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Abstract. Grasslands provide many important ecosystem
services globally, and projecting grassland productivity in
the coming decades will provide valuable information to land
managers. Productivity models can be well calibrated at lo-
cal scales but generally have some maximum spatial scale in
which they perform well. Here we evaluate a grassland pro-
ductivity model to find the optimal spatial scale for parame-
terization and thus for subsequently applying it in future pro-
ductivity projections for North America. We also evaluated
the model on new vegetation types to ascertain its potential
generality. We find the model most suitable when incorporat-
ing only grasslands, as opposed to also including agriculture
and shrublands, and only in the Great Plains and eastern tem-
perate forest ecoregions of North America. The model was
not well suited to grasslands in North American deserts or
northwest forest ecoregions. It also performed poorly in agri-
culture vegetation, likely due to management activities, and
shrubland vegetation, likely because the model lacks repre-
sentation of deep water pools. This work allows us to perform
long-term projections in areas where model performance has
been verified, with gaps filled in by future modeling efforts.

1 Introduction

Grassland systems span nearly 30 % of the global land sur-
face (Adams et al., 1990) and play a prominent role in terres-
trial carbon cycles (Parton et al., 2012). Grasslands in North
America provide a large proportion of food and fiber agricul-
tural products for the region. Annual productivity of grass-
lands in central and western North America is driven in large
part by precipitation (Sala et al., 2012). Future changes in
the amount, intensity, and timing of precipitation will be het-
erogeneous across North America (Easterling et al., 2017),

resulting in heterogeneous changes to grassland productiv-
ity. For example, even with consistent shifts in climate, dif-
ferent locations can experience different changes in produc-
tivity due to local-scale responses (Zhang et al., 2011; Sala
et al., 2012; Knapp et al., 2017). This highlights the need for
models which can be resolved at small spatial and temporal
scales, thus making long-term grassland productivity projec-
tions as informative as possible.

A promising method for this is low-dimensional mod-
els, which are process-based models with some simplified
components (Choler et al., 2010, 2011). For example, a
low-dimensional model might approximate transpiration as
a function of potential evapotranspiration, soil available wa-
ter, and live vegetation cover along with a single parame-
ter. As opposed to a high-dimensional model with multiple
functions accounting for leaf area index, stomatal conduc-
tance, rooting depth and surface area, etc. (Caylor et al.,
2009; Asbjornsen et al., 2011), the low-dimensional model
is advantageous since it can generalize across broad regions
with relatively few inputs. Yet they are still susceptible to
over-fitting to local conditions since parameters or model
structure can be tied to specific locations or plant functional
groups (Fisher and Koven, 2020). Thus parameterizing low-
dimensional models must be done with care such that they
are applicable to a broad area while maintaining an accept-
able level of accuracy.

Here we evaluate a low-dimensional model with the inten-
tion of it driving productivity projections. The PhenoGrass
model developed by Hufkens et al. (2016) is a pulse-response
productivity model with temperature and precipitation as the
primary drivers. The model is parameterized using obser-
vations from the PhenoCam network which have a small
spatial resolution (footprints of < 1ha), sub-daily sampling,
and sites across all major biomes. These attributes make the
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PhenoGrass model potentially widely applicable. We expand
on the evaluation of the original study by using 84 Pheno-
Cam sites, totalling 89 distinct time series with 463 site years
of data. Using the original methods and input datasets we test
the model’s performance with this expanded dataset. We also
evaluate the model across different combinations of North
American ecoregions and vegetation types to find an optimal
spatial scale in which to parameterize and apply the model.
Finally, we address where the model performs poorly and
how productivity projections for these areas could be imple-
mented or improved.

2 Methods
2.1 PhenoGrass model

The PhenoGrass model is an ecohydrology model which has
interacting state variables for soil water, plant available wa-
ter, and plant fractional cover (Hufkens et al., 2016). Model
inputs are daily precipitation, temperature, potential evapo-
transpiration (derived from the Hargreaves equation; Harg-
reaves and Samani, 1985), and solar radiation. The primary
output is fractional vegetation cover (fCover). The original
model form, derived in Choler et al. (2010, 2011), used only
temperature and potential evapotranspiration and was param-
eterized using satellite-derived normalized difference vege-
tation index (NDVI) data. Hufkens et al. (2016) expanded
on the original Choler model by incorporating growth and
senescence restraints from temperature and solar radiation,
and also included a scaling factor to convert PhenoCam G
(green chromatic coordinate) data to a fractional cover es-
timate (see equations in the Supplement). Hufkens et al.
(2016) evaluated the PhenoGrass model using 14 grassland
PhenoCam sites across western North America with a total of
34 site years. They found the modeled fractional cover corre-
lated well with annual productivity at both daily and annual
timescales. Despite its name the PhenoGrass model can the-
oretically apply to any vegetation type with a distinct growth
signal in response to precipitation, as hypothesized in the
original threshold-delay model (Ogle and Reynolds, 2004).
Here we evaluate two additional vegetation types, shrubs and
agricultural plots, to test how applicable it is beyond grass-
lands.

2.2 PhenoCam data

The PhenoCam network is a global network of fixed, near-
surface cameras capturing true-color images of vegetation
throughout the day (Richardson et al., 2018a). Using a ratio
of the three RGB bands a greenness metric (green chromatic
coordinate, G¢) is calculated from each image, resulting in
a daily-scale time series of canopy greenness. G is a unit-
less metric which is highly correlated with satellite-derived
NDVI (Richardson et al., 2018b) and flux-tower-derived pri-
mary productivity (Yan et al., 2019; Toomey et al., 2015).
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Each PhenoCam image is subset to one of several different
plant vegetation types based on the field of view. These re-
gions of interest (ROIs) serve as the basis for the G calcu-
lation and subsequent post-processing (Seyednasrollah et al.,
2019).

We downloaded all PhenoCam data with ROIs of the
grassland (GR), shrubland (SH), and agricultural (AG) veg-
etation types for the years 2012 to 2018, totalling 89 distinct
time series and 463 site years (Fig. 1; Table S2 in the Sup-
plement). As input to the PhenoGrass model, we used the 3d
smoothed G scaled, for each ROI, from 0-1. In the model
parameterization each ROI time series is further transformed
to fractional vegetation cover (fCover; see Supplement equa-
tions) using the local mean annual precipitation (MAP) com-
bined with a scaling factor (Hufkens et al., 2016; Donohue
etal., 2013).

2.3 Environmental data

For historic precipitation and temperature, we used the 1 km
resolution Daymet dataset (Thornton et al., 2018), extract-
ing daily time series for the pixel at each PhenoCam tower
location. Daily mean temperature was calculated as the aver-
age between the Daymet daily minimum and maximum tem-
peratures and smoothed with a 15d moving average. Poten-
tial evapotranspiration was calculated using the Hargreaves
equation (Hargreaves and Samani, 1985). Soil wilting point
and field capacity were extracted at each PhenoCam location
from a global dataset (Global Soil Data Task Group, 2000).
Despite other options being available we chose to use the
same climate and soil datasets as those used in Hufkens et al.
(2016) so that any differences in results can be attributed to
the expanded PhenoCam dataset used here.

2.4 Model evaluation

To find the most appropriate spatial scale, we evaluated
the model using three different combinations of ecoregion
and vegetation type with 11 total model parameterizations
(Fig. 2). Here we use the term “spatial scale” to refer to
the combination of ecoregion(s) and vegetation type(s) used
within each model. This includes using all sites of one vege-
tation type within an ecoregion or all sites of a specific vege-
tation type from several ecoregions (Fig. 2). The largest spa-
tial scale used all PhenoCam locations described above (89
sites). Next were all sites, respectively, within the three veg-
etation types indicated by the ROI (grasslands, shrublands,
and agricultural). Finally, we parameterized models for each
vegetation type within each level 1 North American ecore-
gion (e.g., all grassland sites within the Great Plains ecore-
gion). All sets of parameterized models were limited to have
at least five sites.

We evaluated each of the 11 models using the Nash—
Sutcliffe coefficient of efficiency (NSE; Eq. 2), as well as
the mean coefficient of variation of the mean absolute er-
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Figure 1. Locations of PhenoCam sites. Color indicates the vegetation type represented at each site. Vegetation type is defined by the
PhenoCam network. Shading indicates Environmental Protection Agency (EPA) North American level 1 ecoregions.
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Figure 2. Scaling representation of the 11 model parameterizations.
Numbers in parentheses represent the number of sites and site years,
respectively. Each model uses a different subset of sites ranging
from the entire dataset (all site model) to one vegetation type within
an ecoregion (e.g., eastern temperate forest grasslands).
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ror (F, Eq. 3) of the daily fractional cover estimates. NSE
was calculated for each site and then averaged across all
sites within the respective spatial scale (NSE; Eq. 1). There
was no cross-validation using out-of-sample data in the ini-
tial fitting as it would have been computationally expensive.
Rather, error metrics from these in-sample tests were treated
as a best case scenario of what each model parameterization
can achieve. From these results we used a threshold to se-
lect which models to evaluate further using cross-validation.
The threshold value was an NSE of 0.65, which is viewed
as “acceptable” for time-series models (Ritter and Mufioz-
Carpena, 2013). Parameterization was done using differen-
tial evolution, a global optimization algorithm, to minimize
F.

N

—=_ 1
NSE = NZNSE}' 0
j=1
NSE: =1— i (fCover; gbs — fCoVer; prea)? o
' Y- (fCover; obs — fCoVerohs )
1 N
F==) CVMAE, 4
j=1
1y
—> i_1lfCover; ops — fCover;
CVMAE] —_n Zl—ll i,0bs l,predl (4)

fCovergps

N is the number of sites within the spatial scale evaluated,
n is the number of daily values at each site, fCover; s and
fCover; preq are observed and predicted values, respectively,
and fCover,yy is the average observed fCover at each site.
Models which exceeded the threshold were subject to fur-
ther evaluation. For each model we performed a leave-one-

Biogeosciences, 18, 2213-2220, 2021



2216

out cross-validation, in which the model was re-fit with one
PhenoCam site not included in the training data and then
evaluated against this left-out site. In this step a scaling coef-
ficient to link mean annual precipitation with PhenoCam G
was held constant at the value obtained in the first fitting. The
resulting NSE and F are from all modeled sites using their
respective out-of-sample test.

All PhenoCam data were downloaded using the Pheno-
Cam R package (Hufkens et al., 2018). Other packages
used in the R 3.6 language were dplyr (Wickham et al.,
2017), tidyr (Wickham and Henry, 2018), ggplot2 (Wick-
ham, 2016), daymetr (Hufkens et al., 2018), rgdal (Bi-
vand et al., 2019), and sf (Pebesma, 2018). Python 3.7
packages included SciPy (Virtanen et al., 2020), NumPy
(van der Walt et al., 2011), pandas (McKinney, 2010), and
dask (Team, 2016). All code and data used in the anal-
ysis are available in the repository at: https://github.com/
sdtaylor/PhenograssReplication (last access: 15 June 2020);
the PhenoGrass model is implemented in a Python pack-
age https://github.com/sdtaylor/GrasslandModels (last ac-
cess: 15 June 2020). Both are archived permanently on Zen-
odo (https://doi.org/10.5281/zenodo.3897319).

3 Results

At the largest spatial scale in which the PhenoGrass model
was parameterized using all 89 sites, the model performed
poorly with an NSE value of 0.31 (Table 1; Fig. 3). Mod-
els built using all sites of a respective vegetation type per-
formed poorly as well, though they were slightly better than
the all site model (Fig. 3). The best model performance was
achieved when models were built using a single vegetation
type subset for a single ecoregion. Grasslands within the
Great Plains and eastern temperate forests ecoregions were
the only instances where NSE exceeded the 0.65 threshold,
though grasslands within northwestern forests came close
(NSE = 0.64).

In all 11 models the PhenoGrass model tended to underes-
timate the highest fCover values and to a lesser degree over-
predict the lowest values (Figs. 3 and 4). The best performing
models (grasslands in the Great Plains and eastern temperate
forests) minimized this effect (Fig. 4). The worst performing
models, grasslands in North American deserts, had little vari-
ation in predicted fCover values, resulting in the lowest NSE
overall.

The grassland vegetation type, subset to specific ecore-
gions, predominantly outperformed models built with other
spatial scales (Table 1). Models built using grasslands within
the eastern temperate forest and Great Plains ecoregions had
the highest NSE values of 0.82 and 0.69, respectively. Using
leave-one-out cross-validation on these two grassland mod-
els resulted in similar errors of 0.79 and 0.67 for the east-
ern temperate forest and Great Plains, respectively. Though
northwestern forest grasslands had an in-sample NSE just be-
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Figure 3. Observed and predicted daily fCover values of the all site
model and the three vegetation type models, each using all available
sites and years with the respective spatial scale. NSE is the average
Nash-Sutcliffe coefficient of efficiency among sites, and F is the
mean coefficient of variation of the mean absolute error. The cor-
relation line (blue) represents the overall trend in predicted versus
observed values, while the 1 : 1 line (red) represents a perfect fit.

low the 0.65 threshold, the cross-validation was well below
it (0.52). Grasslands in the North American deserts were not
modeled well at any spatial scale and had the lowest NSE val-
ues in the entire analysis. The observed greenness patterns of
these desert grasslands had extremely high variability in their
magnitude and timing with short distinct peaks in greenness
and numerous off-peak fluctuations. The fitted model, which
minimized F among the five sites, was not able to reproduce
this high variability and instead produced fCover values that
were severely constrained to a narrow range (Fig. S1 in the
Supplement).

Agriculture and shrubland sites were poorly modeled at
all spatial scales. Performance of agriculture within the east-
ern temperate forest ecoregion (NSE = 0.33) improved over
the all agriculture model (NSE = 0.18) but decreased in the
Great Plains (NSE from 0.24 to 0.18). There was only a
single ecoregion with a minimum of five shrubland sites,
North American deserts, and it performed only slightly better
than the all shrubland model. Shrublands in North American
deserts did not have the high variability seen in desert grass-
lands.
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Table 1. Average site-level Nash—Sutcliffe coefficient of efficiency (NSE) and mean coefficient of variation of the mean absolute error (F)
for each model parameterization. Bold indicates when the NSE was greater than the acceptable threshold of 0.65. Values in parentheses

represent the NSE or F in the leave-one-out cross-validation.

NSE F  No.sites Site years
All sites 0.31 0.50 89 462.5
All agriculture 0.24 0.51 38 175.7
All grasslands 0.45 0.44 37 205.8
All shrublands 0.44 0.40 14 81.0
Eastern temperate forests
Agriculture 0.33 0.45 20 99.2
Grasslands 0.82 (0.79) 0.28 (0.30) 6 35.7
Great Plains
Agriculture 0.18 0.57 13 54.3
Grasslands 0.69 (0.67) 0.39 (0.40) 15 71.5
North American deserts
Grasslands —0.04 0.44 5 20.3
Shrublands 0.52 0.33 8 39.7
Northwestern forests
Grasslands 0.64 0.34 7 50.7

4 Discussion

We performed an extensive evaluation of the PhenoGrass
model across ecoregions and vegetation types to determine
the best spatial scale at which to parameterize and apply the
model. We found the model most suitable to grassland veg-
etation when constrained to the ecoregion level, though it
did not perform well in grasslands in the North American
desert ecoregion. Shrublands and agriculture were not well
represented by the model regardless of the spatial scale. Re-
sults from this study will facilitate long-term projections of
grassland productivity constrained to an appropriate vegeta-
tion type and scale.

The PhenoGrass model performed best in grassland sites
embedded within ecoregions. Studies using earlier forms of
the model applied it exclusively to grasslands (Choler et al.,
2010, 2011; Hufkens et al., 2016), and results here confirm
that it performs well in grassland vegetation with two excep-
tions. The model did not work in the desert grasslands, nor
did it generalize well when built using all North American
grasslands simultaneously. Grasslands in the North Ameri-
can desert biome coexist with shrubs, resulting in complex
water use dynamics described in more detail below. The
pulse-response design of PhenoGrass, which makes it well
suited in areas with a high cover of perennial grass, is likely
not applicable when grasses are interspersed with woody
plants.

Shrublands were not well modeled at any spatial scale.
Dryland shrubs, representing 8 of the 15 shrubland Pheno-
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Cams analyzed here, coexist with grasses by accessing differ-
ent pools of soil water (Weltzin and McPherson, 2000; Mul-
davin et al., 2008) and thus have different responses to pre-
cipitation and resulting greenness patterns (Browning et al.,
2017; Yan et al., 2019). A prior form of the PhenoGrass
model was designed to work with dryland shrubs by using
two soil water pools (Ogle and Reynolds, 2004), yet here
PhenoGrass, with a single soil water pool, was less effective
for shrubland vegetation. The single pool of the PhenoGrass
model is coupled with fluxes from precipitation and evapo-
transpiration and thus is not well suited for representing the
deeper water pools that shrubs can routinely access (Schenk
and Jackson, 2002; Ward et al., 2013). Potential improve-
ments would likely need to incorporate a deep soil water
pool, in addition to the shallow pool, which are each uti-
lized by the respective plant functional groups. This has al-
ready been implemented in highly parameterized ecohydrol-
ogy models (Scanlon et al., 2005; Lauenroth et al., 2014)
and could potentially be used here to make a more gener-
alized PhenoShrub model to apply across large scales. This
approach could also help in modeling North American desert
grasslands which coexist among shrubs.

Agriculture areas performed poorly with the PhenoGrass
model. Management practices of crops artificially increase
productivity beyond what would naturally occur, and plant-
ing and harvest result in abrupt changes in greenness met-
rics (Bégué et al., 2018). While the results were not neces-
sarily surprising, to our knowledge this is the first attempt
to use near-surface images to drive a productivity model for
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Figure 4. Observed and predicted daily fCover values for models
from seven spatial scales, for which only specific vegetation types
within a single ecoregion were used in model fitting. Each uses all
available sites and years with the respective spatial scale. NSE is the
average Nash—Sutcliffe coefficient of efficiency among sites, and
F is the mean coefficient of variation of the mean absolute error.
The correlation line (blue) represents the overall trend in predicted
versus observed values, while the 1 : 1 line (red) represents a perfect
fit.

agricultural vegetation. We have shown that the PhenoGrass
model, designed for natural systems, does not generalize to
actively managed agricultural systems. Future work in us-
ing PhenoCam data to model agricultural productivity would
likely need to incorporate crop-specific parameters and man-
agement activity which other cropland modeling systems use
(Fritz et al., 2019). The integration of the PhenoCam network
within the Long-Term Agroecosystem Research (LTAR) net-
work will likely be beneficial for this as the timing and inten-
sity of management activities or experimental treatments can
be incorporated into modeling efforts.

Hufkens et al. (2016) originally evaluated the PhenoGrass
model using 14 grassland sites distributed among seven
North American ecoregions. In their evaluation they had
an average NSE of 0.71, while here the model performed
poorly when using more than one ecoregion. It is likely
that the original 14 grassland sites were ideal locations for
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Figure 5. Smoothed time series for all 14 grassland sites used in
Hufkens et al. (2016) (a) and 24 additional grassland sites added
in the current study (b). Each line represents the long-term average
green chromatic coordinate of a single site across all available years,
smoothed using a GAM model.

the PhenoGrass model since on average they have a single
greenup season every year in the spring or summer (Fig. 5a).
The additional 24 grassland sites used in the current study
have high seasonal variability and elongated growing sea-
sons (Figs. 5b, S1) and were thus more difficult to represent
in a single continental-scale grassland model. This highlights
the need for longer time series in evaluating low-dimensional
models as it may take many years for a single location to
experience the full range of variability. As the PhenoCam
data archive grows, temporally out-of-sample validation can
be done to better evaluate performance in novel conditions.
Further work could use the expanded PhenoCam time se-
ries to compare with flux-tower-derived productivity, which
Hufkens et al. (2016) found was well correlated at the five
original locations with available flux data.

5 Conclusions

Replication is an important step in the scientific process, es-
pecially given newly available data. Here we have validated
prior modeling work and highlighted its limitations. Newer
vegetation models can be validated in the same framework
and applied to areas where PhenoGrass performs poorly. This
can result in a spatial ensemble where the output for any one
location and vegetation type is represented by the most ap-
propriate model. Our current work will allow for long-term
projections of grassland productivity for a large fraction of
North America.

Code and data availability. All code and data used in the anal-
ysis are available in the repository at https://github.com/
sdtaylor/PhenograssReplication (last access: 15 June 2020),
and the PhenoGrass model is implemented in a Python
package https://github.com/sdtaylor/GrasslandModels (last access:
15 June 2020). Both are archived permanently on Zenodo
(https://doi.org/10.5281/zenodo0.3897319, Taylor, 2020).
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