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aDGVM2 model description

The aDGVM2 is an individual-based dynamic vegetation model that simulates growth, reproduction and mortality of individual

plants at representative 1 ha stands. The model is process-based and represents physiological, phenological and demographic

processes. It integrates from the leaf level to the plant level and from there to the community or stand level. Simulation re-

sults can be used to aggregate communities on yet larger spatial scales, for example to derive biomes. To simulate leaf-level5

ecophysiological processes the Collatz et al. (1991, 1992) implementation of the Farquhar photosynthesis scheme (Farquhar

et al., 1980), combined with the Ball et al. (1987) implementation of stomatal conductance. While in previous model ver-

sions, leaf-level ecophysiological rates were calculated at stand-level ignoring individual-specific physiological differences,

the updated model version used in this study, calculates leaf-level ecophysiological rates at a daily time resolution for each

individual plants (also see Section 2.2). The calculation of the CO2 compensation point (gammastar) depicts the dependency10

of carboxylation vs. oxygenation as a function of oxygen partial pressure and temperature (the latter via a Q10-function), and

the CO2 compensation point is then used further to determine Je (electron transport-limited photosynthesis, this also takes into

account photosynthetically active radiation, i.e., PAR) and Jc (CO2 concentration limited photosynthesis, this also accounts for

temperature-dependent Vcmax). In the aDGVM2 version developed for this study, Vcmax, the maximum carboxylation velocity

is temperature-dependent (Equation 4) and reaches a peak around 37°C for C3 plants and 42°C for C4 plants. Beyond the15

temperature optimum, Vcmax declines at higher temperatures. This mimics the combined effect of decreasing enzyme activ-

ity due to the increased competitory binding of O2 at higher temperatures and eventually enzyme degradation at very high

temperatures. Effects caused by changing atmospheric CO2 concentrations and rising temperatures, including changes in car-

boxylation vs. oxygenation, are therefore explicitly captured by the implemented photosynthesis scheme. In addition, effects

of water limitation on stomatal conductance are represented by the Ball et al. (1987) implementation of stomatal conductance20

that ties photosynthesis to stomatal conductance via a diffusion-gradient definition.

The design of aDGVM2 allows tracking of state variables such as biomass, height, leaf area and photosynthetic rates of

individual plants. In aDGVM2, each plant is characterized by a specific and potentially unique combination of trait values

that influence how a plant performs under given biotic and abiotic conditions. It allows plant communities to adapt to their25

environment by dynamically changing their trait composition constrained by trade-offs between traits. These traits describe

plant type (grassy or woody), leaf characteristics (specific leaf area, leaf longevity), leaf phenology (evergreen or deciduous),

hydraulic characteristics (risk of xylem cavitation), plant architecture (carbon allocation strategy, root and crown shape, wood

density), response to fire, reproduction and mortality (Langan et al., 2017; Scheiter et al., 2013). The aDGVM2 implements
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plant physiology models typically used in DGVMs (Prentice et al., 2007). Fire systematically removes aboveground grass30

biomass while aboveground tree biomass removal is related to tree height (Higgins et al., 2008; Scheiter and Higgins, 2009).

Plants with trait combinations that allow sufficient growth and reproduction rates can produce seeds and contribute their trait

values to the community trait pool. Seeds can randomly mutate or exchange trait values, thereby allowing recombination

within the community trait pool. Seeds are randomly drawn from the community trait pool and added to the plant population as

seedlings. Plants with insufficient performance fail to contribute seeds to the seed bank and disappear from the population. Plant35

growth is constrained by light and water competition. Light competition is simulated by considering the impacts of neighboring

plants on the light available to a target plant. Water competition is simulated via water uptake of plants from a common layered

soil water pool. The probability of an individual’s mortality increases if its annual carbon balance is negative. The aDGVM2

also includes a representation of shrubs as multi-stemmed woody plants, based on the stem number of individual woody plants

as dynamic trait which emerge as adaption to dry conditions (Gaillard et al., 2018). This trait allows simulation of shrubs vs.40

trees based on a functional trade-off between augmented access to soil water resources vs. height growth. It simulates shrubs

as multi-stemmed woody plants. We define all woody individuals with a stem number between one and three as trees, whereas

individuals with more than three stems are categorized as shrubs. The classification of individuals into these two categories is

done a posteriori, based on the model results. Stem numbers in a woody plant are emerging based on water availability, light

availability and fire activity. Rapid height growth is characteristics of single-stemmed trees whereas augmented efficiency of45

water uptake due to higher sapwood area per unit of woody biomass is characteristic for multi-stemmed shrubs.
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Table S1. List and description of traits that are optimized by the genetic optimization algorithm during model simulation. Values for trees

and C4 grasses were taken from Langan et al. (2017). C3 grasses were included for this study and values of C4 grasses were taken for model

parametrization. ‘na’ indicates that this trait is not used for grasses."(-)" indicates unitless.

Description of traits
Woody C4-grass C3-grass

min max min max min max

Matric potential at 50% loss of conductance, P50 (MPa) -3 -0.2 -3 -0.2 -3 -0.2

Allocation to roots (Fraction) 0.2 0.4 0.2 0.8 0.2 0.8

Allocation to leaves (Fraction) 0.35 0.5 0.2 0.8 0.2 0.8

Allocation to stem (Fraction) 0.25 0.35 0 0 0 0

Allocation to bark (Fraction) 0.001 0.05 0 0 0 0

Allocation to storage (Fraction) 0.1 0.4 0.1 0.4 0.1 0.4

Allocation to reproduction (Fraction) 0.05 0.2 0.05 0.2 0.05 0.2

Phenology (rain/summer green, evergreen) (-) 0 1 0 1 0 1

Phenology (deciduous or evergreen ) (-) 0 1 1 1 1 1

Rain threshold for plant activity (-) -3 -0.2 -3 -0.2 -3 -0.2

Rain threshold for plant dormancy (-) -3 -0.2 -3 -0.2 -3 -0.2

Light threshold for plant activity (-) 0.1 2 0.1 2 0.1 2

Light threshold for plant dormancy (-) 6 14 6 14 6 14

Parameter for height calculation (-) 0.4 0.4 na na na na

Parameter for height calculation (-) 0.4 0.5 na na na na

Parameter for root form (-) 0.01 10 0.01 10 0.01 10

Parameter for root form (-) -1 20 1 20 1 20

Maximum rooting depth (m) 0.3 3.6 0.3 2.4 0.3 2.4

Seed weight (kg) 0.001 0.05 0.001 0.05 0.001 0.05

Parameter for canopy form (Fraction) 21 25 20 60 20 60

Storage to stem allocation after fire (Fraction) 0.2 0.4 0 0 0 0

Storage to leaf allocation after fire (Fraction) 0.6 0.9 0.6 0.9 0.6 0.9

Stem Count (Number) 1 10 1 1 1 1
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Table S2. List and description of traits that are constant during the model simulation and are not optimized by the genetic optimization

algorithm. Values for trees and C4 grasses were taken from Langan at al. (2017). C3 grasses were included for this study and values of C4

grasses were taken for model parametrization. ‘na’ indicates that this trait is not used for grasses and ’*’ denotes new parameters. "-" indicates

unitless.

Description of traits Woody C4 Grass C3 Grass

Mortality due to negative carbon balance (Fraction) 0.3 0.2 0.2

Mortality due to low height (m) 0.1 0.05 0.05

Mortality due to mechanic instability 1 (Fraction) 10 5 5

Mortality due to mechanic instability 2 (Fraction) 6 6 6

Topkill constants parameter 1 (-) 1.48 0 0

Topkill constants parameter 2 (-) 3.30698 0 0

Topkill constants parameter 3 (-) 0.02618 0 0

Ball berry equation parameter 1 (-) 9 5.48 9

Ball berry equation parameter 2(µmol/m2s) 0.01 0.02 0.01

Maintenance respiration parameter (Fraction) 0.015 0.025 0.015

Growth respiration parameter (Fraction) 0.35 0.35 0.35

Fraction of leaf biomass that respires (Fraction) 1 0.01 0.01

Fraction of wood biomass that respires (Fraction) 0.1 0.01 0.01

Fraction of root biomass that respires (Fraction) 0.01 0.01 0.01

Parameter for respiration model (kgC kgN-1Day-1) 0.218 0.218 0.218

C:N ratio of woody biomass (Fraction) 150 120 120

C:N ratio of woody biomass (Fraction) 60 120 120

Lower temperature limits for efficient carboxylation (◦C) -10* 15* -10*

Upper temperature limits for efficient carboxylation (◦C) 36* 45* 36*
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Figure S1. Time series represent (a) CO2 concentration under RCP4.5 and RCP8.5; (b) mean annual temperature under RCP4.5 and RCP8.5;

(c) mean annual precipitation for RCP4.5 and (d) mean annual precipitation for RCP8.5 for South Asia between 1951 and 2099. In (b), (c)

and (d) the black solid line represents a smoothed non-linear fit (LOWESS), and in (c) and (d) the black dashed line represents a linear

smoothed fit (LOWESS) to the data. Mean annual precipitation and mean annual temperature were derived from GFLDM2M simulations.
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(b) Change in MAP(mm) with respect to 2000s
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Figure S2. (a) Baseline mean of the climate variables (2000-2009),projected change in (b) mean annual temperature (MAT), and (c) mean

annual precipitation (MAP), (d) mean annual relative humidity, (e) mean annual short-wave radiation, (f) mean annual long-wave radiation

and (g) mean annual wind speed until the 2050s and the 2090s, relative to the baseline (2000s-2009).
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Figure S3. (a) Shuttle Radar Topography Mission (SRTM) elevation data (Jarvis et al., 2008) and (b) spatial distribution of soil texture

according to the Harmonized World Soil Database (HWSD soil code) (Nachtergaele et al., 2009) and corresponding soil properties in the

table, used in current study.
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Figure S4. Comparison between aDGVM2 results and remote sensing products when removing areas with more than 50% land use cover for

(a) simulated biomass and Saatchi et al. (2011) biomass, (b) simulated tree height and Simard et al. (2011), (c) simulated tree cover and Friedl

et al. (2011) tree cover and (d) simulated evapotranspiration and Zang et al. (2010) evapotranspiration. In the figure the first column shows

the remote sensing products, the second column shows aDGVM2 results and the third column shows the difference between simulation and

data and the fourth column shows the scatter plot between simulated state variable and benchmarking data. NMSE and RMSE are normalized

mean square error and root mean square error, respectively. In fourth column, each points represents one grid cell in the study region.
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Figure S5. Flow chart illustrating classification of simulated vegetation into biomes using canopy area (CA) of different woody vegetation

types and grass biomass(GRBM). Simulated stem numbers were used to distinguish between shrubs and trees.
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Figure S6. Simulated biome distribution for the 2000s, 2050s and 2090s under (a) RCP8.5+eCO2 and (c) RCP8.5+fCO2, and Sankey

diagrams showing the transition between biomes from the 2000s to the 2050s and the 2050s to the 2090s under (b) RCP8.5+eCO2 and (d)

RCP8.5+fCO2. See Figure 3 for simulated biome distribution under RCP4.5.
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Figure S7. Projected change in biomass, canopy area and evapotranspiration (ET) between the 2000s and 2050s, and between the 2000s and

2090s under (a) RCP84.5+eCO2 and (b) RCP8.5+fCO2.
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Figure S8. Relationship between (a) evapotranspiration (ET) and mean annual precipitation (MAP), (b) ET and mean annual temperature

(MAT), (c) mean above ground biomass and MAP and (d) mean above ground biomass and MAT under RCP8.5.. The lines (both solid and

dotted) in all figures represent the best-fit regression line. The dots represent spatially averaged ET (a, b) and biomass (c, d) for each year

from 1950 to 2099. See Figure 6 for results under RCP4.5.
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Figure S9. Simulated climatic niches of biomes for the period of (a) 2000s, (b) 2050s and (c) 2090s under RCP8.5+ eCO2 and (d) 2000s, (e)

2050s and (f) 2090s under RCP8.5+fCO2. The simulated biomes are overlaid on the climate envelopes of Whittaker’s biomes and are plotted

following Ricklefs (2008) and Whittaker (1975).
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