
Biogeosciences, 18, 2957–2979, 2021
https://doi.org/10.5194/bg-18-2957-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.

Climate change and elevated CO2 favor forest over savanna
under different future scenarios in South Asia
Dushyant Kumar, Mirjam Pfeiffer, Camille Gaillard, Liam Langan, and Simon Scheiter
Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Senckenberganlage 25,
60325 Frankfurt am Main, Germany

Correspondence: Dushyant Kumar (dushyant.kumar@senckenberg.de)

Received: 14 May 2020 – Discussion started: 2 June 2020
Revised: 22 March 2021 – Accepted: 4 April 2021 – Published: 17 May 2021

Abstract. South Asian vegetation provides essential ecosys-
tem services to the 1.7 billion inhabitants living in the region.
However, biodiversity and ecosystem services are threatened
by climate and land-use change. Understanding and assess-
ing how ecosystems respond to simultaneous increases in at-
mospheric CO2 and future climate change is of vital impor-
tance to avoid undesired ecosystem change. Failed reaction
to increasing CO2 and climate change will likely have se-
vere consequences for biodiversity and humankind. Here, we
used the adaptive dynamic global vegetation model version 2
(aDGVM2) to simulate vegetation dynamics in South Asia
under RCP4.5 and RCP8.5, and we explored how the pres-
ence or absence of CO2 fertilization influences vegetation re-
sponses to climate change. Simulated vegetation under both
representative concentration pathways (RCPs) without CO2
fertilization effects showed a decrease in tree dominance and
biomass, whereas simulations with CO2 fertilization showed
an increase in biomass, canopy cover, and tree height and
a decrease in biome-specific evapotranspiration by the end
of the 21st century. The predicted changes in aboveground
biomass and canopy cover triggered transition towards tree-
dominated biomes. We found that savanna regions are at high
risk of woody encroachment and transitioning into forest. We
also found transitions of deciduous forest to evergreen forest
in the mountain regions. Vegetation types using C3 photo-
synthetic pathway were not saturated at current CO2 concen-
trations, and the model simulated a strong CO2 fertilization
effect with the rising CO2. Hence, vegetation in the region
has the potential to remain a carbon sink. Projections showed
that the bioclimatic envelopes of biomes need adjustments
to account for shifts caused by climate change and elevated
CO2. The results of our study help to understand the regional

climate–vegetation interactions and can support the develop-
ment of regional strategies to preserve ecosystem services
and biodiversity under elevated CO2 and climate change.

1 Introduction

Global climate has been identified as the primary determinant
of large-scale natural vegetation patterns (Overpeck et al.,
1990). Climate change has affected global vegetation pattern
in the past and caused numerous shifts in plant species distri-
bution over the last few decades (Chen et al., 2011; Thuiller
et al., 2008). It is expected to have even more pronounced
effects in the future and may lead to drastically increas-
ing species extinction rates in various ecosystems (Brodie
et al., 2014). Natural ecosystems have been and continue
to be exposed to increased climate variability and abrupt
changes caused by increased intensity and frequency of ex-
treme events such as heat waves, drought and flooding (Her-
ring et al., 2018). At the same time, they are under severe
pressure due to anthropogenic disturbance and land conver-
sion. Rising levels of atmospheric CO2 are a strong driver of
climate-induced vegetation changes (Allen et al., 2014). An-
thropogenic CO2 emissions account for approximately 66 %
of the total anthropogenic greenhouse forcing (Forster et al.,
2007) and are thus largely responsible for contemporary and
future global climate change (Parry et al., 2007). Rising CO2
is expected to alter distributions of plant species and ecosys-
tems (Parry et al., 2007) both indirectly through its influence
on global temperatures and precipitation patterns (Cao et al.,
2010), two main drivers of vegetation dynamics, and directly
via its physiological effects on plants (Nolan et al., 2018).
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It is therefore of vital importance to understand how ecosys-
tems respond to simultaneous increases in atmospheric CO2
and temperature, to changes in precipitation regime, and to
altered ecosystem water balance in order to avoid critical
ecosystem disruptions and the resulting consequences for
biodiversity and humankind.

Increases in temperatures, decreases in precipitation and
changes in precipitation seasonality can cause loss of vege-
tation biomass. Plants using C3 photosynthetic pathway are
often not saturated at the current atmospheric CO2, whereas
plants using the C4 photosynthetic pathways are already at
their physical optimum at current atmospheric CO2 levels
(Ehleringer and Cerling, 2002). The physiology of C3 plants
implies that elevated atmospheric CO2 improves their abil-
ity for carbon uptake due to the CO2 fertilization (Woodrow
and Berry, 1988) and enhances carbon sequestration (Leakey
et al., 2009; Norby and Zak, 2011) as well as plant water
use efficiency (Soh et al., 2019). This has also been observed
in long-term free-air carbon dioxide enrichment (FACE) ex-
periments (Norby and Zak, 2011). Thus, elevated CO2 in-
fluences photosynthesis and thereby affects other physio-
logical processes such as respiration, decomposition (Do-
herty et al., 2010), evapotranspiration (ET) and biomass ac-
cumulation (Frank et al., 2015). Increasing CO2 concentra-
tion has been associated with woody cover increase in struc-
turally open tropical biomes such as grasslands and savan-
nas (Stevens et al., 2017). This widespread proliferation of
woody plants into arid and semiarid ecosystems has been at-
tributed to increased water use efficiency in C3 plants that
facilitates woody sapling establishment and growth due to
higher drought tolerance (Kgope et al., 2010; Stevens et al.,
2017). These CO2 effects on plant growth and competition
can alter community structure (height distribution), ecosys-
tem productivity, climatic niches of ecosystems and biome
boundaries (Nolan et al., 2018; Wingfield, 2013). Change
in vegetation distribution and altered vegetation structure
feed back on climate by altering fluxes of energy, moisture,
and CO2 between land and atmosphere (Friedlingstein et al.,
2006). Feedback mechanisms also involve vegetation-medi-
ated changes in albedo, surface roughness, land--atmosphere
fluxes and evapotranspiration (Field et al., 2007; Richardson
et al., 2013).

Enhanced plant growth due rising CO2 implies rapid leaf
area development and more total leaf area could translate into
higher transpiration (Leakey et al., 2009). However, elevated
CO2 concentrations may decrease leaf stomatal conductance
to water vapor, which could reduce transpiration. Evapotran-
spiration (ET) is a key ecophysiological process in the soil–
vegetation–atmosphere continuum (Feng et al., 2017). An-
nually, 64 % of the total global land-based precipitation is
returned to the atmosphere through ET (Zhang et al., 2016).
Environmental change and concurrent vegetation changes al-
ter ET and affect water availability (Mao et al., 2015), es-
pecially in arid and semiarid regions. In these regions, ET
affects surface and subsurface processes such as cloud devel-

opment, land surface temperature and groundwater recharge
(Fisher et al., 2011).

South Asia is home to approximately 1.7 billion people
and is one of the regions most vulnerable to climate change
(Eckstein et al., 2018). It hosts four of the world’s biodi-
versity hotspots (Myers et al., 2000) and harbors different
biome types ranging from tropical in the south to temperate
in the north at the fringe of the Himalayas. These hotspots
are characterized by high levels of diversity and endemism,
and they are threatened by climate change and anthropogenic
land use (Deb et al., 2017). For instance, woody encroach-
ment due to rising CO2 threatens South Asian savannas (Ku-
mar et al., 2020), and sifting cultivation in the northeastern
part of South Asia threatens biodiversity (Bera et al., 2006).

Due to the absence of long-term field experiments such
as FACE experiments, in the dominant biomes of the region,
modeling studies are valuable tools to close existing knowl-
edge gaps. Dynamic global vegetation models (DGVMs,
Prentice et al., 2007) are particularly well suited to address
questions that focus on vegetation response to changing envi-
ronmental drivers, e.g., climate and CO2. While most DGVM
studies in South Asia focused on the vulnerability of forests
to climate change (Chaturvedi et al., 2011; Ravindranath
et al., 2006, 1997), they often overlooked the severely threat-
ened savanna biome. These studies were further limited by
the utilization of models with fixed ecophysiological param-
eters and traits, e.g., fixed carbon allocation values to as-
sign carbon to plant biomass pools, fixed specific leaf area
(SLA) and pre-defined bioclimatic limits that were derived
from contemporary climatology in order to constrain the
spatial distribution of plant functional types (PFTs). More-
over, many DGVMs used in these studies do not account for
life history, eco-evolutionary processes and trait variability
among individual plants (Kumar and Scheiter, 2019). While
some global-scale studies have investigated the potential ef-
fect of increasing CO2 on natural vegetation, carbon seques-
tration and biome boundaries (e.g., Hickler et al., 2006; Sato
et al., 2007; Smith et al., 2014), detailed modeling studies fo-
cusing explicitly on different biomes in South Asia have not
been conducted. The physiological effects of increased CO2
and climate change on South Asian vegetation are uncertain
and need to be addressed in order to improve understanding
of regional ecosystem functioning as well as implications for
biodiversity conservation.

To address the knowledge gaps in existing studies, we used
the aDGVM2 (adaptive dynamic global vegetation model
version 2), an individual- and trait-based vegetation model
that combines elements of traditional DGVMs (Prentice
et al., 2007) with newly implemented approaches for se-
lection and trait filtering. In aDGVM2, environmental con-
ditions select for the plants with trait value combinations
that make them successful under these conditions. There-
fore, plant communities that are adapted to site-specific en-
vironmental conditions dynamically assemble and emerge
as a reaction to the environmental forcing (Langan et al.,
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2017; Scheiter et al., 2013). Originally, aDGVM2 had been
tested for Amazonia (Langan et al., 2017) and Africa (Gail-
lard et al., 2018; Pfeiffer et al., 2019). In order to adapt it
to South Asian ecosystems and their diversity, we included
C3 grasses, improved ecophysiological processes such as the
leaf energy budget in order to estimate leaf temperature, im-
plemented separate temperature sensitivities for C3 and C4
photosynthetic capacity (Vcmax), and included snow in the
water balance model.

In this study we used the updated version of aDGVM2 and
addressed the following questions:

1. How do projected changes in climate and CO2 follow-
ing two representative concentration pathways (RCP8.5
and RCP4.5, Meinshausen et al., 2011) change the dis-
tribution, boundaries and climatic niches of biomes in
South Asia?

2. How does the relationship between projected biomass,
ET, temperature and precipitation change in response to
CO2 fertilization?

3. What is the sensitivity of predicted changes in relation
to presence and absence of CO2 fertilization?

Based on our results we analyzed climate–vegetation inter-
actions to improve our understanding of how to manage and
mitigate impacts on biomes under climate change and in-
creasing CO2.

2 Methods

2.1 Description of the study region

Approximately 1.7 billion people populate South Asia, i.e.,
the Indian subcontinent, Afghanistan and Myanmar. South
Asia incorporates a wide range of bioclimatic zones with dis-
tinctive biomes, ecosystem types and species (Rodgers and
Panwar, 1988). Climatic conditions are controlled by inter-
actions between the South Asian summer monsoon system
and the region’s complex topography. The climatic enve-
lope ranges from tropical arid and semiarid regions in the
west to humid tropical regions supporting rain forests in the
northeast and temperate vegetation at the fringe of the Hi-
malayas. Excluding the Himalayan regions, South Asia has a
mean annual temperature of approximately 24 ◦C with very
low spatial variability. Mean annual precipitation (MAP) is
1190 mm, ranging from less than 500 mm in the warm desert
zone in the west to more than 3500 mm in the northeast. The
steep elevation gradients ranging from sea level to 8800 m
result in a rich diversity of ecosystems that can alternate in
areas of a few hundred square kilometers. Topography is rec-
ognized as a strong driver of ecological patterns, for example
those related to forest structure and composition, floristic di-
versity and soil fertility (Gallardo-Cruz et al., 2009; Jucker

et al., 2018; Sinha et al., 2018). South Asia hosts four ma-
jor global biodiversity hotspots, namely the Western Ghats,
Himalayas, India and Myanmar, and Sri Lanka (Myers et al.,
2000). These hotspots include a wide diversity of ecosystems
such as mixed wet evergreen, dry evergreen, deciduous and
montane forests. Further vegetation types are alluvial grass-
lands and subtropical broadleaf forests along the foothills
of the Himalayas, temperate broadleaf forests in the mid-
hills, mixed conifer and conifer forests in the higher hills,
savanna in the Deccan region and southern part of Malaysia,
and alpine meadows above the tree line.

2.2 Model description

For this study we used aDGVM2 (Scheiter et al., 2013; Lan-
gan et al., 2017; Gaillard et al., 2018), a DGVM with a dy-
namic trait approach. In the Supplement we summarize main
features of aDGVM2 and explain how the physiological ef-
fects of changing CO2 concentration and rising temperature
are simulated in a process-based way in the aDGVM2 by the
implemented photosynthesis routine. To adapt the aDGVM2
to the requirements of the study region, we incorporated new
subroutines into the model. We improved the representation
of (a) the water balance by including snow, (b) the carboxy-
lation rate, and (c) leaf temperature, and (d) we included C3
grasses (previous model versions only simulated C4 grasses).

a. Water balance.

In aDGVM2, the soil water module is based on the
tipping-bucket concept. As the model was originally de-
veloped with a strong focus on tropical and subtropi-
cal forest and savanna regions, the original model ver-
sion only considered water input in the form of rain
(see Langan et al., 2017). In the updated model ver-
sion, precipitation is assigned as snow when daily mean
air temperature drops below 0 ◦C. Snow accumulates
on the soil surface or is added on top of an existing
snowpack. The snowpack persists as long as air tem-
perature remains below 0 ◦C. Once temperature rises
above 0 ◦C, water from snowmelt is added to the soil
water pool and becomes available to plants. This pro-
cess may improve the water availability for plants at the
beginning of spring, for example in the Himalayan re-
gion. Snowmelt (Smelt, mm/day) is calculated following
Choudhury et al. (1998) as

Smelt = 1.5+KmPprecip(Ta− Tsnow)Spack, (1)

where Km is the coefficient of snowmelt
(0.007 mm/day/◦C), Spack is the depth of the snowpack
(mm) and is equivalent to the accumulated solid portion
of precipitation, Ta is the daily mean air temperature
(◦C), Pprecip is precipitation (mm/day), and Tsnow is
the maximum temperature where precipitation falls as
snow (0 ◦C). We do not consider insulation effects of
the snowpack in the model.
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b. Carboxylation rate.

In earlier versions of aDGVM2, leaf-level photosyn-
thesis was calculated at the population level; i.e., it
was assumed that all plants of a simulated vegetation
stand have the same leaf-level photosynthetic rate. Only
C3- and C4-type photosynthesis were distinguished. We
therefore implemented new routines to calculate photo-
synthesis at a daily time step for each individual plant.
We further incorporated an empirical relation between
specific leaf area (ASLA, mm2/mg) and leaf nitrogen
content per unit area (Na, g/m2) following Sakschewski
et al. (2015):

Na = 6.89A−0.571
SLA . (2)

The standard maximum carboxylation rate of ru-
bisco per leaf area (Vcmax,25, µmol/m2/s) was derived
from the TRY database (Kattge and Knorr, 2007) by
Sakschewski et al. (2015) and is calculated as

Vcmax,25 = 31.62N0.501
a , (3)

where Vcmax,25 is Vcmax at 25 ◦C. In the model, ASLA is
linked to the matric potential at 50 % loss of xylem con-
ductance (P50; see Langan et al., 2017). The trade-off
between ASLA and Vcmax mediated by leaf traits (Na)
introduces variability in the spectrum of tree growth
strategies in aDGVM2. ASLA is linked to leaf longevity
(LL) in aDGVM2, such that it affects the leaf turnover
rates (represented by Eq. 72, in Appendix, Langan et
al., 2017). Leaves with high ASLA have shorter LL and
higher turnover rates than leaves with low ASLA (and
vice versa). The correlation between ASLA, P50 and LL
represents the trade-off between two opposing resource
strategies, i.e., conservation vs. rapid acquisition of soil
water and nutrients (Wright et al., 2005). Trees that in-
vest more carbon into their leaves (low ASLA) enhance
their structural stability but have lower leaf turnover to
mitigate the higher initial carbon investment.

The effect of temperature on photosynthesis is well
described (Kirschbaum, 2004), and temperature may
influence photosynthesis both directly, via tempera-
ture dependency of enzyme-mediated metabolic rates
of carboxylation and the Calvin cycle (Sharkey et al.,
2007), and indirectly, via its effect on transpiration
and plant water uptake and transport (Urban et al.,
2017). The maximum carboxylation rate (Vcmax) in-
creases with temperature until it reaches an optimum,
and it decreases again at temperatures above the opti-
mum (Kattge and Knorr, 2007) due to reductions in en-
zyme activity. Above 30 ◦C the electron transport chain
is gradually inhibited, and at temperatures above 40 ◦C
the denaturation of rubisco and associated proteins be-
comes relevant (Lloyd et al., 2008). The temperature de-
pendency of the carboxylation rate (Vcmax) is expressed

as

Vcmax =
Vcmax,2520.1(Tleaf−25)

(1+ e0.3(Tlow−Tleaf))(1+ e0.3(Tleaf−Tupp))
, (4)

where Tleaf is the leaf temperature in ◦C (see next para-
graph for calculation). The photosynthetic model of
Collatz et al. (1992) and Collatz et al. (1992) assumes
specific values of Tupp and Tlow for C3 and C4 plants, re-
spectively (Tables S1 and S2 in the Supplement). These
temperature ranges from −10 to 36 ◦C and from 13
to 45 ◦C for C3 and C4 photosynthetic pathways, re-
spectively, allow plants to grow most efficiently in their
plant-specific climatic niches.

c. Leaf temperature.

We calculate leaf temperature following the leaf-level
energy budget concept (Gates, 1968). Leaf-level pho-
tosynthesis, activity of leaf enzymes and transpiration
depend on leaf temperature (Tleaf, ◦C), calculated as

Tleaf = Tair+

(
Rn− λErgb

ρCP

)
, (5)

where Tair is air temperature (◦C), Rn is net radiation
absorbed by the leaf (MJ/m2/day), λ is latent heat of
vaporization (MJ/kg), E is evapotranspiration (m/day),
rgb is the boundary layer resistance (m/s), ρ is the
air density (kg/m3) derived from atmospheric pressure
(101.325 kPa at sea level) that is scaled according to the
elevation and Tair, and CP is the specific heat of dry air
(MJ/kg/◦C). Leaf temperature is used to calculate the
temperature dependence of Vcmax used in the photosyn-
thesis model routines in Eq. (4). Absorbed net radia-
tion (Rn), rgb and E are model state variables calculated
from climate input used in aDGVM2 (Tair, long-wave
and shortwave radiation, and ρ). The values of latent
heat of vaporization (λ) andCP are 2.45 MJ/kg and 2.71
MJ/kg/◦C, respectively, and are assumed to be constant
parameters in this model version.

d. C3 grasses.

C3 grasses were not included in previous aDGVM2 ver-
sions (Gaillard et al., 2018; Langan et al., 2017; Pfeif-
fer et al., 2019; Scheiter et al., 2013). We therefore im-
plemented C3 grasses, following the approach used for
C4 grasses in previous model versions, but adjusted the
photosynthetic pathway (see Appendix S2 in Langan
et al., 2017). C3 and C4 grasses use a different leaf-level
photosynthesis model (Farquhar et al., 1980) follow-
ing the implementations of Collatz et al. (1991, 1992).
The optimum temperature ranges for carboxylation for
C3 and C4 grasses are also different (Table S1). As C3
grasses have higher cold tolerance than C4 grasses (Liu
and Osborne, 2008), we implemented frost intolerance
for C4 grasses but not for C3 grasses. Frost is assumed

Biogeosciences, 18, 2957–2979, 2021 https://doi.org/10.5194/bg-18-2957-2021



D. Kumar et al.: Climate change impact on South Asian vegetation 2961

to damage the tissue of C4 grasses, and in aDGVM2 we
kill 10 % of the living leaf biomass of C4 grasses per
frost day independent of frost severity.

2.3 Model forcing data

2.3.1 Climate data

We used GFDL-ESM2M climate data for the period 1950 to
2099 from the Inter-Sectoral Impact Model Inter-comparison
Project (ISIMIP2), as historical climate simulated by GFDL-
ESM2M showed satisfactory performance for South Asia
(McSweeney and Jones, 2016). The general circulation
model (GCM) output was bias-corrected in the Inter-Sectoral
Impact Model Intercomparison Project (ISIMIP) and down-
scaled to a spatial resolution of 0.5◦× 0.5◦ (Warszawski
et al., 2014). We used average, maximum and minimum air
temperatures, precipitation, surface downwelling shortwave
radiation and long-wave radiation, near-surface wind speed,
and relative humidity at a daily temporal resolution. We used
two representative concentration pathways, namely RCP4.5
and RCP8.5 (Meinshausen et al., 2011). These scenarios as-
sume increases in radiative forcing of 4.5 and 8.5 W/m2 by
2100 (Van Vuuren et al., 2011) and increases in atmospheric
CO2 concentrations to 560 and 970 ppm by 2100, respec-
tively (Van Vuuren et al., 2011).

2.3.2 Projected changes in temperature and
precipitation

Mean annual precipitation (MAP) from GFDL-ESM2M does
not show a clear trend when averaged for South Asia un-
der RCP4.5 and RCP8.5, due to high inter-annual variabil-
ity of precipitation (Fig. S1 in the Supplement). Yet, there
are region-specific differences in precipitation change. The
Western Ghats which are located between 73–77◦ E and 8–
21◦ N and the eastern Himalayan region are projected to be-
come wetter under both RCP4.5 and RCP8.5, whereas the
western part of the region is projected to become drier by
the end of the century under both RCPs (Fig. S2). MAP is
projected to increase by more than 600 mm in the eastern
Himalayas and Western Ghats but predicted to decrease by
400–600 mm in the western and central area of the region
(Fig. S2). By the end of the 21st century, the mean annual
temperature (MAT) of South Asia is expected to increase
between ca. 1 and 3.5 ◦C under RCP4.5 and between 1 and
6 ◦C under RCP8.5, relative to the average temperature in the
baseline period of 2000–2009 (Figs. S1 and S2). The west-
ern parts of the region and the Himalayan mountains are pro-
jected to experience higher increases in temperature than the
rest of the region (Fig. S2).

2.3.3 Soil and elevation data

Soil data were obtained from FAO (http://www.fao.org/
soils-portal, last access: March 2016, Nachtergaele et al.,

2009) and include information on soil properties and
types. The soil properties include parameters required by
aDGVM2: volumetric water-holding capacity, soil hydraulic
conductivity, soil bulk density, soil depth, soil texture, soil
carbon content, soil wilting point and field capacity (for de-
tails see Fig. S3b and Langan et al., 2017). A digital el-
evation model (DEM) at 90 m spatial resolution was ob-
tained from the Shuttle Radar Topography Mission (SRTM,
Fig. S3a http://srtm.csi.cgiar.org, last access: March 2016,
Jarvis et al., 2008). It was resampled to a spatial resolution of
0.5◦× 0.5◦ to match the spatial resolution of climate data. In
the model, elevation is used to calculate the surface pressure
at a given altitude, which is used to scale up air density and
partial pressure of oxygen. The partial pressure of oxygen is
used to estimate the CO2 compensation point of photosyn-
thesis (Eq. 2 of Appendix S2 in Langan et al., 2017). We did
not use slope and aspect in the model.

2.4 Model simulation protocol

To understand how climate and CO2 fertilization interact to
influence the future vegetation state in South Asia, we sim-
ulated all combinations of two climate scenarios (RCP4.5
and RCP8.5) and two CO2 scenarios (CO2 fertilization en-
abled or disabled, four scenarios in total). We simulated po-
tential natural vegetation between 1950 and 2099 using daily
climate data for RCP4.5 and RCP8.5 (see Sect. 2.3.1). For
both scenarios, simulations were run with a CO2 increase
in line with RCP4.5 (hereafter RCP4.5+eCO2) and RCP8.5
(hereafter RCP8.5+eCO2) and with the same climate data
but fixed CO2 after 2005 at 375 ppm for RCP4.5 (hereafter
RCP4.5+fCO2) and RCP8.5 (hereafter RCP8.5+fCO2).
Fixing the CO2 concentration after 2005 mimics a situation
where CO2 fertilization would not occur and vegetation only
responds to the climate signal. All simulations were con-
ducted with natural fire as implemented in aDGVM2 and at
0.5◦× 0.5◦ spatial resolution. The aDGVM2 simulates 1 ha
stands that are assumed to be representative for the vege-
tation at a larger scale; i.e., we assume that the stand-level
vegetation homogeneously covers the grid cell. The “repre-
sentative hectare approach” is a concession to computational
limitation, as photosynthesis and physiological processes are
simulated individually for all individual plants of a stand (up
to 36 000 individuals). It balances adequate representation of
trait diversity among individuals against computational con-
straints. Also due to computational constraints, we did not
conduct replicate simulations.

To ensure that simulated vegetation had sufficient time to
adapt to prevailing environmental conditions, we conducted
simulations for 650 years, split into a 500-year spin-up phase
and a 150-year transient phase. For the spin-up phase, we
randomly sampled years of the first 30 years of daily climate
data (1950 to 1979). For the transient phase, we used the se-
quence of daily climate data between 1950 and 2099. Trial
simulations showed that a 500-year spin-up period is suffi-
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cient to ensure that vegetation is in a dynamic equilibrium
state with environmental drivers.

2.5 Model benchmarking and evaluation

For benchmarking of aDGVM2 simulation results, we used
five different remote sensing products: aboveground biomass
(t/ha, Saatchi et al., 2011), tree height (m, Simard et al.,
2011), tree cover (percent, Friedl et al., 2010), MODIS evap-
otranspiration (mm/year, Zhang et al., 2010) and natural veg-
etation type (Ramankutty et al., 2010). We used a 10-year
average of MODIS ET and compared it to a 10-year average
of model-simulated ET (mm/year; 2000–2009). All remote
sensing data sets were aggregated to a 0.5◦× 0.5◦ spatial res-
olution to match the spatial resolution of model simulations
by calculating the mean of all values within each 0.5◦ grid
cell or using nearest-neighbor aggregation in the case of veg-
etation type (“raster” package in R, Hijmans and van Etten,
2012). We first compared model results and observations as-
suming that the entire study region is covered by natural veg-
etation (Fig. 1). Then we repeated the comparisons only for
areas with predominantly natural cover; i.e., we masked out
areas with more than 50 % managed land (Fig. S4, land cover
classes 7 “Cultivated and Managed Vegetation” and 9 “Urban
and Built-up” in Tuanmu and Jetz, 2014). We calculated the
normalized mean squared error (NMSE) and coefficient of
determination (R2) to quantify agreement between data and
simulated variables.

2.6 Biome classification

The aDGVM2 simulates state variables such as biomass and
canopy cover of individual plants in simulated vegetation
stands (1 ha, which is a representative of a grid cell). We
used woody canopy area, abundance of shrubs and trees,
and grass biomass to classify the simulated vegetation into
biome types (Fig. S5). We used 10-year averages of state
variables for the periods 2000–2009, 2050–2059 and 2090–
2099 to represent the 2000s, 2050s and 2090s, respectively.
We classified areas with woody canopy cover below 5 % as
barren if grass biomass was below 100 kg/ha and as grass-
land if grass biomass exceeded 100 kg/ha. Grassland was
classified as C3 grassland or C4 grassland based on predom-
inance of C3 or C4 grass biomass. Simulated woody individ-
uals were classified as trees if they had three or less stems
and as shrubs if they had four or more stems (see Supple-
ment). The canopy cover of woody plants and grass biomass
was used to separate woodland and savanna biomes. Grid
cells with tree canopy cover greater than shrub canopy cover,
tree canopy cover between 5 % and 45 %, and grass biomass
below 100 kg/ha were classified as woodland. Grid cells
with the same woody cover characteristics but grass biomass
higher than 100 kg/ha were classified as savanna. Savanna
was further separated into C3 savanna and C4 savanna based
on the predominance of C3 or C4 grass biomass. Areas with

canopy cover greater than 45 % were classified as forest if
tree cover exceeded shrub cover or shrubland if shrub cover
exceeded tree cover, irrespective of grass biomass. Forests
were subdivided into evergreen and deciduous forest based
on the dominance of canopy area of both tree phenology
types. In aDGVM2, whether a plant is deciduous or ever-
green is decided by a trait. Biomes considered in this study
were hence C3 grassland, C4 grassland, shrubland, wood-
land, deciduous forest, evergreen forest, C3 savanna and C4
savanna.

Biomes differ in the amount of precipitation they receive
and their temperatures. Whittaker plots describe the bound-
aries of observed biomes with respect to temperature and
precipitation. We used the “plotbiomes” R package (https:
//github.com/valentinitnelav/plotbiomes by ) to
create Whittaker plots based on Ricklefs (2008) and Whit-
taker (1975). We overlaid the simulated biomes on Whittaker
plots to assess climatic niches of biomes under current cli-
mate to determine shifts in climatic niches by the end of this
century as a result of climate change and elevated CO2 under
both RCPs (see Sect. 3.6).

2.7 Calculation of biome-level evapotranspiration

For analyzing evapotranspiration change we calculated the
amount of water transpired per unit leaf biomass. Simu-
lated ET and leaf biomass for woody plants, C3 grass, and
C4 grass were summed and scaled to the grid level, tak-
ing latitudinal variation of grid cell area into account. Ab-
solute change in evapotranspiration quantity can either re-
sult from the change in biome area, from a change in total
amount of leaf biomass over time or from changes in wa-
ter use efficiency. In order to eliminate the effects caused by
change in biome area and leaf biomass, we calculated biome-
level evapotranspiration by normalizing evapotranspiration
with biome-level leaf biomass (Eq. 6). Due to the normal-
ization, differences in evapotranspiration at the biome level
are comparable between different biomes and independent
from biome attributes such as spatial extent and biome-level
biomass. The biome-level evapotranspiration is calculated as
the ratio of total annual ET over total leaf biomass for all
respective biomes:

Ebiome =

∑G
i=1(Egrid,iAgrid,i)∑G
i=1(Bgrid,iAgrid,i)

, (6)

where Ebiome is biome-level ET (mm/kg/year), 1, 2, . . . , G
represents the grid cells of the biome; Agrid,i is the area of
grid cell i (m2); Egrid,i is the total evapotranspiration of grid
cell i (mm/year); and Bgrid,i is the leaf biomass of grid cell
i (kg/m2). Choosing to normalize evapotranspiration to leaf
biomass integrates over both increased water use efficiency
and soil water availability constraints. It is therefore suitable
to characterize overall change in the water balance over time
at the biome level, as it not only indicates water used to pro-
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Figure 1. Comparison between aDGVM2 results and data for (a) simulated biomass and Saatchi et al. (2011) biomass, (b) simulated tree
height and Simard et al. (2011) tree height, (c) simulated tree cover and Friedl et al. (2011) tree cover, and (d) simulated evapotranspiration
and Zang et al. (2010) evapotranspiration. In the figure the first column shows the remote sensing products, the second column shows
aDGVM2 results, the third column shows the difference between simulation and data, and the fourth column shows the scatter plot between
simulated state variables against benchmarking data. NMSE and RMSE are the normalized mean square error and root mean square error,
respectively. In the fourth column, each point represents one grid cell in the study region. For results with masked land-use cover see
Supplement Fig. S4.

duce new biomass (as gross primary production over tran-
spiration would express), but also includes water required
to sustain existing biomass. We calculated the percentage
change in Ebiome for respective scenarios between the 2010s
and 2050s and between the 2010s and the 2090s.

3 Results

3.1 Model performance and contemporary vegetation
patterns

The aDGVM2 captured contemporary large-scale patterns
of biomass, canopy cover, tree height and evapotranspira-
tion. Model results agreed well with remote sensing prod-

https://doi.org/10.5194/bg-18-2957-2021 Biogeosciences, 18, 2957–2979, 2021



2964 D. Kumar et al.: Climate change impact on South Asian vegetation

Figure 2. Comparison between simulated and observed biome patterns. (a) Simulated dominant biome type, (b) Sankey diagram showing
overlap between simulated biomes and potential natural vegetation cover (ISLSCP II, Ramankutty et al., 2010), and (c) potential natural
vegetation. The Sankey graph shows how aDGVM2 biomes and PNV classes overlap.

ucts used for benchmarking (Figs. 1 and 2). R2 was 0.61,
0.45, 0.6 and 0.71, and NMSE was 0.48, 0.78, 0.4 and 1.07
for biomass (Saatchi et al., 2011), tree height (Simard et al.,
2011), tree cover (Friedl et al., 2010) and evapotranspira-
tion (Zhang et al., 2010), respectively (Fig. 1). Data–model
agreement improved when masking out managed land (Tu-
anmu and Jetz, 2014). R2 increased to 0.66, 0.71, 0.67 and
0.80, while NMSE decreased to 0.43, 0.30, 0.61 and 1.03
for biomass, tree height, tree cover and evapotranspiration,
respectively (Fig. S4). The model performed well in areas
with higher fractional cover of natural vegetation, such as
the Himalayas, Western Ghats and the northeast of the re-
gion, although the model overestimated biomass and canopy
area in the Brahmaputra basin, which lies between 28–34◦ N
and 90–96.5◦ E in the northeast of the study region (Fig. 1a,
c, Kumar et al., 2020).

The model simulated evergreen forests along the Hi-
malayan mountains, the southern part of the Western Ghats
and Sri Lanka, whereas deciduous forest was simulated in the
northern Western Ghats, central India and the southern parts
of Myanmar (Fig. 2a). Savanna was simulated in the south-
ern, northern, and western parts of India and some regions of
central Myanmar. Shrublands were simulated in the arid re-
gions of Pakistan, the western parts of India and Afghanistan.
The aDGVM2 simulated woodland in the west of central In-
dia and grassland in the drier regions (Fig. 2a). A large pro-
portion of simulated deciduous forest area is in good agree-
ment with that in maps of potential natural vegetation (PNV,
Fig. 2b, c). However a large proportion of simulated savanna
area is represented as deciduous forest in the map of PNV
(Fig. 2b).

3.2 Projected changes in biome distribution pattern

The aDGVM2 projected increasing trends for canopy cover
and aboveground biomass in response to climate change

and CO2 and hence changes in biome type, predominantly
from savanna and grassland to deciduous forest (Fig. 3a,
b). Simulations showed an increase in the area covered
by evergreen and deciduous forests under both scenarios
with eCO2, in contrast to simulations under both scenar-
ios with fCO2, where CO2 was fixed after 2005 (Ta-
ble 1). Under RCP4.5+eCO2, evergreen and deciduous for-
est cover increased by 3.1 % and 21.2 % until the 2050s and
by 38.0 % and 59.1 % until the 2090s, respectively. Under
RCP8.5+eCO2, evergreen and deciduous forest increased
by 24.8 % and 45.4 % until the 2050s and by 46.5 % and
60.2 % until the 2090s, respectively. The model simulated
a small increase in forest area for RCP4.5+fCO2, where
the area increased by 7.9 % and 14.4 % for evergreen and
deciduous forest until the 2090s, respectively. Evergreen
forests were mainly simulated along the Himalayas, West-
ern Ghats and eastern parts of the study region under current
conditions (2000s, Fig. 3a) but expanded into the south of
peninsular India in future periods (2050s and 2090s) under
RCP4.5+eCO2. Deciduous forest cover also increased in fu-
ture periods in central India and along the Himalayas (Figs. 3
and S6).

The extent of C4 savanna showed a significant decrease
under scenarios with eCO2, although in RCP4.5+eCO2 it
showed an increase by 12.1 % between the 2010s and the
2050s (Table 1, Fig. 3). Simulated C4 savanna area de-
creased by 14.1 % relative to the 2000s until the 2090s under
RCP4.5+eCO2. Under RCP8.5+eCO2 the model projected
a decrease in C4 savanna area of 21.6 % and 32.2 % until the
2050s and the 2090s, respectively. The area covered by C4
savanna increased under both RCPs with fCO2 (Table 1).
C4 savannas were mainly located in the northern plain and
peninsular India in the baseline period. However, these areas
were replaced by deciduous forests in the northern plain and
central India and by evergreen forests in peninsular India and
in the southeast of the region by the 2090s under eCO2 sce-
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Table 1. Biome cover (in %) for the 2000s, 2050s and 2090s, and percent (%) change in biome cover from the 2000s to the 2050s and the
2000s to the 2090s under RCP4.5 and RCP8.5 with fixed and elevated CO2.1 indicates percent change in biome cover between time periods.
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RCP4.5+fCO2 2010s 5.6 15.4 4.6 18.2 11.7 17.6 6.9 17.7 2.4
2050s 6.3 14.8 3.2 15.7 11.2 18.6 6.7 22.1 1.4
2090s 10.4 12.3 2.3 10.0 12.7 20.1 6.0 24.7 1.4
1 2050s–2010s 13.0 −3.7 −32.2 −13.6 −4.0 5.6 −3.0 25.4 −39.1
1 2090s–2010s 87.0 −20.1 −50.0 −45.2 7.9 14.4 −12.7 40.1 −41.3

RCP4.5+eCO2 2010s 5.7 15.2 4.8 18.6 11.5 17.5 6.8 17.5 2.4
2050s 6.5 13.9 3.5 15.0 11.9 21.2 7.0 19.6 1.3
2090s 10.4 10.4 2.5 10.7 15.9 27.9 6.2 15.1 0.9
1 2050s–2010s 13.5 −8.2 −26.9 −19.7 3.1 21.2 3.8 12.1 −44.7
1 2090s–2010s 82.0 −31.6 −48.4 −42.4 38.0 59.1 −8.4 −14.1 −63.8

RCP8.5+fCO2 2010s 6.3 14.7 4.5 18.8 11.7 17.3 6.3 18.0 2.4
2050s 8.8 12.3 2.5 14.7 12.9 21.7 6.6 19.0 1.5
2090s 9.4 15.0 2.5 11.0 10.8 14.2 6.7 29.0 1.4
1 2050s–2010s 39.0 −16.5 −43.7 −21.9 10.1 25.0 4.1 5.4 −39.1
1 2090s–2010s 48.8 1.8 −43.7 −41.6 −7.9 −17.9 5.7 61.0 −41.3

RCP8.5+eCO2 2010s 5.9 14.8 4.7 18.0 11.6 17.5 7.1 17.9 2.5
2050s 9.7 10.5 3.2 13.9 14.5 25.4 7.1 14.1 1.6
2090s 6.3 11.5 4.2 12.6 17.0 28.0 7.0 12.2 1.3
1 2050s–2010s 64.9 −29.5 −32.6 −22.9 24.8 45.4 0.7 −21.6 −35.4
1 2090s–2010s 7.0 −22.2 −10.9 −30.3 46.5 60.2 −1.5 −32.2 −47.9

narios (Figs. 3a and S6a). The model simulated a decrease
in area covered by woodland, shrubland, grasslands and C3
savanna by the 2090s under all scenarios (Table 1, Fig. 3).
Simulations showed an increase in barren areas in the west-
ern part of the region under all scenarios (Figs. 3 and S6,
Table 1).

3.3 Projected changes in biomass at the biome level

The aDGVM2 predicted an increase in mean biomass for
evergreen and deciduous forest in the eCO2 scenarios for
both RCPs (Table 2). Under RCP4.5+eCO2, mean above-
ground biomass in evergreen and deciduous forest increased
by 8.1 % and 14.4 % by the 2050s and 3.8 % and 15.7 %
by the 2090s, relative to the baseline period. The increase
is even higher under RCP8.5+eCO2 (Table 2). The mean
biomass of woodland decreased under both RCPs except for
the 2050s with eCO2 scenarios. The mean biomass of grass-
land increased under RCP4.5 but decreased for C4 grassland
under RCP8.5 for both fCO2 and eCO2 scenarios. Shrub-
lands in the western part of the study region showed an in-
crease in mean biomass under eCO2 scenarios except for
the 2050s under both RCPs and a decrease under fCO2 for
both RCPs (Table 2). Our results showed that under RCP4.5
and RCP8.5 biomass decreased in the areas along the Hi-

malayas, as well as in the central, northeastern and western
parts of the study region by the end of the century. Mod-
eled biomass decrease is higher under RCP8.5 in these re-
gions (Figs. 4 and S7). Biomass in the central and south-
eastern part of the region is projected to increase under both
RCPs with eCO2 until the 2050s and 2090s and to decrease
in southern India and in parts of western South Asia (Figs. 4
and S7). We found increased biomass in Afghanistan, west-
ern Pakistan, Nepal, and the southern part of Myanmar and
decreased biomass in the western arid part of the study re-
gion under both RCPs for both eCO2 and fCO2 (Fig. 5),
though the magnitude of change is different (Figs. 4 and S7).
There were few areas in the western part of the study re-
gion where the model predicted increased biomass only un-
der fCO2 for both RCPs (Fig. 5). In large parts of the study
region, biomass increased under eCO2 for both RCPs but
decreased under fCO2; that is, CO2 fertilization compen-
sates for climate-change-induced biomass diebacks in these
regions (Fig. 5).

3.4 Projected changes in evapotranspiration at the
biome level

The response of simulated Ebiome varies in different biomes
under both RCP4.5 and RCP8.5 (Table 3). Under the
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Figure 3. Simulated biome distribution for the 2000s, 2050s and 2090s under (a) RCP4.5+eCO2 and (c) RCP4.5+fCO2. The Sankey
diagrams show the fractional cover of biomes and transitions between biomes from the 2000s to the 2050s and the 2050s to the 2090s under
(b) RCP4.5+eCO2 and (d) RCP4.5+fCO2. See Fig. S6 for the simulated biome distribution under RCP8.5.

RCP4.5+fCO2 scenario the model predicted a decrease in
ET in all biomes except for deciduous forest and shrub-
land where it increased by 1 % and 2.1 % until the 2050s
and by 0.3 % and 11.9 % by the 2090s, respectively. Sim-
ulated Ebiome under RCP8.5+fCO2 for deciduous for-
est and shrubland increased by 4.2 % and 5.2 % until
the 2050s and by 5.2 % and 16.4 % until the 2090s, re-
spectively. The model also predicted increased Ebiome for
C4 grassland, evergreen forest and C4 savanna until the
2090s under RCP8.5+fCO2 (Table 3). Comparisons of the
RCP4.5+fCO2 and RCP8.5+fCO2 scenarios indicated that
the former had a higher Ebiome than the latter scenario across
all biomes because precipitation decrease is higher in the
RCP8.5 scenario than in the RCP4.5 scenario. Under both
RCPs with eCO2, the model predicted a decrease in Ebiome
across all biomes, except for a marginal increase in shrub-
land under RCP4.5 and deciduous forest under RCP8.5 un-
til the 2050s and the 2090s (Table 3). In general, scenar-
ios with eCO2 showed lower biome-specific evapotranspira-
tion across most of the biomes compared to simulations with
fCO2.

3.5 Response of mean ET and mean aboveground
biomass to climate change

The model predicted a larger increase in absolute annual
mean ET (mm/year) under eCO2 than fCO2 for both RCP
scenarios due to the corresponding increase in biomass

(Figs. 4 and S7). We compared the spatially averaged annual
values over all of South Asia of simulated absolute ET with
MAP over the period from 1951 to 2099 and found a stat-
ically significant relation (p value< 0.005). We found that
absolute ET was positively correlated with MAP under all
four scenarios (Figs. 6a and S8a) but weakly correlated with
MAT (Figs. 6b and S8b). For a given MAP, the spatially av-
eraged annual value of aboveground biomass (AGBM) was
lower in scenarios with fCO2 than scenarios with eCO2 un-
der both RCPs (Figs. 6c and S8c). The spatially averaged an-
nual value of AGBM decreased beyond a MAT of 23.5 ◦C for
both RCPs with fCO2, whereas it increased beyond 23.5 ◦C
under both RCP scenarios with eCO2 (Figs. 6d and S8d).

3.6 Impact of climate change on climatic niches of
biomes

The climate niches of simulated biomes broadly overlapped
with the biome niches in the Whittaker scheme (Figs. 7
and S9, Ricklefs, 2008; based on Whittaker, 1975). Under
RCP4.5+eCO2 and RCP8.5+eCO2, the aDGVM2 simulated
shifts of climatic niches of biomes. Evergreen and decidu-
ous forest biomes were predicted to invade the niche space
of savannas under eCO2 scenarios (Figs. 7 and S9). Savan-
nas in turn were predicted to expand their climatic niche to
MAT> 30 ◦C by 2099, a climatic space that was essentially
not occupied by current biomes. Under RCP8.5+eCO2 in the
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Table 2. Mean biomass (in t/ha) within biomes for the 2000s, 2050s and 2090s, and percent (%) change in biomass from the 2000s to the
2050s and the 2000s to the 2090s under RCP4.5 and RCP8.5 with fixed and elevated CO2. 1 indicates percentual biomass changes between
time periods.
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RCP4.5+fCO2 2010s 0.9 1.5 30.4 189.7 142.1 4.0 35.5 36.8
2050s 0.9 1.8 29.2 191.0 144.0 3.6 38.0 44.7
2090s 0.9 2.1 24.5 188.1 148.4 3.3 32.6 31.8
1 2050s–2010s −1.1 19.5 −4.0 0.7 1.3 −10.9 6.8 21.4
1 2090s–2010s 4.4 35.1 −19.4 −0.9 4.4 −17.8 −8.2 −13.7

RCP4.5+eCO2 2010s 0.9 1.4 30.7 189.2 142.5 4.0 35.9 37.3
2050s 1.0 1.5 34.7 204.6 162.9 4.3 48.1 53.2
2090s 1.0 1.6 29.3 196.4 164.9 4.1 43.2 51.8
1 2050s–2010s 17.2 5.6 13.0 8.1 14.4 6.0 34.0 42.7
1 2090s–2010s 12.6 8.3 −4.6 3.8 15.7 2.5 20.4 39.1

RCP8.5+fCO2 2010s 0.9 1.5 30.7 191.1 146.3 3.9 35.8 34.9
2050s 0.7 1.6 23.5 182.1 134.7 3.3 31.2 28.0
2090s 0.8 1.6 18.7 175.7 136.4 3.1 28.5 33.2
1 2050s–2010s −19.1 4.7 −23.4 −4.7 −7.9 −15.3 −12.8 −19.7
1 2090s–2010s −14.6 4.7 −39.0 −8.0 −6.8 −20.0 −20.5 −4.9

RCP8.5+eCO2 2010s 0.9 1.3 31.2 188.3 146.1 4.1 36.5 32.0
2050s 1.0 1.4 32.1 206.3 162.7 4.0 45.1 47.2
2090s 0.7 1.1 30.8 206.0 183.4 4.7 49.8 50.7
1 2050s–2010s 9.9 8.7 2.8 9.6 11.3 −1.5 23.6 47.4
1 2090s–2010s −22.0 −12.7 −1.6 9.4 25.6 15.5 36.6 58.2

2090s, forests completely occupied the climate space, which
is currently occupied by savanna (Fig. S9).

In both scenarios with fCO2, savanna occupied the cli-
mate space delineated by MAT> 25 ◦C and MAP between
500 and 1500 mm and did not experience major replace-
ment by forest. The model predicted that savanna expan-
sion in climate space was higher under RCP8.5+fCO2 than
under RCP4.5+fCO2 (Figs. 7 and S9). Other biomes also
experienced shifts in their climate space (Fig. 7). However,
the results showed that for both the current and future pe-
riod, grasslands and shrublands occupied the region with
low MAP (< 500 mm), and woodland occupied low MAP
(< 800 mm) regions, which correspond to the western arid
and semiarid regions of the study region under the scenario
with eCO2 (Fig. 7).

4 Discussion

4.1 Impact of climate change and elevated CO2 on
biomes and biomass

Our simulations for RCP4.5+eCO2 and RCP8.5+eCO2
showed a strong positive response of vegetation growth, i.e.,

increases in biomass, canopy cover and canopy height. Mean
biomass in most biomes was projected to increase, but the
magnitude of increase differed considerably between differ-
ent scenarios (Table 2). Projected change in canopy cover
resulted in biome transitions. Under future conditions, the
spatial distribution, extent and biomass of evergreen forests
mostly remained at the current state, and evergreen forests
were more resistant to climate change than deciduous forests.
Expansion of deciduous forest into open biomes due to in-
creasing woody cover resulted in significant loss of savanna
area in the Deccan region under both RCPs with eCO2 by
the end of the century. Transition from deciduous forests to
evergreen forest was simulated for the mountain regions of
South Asia (Scheiter et al., 2020), i.e., the Himalayas and
the Western Ghats, where precipitation was predicted to in-
crease. The trade-offs between specific leaf area (ASLA) and
leaf longevity (LL) result in the emergence of evergreen be-
havior in wet regions of South Asia. In the wet tropics, higher
LL allows achieving a constant positive carbon balance from
photosynthesis throughout the year and increases the resi-
dence time of nutrients and carbon in the plant and therefore
enhances the photosynthetic gain per unit carbon and nutri-
ent investment in leaves (Kikuzawa and Lechowicz, 2011).
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Figure 4. Projected change in biomass (t/ha), canopy cover (%) and evapotranspiration (ET, mm/year) between the 2000s and 2050s and
between the 2000s and the 2090s under (a) RCP4.5+eCO2 and (b) RCP4.5+fCO2. See Fig. S7 for projected change of these variables
under RCP8.5.

Figure 5. Maps showing areas where CO2 fertilization compensates for biomass dieback caused by climate change between the 2000s and
the 2090s under (a) RCP4.5 and (b) RCP8.5 and (c) aboveground biomass between 1950 and 2099 for South Asia in different scenarios.
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Table 3. Biome-level ET normalized to biomass (Ebiome, mm/kg/year) for the 2000s, 2050s and 2090s, and percent (%) change in Ebiome
from the 2000s to the 2050s and the 2000s to the 2090s under RCP4.5 and RCP8.5 with fixed and elevated CO2. 1 indicates percentual ET
changes between time periods.
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RCP4.5+fCO2 2010s 186.7 95.5 257 159.7 288.5 183.3 252.5 194.2
2050s 170.9 80.5 217 157.4 291.3 187.2 244.6 151.9
2090s 185 72.3 209.6 140.7 289.3 205.2 247.1 179.1
1 2050s–2010s −8.5 −15.7 −15.6 −1.4 1 2.1 −3.1 −21.8
1 2090s–2010s −0.9 −24.3 −18.5 −11.9 0.3 11.9 −2.1 −7.8

RCP4.5+eCO2 2010s 185.4 93.4 259.7 159.7 288.1 190.9 251.6 188.4
2050s 161.2 79.7 217 147.8 283 183.2 238.2 153.4
2090s 164.1 73.4 210.2 138.7 280.4 197.2 236.6 157.1
1 2050s–2010s −13.1 −14.6 −16.5 −7.4 −1.8 −4.1 −5.3 −18.6
1 2090s–2010s −11.5 −21.4 −19.1 −13.2 −2.7 3.3 −6 −16.6

RCP8.5+fCO2 2010s 172.8 87.4 257.5 160.9 286.5 185.5 244.7 188.1
2050s 153.7 72.7 243.2 158.3 298.5 195.1 241 162.7
2090s 195.6 67.6 231.1 162.7 301.3 216 267.5 150.2
1 2050s–2010s −11.1 −16.8 −5.5 −1.6 4.2 5.2 −1.5 −13.5
1 2090s–2010s 13.2 −22.6 −10.2 1.1 5.2 16.4 9.3 −20.1

RCP8.5+eCO2 2010s 177.5 91.1 256.4 162.7 284.5 192.5 243.7 191.7
2050s 143.9 76.9 235.6 149.4 285.4 184.6 228.8 153.1
2090s 141.4 59.2 218.3 143.9 284.9 186 242.3 143.2
1 2050s–2010s −18.9 −15.6 −8.1 −8.1 0.3 −4.1 −6.1 −20.1
1 2090s–2010s −20.3 −35.1 −14.9 −11.6 0.1 −3.4 −0.6 −25.3

The deciduous behavior is advantageous in dry regions, as
in the Deccan region, because trees that do not invest much
carbon into their leaves per unit dry mass (higher ASLA and
lower LL) lose less investment when shedding them dur-
ing the dry season. Phenology change as a result of climate
change has already been observed (Buitenwerf et al., 2015;
Cleland et al., 2007). In Scheiter et al. (2020), we showed that
climate change supports transitions to tall evergreen vegeta-
tion in tropical Asia and found increases in the abundance of
evergreen plants and decreases in the abundance of decid-
uous plants in mainland Southeast Asia, central India and
Pakistan. This relative advantage of evergreen plants over
deciduous plants under elevated CO2 in aDGVM2 can be
explained by the fact that increased intrinsic water use ef-
ficiency under eCO2 in evergreen plants is higher than in de-
ciduous plants as demonstrated by Soh et al. (2019). Previ-
ous modeling studies also support aDGVM2 result showing
transitions from deciduous to evergreen vegetation. With the
BIOME4 model, Ravindranath et al. (2006) simulated the re-
sponse of forest to Special Report on Emissions Scenarios
(SRES) A2 and B2 and reported similar changes toward ev-
ergreen phenology. A study by Chaturvedi et al. (2011) using

the IBIS model also predicted transitions toward evergreen
forest.

Woody encroachment in many ecosystems is attributed to
rising CO2, and this is supported by studies based on both
field observations (e.g., FACE experiments) and satellite data
(Brienen et al., 2015; Fischlin et al., 2007; Piao et al., 2006;
Schimel et al., 2015; Archer et al., 2017; Stevens et al.,
2017). The aDGVM2 also supports these findings, i.e., in-
creasing canopy cover and woody biomass under the eCO2
condition, and agrees with the reported greening trend in
South Asia during the last three decades (Wang et al., 2017).
Elevated CO2 affects plants by increasing their photosyn-
thetic rate, growth rate and water use efficiency, leading to
an increase in biomass (Leakey et al., 2009; Norby and Zak,
2011). Increased photosynthetic rates under elevated CO2
are due to an increase in the rate of rubisco carboxylation
for C3 plants, with a concurrent decrease in photorespira-
tory losses of carbon (Long et al., 2004). Due to the im-
proved carboxylation efficiency, C3 plants can respond by
reducing stomatal conductance, thereby reducing transpira-
tional losses, improving leaf water status and water use ef-
ficiency, and favoring leaf area growth (Long et al., 2004;
Norby and Zak, 2011). Evidence from both observation and
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Figure 6. Relationship between (a) evapotranspiration (ET) and mean annual precipitation (MAP), (b) ET and mean annual temperature
(MAT), (c) mean aboveground biomass and MAP, and (d) mean aboveground biomass and MAT under RCP4.5. The lines (both solid and
dotted) in all figures represent the best-fit regression line. Data points represent spatially averaged ET (a, b) and biomass (c, d) over all of
South Asia for each year from 1950 to 2099. See Fig. S8 for results under RCP8.5.

modeling of forest dynamic suggests that combined effects
of eCO2 and increased water use efficiency include increases
in forest growth and canopy greening, as well as widespread
increases in woody plant biomass and potential forest car-
bon sink. However, it is still unclear how the CO2 responses
scale to the ecosystem level (Hickler et al., 2015) and how
nutrient limitation from the soil may influence ecosystem re-
sponses to eCO2. Körner (2015) argued that carbon from the
atmosphere can only be converted into biomass if other fac-
tors such as nutrients, temperature and water are not limit-
ing. In addition, the benefit of eCO2 can be downregulated
by broad-scale forest die-off due to frequent drought and
warmer temperature (Choat et al., 2018; Mcdowell et al.,
2016), as well as tree mortality due to negative tree physi-
ological responses, negative carbon balance and accelerated
pest attacks. Rising background mortality rates combined
with projected increases in intensity, frequency and duration
of drought (Huang et al., 2016) increase the uncertainty re-
garding positive effects of eCO2.

In the long run, whether ecosystems act as a carbon source
or sink can be estimated using models that consider all fac-
tors that are relevant in the carbon cycle and its associated
factors (Fatichi et al., 2014; Körner, 2015). However, Ter-

rer et al. (2019) showed that the global-scale response to
eCO2 from experiments is similar to past changes in green-
ness (Piao et al., 2019) and biomass (Sitch et al., 2015) in
response to eCO2. This suggests that CO2 will likely con-
tinue to stimulate plant biomass in the future despite the con-
straining effect of soil nutrients; however Terrer et al. (2019)
also argued that the empirical relationships with soil nutrients
can be powerful for explaining large-scale patterns of eCO2
responses, despite ecosystem-level uncertainties. According
to our simulations we can conclude that natural vegetation
of South Asia likely will remain a carbon sink in the future
(Fig. 5).

4.2 Impact of climate change and fixed CO2 on biomes
and biomass

Under both fCO2 scenarios, the spatial distribution of sa-
vanna areas remained in its contemporary state. Central In-
dia and the Deccan Plateau showed a transition of deciduous
forest to savanna, because forest canopy opened up due to
tree mortality caused by increasing temperature and reduced
MAP. This indicates that plants experience temperature and
drought stress under fixed CO2. These stresses were compen-
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Figure 7. Simulated climate niches of biomes for the (a) 2000s, (b) 2050s and (c) 2090s under RCP4.5+eCO2 and (d) 2000s, (e) 2050s
and (f) 2090s under RCP4.5+fCO2. The simulated biomes are overlaid on the climate envelopes of Whittaker’s biomes and are plotted
following Ricklefs (2008) and Whittaker (1975). See Fig. S9 for projected change in climatic niches of biomes under RCP8.5.

sated for by CO2 fertilization in eCO2 scenarios where the
aDGVM2 simulated increased biomass and woody encroach-
ment in areas affected by climate-induced dieback in fCO2
simulations. This aDGVM2 behavior agrees with results pre-
sented by Lapola et al. (2009), who modeled biome shifts
from forest to savanna in the absence of CO2 fertilization
for the Amazon region. Changes in precipitation regimes are
likely to have a strong influence particularly in arid and semi-
arid regions, such as grasslands (Verstraete et al., 2009). The
complex interactions of inter-annual precipitation variability
and precipitation seasonality can result in rapid ecosystem
transitions (e.g., between alternative stable states with high
and low vegetation biomass; Holmgren and Scheffer, 2001).
The decrease in simulated AGBM after MAT increases be-
yond 23.5 ◦C under fCO2 scenarios can be explained by the
longer exposure of vegetation to temperatures beyond the op-
timum temperature range of C3 photosynthesis during the
main growing season. This effect was further enhanced by
decreasing MAP and the absence of CO2 fertilization. This
implies that the increase in MAT above 23.5 ◦C together with
weak CO2 fertilization would have negative consequences

for carbon sequestration. The sensitivity of biomass to tem-
perature and CO2 change has been investigated in many stud-
ies (Norby and Luo, 2004; Song et al., 2019; Sperry et al.,
2019). A meta-analysis by Lin et al. (2010) showed that
warming significantly increased biomass by 12.3 % (with a
95 % confidence interval of 8.4 %–16.3 %) across all the ter-
restrial plants included. This observation is consistent with
our model results. Biomass showed a positive relation with
MAT, which did not change with mean annual precipita-
tion or experimental duration or CO2 enrichment (Lin et al.,
2010). These findings are also supported by previous stud-
ies by Rustad et al. (2001), Walker et al. (2006), and Dor-
mann and Woodin (2002), which have revealed that warming
generally increases terrestrial plant biomass, indicating en-
hanced terrestrial carbon uptake via plant growth. Previous
modeling studies using Biome-BGC (Running and Hunt Jr,
1993), Century (Parton et al., 1993) and TEM (Tian et al.,
1999) have shown an increase in productivity when both
climate change and CO2 effects were considered. However,
the increase was smaller when only climate change effects
were considered, and both Biome-BGC and TEM suggest
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that without CO2 fertilization, average productivity would
decline relative to the current annual average as shown by
our result (Fig. 6d). This suggests complexity and challenges
in seeking general patterns of terrestrial plant growth in a fu-
ture warmer climate condition. It also implies that we need a
better understanding of impacts of heat stress on vegetation
and how it interacts with drought and CO2 fertilization. It is
also unclear to what degree thermal acclimation may coun-
teract some of the negative effects on plant growth caused by
higher temperatures (Lombardozzi et al., 2015).

4.3 Impact of climate change and CO2 change on
climatic niches of biomes

Elevated CO2 has a major impact on the climatic niche space
of biomes. Our simulations showed forest invasion into the
niche space currently occupied by savanna by the end of the
century. The expansion of forests to drier areas corresponds
to a widening of their climate niche space under eCO2. This
expansion is mainly driven by eCO2 and is corroborated by
the fact that in the absence of CO2 fertilization the climatic
niche of biomes is stable; i.e., biomes occupy the same niche
space under current and future conditions. These findings
imply that the bioclimatic boundaries used to define biome
niche space are not static but are specific for given CO2 lev-
els. Therefore, the thresholds of Whittaker’s biomes need to
be redefined for a high-CO2 world such that they encom-
pass the altered climatic envelopes of biomes under elevated
CO2 in the future (Fig. 7). The shift in niche space can be at-
tributed to the shift in plant communities caused by the com-
bined effect of climate change and elevated CO2, which in-
creases plant water use efficiency, allowing them to grow un-
der drier conditions. These community shifts can also lead to
a change in the characteristics of biomes by altering commu-
nity structure and ecosystem functions (Chapin et al., 1997).

4.4 Effect of CO2 on ET and its interaction with
climate change

Climate change has direct effects on hydrological processes
(Liu et al., 2008). ET and water deficit influence plant
productivity and distribution (Stephenson, 1998). Higher
biomass coincided with increased absolute amounts of ET
for eCO2 scenarios in some parts of the study region under
both RCPs by the end 21st century (Figs. 5 and S7). This
change can be attributed to higher leaf biomass accumulated
in plants enabled by increased photosynthetic efficiency un-
der eCO2. The higher amount of leaf biomass offsets the
water-saving effect caused by reduced stomatal conductance
due to improved water use efficiency under eCO2 scenarios
and resulted in reduced ET per unit leaf biomass (Warren
et al., 2011). Our results showed that the strength of the CO2
fertilization effect is relevant when attempting to determine
Ebiome at the biome level during the 21st century. Biome-
specific ET decrease was less pronounced under RCP4.5 due

to a lower concentration of atmospheric CO2 compared to
RCP8.5. Our simulated decrease in ET in response to cli-
mate change and increasing CO2 concentration agrees with
Kergoat et al. (2002), who have reported decreased ET un-
der elevated CO2 concentration in a chamber experiment.
However, reduced ET under eCO2 can reduce regional-scale
atmospheric humidity and thereby enhance the vapor pres-
sure deficit (VPD) between leaves and atmosphere, a driving
force for water loss, which may partially counteract CO2-
induced reduction of ET due to decreased stomatal conduc-
tance. Due to stomatal closure, photosynthetic rates under
soil water stress conditions decline in aDGVM2 when atmo-
spheric VPD increases. The projected increase in air temper-
ature also increases the saturated water vapor pressure. As
a result VPD will increase, given that increase in actual va-
por pressure is limited by soil water availability while the in-
crease in saturated vapor pressure is not (Yuan et al., 2019),
and potential evapotranspiration will increase with tempera-
ture (Warren et al., 2011). As future climate projections vary
spatially and temporally, there was high model uncertainty
on how ET will respond to changes in precipitation and tem-
perature.

4.5 Implication of the projected change for
conservation

Changes in biome types imply changes in biodiversity,
ecosystem function and productivity. Each biome is char-
acterized by a range of distinctive ecological processes and
functions. For instance, the distribution of forest ecosystem
in the mountains is largely regulated by the altitude and cli-
matic factors (Saikia et al., 2017). They have high species
richness and needed to be protected from the ever-increasing
anthropogenic pressure and climate change. Open biomes
such as grassland and savanna support high biodiversity (Parr
et al., 2014). Pronounced increases in tree density in grass-
lands and savannas will alter vegetation structure and re-
duce grassland biodiversity. Such changes will negatively af-
fect savanna-specific ecosystem services such as grazing po-
tential, tourism and wildlife habitat availability (Parr et al.,
2012). The threat posed to the biodiversity of Asian savan-
nas by climate change is aggravated by inadequate manage-
ment policies that misinterpret them as degraded forest (Rat-
nam et al., 2016). In this context, management policies aim
to afforest open biomes, although paleoecological evidence
indicates that these open biomes are not degraded forest but
ancient ecosystems (Kumar et al., 2020; Ratnam et al., 2016).
Moreover, increased woody cover can negatively affect water
resources in the semiarid regions of the study area. Acharya
et al. (2018) have shown that increased woody cover hin-
ders the downward movement of water, causing increased
water inception, which has negative effects on groundwater
recharge. It is therefore necessary to control the abundance
of woody plants in semiarid regions to control stream flow
and enhance groundwater recharge (Bednarz et al., 2001).
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In South Asia, biodiversity hotspots have a very unique to-
pography, where climate varies strongly over short distances.
As global biodiversity hotspots, mountain forest ecosystems
in the Western Ghats, the Himalayas and northeastern part of
the study area (India and Myanmar) are particularly vulnera-
ble to climate change (Myers et al., 2000) and need targeted
management action to mitigate adverse effects. Conservation
of these hotspots requires consideration of many different at-
tributes of plant communities, ecosystems, landscapes, and
plant diversity; of how they will change; and of how their
ecosystem services are valued.

Conservation methods and policies that can accommodate
minimal losses of ecosystem services and provide robust
strategies to mitigate climate change impacts should be de-
veloped and implemented. In this context, DGVMs facilitate
the exploration of vegetation–climate interactions by provid-
ing detailed results for different management and climate
scenarios. Such an exploration of different possible scenar-
ios is necessary to develop optimized mitigation and conser-
vation strategies for protected areas in biodiversity hotspots.
The value of DGVM modeling results lies in their potential
to provide insights into multiple future trajectories. Based on
the most likely trajectories, the results can be used to tailor
best-practice strategies for decision makers that need to man-
age conservation areas or protected areas (Boulangeat et al.,
2012).

4.6 Limitations of this modeling study

Our simulation results are constrained by the model formu-
lation and the assumptions underlying aDGVM2. Disagree-
ment between model results and data used for benchmarking
can be attributed to the fact that the aDGVM2 simulates po-
tential natural vegetation, whereas remote sensing products
integrate land use. This implies that enhancing the model to
simulate observed land cover patterns would require addi-
tional information on anthropogenic impacts. Anthropogenic
activities such as deforestation, habitat conversion and urban-
ization can modify the interactions between climate, plant
communities and biomes (Hansen et al., 2001).

In addition data–model disagreement can be explained by
model uncertainties and processes currently not considered
in aDGVM2. For instance, aDGVM2 uses carbon alloca-
tion parameters that are not easily measurable in the field,
which limits the evaluation of simulated mechanisms. The
model currently does not account for carbon that plants in-
vest into nutrient acquisition (e.g., mycorrhiza) or into de-
fenses against predation and pathogens (Zemunik et al.,
2015). There is insufficient ecophysiological data from the
study region, which are required for parameterization of trait
ranges used to simulate regional plant communities (Kumar
and Scheiter, 2019). The complexity of the interactions be-
tween global change and biomes as well as biodiversity is
difficult to model in the absence of such data. While the
model currently captures effects related to CO2 fertilization

and temperature, associated mortality reasons such as pests
attack and heat damage to plant tissues are insufficiently rep-
resented in the models. The low resolution of input data, both
soil and climate data, also limits the model’s capability to
capture high-resolution regional heterogeneity in vegetation
distribution. Further, the strength of CO2 fertilization mod-
eled in aDGVM2 may be overestimated because the effect of
nutrient limitation on productivity is not included in this ver-
sion of aDGVM2 (Körner et al., 2005; Terrer et al., 2018).
Despite these caveats, we are nonetheless confident in cap-
turing general patterns of future global change and its conse-
quences for biomes and their boundaries in South Asia.

5 Conclusions

The model reproduced the contemporary distribution of
biomes, biomass, evapotranspiration and tree height. We in-
vestigated the impact of eCO2 and climate change on South
Asian biomes and found that climate change and CO2 fer-
tilization in combination are substantial drivers of biome
change and that elevated CO2 concentrations altered the cli-
matic envelope of biomes in addition to causing increases in
biomass, tree height and canopy cover. Continued biomass
increase indicates that South Asia’s natural vegetation will
likely remain a carbon sink in the 21st century. Our results
also imply that woody encroachment poses a threat to open
biomes and causes the transition of savanna biomes to de-
ciduous forest in the future. The savanna biome is important
in the context of biodiversity conservation. We showed that
bioclimatic niches of biomes are not static but are specific for
given CO2 concentrations. We therefore argue that Whittaker
plots used to illustrate niches of biomes need to be adjusted
for future climate conditions. We also found that the simu-
lated decrease in biomass-specific ET is more pronounced in
scenarios with eCO2 than in scenarios with fCO2, which in-
dicates that water use efficiency will likely increase due to
CO2 fertilization.

The biome transitions simulated under eCO2 and chang-
ing climate indicate the need to adjust ecosystem manage-
ment, mitigation strategies and conservation policies for pro-
tected areas to allow targeted long-term management. To un-
derstand the significance of ecological responses to climate
change, it is essential to improve and expand biological mon-
itoring activities (Loreau et al., 2001). To achieve this, the
most vulnerable biomes that we identified in this study could
be proposed as high-priority targets for programs that mon-
itor vegetation–climate interactions, productivity and biodi-
versity (Proença et al., 2017).
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request. Please contact any of the authors.
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