative
models and/or missing processes. For example, LPJ-GUESS,
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Figure 3. Absolute difference and cumulative sums of the difference between CP-only scenario and control climate and EP-only scenario
and control climate for gross primary production (GPP), terrestrial ecosystem respiration (TER, the sum of autotrophic and heterotrophic
respiration) and fire carbon emissions (Fire).

similar to many land surface and dynamic global vegetation
models, does not account for acclimation of plant respira-
tion to increased temperature and may consequently overes-
timate the carbon sensitivity to temperature changes on short
timescales (e.g. Wang et al., 2020; Huntingford et al., 2017;
Smith et al., 2015). Similarly, models differ in their sensi-
tivity of the carbon cycle as water becomes limiting (Powell
et al., 2013), which may affect the magnitude of carbon up-
take in extreme El Niño years. Fisher et al. (2018) also high-
lighted hydrodynamics as well as the representation of de-
mographic processes (e.g. recruitment and mortality) and fire
disturbance as areas of uncertainty and promising for model
development. Future experiments will also need to explore
how rising CO2 and temperature change the relative balance
of GPP uptake and carbon losses via respiration during El
Niño events. Wang et al. (2018) showed that the TRENDY
model ensemble (which includes an LPJ family member)
generally captured the NBP anomalies associated with CP
El Niño events and only underestimates the anomalies asso-
ciated with extreme EP El Niño events. This suggests results
obtained with LPJ-GUESS would be broadly consistent with
other DGVMs.

To place our results into a broader context, we examined
whether LPJ-GUESS captures anomalies associated with dif-

ferent expressions of El Niño in the carbon cycle similarly to
other models. We used the TRENDY v7 S2 run with transient
CO2 forcing and climate, but no imposed land use change.
We choose the seven state-of-the-art DGVMs CABLE-POP
(Haverd et al., 2018), CLASS–CTEM (Melton and Arora,
2016), CLM5.0 (Oleson et al., 2013), JSBACH (Reick et al.,
2013), LPX (Keller et al., 2017), OCN (Zaehle and Friend,
2010), ORCHIDEE (Krinner et al., 2005), ORCHIDEE-CNP
(Goll et al., 2017), SURFEX (Boone et al., 2012) and VISIT
(Kato et al., 2013) to calculate the TRENDY composite.
LPJ-GUESS matches the TRENDY composite well for GPP
and TER for the global, tropical and Australian averages,
with high correlation coefficients for the global and Aus-
tralian averages (0.52–0.84) and low-to-moderate correlation
coefficients for the tropics (0.17–0.6) except for the GPP
anomaly associated with EP El Niño events (0.79) (see Ap-
pendix Fig. B10). Similarly, the R2 values are low for all
tropical anomalies and global EP anomalies (0–0.37), and
low to moderate for the remaining regions (0.36–0.67). In
general, LPJ-GUESS displayed greater variability than the
TRENDY composite but is mostly within the model range
(except for the GPP anomaly for EP El Niños; see Appendix
Fig. B10). The spatial distribution of the composite anoma-
lies shows that LPJ-GUESS captures the features of anoma-
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Figure 4. Absolute difference between CP-only scenario and control climate and EP-only scenario and control climate for the total, vegeta-
tion, litter and soil carbon pools.

lies in GPP associated with EP El Niño events compared
to the individual models and the TRENDY model ensem-
ble (see Appendix Fig. B11). In contrast, LPJ-GUESS gen-
erally simulates weaker anomalies in GPP associated with
CP El Niño events in Brazil and western Africa compared
to the ensemble mean and most individual models. This low
sensitivity might also explain the relatively low correlation
and R2 values in Appendix Fig. B10 for tropical regions and
may dampen the overall response to the CP-only scenario.
We note however that LPJ-GUESS still is within the model
range and can therefore be viewed as representative. In addi-
tion, LPJ-GUESS has a strong negative bias in Australia. As
our results show, Australia does not make a large contribution
to long-term changes in any of the carbon fluxes and pools.
We also examined the sensitivity of our results to the use of
a nitrogen cycle with LPJ-GUESS (see Appendix Fig. B10)
but did not find a strong sensitivity, most likely because ni-
trogen is not thought to be strongly limiting in the tropics
(Vitousek, 1984). Based on this analysis, we suggest that our
model sensitivity would likely be similar to that displayed by
the other TRENDY models, although we would anticipate
subtle regional differences, particular in the tropics if an al-
ternative DGVM had been used. Especially for EP El Niño
events, LPJ-GUESS diverges from the TRENDY ensemble
mean, which cannot be explained by nutrient limitation and
suggests a different sensitivity to the meteorological drivers
(see Appendix Fig. B10). Lastly, a comparison with satellite-
derived observations might help to estimate whether LPJ-
GUESS or indeed an alternative DGVM captures the correct
sensitivity in the response of vegetation dynamics to ENSO
events. Nevertheless, as direct global measurements of car-
bon fluxes do not exist, and those that do are often based on
models themselves, future work might restrict comparison to

less direct proxies of variability, such as leaf area index (Zhu
et al., 2013) and/or GRACE terrestrial water storage (Rodell
et al., 2004).

A further research path may consider driving a model
with a larger ensemble of meteorological forcing to account
for uncertainties associated with global climate reanalysis
products. We conducted the same experiment based on the
GSWP3 climate forcing and found that the overall variabil-
ity in all terrestrial ecosystem flux and carbon pool anomalies
is similar to the experiment based on the CRUNCEP dataset
but with a smaller magnitude (see Appendix Figs. B8 and
B9). Wu et al. (2017) showed that the simulated GPP by
LPJ-GUESS could vary by as much as 11 PgC yr−1 glob-
ally, due to the use of alternative climate forcing datasets.
Nevertheless, in their analysis Wu et al. (2017) showed that,
overall, the magnitude of tropical GPP was largely robust to
the use of different precipitation forcing, although there was
variation regionally. Moreover, exploring the impact of dif-
ferent expressions of El Niño in a future climate would be
worthwhile. However, we note that this would probably re-
quire multiple DGVMs to account for the uncertainty asso-
ciated with the vegetation responses to CO2 and interactions
with nutrients (Zaehle et al., 2014). In addition, the represen-
tation of ENSO diversity in CMIP5 and CMIP6 models is
highly uncertain due to model biases, especially in the equa-
torial Pacific, resulting in low model agreement (e.g. Freund
et al., 2020). Therefore, to obtain robust results, a future ex-
perimental design would also require an ensemble of climate
forcing input datasets.

In this study, we run LPJ-GUESS with active stochastic
and fire disturbance. Including these two types of disturbance
contributes significantly to the spatial variability (compare
Appendix Figs. B1 and B2). Our results show that the fire
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patterns in LPJ-GUESS are largely insensitive to the imposed
changes due to the expression of El Niño, which is in contrast
with observational studies that suggest that El Niño events
themselves are strongly linked to fire activity on regional
scales (e.g. Pan et al., 2018; Mariani et al., 2016; Harris and
Lucas, 2019; Fonseca et al., 2017). This might result from
changes imposed in the experiment being too small to trigger
changes in fire patterns. We note however that the fire module
implemented in LPJ-GUESS (LPJ-GUESS–GlobFIRM; see
Thonicke et al., 2001) is a relatively simple empirical model
that does not capture observed fire properties well (Hantson
et al., 2020) and might underestimate the sensitivity of fire
occurrence to different expressions of El Niño. Teckentrup
et al. (2019) highlighted notable differences among seven
DGVMs in the pattern of burned area to climate forcing. Our
results suggest that the interaction between the expression of
El Niño and fire requires further investigation.

Finally, isolating the effect of El Niño on the atmosphere
and terrestrial biosphere is not trivial for individual events.
Individual El Niño events vary in location, timing and mag-
nitude (e.g. Capotondi et al., 2015), and teleconnections are
influenced by the background climate and climate variabil-
ity (e.g. the Indian Ocean Dipole). In our study, we assume
that replacing a CP event with an EP event, or vice versa,
did not modify the role played by other modes of variability.
We further neglect possible interactions between consecutive
ENSO events. For example, strong El Niño events tend to
peak in the eastern Pacific, and these tend to be followed by
a La Niña event. However, the influence of a preceding El
Niño on the characteristics of the La Niña event is not clear
(Santoso et al., 2017). By generating two experiments with
either 15 (nine manipulated events) CP or 15 (eight manip-
ulated events) EP El Niño events, we assume that the signal
observed at the end of the time period is driven by the respec-
tive expression of El Niño. In order to test the validity of our
results, we applied a different approach where we replaced
the climate forcing of CP El Niño years with the climate forc-
ing of the EP El Niño events closest in time and found even
smaller changes in carbon fluxes (see Appendix Fig. B6) and
in carbon sequestration (see Appendix Fig. B7). An alterna-
tive approach could be to calculate composite anomalies for
both CP and EP El Niño events and use those for replace-
ment, but this would dampen variability in the forcing and
introduce a different bias. Alternatively, generating a sea sur-
face temperature forcing representing the different expres-
sions of El Niño and using an atmospheric model to gener-
ate the climate anomalies that result from the changes in sea
surface temperatures could help quantify the effect of the ex-
pression of El Niño on the carbon sequestration. However,
given the changes we found are very small and spatially vari-
able, we doubt this would lead to different conclusions.

5 Conclusions

We explored the impact of the expression of El Niño on
the terrestrial carbon cycle on multi-decadal timescales us-
ing LPJ-GUESS. We found that the changes in simulated
anomalies reflecting the two expressions of El Niño in NBP
accumulate around 9.6 PgC (CP-only scenario) and 4.5 PgC
(EP-only scenario). However, this accumulation period cov-
ers more than 45 years and is therefore negligible compared
to annual anthropogenic emissions of 9.4± 0.5 PgC yr−1

(Le Quéré et al., 2018). Our results therefore suggest that
the impact of different expressions of El Niño on the carbon
cycle on long timescales is likely to be small.

Our results imply that simulations of the terrestrial carbon
cycle over the recent past and into the future using global
climate models may not require the expression of El Niño
events to be well captured. There are major challenges in ac-
curately capturing El Niño–La Niña cycles and the telecon-
nections associated with El Niño events with existing climate
models. Had we found the expression of El Niño to be criti-
cal in simulating the long-term terrestrial carbon balance, this
would have added a very significant additional uncertainty to
projections of the future role of the land in storing carbon.
Our results suggest that the expression of El Niño, as distinct
from whether there is an El Niño or a La Niña, is relatively
unimportant over the long term. We note that our results do
agree with earlier studies (Chylek et al., 2018; Wang et al.,
2018; Pan et al., 2018) that found that the expression of El
Niño is important to terrestrial carbon fluxes on shorter, an-
nual and interannual timescales. Overall, in the context of the
long-term global and regional terrestrial carbon balance, our
results imply that model development should prioritise sim-
ulating El Niño–La Niña cycles and the associated telecon-
nections, with perhaps less focus needed on considering the
additional challenge of resolving the expression of individual
El Niño events.
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Appendix A

Table A1. El Niño events from 1968–2010 identified by the NOAA Oceanic Niño Index (ONI) and their different expressions derived by four
methods according to Yu and Kim (2013): pattern correlation method (“PTN”; Yu and Kim, 2013); central location method (“Niño”; Kug
et al., 2009; Yeh et al., 2009), the El Niño Modoki index (“EMI”; Ashok et al., 2007), and the cold-tongue and warm-pool index (“CT/WP”;
Ren and Jin, 2011). We define a CP or EP El Niño where three out of the four indices agree on the same El Niño type. The remaining events
are defined as mixed events (“MIX”).

Year Dominant CP El Niño EP El Niño
El Niño type replacement replacement

1968–1969 CP – 1976–1977
1969–1970 EP 1977–1978 –
1972–1973 EP 2009–2010 –
1976–1977 EP 1977–1978 –
1977–1978 CP – 1976–1977
1982–1983 EP 2009–2010 –
1986–1987 EP 1994–1995 –
1987–1988 MIX 2002–2003 1982–1983
1991–1992 MIX 2009–2010 1997–1998
1994–1995 CP – 1976–1977
1997–1998 EP 2002–2003 –
2002–2003 CP – 2006–2007
2004–2005 CP – 1976–1977
2006–2007 EP 1977–1978 –
2009–2010 CP – 1972–1973
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Appendix B

B1 CRUNCEP

Figure B1. Absolute difference between CP-only scenario and control climate and EP-only scenario and control climate for net biome
production (NBP), gross primary production (GPP), terrestrial ecosystem respiration (TER) and fire carbon emissions (Fire) for the final year
of the experiment (2013). Note that the noise partially results from stochastic and fire disturbance (compare Fig. B2).
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Figure B2. Absolute difference between CP-only scenario and control climate and EP-only scenario and control climate for net biome
production (NBP), gross primary production (GPP), terrestrial ecosystem respiration (TER) and fire carbon emissions (Fire) for the final year
of the experiment (2013) without stochastic and fire disturbance.
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Figure B3. Accumulated absolute difference between CP-only scenario and control climate and EP-only scenario and control climate for net
biome production (NBP), gross primary production (GPP), terrestrial ecosystem respiration (TER) and fire carbon emissions (Fire) for the
final year of the experiment (2013).
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Figure B4. Absolute difference between CP-only scenario and control climate and EP-only scenario and control climate for total, vegetation,
litter and soil carbon pool for the final year of the experiment (2013).
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Figure B5. Absolute difference and cumulative sums of the difference between CP-only scenario and control climate and EP-only scenario
and control climate for precipitation and absolute difference and 30-year moving average of the difference between CP-only scenario and
control climate and EP-only scenario and control climate for temperature and incoming shortwave radiation.
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B2 Nearest-year replacement

Figure B6. Absolute difference and cumulative sums of the difference between CP-only scenario and control climate and EP-only scenario
and control climate for net biome production (NBP), gross primary production (GPP), terrestrial ecosystem respiration (TER, the sum of
autotrophic and heterotrophic respiration) and fire carbon emissions (Fire) for an alternative method (replacing the climate forcing of CP El
Niño event with that of an EP El Niño event and vice versa for events closest in time).

Figure B7. Absolute difference between CP-only scenario and control climate and EP-only scenario and control climate for the total,
vegetation, litter and soil carbon pools for an alternative method (replacing the climate forcing of CP El Niño event with that of an EP El
Niño event and vice versa for events closest in time).
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B3 GSWP3 forcing

Figure B8. Absolute difference and cumulative sums of the difference between CP-only scenario and control climate and EP-only scenario
and control climate for net biome production (NBP), gross primary production (GPP), terrestrial ecosystem respiration (TER, the sum of
autotrophic and heterotrophic respiration) and fire carbon emissions (Fire) for the experiments based on the GSWP3 forcing.

Figure B9. Absolute difference between CP-only scenario and control climate and EP-only scenario and control climate for the total,
vegetation, litter and soil carbon pools for the experiments based on the GSWP3 forcing.
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Figure B10. Monthly composite anomalies during the El Niño developing (y0) and decaying (y1) year in gross primary production (GPP,
green lines) and terrestrial ecosystem respiration (TER, sum of autotrophic and heterotrophic respiration, red lines) for all CP and EP El Niño
events listed in Appendix Table A1 averaged over the globe, the tropics (23◦ S–23◦ N) and Australia. The dotted lines show the TRENDY
v7 composite, the solid lines are the individual LPJ-GUESS runs without nitrogen cycling (“LPJ-GUESS C”) and the dashed lines show
the individual LPJ-GUESS runs with nitrogen cycling (“LPJ-GUESS CN”) (compare Wang et al., 2018). The shaded area shows the model
spread of the individual TRENDY models. ρ and R2 are the Pearson correlation coefficient and the R2 value, respectively, between the
individual LPJ-GUESS runs without nitrogen cycling and the TRENDY ensemble mean.
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Figure B11. Composite anomalies in gross primary production (GPP) summed over the El Niño developing and decaying year for all CP
and EP El Niño events listed in Table A1 for the individual TRENDY models, the TRENDY composite and the individual LPJ-GUESS run
(compare Wang et al., 2018).
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Code and data availability. The analysis codes are available at
https://github.com/lteckentrup/nino_experiment, Teckentrup, 2021.
The model code is available upon request from http://web.nateko.lu.
se/lpj-guess/contact.html, Smith, 2020. The model outputs will be
shared in line with UNSW’s open-access policy on publication. The
TRENDY version 7 model output is available upon request (https:
//sites.exeter.ac.uk/trendy/data-policy/, last access: 31 July 2020),
and the CRUNCEP climate forcing is available from https://rda.
ucar.edu/datasets/ds314.3/, Viovy, 2018.
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