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Fig. S1: Example model runs parameterized strictly using prior distributions at the FR-LBr site. For comparison, panels 
correspond directly to the models shown in Fig. 3. The calibration window—the first 5 years of the record—is shown in white 20 
and the forecast window is shaded gray. The ensemble spread (blue shading) encapsulates the 5th-95th percentile of runs.   

Predicted ObservedEnsemble spread Observational uncertainty

Calibration window Forecast window

(a) Model: S2                       Assimilated data: None                          Error scalar: N/A                         EDCs: Off 

(b) Model: C2                      Assimilated data: None                          Error scalar: N/A                         EDCs: Off 

(c) Model: G4                     Assimilated data: None                         Error scalar: N/A                           EDCs: Off 
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Fig. S2: Effect of observational error scalar on effective complexity. Models are ordered from fewest (S1) to 
greatest (G4) number of parameters. 25 
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Fig. S3: Effects of EDCs on effective complexity. Models are ordered from fewest (S1) to greatest (G4) number 
of parameters. 
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Fig. S4: Complexity–skill relationship for LAI predictions. (a) All model runs included in the experiment; (b) all 30 
model runs for which data was assimilated. Dark gray shading spans the 25th to 75th percentile of runs; light gray 
shading spans 5th to 95th percentile; blue points are medians of complexity bins. Average forecast skill is computed 
using the histogram intersection metric. 
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 35 
Fig. S5: Complexity–skill relationship for NEE predictions, where a bootstrapping procedure has been performed 
to equalize number of runs within each complexity bin. Error bars represent one standard deviation of skill across 
the different bootstrap combinations. 

  

(a) All runs in the experiment (b) All runs with assimilated data
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Fig. S6: Complexity–skill relationship for NEE predictions, split by observational error scalar (title of each 
subplot). Dark gray shading spans the 25th to 75th percentile of runs; light gray shading spans 5th to 95th percentile; 
blue points are medians of complexity bins. Average forecast skill is computed using the histogram intersection 45 
metric. 

(a) 50% error (b) 100% error

(c) 150% error (d) 200% error

25th-75th percentile Median of runs in bin5th-95th percentile 
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Fig. S7: Complexity–skill relationship for LAI predictions, split by assimilated data subset (title of each subplot). 
Dark gray shading spans the 25th to 75th percentile of runs; light gray shading spans 5th to 95th percentile; blue points 
are medians of complexity bins. Average forecast skill is computed using the histogram intersection metric. 50 
Ordering of subplots reflects strongest (a) to weakest (f) data constraint. 
 

 

(a) NEE, LAI, biomass (b) NEE, LAI (c) NEE

(d) LAI, biomass (e) LAI (f) None
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