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Abstract. Understanding the dependencies of the terres-
trial carbon and water cycle with meteorological conditions
is a prerequisite to anticipate their behaviour under cli-
mate change conditions. However, terrestrial ecosystems and
the atmosphere interact via a multitude of variables across
temporal and spatial scales. Additionally these interactions
might differ among vegetation types or climatic regions. To-
day, novel algorithms aim to disentangle the causal structure
behind such interactions from empirical data. The estimated
causal structures can be interpreted as networks, where nodes
represent relevant meteorological variables or land-surface
fluxes and the links represent the dependencies among them
(possibly including time lags and link strength). Here we de-
rived causal networks for different seasons at 119 eddy co-
variance flux tower observations in the FLUXNET network.
We show that the networks of biosphere–atmosphere interac-
tions are strongly shaped by meteorological conditions. For
example, we find that temperate and high-latitude ecosys-
tems during peak productivity exhibit biosphere–atmosphere
interaction networks very similar to tropical forests. In times
of anomalous conditions like droughts though, both ecosys-
tems behave more like typical Mediterranean ecosystems
during their dry season. Our results demonstrate that ecosys-
tems from different climate zones or vegetation types have
similar biosphere–atmosphere interactions if their meteoro-
logical conditions are similar. We anticipate our analysis to
foster the use of network approaches, as they allow for a more

comprehensive understanding of the state of ecosystem func-
tioning. Long-term or even irreversible changes in network
structure are rare and thus can be indicators of fundamental
functional ecosystem shifts.

1 Introduction

Terrestrial ecosystems and the atmosphere constantly ex-
change energy, matter, and momentum (Bonan, 2015). These
interactions result in biosphere–atmosphere fluxes (in partic-
ular carbon, water, and energy fluxes) that are shaped by a
variety of climatic conditions and states of the terrestrial bio-
sphere (McPherson, 2007). Understanding how biosphere–
atmosphere fluxes interact and how they causally depend on
the short-term meteorological and long-term climate condi-
tions is crucial for building predictive terrestrial-biosphere
models (Detto et al., 2012; Green et al., 2017). However, the
exact causal structure of dependencies between surface and
atmosphere variables is still subject to unknowns (Baldocchi
et al., 2016; Miralles et al., 2019). For example, we still do
not understand well under which conditions certain climate
extremes turn ecosystems into carbon sources or sinks (Sip-
pel et al., 2017; Flach et al., 2018; von Buttlar et al., 2018).
One reason for our incomplete understanding is that the
causal dependencies underlying biosphere–atmosphere inter-
actions might vary among ecosystems depending on vegeta-
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tion structure and its long-term adaptation to climatic condi-
tions.

Conducting a comparative study across ecosystems, focus-
ing on their interactions with the atmosphere, has two re-
quirements: firstly, we need standardised data encoding bio-
sphere fluxes and meteorological conditions. Secondly, an
analytical tool is needed that extracts an interaction struc-
ture from these data empirically. The latter requires han-
dling of multivariate processes and estimating dependen-
cies beyond correlations. The first requirement is best met
by the FLUXNET database (Baldocchi, 2014), a collection
of global long-term observations of biosphere–atmosphere
fluxes measured via the eddy covariance method (Aubinet
et al., 2012). The spatial distribution of FLUXNET sites is
biased to European and North American sites, yet it still cov-
ers most climate zones and vegetation types ranging from
boreal steppe to tropical rainforests surprisingly well (Reich-
stein et al., 2014). Further, the data are processed homoge-
neously across sites. The second requirement is addressed
by causal inference. Various methods exist today (see Runge
et al., 2019a, for a recent overview), some of which have
been applied already in the biogeosciences (Ruddell and Ku-
mar, 2009; Detto et al., 2012; Green et al., 2017; Papa-
giannopoulou et al., 2017; Shadaydeh et al., 2019; Claessen
et al., 2019). One of that group is PCMCI (Runge et al.,
2019b), a causal graph discovery algorithm based on a com-
bination of the PC algorithm (named after its inventors, Pe-
ter and Clark; Spirtes and Glymour, 1991) and the test of
momentary conditional independence (MCI) (Runge et al.,
2019b). By applying such tests, it becomes possible to ac-
count for common drivers and mediators which can cause
two variables to correlate even though no direct causal link
exists between them. Then MCI partial correlations esti-
mated by PCMCI yield a better interpretation of the strength
of a causal mechanism than the common Pearson correla-
tion. Krich et al. (2020) tested PCMCI regarding its suitabil-
ity for interpreting eddy covariance data. The method proved
to be consistent despite the data’s inherent noisy character
and was capable of extracting well-interpretable interaction
structures. A causal interpretation of specific links, though,
has to take into account regarding potentially unmet assump-
tions.

In this study, we investigate multivariate time series
from FLUXNET tower data to understand how networks
of biosphere–atmosphere interactions vary across vegeta-
tion types and climate zones. The rationale is as follows:
if biosphere–atmosphere interactions varied significantly
across climate gradients or between vegetation types, this
could indicate, for example, that ecosystem responses to cli-
matic extremes could differ significantly and would require
terrestrial-biosphere models to account for them differently.
If, however, the opposite applies and ecosystems of the Earth
exhibit similar biosphere–atmosphere interaction types, then
common principles can be identified that can serve as empir-
ical reference for global vegetation models. We hypothesise

first that the accessible states of biosphere–atmosphere inter-
actions are limited and can be characterised by few functional
states despite the complexity and differences among ecosys-
tems. Second, attributing to an ecosystem’s adaptation, we
further hypothesise that a specific ecosystem can only access
a limited fraction of the functional states.

The study is designed as follows: firstly, we perform causal
discovery by PCMCI at each eddy covariance site and sea-
son. Secondly, we solely investigate the resulting interac-
tion networks and visualise them in a low-dimensional space.
We then interpret the low-dimensional space of biosphere–
atmosphere interactions and investigate seasonal cycles,
characteristic states, and the role of vegetation types and fi-
nally discuss the potential role of adaptation to the underly-
ing climate space.

2 Data and methods

2.1 Eddy covariance observations

We used eddy covariance data from the FLUXNET database
(Baldocchi et al., 2001) aggregated to daily time resolu-
tion. To maximise the available ecosystems and time series
length, we took the union of the LaThuile fair-use (Bal-
docchi, 2008) and FLUXNET2015 Tier 1 (Pastorello et al.,
2020) datasets (Nelson et al., 2020) with at least 5 years of
measurement. If a site year was available in both datasets,
we selected the one from FLUXNET2015. A detailed list
of used sites and years is given in Table A1. The final
dataset contains 119 sites from the major plant functional
types and covers the major Köppen–Geiger climate classes,
i.e. tropical to polar climate zones. The majority of sites
belong to evergreen needleleaf forests, grasslands, and de-
ciduous broadleaf forests. The dominant climate classes are
continental, temperate, and dry climates. The dataset’s vari-
ables, including meteorological and eddy covariance mea-
surements, were quality-checked, filtered, gap-filled, and
partitioned with standard tools (Papale et al., 2006; Pas-
torello et al., 2020) and provided with per-variable quality
flags. We extracted the following variables, comparable be-
tween the two datasets, and their corresponding quality con-
trols (if available): short-wave downward radiation (or global
radiation, Rg), air temperature (T ), net ecosystem exchange
(NEE) (inverted so that positive values signify carbon uptake
into the biosphere), vapour pressure deficit (VPD), sensible
heat (H ), latent heat flux (LE), gross primary productivity
(GPP), precipitation (P ), and soil water content (SWC, mea-
sured at the shallowest sensor). Within the FLUXNET2015
dataset these variables are named as “SW_IN_F_MDS”,
“TA_F_MDS”, “NEE_VUT_USTAR50”, “VPD_F_MDS”,
“H_F_MDS”, “LE_F_MDS”, “GPP_NT_VUT_USTAR50”,
“P”, and “SWC_F_MDS_1”, respectively. Correspond-
ingly for the LaThuile dataset they are “Rg_f”, “Tair_f”,
“NEE_f”, “VPD_f”, “LE_f”, “H_f”, “GPP_f”, “precip”, and
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“SWC1_f”, respectively. GPP is calculated via the com-
monly used nighttime flux partitioning (Reichstein et al.,
2005). Here GPP is the difference between ecosystem res-
piration and NEE. The latter is estimated via a model which
is parameterised using nighttime values of NEE.

2.2 PCMCI

To analyse biosphere–atmosphere interactions, we estimated
network structures using the causal-network discovery algo-
rithm PCMCI. PCMCI is tailored to estimate time-lagged de-
pendencies from potentially high-dimensional and autocor-
related multivariate time series. Dependencies can be inter-
preted causally under certain assumptions. The algorithm is
explained from a biogeoscientific viewpoint in Krich et al.
(2020). A comprehensive description from theoretical as-
sumptions to numerical experiments is given in Runge et al.
(2019b). As a brief summary, PCMCI efficiently conducts
conditional independence tests among variables to recon-
struct a dependency network. While PCMCI can also be
combined with non-linear tests, here we estimate conditional
independence using partial correlation (ParCorr), implying
that we only consider linear dependencies. Partial correla-
tion between two variables X and Y given a variable set Z is
defined as the correlation between the residuals of X and Y
after regressing out the (potentially multivariate) conditions
Z. The conditions Z can consist of lagged third variables or
time lags of X and Y .

PCMCI has two phases. In the first phase, the “condition
selection”, a superset of lagged parents (up to some maxi-
mum time lag τmax) of each variable Xjt is estimated based
on a fast variant of the PC algorithm (Spirtes and Glymour,
1991). A parent of Xjt is any lagged variable Xit−τ that is di-
rectly influencingXjt . This can be the own past, i = j , τ > 0,
or other variables, i 6= j , τ > 0. A pseudo-code of this pro-
cedure is given in the Supplement of Runge et al. (2019b).
In the second phase, “momentary conditional independence”
(MCI) is estimated among all pairs of contemporaneous and
lagged variables (Xit−τ , Xjt ) for τ ≥ 0. The MCI test re-
moves the influence of the lagged drivers (obtained in the first
phase) using ParCorr and yields link strengths and p values
(based on a two-sided t test). The link strength is here given
by the MCI partial correlation. In short, the MCI value gives
an estimate of dependence between two time series, one po-
tentially lagged, with the influence of other lagged drivers in-
cluding autocorrelation removed, yielding a better interpreta-
tion of the strength of a causal mechanism than the common
Pearson correlation. For a more detailed discussion of the in-
terpretation, see Runge et al. (2019b). As a particular partial
correlation, the MCI value is independent of the variables’
mean value and is normalised in [−1, 1] and can, hence, be
compared between variable pairs with different units of mea-
surement. Lagged links are directed forward in time. Con-
temporaneous dependencies are left undirected, as no time
information reveals the direction of influence unless they are

defined as unidirectional by the user (PCMCI parameter se-
lected_links; see Table A2). A causal interpretation of links
rests on the standard assumptions of causal discovery. Here
we assume time order, the causal Markov condition, faith-
fulness, causal sufficiency, causal stationarity, and no con-
temporaneous causal effects. The use of ParCorr addition-
ally requires stationarity in the mean and variance and linear
dependencies (Runge et al., 2019b). In particular, a statisti-
cal independence (here at a 0.1 two-sided significance level)
between a pair of variables conditional on the other lagged
variables is interpreted as the absence of a causal link (faith-
fulness condition). On the other hand, a causal interpretation
of the estimated links is here to be understood only with re-
spect to the variables included in the analysis. The depen-
dence structure among variables can finally be visualised by
weighted networks with the nodes representing the variables
and the links representing significant dependencies with its
strengths given by the MCI partial correlation.

2.3 Network estimation

Dependencies are estimated using PCMCI among the vari-
ables Rg, T , NEE, VPD, H , and LE using time lags ranging
from 0 to 5. As was already discussed by Krich et al. (2020),
eddy covariance data and the choice of our variable set do not
fully fulfil all assumptions of PCMCI. Causal sufficiency and
no contemporaneous links are obviously not fulfilled, which
can lead to spurious links. Yet, in the present context we aim
to compare networks, and a causal interpretation of each link
is not the focus. We further can not rule out non-linear de-
pendencies. In the case that they have a strong linear part,
we nevertheless can detect them. Based on findings in Krich
et al. (2020), we subtracted a smoothed seasonal mean from
each variable to remove the common driver influence of the
seasonal cycle that would yield spurious dependencies. The
seasonal mean was smoothed by setting the high-frequency
components (> 20 d−1) of its Fourier transform to 0. This de-
creases the detection of false links, while it leaves the detec-
tion of true links largely unaffected. We estimated networks
in sliding windows of 3 months, taking the centre month as
the time index of each network. The sliding windows help
to capture the temporal evolution of biosphere–atmosphere
interactions and provide enough data points for the network
estimation via PCMCI. Additionally, we improve stationarity
of the data further and address the requirement of causal sta-
tionarity; i.e. a causal link persists throughout the time period
of network estimation. Further we set Rg as a potential driver
of the system (by excluding its parents from the PCMCI pa-
rameter selected_links; see Table A2). We acknowledge the
possibility of Rg being influenced by other variables, e.g.
via transpiration and subsequent cloud formation. Yet, on the
ecosystem scale we work with, we presume this effect to be
rather small and likely dominated by lateral transport. Be-
sides these possibilities, setting Rg as a driver can account
for remaining non-stationarities (Runge, 2018). The analysis
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was performed also without this setting, i.e. allowing influ-
ences of other variables on Rg. The conclusions we draw are
not affected (cf. Fig. B4). Missing data were flagged as such
and are ignored by PCMCI. To avoid effects on the network
structure from gap-filling, we used the following quality flag
thresholds. A daily data point is not used if its quality flag
is below 0.6 (i.e. more than 60 % of measured and good-
quality gap-filled data). In the case that more than 25 % of
data points of the 3-month window are flagged as bad qual-
ity, the time window is removed from the analysis. To anal-
yse the factors influencing network structure, we consider the
mean values over the respective time period of the variables
included in the network calculation and additionally those of
GPP, P , and SWC. GPP, P , and SWC were not included in
the network calculation because certain characteristics can
impinge on network estimation. GPP is derived using NEE
and T . Any of the links GPP–T and GPP–NEE thus could be
due to its processing rather than an actual dependence. P , on
the other hand, typically yields non-intuitive results due to
its binary character (precipitation of a certain amount – zero
precipitation), while its effects occur more smoothly (e.g. in-
crease in transpiration or respiration), and its strong deviation
is from a normal distribution. Further, it can happen that over
the time period of network estimation no precipitation oc-
curs, rendering such periods not analysable. The issue with
SWC is its lower availability, and for those sites that have
such measurements it might be applied at a differing depth.
The depth that is mostly present is at shallow depths of 5 or
10 cm. The upper soil layer, however, dries out quickly and
can explain only little of the latent heat flux.

2.4 Dimensionality reduction

For the dimensionality reduction, we tested principal compo-
nent analysis (PCA; Pearson, 1901), t-distributed stochas-
tic neighbour embedding (t-SNE; Maaten and Hinton,
2008), and uniform manifold approximation and projection
(UMAP; McInnes et al., 2018). PCA is the standard method
for dimensionality reduction; it is commonly used, linear,
fast, and easily interpretable regarding the meaning of its
axes (the principal components). A PCA embedding typi-
cally fails to reveal complex clusterings because it main-
tains large-scale gradients but often produces embeddings in
which far away points appear very close in the embedding.
In contrast t-SNE aims to preserve local neighbourhoods.
Therefore it calculates first similarity scores for each point
pair using Euclidean distances and Gaussian distributions.
Subsequently it randomly projects the data onto the lower-
dimensional space and attempts to rearrange points in a way
that the previously determined similarities are obtained. To
assess the similarities in the low-dimensional space, how-
ever, it uses a Student t distribution. This helps to separate
points which are also originally separated. This procedure
makes t-SNE very good at visualising clusters in the data
and non-linear relationships. Drawbacks are the difficult in-

terpretability of the embedding axes due to the non-linear na-
ture and its fairly long computation time for large datasets.
Further, distances between far-separated points and those be-
longing to different clusters in the embedding space are not
(necessarily) comparable to the original distances. This is as
t-SNE does not preserve both the global and local structure
at the same time, which is attempted by UMAP. UMAP was
developed as an improvement of t-SNE regarding structure
preservation and results also in a shorter run time especially
for higher dimensions. A comparison of t-SNE and UMAP is
given in Appendix C in McInnes et al. (2018). According to
Kobak and Linderman (2019), the global structure preserva-
tion of UMAP is not an inherent characteristic of the method
itself but rather stems from the chosen initialisation.

As we are dealing with an unsupervised method, there is
no obvious measure to assess the quality of an embedding,
as each method optimises a different error function. A mea-
sure commonly used for the comparison and characterisation
of dimensionality methods is the agreement between K-ary
neighbourhoods (the K nearest points to an observation) in
the high-dimensional and low-dimensional space. The mea-
sure RNX(K) (Lee et al., 2015) gives a measure of the im-
provement of the embedding of K-ary neighbourhoods over
random embeddings. For an embedding with random coor-
dinates we obtain RNX(K)≈ 0, and if the K-ary neighbour-
hoods are perfectly preserved we obtain RNX(K)= 1. As
this measure depends on the neighbourhood size K , we can
draw a curve overK that characterises if the method is better
at maintaining global or local neighbourhoods. The area un-
der the RNX(K) curve gives an idea of the overall quality of
the embedding. An intercomparison of the three dimension-
ality reduction methods using this measure shows t-SNE to
perform best (see Figs. B1, B2, and B3).

2.5 Distance correlation

Distance correlation (Székely et al., 2007) is a non-linear
measure to quantify the dependence between two vectors. It
has been used successfully to assess the influence of vari-
ables on the low-dimensional embedding (Kraemer et al.,
2020b). Székely et al. (2007) details its empirical definition
for a sample (X,Y)= {(Xk,Yk) : k = 1, . . .,n} with X ∈ Rp
and Y ∈ Rq as follows:

R2
n(X,Y)=


√

V2
n (X,Y)

V2
n (X,X)V2

n (Y,Y)
, V2

n(X,X)V2
n(Y,Y) > 0,

0, V2
n(X,X)V2

n(Y,Y)= 0,
(1)

where V2
n(X,Y) is the empirical distance covariance with

V2
n(X,Y)=

1
n2

∑n
k,l=1AklBkl . Akl and Bkl are distance ma-

trices defined by

Akl = akl − ak − al + a,
a = 1

n2

∑n
k,l=1akl,

ak =
1
n

∑n
k=1akl,

al =
1
n

∑n
l=1akl,

akl = |Xk −Xl |p,

(2)
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with | · |p resembling the Euclidean norm in Rp.
Distance correlation can be used to quantify the depen-

dence between two sets of observations of differing dimen-
sionality. In our case these two vectors are firstly a link
strength or an underlying quantity of the networks (Fig. 1d)
and secondly the networks’ position in the low-dimensional
embedding (Fig. 2d). The resulting dependence value is used
to rank the quantities in their ability to describe the structure
of the low-dimensional embedding.

2.6 Clustering and median network trajectories

On the reduced space we applied a clustering method named
“ordering points to identify the clustering structure” (OP-
TICS; Ankerst et al., 1999). OPTICS finds clusters by iden-
tifying regions of high density that contain a certain number
of data points (minsamples). The cluster borders are defined by
a certain drop in reachability of further data points (maxeps
and xi). This allows points that lie outside the reachabil-
ity of neighbouring clusters to remain unclustered. The fol-
lowing settings were used for clustering: min_samples= 80,
max_eps= 8, and xi= 0.5. We calculated mean networks for
each cluster by calculating the mean MCI value for each
contemporaneous link among all networks contained in the
cluster and only took those links that had an absolute value
above 0.2.

2.7 Visualising ecosystem trajectories

As we calculated networks for each month for each measure-
ment year for each FLUXNET site (if data requirements are
fulfilled; see Sect. 2.3), annual trajectories can be visualised
in the low-dimensional embedding by connecting the dots
representing the monthly networks of a specific year. Fur-
ther, for each ecosystem, we calculated a monthly median
trajectory within the t-SNE space which is composed of its
monthly median networks. To this end, we calculated non-
intersecting convex hulls which consisted of at least three
data points (networks within the t-SNE space belonging to
the same ecosystem, representing the same month, in at least
3 years). The monthly median network is the average of the
networks lying on (greater than or equal to three networks)
or in the inner hull (less than networks).

2.8 Workflow

Our restrictions on the data length and quality resulted in
a selection of 119 FLUXNET sites (Fig. 1a). Applying the
above-described procedure we obtained 10 038 networks for
the different months and sites. An example network esti-
mated by PCMCI is shown in Fig. 1c. The strongest and
most consistent links are contemporaneous, indicating that
interactions happen on timescales shorter than the time res-
olution. While lagged common drivers are excluded, con-
temporaneous links can still be spurious due to contempo-
raneous confounding (see Sect. 2.2). Nevertheless, we focus

our analysis on these 15 links, as they contain most infor-
mation. This is done by performing the dimensionality re-
duction on contemporaneous links and neglecting the lagged
ones. The rationale of employing a dimensionality reduc-
tion is the following. Each of the estimated networks con-
stitutes one observation in a high-dimensional space with a
network’s links spanning its axes (Fig. 1d). Projecting this
high-dimensional space onto two dimensions (Fig. 1e) allows
first of all for visualisation. In the case that the data consist
of a structure that can be “identified” by the dimensional-
ity reduction method, the visualisation reveals the dominant
features of transitions between different states of biosphere–
atmosphere interactions. The dominant features are the links
that appear with strong gradients in the low-dimensional em-
bedding. To quantify and later rank the gradients exhibited
by each link, we use the measure distance correlation (see
Sect. 2.5). Therefore, we calculate the distance correlation of
the link strengths (Fig. 1d) with their position on the low-
dimensional embedding axes (Fig. 2d). We also examine the
distance correlation of secondary quantities with the axes.
The secondary quantities are firstly mean values of variables
calculated for each 3-month period of network estimation
as well as secondly static values like climate class, vegeta-
tion type, or location. The secondary quantities are used to
find covariates of the low-dimensional embedding that can
help to explain its structure. In a next step, we cluster the
low-dimensional embedding to further understand to which
network structures the gradients of link strength lead (see
Sect. 2.4) and calculate the cluster’s average networks (a sim-
ple mean). Up to this point (Sect. 3.1 and 3.2), we have anal-
ysed the manifold of biosphere–atmosphere interactions and
can address the first part of our hypothesis. As each point
of the low-dimensional embedding represents the biosphere–
atmosphere interactions of a specific ecosystem at a specific
time, we can investigate the behaviour of specific ecosystems
(see Sect. 2.7). Therefore we look at the monthly median and
annual trajectories of certain ecosystems (Sect. 3.3 and 3.4).
This leads to the answer of the second part of our hypothesis.

3 Results and discussions

3.1 Two-dimensional embedding of
biosphere–atmosphere networks

To find the most suitable dimensionality reduction method,
we evaluated three different methods (PCA, t-SNE, and
UMAP) with respect to their ability to project the high-
dimensional network space onto two dimensions. To com-
pare the low-dimensional embedding spaces, we used the
RNX(K) measure (see Sect. 2.4) which quantifies how well
neighbourhoods are preserved when projecting the high-
dimensional space onto fewer dimensions. We found that t-
SNE achieved the best projection, by best preserving both
local and distant neighbourhoods (cf. Sect. 2.4 and Figs. B1
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Figure 1. Schematic representation of the workflow. (a) Eddy covariance data from the FLUXNET database are selected (119 sites). (b) For
each site we used the time series of global radiation Rg, air temperature T , vapour pressure deficit VPD, net ecosystem exchange NEE,
sensible heat H , latent heat LE, gross primary productivity GPP, precipitation P , and soil water content SWC. Networks are estimated in
3-month moving windows using Rg, T , NEE, VPD, LE, and H . (c) An example interaction network for FI-Hyy (Hyytiälä) in May 2002.
Contemporaneous links are given by straight (undirected) edges; lagged links are given by curved arrows with a number indicating the time
lag. The strongest and most persistent links are contemporaneous. Thus we limit our analysis to those links. (d) Each 3-month network can
be interpreted as an observation in a 15-dimensional space (each contemporaneous link is one dimension). (e) Dimensionality reduction
projects all interaction networks into a two-dimensional space preserving its local-neighbourhood structure. Here any subsequent analysis
and interpretation will be realised.

and B2). This is unexpected, as UMAP is said to intentionally
preserve the global structure. Yet, as can be seen in Fig. 4a,
the networks almost form a continuum. Thus, by maintaining
the local-neighbourhood structure, also the global structure is
preserved within t-SNE.

The two-dimensional embedding by t-SNE of biosphere–
atmosphere interactions is ordered primarily by dependen-
cies including carbon flux (NEE) and energy distributions
(LE and H ). This can be seen in Fig. 2, which shows the
Fig. 2d embedding colour-coded by the strength of individ-
ual links, i.e. MCI partial-correlation values. The colouring

reveals that the link strengths are ordered along gradients; i.e.
they exhibit some dependence with the t-SNE axes. Using
distance correlation to rank those gradients (see Sect. 2.5),
we find the links NEE–LE (R= 0.75), Rg–LE (R= 0.73),
and T –H (R= 0.69) to have the strongest gradients. The
connection between carbon and water fluxes as well as the
role of energy input to sustain water fluxes (if available in
the soil) are well-known and investigated dependencies (Beer
et al., 2010; Luyssaert et al., 2007).

To search for covariates that help to explain – and if
thought further, help to predict the network structures – we
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Figure 2. Two-dimensional embedding of 3-monthly biosphere–atmosphere networks realised via t-SNE. Shown is the distribution of link
strengths among the networks. The strength is estimated via MCI partial-correlation values. Panels are sorted by the distance correlation of
the link’s MCI value with the axes (value in the upper-right corner). As Rg is set as a potential driver (PCMCI parameter selected_links; see
Table A2), connections including Rg are directed→. This setting does not affect the results (see Fig. B4).

colour-coded the embedding by the networks’ underlying
mean conditions, i.e. the average over the respective time
window, of the exchange rates (GPP, NEE, LE, and H ) as
well as meteorological conditions (Rg, T , VPD, and P ).
This is shown in Fig. 3. Clearly, the mean exchange rates
and meteorological conditions – although not considered in
the estimation of the networks – are related to the observed
biosphere–atmosphere interactions. On the contrary, corre-
sponding vegetation types and Köppen-Geiger classes are
not as much related as displayed in Fig. B6 in the Appendix
. The results show that a high-dimensional space encom-
passing more than 10 000 ecosystem networks representing
the states of biosphere–atmosphere interactions from ecosys-
tems of various geographic origins can be reduced to a com-
pact two-dimensional manifold characterised by four edges
and gradients of mean biosphere and atmosphere conditions.
While gradients in MCI partial-correlation strength are ex-
pected, as they were used as features in the dimensionality
reduction, gradients in mean climatic and biospheric condi-
tions were not. This information thus must be entailed in the
networks’ structure. To better grasp the distribution of net-
work structures, we further analyse the emerging clusters.

3.2 Clusters of characteristic ecosystem–atmosphere
networks

As we apply a significance threshold to each link of the
estimated network structures (see Sect. 2.3), the networks
typically lack weak links. This leads to a certain degree of
clustering among the networks, which we identified using
the OPTICS approach (see Sect. 2.6; Ankerst et al., 1999)
(Fig. 4a). Cluster boundaries are shown by the convex hulls
in Fig. 4b, where we also visualise the mean networks of each
cluster. This visualisation reveals that the mean networks of
the clusters situated at the embedding’s edges can be re-
garded as archetypes of network structures, i.e. extremal,
characteristic states (similar to the concept of endmember
states). The four states can be described as follows:

– Type 1 is a sparsely connected network. Links, if
present, are very weak and predominantly exist among
atmospheric variables. Mean atmospheric conditions
are characterised by low energy input (low Rg and T ).
Carbon and water fluxes are consequently close to 0,
and daily averages of sensible heat can even reach nega-
tive values. Such conditions reflect high-latitude ecosys-
tem winter states experienced by ecosystems like the ev-
ergreen needleleaf forest (ENF) of Finland, i.e. Hyytiälä
(FI-Hyy) and Sodankylä (FI-Sod), and Canada, i.e. the
UCI-1850 burn site (CA-NS1) and the Quebec – Eastern
Boreal (CA-Qcu) site during December and January.
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Figure 3. Two-dimensional embedding coloured by underlying mean exchange rates and meteorological conditions. The mean values are
calculated over the respective time periods used for the network estimation. Each network is estimated on a 3-month window of daily time
series data. Values are cut off at the highest and lowest percentile. Distance correlation of the shown quantity with the axes is given in the
upper-right corner of each panel.

Figure 4. Structure of the two-dimensional embedding. (a) t-SNE space clustered by the OPTICS approach (Ankerst et al., 1999). Colours
represent different clusters; black dots are not attributed to a cluster. Indicated are the four archetypes of network connectivity and the
networks’ underlying meteorological conditions. (b) Convex hulls of clusters and their average network, i.e. average over all networks
belonging to one cluster. Average networks are thresholded at a minimum link strength of 0.2. A finer clustering can be found in Fig. B5 in
the Appendix.

– Type 2 consists of strong links among atmospheric vari-
ables, but LE and NEE are weakly, not, or even neg-
atively connected to the atmosphere, i.e. the meteoro-
logical variables. This network structure coincides with
high energy input (high Rg and T ) but low water avail-
ability (low P and SWC and high VPD). A high Bowen
ratio, i.e. the ratio between sensible heat and latent heat,
representing aridity, and low absolute carbon fluxes
(GPP and NEE) are the consequence. These conditions
are typically present at semi-arid ecosystems like the

woody-savanna (WSA) Santa Rita Mesquite (US-SRM)
as well as the grassland Santa Rita (US-SRG) sites,
Audubon Research Ranch (US-Aud), and Sturt Plains
(AU-Stp) during the dry season.

– Type 3 exhibits the same strong links among Rg, VPD,
and H as Type 2, but T is weakly or not connected.
The opposite is true for links of LE and NEE, which are
strongly connected to the other variables (except T ). Rg
and T are considerably lower than in Type 2 (approx-
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imately by 100 W m−2 and 10 ◦C), but because of suf-
ficient water availability the Bowen ratio is between 0
and 1. Typical ecosystems in this state are mid- to high-
latitude forests during spring or autumn, e.g. Harvard
Forest EMS Tower (US-Ha1, deciduous broadleaf for-
est (DBF)), Roccarespampani 1 (IT-Ro1, DBF), Viel-
salm (BE-Vie, mixed forest (MF)), and Hyytiälä (FI-
Hyy, ENF).

– Type 4 is fully and strongly connected. Both energy in-
put and water availability are high, leading to Bowen
ratios around 1. This network state is typically present
in tropical forests like the Guyaflux site in French
Guiana (GF-Guy) (evergreen broadleaf forest (EBF))
but can temporarily be also reached by a variety of
other ecosystems, e.g. mid- and high-latitude forests
like Hainich (DE-Hai, DBF), Tharandt (DE-Tha, ENF),
BE-Vie (MF), and FI-Hyy (ENF) as well as woody sa-
vanna (WSA) such as Howard Springs (AU-How) and
grassland (GRA) such as Daly River Savanna (AU-
Dap).

The archetypes of networks are located at the edges of the
two-dimensional space and thus could define two imaginary
axes. From a physical point of view, energy is required for
each process and interaction to occur, e.g. photosynthesis
or evaporation (Bonan, 2015). Therefore, transitions along
the axis connecting the network types 1 and 4 might be in-
terpreted as energy controlled, as dependencies among all
variables fade or increase consistently. Transitions along the
axis connecting network types 2 and 3 are explainable by
a combination of water availability and a temperature gra-
dient. Low water availability but high temperatures cause a
shutdown of stomatal conductance or ecosystems to enter a
dormant state, which leads to low carbon and water fluxes
and low connectivity. On the other hand, sufficient water and
medium temperatures (around the optimum of photosynthe-
sis) allow for carbon and water fluxes but reduce the influ-
ence of varying temperatures, leading to connected NEE and
LE but disconnected T . And indeed these patterns and gradi-
ents exist. Mean Rg is lowest at network type 1 and almost
linearly increases towards network type 4. P is lowest at net-
work types 1 and 2. In combination with high energy input
network type 2 has the lowest SWC values and the highest
Bowen ratios (see Appendix Fig. B6). SWC is higher but
quite dispersed elsewhere, suggesting that at a certain point
water limitations are fading out. T values of course also show
an increase not only from network types 1 to 4 (as radiation)
but also from network types 3 to 2 and are actually rather low
(8 to 15 ◦C) at network type 3 (see Fig. 3). As meteorological
conditions affect biosphere productivity, network types 1 and
2 exhibit low, type 3 medium, and type 4 high productivity,
i.e. estimated as GPP. In short, the clustering revealed that
changes in energy and water availability can explain major
transitions between different states of biosphere–atmosphere
interactions. This is in line with a recent study showing that a

variety of land-surface processes can be largely summarised
by on the one hand productivity measures and on the other
hand water and energy availability. Both water and energy
availability need to be high for highly productive states, yet
the lack of either of them leads to low productivity (Kraemer
et al., 2020a). This biosphere state triangle is found in our
analysis by the network types 1 (cold – low connectivity), 2
(dry – NEE/LE weakly connected), and 4 (high productiv-
ity – fully connected). Yet, a fourth network type (type 3) is
naturally occurring in the t-SNE space, as we here include
interactions with the atmosphere.

Up to this point we have found strong evidence supporting
our first hypothesis. The manifold of biosphere–atmosphere
interactions can be represented rather well by two dimen-
sions, which we identified to be most consistent with en-
ergy and water availabilities. It is confined by four char-
acteristic states and populated homogeneously by the ob-
served network states. Having an understanding of the low-
dimensional embedding’s structure now allows us to analyse
specific ecosystem behaviour.

3.3 Ecosystems’ median trajectories

Each point in the reduced t-SNE space represents a
biosphere–atmosphere interaction network for a given month
and ecosystem. Hence, we can trace an ecosystem’s tra-
jectory through time. We are first focusing on an ecosys-
tem’s median monthly trajectory (see Sect. 2.7) within the
low-dimensional space. We can see that the median trajec-
tories reflect seasonal patterns of meteorological conditions
(Fig. 5). For example, mid-latitude sites like FR-Pue (Puech-
abon, EBF), DE-Hai (DBF), and FI-Hyy (ENF) exhibit a
strong seasonal variation of Rg and span a long distance in
the t-SNE space. In contrast, tropical ecosystems like GF-
Guy (EBF) constantly have high Rg and exhibit predomi-
nantly network type 4, indicative of highly productive condi-
tions, while DE-Hai or FI-Hyy reach this connectivity pattern
only during peak growing season. US-SRM (WSA), how-
ever, has similar or even higher Rg values throughout the
year but barely manages to deviate from type 2, which is
in accordance with its low water availability. The amount
of precipitation further aligns with differences and charac-
teristics of the trajectories of FR-Pue, DE-Hai, and FI-Hyy.
For example, FI-Hyy shows some deviation towards edge 2
in February and March, as does FR-Pue in June, July, and
August. For both, mean precipitation is lowest during these
months. These behaviours demonstrate what the previous
figures (Figs. 3 and 4) have already suggested: ecosystems
populate the low-dimensional space and migrate within as
allowed by their climatic conditions. Thereby they can ex-
hibit a wide range of interaction structures as can be seen
from the mid-latitude sites. As these behaviours are multi-
year averages, they could resemble more ecosystem adapta-
tion to median climatic conditions than flexible adjustment
of biosphere–atmosphere interactions to quickly changing
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Figure 5. Median trajectories of selected sites (a) and their corresponding mean values of radiation, precipitation, and the Bowen ratio (b).
In winter months the Bowen ratio can turn negative. Nevertheless we set the lower limit of the y axis to 0. As networks are calculated using
a centred 3-month moving window, each month is ascribed to a network. Thus, the behaviour of an ecosystem can be tracked by its monthly
networks, which form trajectories for each year. An ecosystem’s monthly median trajectory is composed of the two-dimensional monthly
median networks (see Sect. 2.7 for details).

meteorological conditions. If biosphere–atmosphere interac-
tions are confined by adaptation shall be investigated in the
final analysis section.

3.4 Deviations from ecosystem median trajectories

The remaining open question is how flexibly do the networks
adjust to deviations from mean climatic conditions. There-
fore, we look at climatic anomalies. Figure 6 shows the tra-
jectories of ecosystems during anomalous dry or wet condi-
tions. During the European heatwave of 2003, in July and
August the trajectories of two temperate central European
forests, DE-Hai and DE-Tha, no longer manage to estab-
lish a network structure resembling network type 4, typical
for these ecosystems during their highly productive phase.
Instead they are shifted towards network type 2, associated
with drier conditions (Fig. 6a and b). Similarly, the ecosys-
tem BR-Sa3 (EBF) in the Brazilian tropical rainforest shows
substantial deviations towards network type 2 during the ex-
ceptional dry season of 2001 (August, September, and Oc-
tober) (Marengo et al., 2018) (Fig. 6c). In contrast, US-
Wkg (Walnut Gulch Kendall Grasslands) is a grassland ac-
customed to dry conditions and thus predominantly exhibits
low water and carbon fluxes resulting in network structures
like those of network type 2; i.e. water and carbon fluxes
are barely or even not connected. Carbon and water fluxes
of semi-arid ecosystems, however, are known to respond
quickly and strongly to sufficient precipitation (Potts et al.,
2019; Leon et al., 2014; Reynolds et al., 2004). This sensi-
tivity is found to carry over to the network structure as well.

The network structure of US-Wkg becomes fully connected
(network type 4) in September 2014 with above-average pre-
cipitation (NOAA, 2015) (Fig. 6d). In summary, climatic
extremes are visible in an ecosystem’s trajectory as strong
deviations from the median trajectory. With this finding we
have to reject our second hypothesis that owing to an ecosys-
tem’s adaptation its accessible functional states are limited to
a certain range. The opposite seems to be valid. Biosphere–
atmosphere interactions can flexibly follow atmospheric con-
ditions and are not confined to certain states.

3.5 Functional convergence of biosphere–atmosphere
interactions

We have seen that networks representing biosphere–
atmosphere interactions strongly align with prevailing mean
meteorological conditions. Moreover, the visualisation of
ecosystem trajectories within the t-SNE space (Figs. 5 and 6)
and the distributions of vegetation types and climatic regions
(Appendix Fig. B6) reveal that ecosystems across vegeta-
tion types and climatic regions can exhibit similar biosphere–
atmosphere interactions if their meteorological conditions
are similar. For example, we found a fully connected network
(type 4) to be associated with high radiation and water avail-
ability and thus optimal growing conditions, which results in
high carbon and water fluxes. Diverging from optimal grow-
ing conditions, links in the networks weaken and disappear.
This behaviour can be understood as the functional conver-
gence of ecosystems, which corroborates the hypothesis that
ecosystems have a low number of key processes that deter-
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Figure 6. Abnormal conditions in meteorological conditions (here
precipitation) become visible in an ecosystem’s trajectory. (a) Tra-
jectories within the low-dimensional space of the ecosystems
Hainich (DE-Hai, DBF), Tharandt (DE-Tha, ENF), Santarem-
Km83-Logged Forest (BR-Sa3, EBF), and Walnut Gulch Kendall
Grasslands (US-Wkg, GRA); (b) 3-monthly average of daily pre-
cipitation data.

mine ecosystem behaviour (Lambert, 2006; Meinzer, 2003;
Shaver et al., 2007), rendering their behaviour transparent
and predictable.

Criticism might rise, as the larger part of the biosphere–
atmosphere interaction network indeed is a pure atmospheric
network, i.e.Rg, T , VPD, andH . Thus strong associations of
networks and their trajectories with atmospheric conditions
could be dominated by changes in this atmospheric network.
Figure 2, however, suggests the opposite. The strongest gra-
dients are given by the links NEE–LE and Rg–LE, and tran-
sitions along the axis connecting types 2 and 3 (cf. Fig. 4) are

dominated by changes in biosphere connectivity, i.e. LE and
NEE.

In fact, the dominance of climatic drivers in controlling the
temporal evolution of ecosystem functioning emerges also
in other studies (Musavi et al., 2017; Schwalm et al., 2017;
Kraemer et al., 2020a), as they showed that carbon fluxes are
primarily controlled by climatic factors. Yet, these and others
also show the role of biotic factors in shaping the responses
of ecosystem processes to climatic variability. For example,
Musavi et al. (2017) revealed in a global ecosystem study
that species diversity and ecosystem age decrease interan-
nual variability of GPP. Similarly, Wagg et al. (2017) showed
biodiversity to increase long-term stability of ecosystem pro-
ductivity. In regional studies Wales et al. (2020) found the
stability of net primary production to be affected by the kind
and severity of disturbances. Tamrakar et al. (2018) showed
that seasonal carbon fluxes were more sensitive to environ-
mental conditions in a homogeneous forest compared to a
heterogeneous one. It would be of interest to investigate to
which degree the effects of biotic factors also translates to
the sensitivity of the network structure.

Furthermore, extreme heat and drought events (Sippel
et al., 2018) or compound events in general (Zscheischler
et al., 2020) can severely disrupt ecosystem functions. The
time of recovery from such disturbances is a crucial parame-
ter in assessing ecosystem resilience. Schwalm et al. (2017)
showed that the recovery time measured, as the recovery in
GPP is primarily influenced by climate but secondarily by
biodiversity and CO2 fertilisation. Assessing the recovery
time via GPP already puts the ecosystem functioning into
focus. The presented framework here, i.e. the sensitivity of
an ecosystem’s network structure to meteorological condi-
tions, might be a valuable asset in studying reaction time and
strength to and recovery from extreme events, as it not only
utilises one variable but also the interactions of a set of vari-
ables, thereby capturing more comprehensively an ecosys-
tem state. A drawback is the reduced temporal resolution
(a certain time period of daily or even half-hourly measure-
ments is aggregated to one network), which can be offset by
the moving window approach used here to a certain degree.
Especially with regard to climatic extreme conditions in re-
cent years with observed vegetation dieback in, for exam-
ple, DE-Hai (Schuldt et al., 2020), further studies could also
shed light on the role of adaptation in shaping biosphere–
atmosphere interactions. Our study suggests that adaptation
to a lesser degree limits the range of possible interactions
but enables sustaining and persisting certain conditions for
longer periods. The focus of further studies thus could be to
elucidate the role of biotic factors in influencing ecosystem
trajectories as well as the role of adaptation and the response
to extreme events.
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3.6 Limitations of the study

Finally, we would like to take a critical view on our analysis
approach. As stated in Sect. 2.2, PCMCI might fail to iden-
tify some spurious links due to the occurrence of contempo-
raneous confounders. Thus networks can not be interpreted
causally, but this does not severely hinder their value for the
current analysis. In addition we include a rather limited set of
variables into the network estimation. Thus we cannot and do
not claim that ecosystems become fully alike under similar
meteorological conditions. Yet, on the timescale investigated
the data show that the interactions among the chosen set of
variables can be described by very similar structures. Follow-
up studies might search for and include further biosphere
variables. Currently, an analysis of the biotic effects on the
network structure is hampered because the t-SNE space is
not metric. Thus, for instance, the effect of a drought with
a similar magnitude in a boreal and temperate forest cannot
simply be compared by the deviation from their median tra-
jectory.

4 Conclusions

We analysed the functional behaviour of a variety of ecosys-
tems using the FLUXNET database of carbon, water, and en-
ergy flux measurements. In particular, we examined the in-
teraction structure between biosphere–atmosphere fluxes as
well as atmospheric state variables using PCMCI, a method
to estimate causal relationships from empirical time series
under certain assumptions. Using non-linear dimensionality
reduction, we find evidence supporting our hypothesis that
the manifold of existing states is bound by few, i.e. four,
archetypes of network states. They are characterised on the
one hand by a fully connected and almost unconnected net-
work structure and on the other hand by an antagonistic cou-
pling of carbon and water flux with temperature – when
one is strongly coupled, the other is decoupled. The transi-
tions between these states correlate well with gradients of
meteorological drivers, i.e. radiation and water availability.
The movement of an ecosystem within that space therefore
strongly aligns with changes in meteorological conditions.
This, however, also leads to similar behaviour under similar
conditions for strongly contrasting ecosystems. For example,
forests of mid or even high latitudes exhibit an interaction
structure similar to tropical forests given high radiation and
water availability during summer. Yet, this state can also be
reached by predominantly dry ecosystems like steppe grass-
lands given sufficient precipitation. In contrast if productive
ecosystems are struck by a severe drought, like central Eu-
ropean ecosystems in 2003, the behaviour can adapt more to
that of a Mediterranean ecosystem. Thus the second part of
our hypothesis must be rejected. The analysis shows that the
biosphere–atmosphere interaction structure can adapt flexi-
bly to prevailing conditions and is widely independent of

vegetation type and climatic region. Such behaviour is strong
evidence for functional convergence of ecosystems; i.e. their
behaviour is determined by a low number of key processes.
For further studies, we suggest focusing on the role of biotic
factors such as, for example, plant functional types, ecosys-
tem age, and adaptation. These factors could play a crucial
role in understanding the ecosystem coping strategies to cli-
matic extremes.
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Appendix A: Methods

Table A1. List of FLUXNET sites used for the generation of artificial datasets and the time period used. IGBP: International Geosphere–
Biosphere Programme. DBF: deciduous broadleaf forest; OSH: open shrubland; WET: wetland; CRO: cropland; CSH: closed shrubland; MF:
mixed forest; EBF: evergreen broadleaf forest; WSA: woody savanna; SAV: savanna; ENF: evergreen needleleaf forest; GRA: grassland.

FLUXNET ID IGBP Köppen–Geiger Start year End year Data reference
class

AT-Neu GRA Dfb 2002 2012 Wohlfahrt et al. (2008)
AU-ASM ENF BSh 2010 2014 Cleverly et al. (2013)
AU-Cpr SAV Csa 2010 2014 Meyer et al. (2015)
AU-DaP GRA Aw 2007 2013 Beringer et al. (2011a)
AU-DaS SAV Aw 2008 2014 Hutley et al. (2011)
AU-Dry SAV 2008 2014 Cernusak et al. (2011)
AU-How WSA Aw 2001 2014 Beringer et al. (2007)
AU-Stp GRA Aw 2008 2014 Beringer et al. (2011b)
AU-Tum EBF Cfb 2001 2014 Leuning et al. (2005)
AU-Wom EBF Cfb 2010 2014 Arndt et al. (2021)
BE-Bra MF Cfb 1996 2014 Carrara et al. (2004)
BE-Lon CRO BSk 2004 2014 Moureaux et al. (2006)
BE-Vie MF Cfb 1996 2014 Aubinet et al. (2001)
BR-Sa3 EBF 2000 2004 Saleska et al. (2003)
CA-Mer WET Dwb 1998 2005 Lafleur et al. (2003)
CA-NS1 ENF BWk 2001 2005 Goulden et al. (2006)
CA-NS2 ENF BWk 2001 2005 Bond-Lamberty et al. (2004)
CA-NS3 ENF 2001 2005 Wang et al. (2002a)
CA-NS5 ENF BSk 2001 2005 Wang et al. (2002b)
CA-NS6 OSH BSk 2001 2005 Wang et al. (2002c)
CA-Qcu ENF Dwb 2001 2006 Giasson et al. (2006)
CA-Qfo ENF Dfb 2003 2010 Chen et al. (2006)
CA-SF2 ENF BSk 2001 2005 Rayment and Jarvis (1999a)
CA-SF3 OSH Dwc 2001 2006 Rayment and Jarvis (1999b)
CH-Cha GRA Cfb 2005 2014 Merbold et al. (2014)
CH-Dav ENF Dfc 1997 2014 Zielis et al. (2014)
CH-Fru GRA Dfb 2005 2014 Imer et al. (2013)
CH-Lae MF BWk 2004 2014 Etzold et al. (2011)
CH-Oe1 GRA Cfb 2002 2008 Ammann et al. (2009)
CH-Oe2 CRO BSk 2004 2014 Dietiker et al. (2010)
CZ-BK1 ENF Dwb 2004 2014 Acosta et al. (2013)
CZ-BK2 GRA Dfb 2004 2012 Sigut et al. (2021)
CZ-wet WET Dfb 2006 2014 Dušek et al. (2012)
DE-Akm WET BWk 2009 2014 Bernhofer et al. (2021a)
DE-Geb CRO Cfb 2001 2014 Anthoni et al. (2004b)
DE-Gri GRA Dfb 2004 2014 Prescher et al. (2010a)
DE-Hai DBF Cfb 2000 2012 Knohl et al. (2003)
DE-Kli CRO Dfb 2004 2014 Prescher et al. (2010b)
DE-Lkb ENF Dwb 2009 2013 Lindauer et al. (2014)
DE-Obe ENF Dfb 2008 2014 Bernhofer et al. (2021b)
DE-Spw WET BWk 2010 2014 Bernhofer et al. (2021c)
DE-Tha ENF Dfb 1996 2014 Grünwald and Bernhofer (2007)
DE-Wet ENF Dfb 2002 2006 Anthoni et al. (2004a)
DK-NuF WET Dfc 2008 2014 Westergaard-Nielsen et al. (2013)
DK-Sor DBF Cfb 1996 2014 Pilegaard et al. (2011)
DK-ZaH GRA ET 2000 2014 Lund et al. (2012)
ES-ES1 ENF BSk 1999 2006 Sanz et al. (2004)
FI-Hyy ENF Dfb 1996 2014 Suni et al. (2003)
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Table A1. Continued.

FLUXNET ID IGBP Köppen–Geiger Start year End year Data reference
class

FI-Kaa WET Dfc 2000 2006 Aurela et al. (2007)
FI-Sod ENF BSk 2001 2014 Thum et al. (2007)
FR-Fon DBF Cfb 2005 2014 Delpierre et al. (2016)
FR-Gri CRO Cfb 2004 2014 Loubet et al. (2011)
FR-Hes DBF Cfb 1997 2006 Granier et al. (2000)
FR-LBr ENF Cfb 1996 2008 Berbigier et al. (2001)
FR-Pue EBF Csa 2000 2014 Rambal et al. (2004)
GF-Guy EBF Am 2004 2014 Bonal et al. (2008)
HU-Bug GRA Dfb 2002 2006 Nagy et al. (2005)
IL-Yat ENF BWh 2001 2006 Grünzweig et al. (2003)
IT-Amp GRA Dsb 2002 2006 Gilmanov et al. (2007)
IT-BCi CRO Csa 2004 2014 Vitale et al. (2016)
IT-Col DBF Dsb 1996 2014 Valentini et al. (1996)
IT-Cpz EBF Csa 1997 2009 Garbulsky et al. (2008)
IT-Lav ENF Dwb 2003 2014 Marcolla et al. (2003)
IT-MBo GRA Dfb 2003 2013 Marcolla et al. (2011)
IT-Noe CSH BSk 2004 2014 Reichstein et al. (2002)
IT-Non DBF Cfa 2001 2006 Nardino et al. (2002)
IT-Ren ENF BSk 1998 2013 Marcolla et al. (2005)
IT-Ro1 DBF Csa 2000 2008 Rey et al. (2002)
IT-Ro2 DBF Csa 2002 2012 Tedeschi et al. (2006)
IT-SRo ENF BSk 1999 2012 Chiesi et al. (2005)
IT-Tor GRA BSk 2008 2014 Galvagno et al. (2013)
JP-SMF MF Cfa 2002 2006 Matsumoto et al. (2008)
NL-Hor GRA Csb 2004 2011 Jacobs et al. (2007)
NL-Loo ENF Cfb 1996 2014 Moors (2012)
PT-Esp EBF Csa 2002 2006 Rodrigues et al. (2011)
RU-Cok OSH Dwd 2003 2014 van der Molen et al. (2007)
RU-Fyo ENF Dwb 1998 2014 Kurbatova et al. (2008)
SD-Dem SAV BWh 2005 2009 Ardö et al. (2008)
SE-Deg WET Dwc 2001 2005 Sagerfors et al. (2008)
SE-Fla ENF Dwc 1996 2002 Valentini et al. (2000)
SE-Nor EBF BSk 1996 2005 Lagergren et al. (2008)
UK-Gri ENF Csb 1997 2006 Medlyn et al. (2005)
US-ARM CRO Csa 2003 2012 Fischer et al. (2007)
US-Aud GRA BSk 2002 2006 –
US-Blo ENF Csb 1997 2007 Schade et al.
US-Bo1 CRO Dfa 1996 2007 Meyers and Hollinger (2004)
US-Cop GRA BWk 2001 2007 Ruehr et al. (2012a)
US-FPe GRA BSk 2000 2006 Gilmanov et al. (2005)
US-GBT ENF BWk 1999 2006 Zeller and Hehn (1996)
US-GLE ENF Dsc 2004 2014 Zeller and Nikolov (2000)
US-Ha1 DBF Dfb 1991 2012 Wofsy et al. (1993)
US-Ho1 ENF Dfb 1996 2004 Armstrong and Ernst (1999)
US-Los WET Dfb 2000 2014 Baker et al. (2003)
US-MMS DBF Dfa 1999 2014 Pryor et al. (1999)
US-Me2 ENF Dsb 2002 2014 McDowell et al. (2004)
US-Me6 ENF BSk 2010 2014 Ruehr et al. (2012b)
US-Myb WET Csb 2010 2014 Ruehr et al. (2012c)
US-NR1 ENF Dfc 1998 2014 Reich et al. (1998)
US-Ne1 CRO Dwa 2001 2013 Gitelson et al. (2003)
US-Ne2 CRO Dwa 2001 2013 Cassman et al. (2003a)
US-Ne3 CRO Dwa 2001 2013 Cassman et al. (2003b)
US-PFa MF Dwb 1995 2014 Yi et al. (2001)
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Table A1. Continued.

FLUXNET ID IGBP Köppen–Geiger Start year End year Data reference
class

US-Prr ENF Dwc 2010 2014 Ruehr et al. (2012d)
US-SP1 ENF BWh 2000 2005 Thomas et al. (1999a)
US-SP2 ENF Csa 1998 2004 Thomas et al. (1999b)
US-SP3 ENF Csa 1999 2004 Thomas et al. (1999c)
US-SRG GRA BSh 2008 2014 Ruehr et al. (2012e)
US-SRM WSA BSh 2004 2014 Scott et al. (2008)
US-Syv MF Dfb 2001 2014 Desai et al. (2005)
US-Ton WSA Csa 2001 2014 Tang et al. (2003)
US-Twt CRO Csb 2009 2014 Hatala et al. (2012)
US-UMB DBF Dfb 2000 2014 Rothstein et al. (2000)
US-UMd DBF BWk 2007 2014 Nave et al. (2011)
US-Var GRA Csa 2000 2014 Xu et al. (2004)
US-WCr DBF Dfb 1999 2014 Potter et al. (2001)
US-Whs OSH BWk 2007 2014 Scott et al. (2006)
US-Wkg GRA BWk 2004 2014 Emmerich (2003)
ZA-Kru SAV BSh 2000 2013 Archibald et al. (2009)
ZM-Mon DBF Aw 2000 2009 Merbold et al. (2009)

Table A2. PCMCI parameters that were used differently from default settings.

PCMCI parameter Setting

significance α 0.1

αpc None

tau_min 0

tau_max 5

mask_type “y”

fdr_method “fdr_bh”

selected_links {0: [],
(for variable set [Rg, T , NEE, VPD, H , LE]) for i in [1, 2, 3, 4, 5]:

i: [(i, −1), (i, −2)]+ [(j , 0), (j , −1), (j , −2) for j in [1, 2, 3, 4, 5] and j 6= i]}
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Appendix B: Results and discussion

Figure B1. Quality assessment of dimensionality reduction techniques. To visualise and subsequently analyse the network space, we reduce
its dimensionality. We compared PCA, t-SNE, and UMAP including various parameter settings (here: PCA’s leading two principal compo-
nents, t-SNE with perplexity 30 and UMAP with nneighbours equal to 5 for two dimensions). The test statistic RNX(k) (y axis) gives the
improvement of the embedding of K-ary neighbourhoods (x axis) over a random embedding. The area under the curves (preserving the
log-scaled x axis) is given in the legend and gives an idea of the overall quality of the embedding (Lee et al., 2015). We chose t-SNE with
perplexity 30, as it preserves best local neighbourhoods and performs well on larger distances.

Figure B2. Same metric as Fig. B1. Optimisation of the dimensionality reduction via t-SNE by using different perplexity values.
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Figure B3. Same metric as Fig. B1. Optimisation of the dimensionality reduction to two dimensions via UMAP by using different values for
the parameter nneighbours.

Figure B4. Same as Fig. 2 but produced from a new run of the analysis which does allow influences on Rg. The orientation of data points in
this plot has changed compared to Fig. 2 due to the stochastic nature of t-SNE. But the embedding is almost merely mirrored.
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Figure B5. Same as Fig. 4 but with smaller clusters exhibiting the finer structure of the t-SNE space.

Figure B6. t-SNE space coloured by the underlying mean Bowen ratio and precipitation, as well as the ecosystem’s respective Köppen–
Geiger class and IGBP type.
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Code availability. Code scripts can be found at
https://github.com/ckrich/Functional (Krich, 2021).
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