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S1 Mathematical details on the INSBIRE approach

In-stream samples were taken in a longitudinal series which is formally identical to a time series problem. We re-arranged

the equations of the nutrient spiralling concept (Stream Solute Workshop, 1990) so that differences are replaced by current

(e.g. Cx) and past (e.g. Cx−1) values of series. These equations conform to a time series including past values of the same

variable as well as current and past values of other variables and are a form of non-linear autoregressive exogenous models

(NARX; e.g. Billings, 2013). Several studies used the original equations of the Stream Solute Workshop protocol (1990) and

solved them via variable transformation. Still, the results from a linear regression using transformed data and those of a

direct non-linear fit differ (e.g. Stedmon et al., 2000). Therefore, we regard a non-linear solving algorithm superior in terms

of  accuracy.  We proceeded  differently,  transforming  all  equations  into  a  NARX form.  Additionally,  we  extended  the

equations to incorporate interactions (Eqs. S7 and S8).

For the parameter determination we used a non-linear Bayesian fitting algorithm from the R package brms (Bürkner, 2017).

We choose priors to approximately fit knowledge from other studies (e.g. Mineau et al., 2016) while keeping them broad, so

they do not dominate the results. Priors and especially their limits were also adjusted to deliver converging models.

During a plateau  addition experiment,  concentration changes  in  a  conservative  tracer  due to dilution effects.  This  was

transformed into a NARX form (Eq. S1). We used this equation to determine the dilution factors and to correct measured

DOC and nutrient concentrations as well as DOM components by the measured changes in conductivity.

C x ,t=Camb , x, t+(C x −1 , t−Camb ,x , t )
dil x
dilx− 1

(S1)

x … index of longitudinal sampling points

t … index of addition date

Cx,t … concentration at point x and date t(variable)

Camb,x,t … ambient concentration at point x and date t(variable)

dilx … dilution factor at point x (once calculated fixed values)

A reactive substance can be modelled using Eq. (S2). Variable x from the original equation (Stream Solute Workshop, 1990)

was replaced by (dx−1 − dx) to address a case with several sampling points with different distances from the addition point.

C x ,t=Camb , x, t+(C x −1 , t−Camb ,x , t )
dilx
dilx− 1

e
dx −1−d x
sw

(S2)

sw … nutrient uptake length (parameter)

prior: sw∼Lognormal (400,200 ) , sw∈ [0.01,10000 ]

dx … distance of point x from origin (fixed)
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Using the flow velocity and the water depth, the nutrient uptake velocity can be calculated from sw (Eq. S3). This is useful to

reduce flow-dependent effects.

1
sw

=v f (uz )
− 1 (S3)

C x ,t=Camb , x, t+(C x −1 , t−C amb ,x , t )
dil x
dilx− 1

e(d x−1− dx )v f (uz )
−1 (S4)

vf … nutrient uptake velocity (parameter)

prior: v f∼Lognormal (0.7,3 ) , v f∈ [0.01,35 ]

u … flow velocity (calculated by Hec-RAS, then fixed)

z … water depth (calculated by Hec-RAS, then fixed)

The areal uptake rate can then be modelled using Eqs. 5 and 6:

v f=U Cx , t
−1 (S5)

C x ,t=Camb , x, t+(C x −1 , t−C amb ,x , t )
dilx
dilx− 1

e(d x−1−dx )U Cx,t
− 1

(uz )
− 1 (S6)

U … areal uptake rate (parameter)

prior: U∼Lognormal (2,3 ) ,U∈ [0.01,40 ]

A linear  relation  between uptake  velocity  and  concentration  is  needed  to  properly  calculate  U.  In  other  cases,  uptake

functions such as the Michaelis-Menten formulation can be used  to describe the observed uptake-concentration relation

(Stream Solute Workshop, 1990). An uptake efficiency loss, mathematically described by a power function, was shown in

experiments with N-NO3 (Dodds et al., 2002; O’Brien et al., 2007). We additionally tested a linear function, an asymptotic

regression  function  and  an  exponential  function.  A mechanistic  argumentation for  either  of  these  functions is  difficult

(Stream Solute Workshop, 1990), but testing the suitability with the Bayes factor (BF) leads to good empirical fits.

To include interactions, we added a product of power functions for relevant compounds and nutrients (Eqs. S7 and S8).

Where beneficial, the wetted width w was added to analyse influences of the stream bed surface on retention processes. The

added value l was added as a degree of freedom to allow curves, that do not go through the origin. The relevance of these

effects was tested in the modelling process by comparing different combinations of compounds in models using the BF,

which can also be a measurement of variable importance.

v f=kw (l+∏i Ci , x ,t
mi

)
(S7)
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C x ,t=Camb ,t+(C x− 1 ,t−Camb ,t )
dilx
dilx −1

e
(dx −1−dx )kw( l+∏i C i ,x, t

mi

)(uz )
−1 (S8)

k … uptake rate factor (parameter)

prior: k∼Lognormal (0.7,3 ) , k∈ [0.01,35 ]

w … wetted width, constant 1 to represent no influence (calculated by Hec-RAS, then fixed)

l … additive value (parameter)

i … index of nutrient or DOM component

Ci,x,t … concentration of compound i at point x and date t (variable)

mi … exponent determining the strength of the relations (parameter)

prior: mi∼Normal (−0.2,0.4 ) ,mi∈ [−1,1 ]if a dampening influence was assumed from literature

mi∼Normal (0.2,0 .4 ) ,mi∈ [−1,1 ]if a stimulating influence was assumed

Since we had no prior information for mi from previous studies, it was important to test the influence of the prior on the final

results by using a uniform distribution and normal distributions with different parameters. In the presented models, the priors

for any parameters did not dominate the results, but were important to ensure a convergent of the fitting algorithm. Due to

the double-exponential structure of Eq. (S8) in mi, the limits were essential.

To set up the models, we used the difference of concentrations (Eq. S9) as the dependent variable and restructured the

equations  above  accordingly.  We  assumed  a  normal  error  distribution  for  the  differences  of  concentrations  and  the

differences of fluorescence. The nature of the measurements would also allow a log-normal error distribution, but our data

clearly deviated from that assumption, so we used a normal error distribution.

D x, t=C x, t−Camb ,t (S9)

Dx,t … concentrations (DOC, SRP, N-NO3) or fluorescence (DOM PARAFAC components) deviation from ambient 

conditions

model error assumptions:D x, t∼Normal ( μx , t , σ
2 )

μx,t … calculated difference from Eqs. (S2), (S4) and (S8) restructured to suffice Eq. (S9)

The accuracy  of  the  model  can  be  compared to  expected  measurement  errors  (e.g.  lab  instrument  errors,  errors  from

sampling procedure) and show the point where no additional information can be expected from the data  (for proper error

propagation analysis see Haefner, 2012, chapter 9). Using the simulated probability density of the residuals, which is in the

same units as the measured values, we get an impression if further information can be expected from the data.

The 95% probability interval of the residuals can be a meaningful metric of the model accuracy.  This approach makes it

easier to distinguish between signal and noise compared to an approach where Eqs. (S2), (S4) and (S8) are applied step-wise
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and error propagation is not considered. It can also help in planning the experimental scheme to improve the signal-to-noise

ratio  because  amongst  others,  the error  depends  on the instruments,  sample handling,  concentrations  and concentration

difference of consecutive samples.

S2 Additional resources

Table  S1: Samplings, dates,  discharge, concentrations of nutrients and fluorescences (additionally in %) of DOM PARAFAC
components. Additionally introduced amounts are calculated from expected ambient and measured values at the listed dates.

source date code discharge DOC P-PO4 N-NO3 N-NO2 N-NH4 Hum-mic (C1) Hum-ter (C2)
Hum-micter

(C3)
Qui (C4) Trp (C5) Tyr (C6)

l s ¹⁻ µg l ¹⁻ µg l ¹⁻ µg l ¹⁻ µg l ¹⁻ µg l ¹⁻
Fmax

RU
%

Fmax

RU
%

Fmax

RU
%

Fmax

RU
%

Fmax

RU
%

Fmax

RU
%

ambient

none 2018-07-16 A 0.93 1301 9.4 2548 11.1 10.9 0.53 44 0.21 17 0.24 20 0.08 6 0.13 10 0.02 2

none 2018-07-23 C 0.73 1459 13.9 1890 12.9 10.2 0.56 42 0.26 20 0.27 20 0.09 7 0.11 8 0.03 2

none 2018-07-30 F 0.69 1279 11.2 1963 10.4 9.5 0.54 44 0.23 19 0.26 21 0.09 7 0.11 9 0.01 0

none 2018-08-06 I 0.67 1420 18.8 2194 11.3 13.4 0.57 43 0.25 19 0.27 20 0.10 7 0.13 10 0.01 1

none 2018-08-13 L 0.47 1257 11.3 1893 7.8 10.5 0.54 43 0.23 18 0.25 20 0.09 7 0.13 10 0.01 1

none 2018-08-20 O 0.41 1229 3.3 1640 5.4 0.9 0.51 44 0.21 18 0.24 20 0.08 7 0.12 10 0.01 1

material additionally introduced during leachate additions

corn 2018-08-07 J 0.58 403 4.9 75 0.2 0.0 0.00 0 0.00 0 0.00 0 0.00 0 0.07 59 0.05 41

corn 2018-08-14 M 0.82 1534 19.5 25 0.8 0.0 0.03 19 0.01 9 0.01 4 0.02 12 0.04 25 0.05 31

cow

dung
2018-07-19 B 0.80 2284 62.0 0 5.9 60.4 0.20 28 0.09 12 0.08 11 0.11 16 0.12 17 0.12 16

cow

dung
2018-07-26 E 0.64 1235 31.5 710 1.1 0.0 0.15 19 0.02 3 0.02 3 0.04 5 0.12 15 0.45 56

leaves 2018-07-24 D 0.60 272 2.6 193 3.8 1.5 0.28 26 0.00 0 0.00 0 0.03 3 0.57 54 0.18 17

leaves 2018-07-31 G 0.41 1225 25.2 707 0.0 0.4 0.59 67 0.00 0 0.00 0 0.08 9 0.03 4 0.17 20

nettles 2018-08-16 N 0.44 148 2.3 92 51.4 23.0 0.00 0 0.00 0 0.00 0 0.01 15 0.01 35 0.02 49

nettles 2018-08-21 Q 0.38 188 8.5 252 33.8 26.9 0.04 18 0.01 5 0.01 3 0.02 10 0.05 26 0.07 37

pig

dung
2018-08-02 H 0.46 469 37.6 157 5.5 45.1 0.09 25 0.06 16 0.03 9 0.01 3 0.06 17 0.11

2
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pig

dung
2018-08-09 K 0.72 251 49.0 193 5.0 62.3 0.05 25 0.02 10 0.02 10 0.02 9 0.05 27 0.03
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Table S2: Correlation of nutrient and DOM fraction uptake velocity vf; Bayes factor in brackets; only shown, if Bayes factor > 1.

Hum-micter (C3) Qui (C4) Tyr (C6)

Trp (C5) 0.78 (2.98) 0.50 (1.31)

Tyr (C6) 0.66 (6.10)

DOC 0.58 (4.63) 0.41 (1.36)

Table S3: Model comparison vf with and without random effects (mixed models, MM) of source and addition date. The Bayes R²
shows  the  absolute  model  performance  and  the  BF  indicates  whether  the  addition  of  the  random effects  leads  to  a  model
improvement.

Original

model
Source effects Date effects comment

model Bayes R²
Bayes

R²
BF

Bayes

R²
BF

Hum-mic (C1) 0.51 0.48 0.17 0.50 4.61 The date has a substantial impact on vf.

Hum-ter (C2) 0.34 0.49 0.7 0.49 0.65 Neither date nor source improved the model.

Hum-micter

(C3)
0.52 0.51 0.21 0.54 0.22 Neither date nor source improved the model.

Qui (C4) 0.46 0.46 0.09 0.45 0.12 Neither date nor source improved the model.

Trp (C5) 0.29 0.29 1.39 0.48 134.23 The date has a decisive influence on vf.

Tyr (C6) 0.29 0.34 10.68 0.70 1.2e8
Both,  source  and  date  improved  the  model,  but  the

effects of date were stronger.

DOC 0.26 0.46 1563 0.46 146
Both,  source  and  date  improved  the  model,  but  the

effects of source were stronger.

NO3 0.16 0.29 0.41 0.29 0.65 Neither addition nor source improved the model.

SRP 0.56 0.57 0.17 0.56 0.11 Neither addition nor source improved the model.
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Table  S4:  BFs  for  inclusion of  model  parameters  and probability  intervals  of  the  parameter  estimates.  The  Table  provides
additional information to Table 7. vf: uptake velocity,  k: uptake rate factor, w: wetted width,  C i:  fluorescence of PARAFAC
components, mi: exponent of relation, l: additive parameter

fraction/

nutrient
most probable model (Eq. 1) BF in favour of variable inclusion

estimates, [95% 

probability interval]

Hum-mic

(C1)
vf = k w C1mc1

P(w ≠ 1): BF = 7.34

P(mc1 ≠ 0): BF = 1.4

k = 2.11, [1.65, 2.59]

mc1 = −0.38, [−0.93, 0.28]

Hum-ter

(C2)
vf = k (l + DOCmc)

P(l ≠ 0): BF = 2.36

P(mc ≠ 0): BF = 7.69

k = 0.11, [0.01, 0.61]

l = 3.16, [0.23, 8.01]

mc = 0.32, [−0.42, 0.60]

Hum-

micter (C3)
vf = vf - -

Qui (C4) vf = k C1mc1 C4mc4
P(mc1 ≠ 0): BF = 2.54

P(mc4 ≠ 0): BF = 2.44

k = 0.71, [0.14, 2.23]

mc1 = −0.25, [−0.89, 0.39]

mc4 = −0.35, [−1.05, 0.38]

Trp (C5) vf = k C2mc2 C5mc5
P(mc2 ≠ 0): BF = 2.71

P(mc5 ≠ 0): BF = 3.13

k = 0.85, [0.10,3.20]

mc2 = −0.44, [−1.23, 0.35]

mc5 = −0.55, [−1.31, 0.22]

Tyr (C6) vf = k C2mc2 C6mc6
P(mc2 ≠ 0): BF = 2.34

P(mc6 ≠ 0): BF = 1.46e7

k = 0.27, [0.06, 0.76]

mc2 = −0.23, [−0.98, 0.52]

mc6 = −0.96, [−1.25, 

−0.69]

DOC vf = k C6mc6 P(mc6 ≠ 0): BF = 10.50

k = 0.30, [0.10, 0.75]

mc6 = −0.62, [−0.95, 

−0.18]

NO3 vf = vf - -

SRP vf = k w SRPmp
P(w ≠ 1): BF = 31.93

P(mp ≠ 0): BF = 6.21

k = 26.18, [10.17, 39.20]

mp = −0.31, [−0.45, 

−0.07]
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Figure S1: Probability density of the residuals for DOC, SRP and five of the six PARAFAC components. Comparison
of two models: the simple model is according to Eq. (4), the complex one is the best performing model found, which is
a mixed model including the leachate source (DOC), a mixed model including the sampling (Trp (C5) and Tyr (C6))
or the interaction models from table 5 (SRP, Hum-mic(C1), Hum-ter (C2), Qui (C4)). The dotted vertical lines are the
boundaries of the 95% probability density interval. The probability density interval is smaller for better performing
models.

References

Billings,  S.  A.:  Nonlinear  System  Identification:  NARMAX  Methods  in  the  Time,  Frequency,  and  Spatio-Temporal
Domains, John Wiley & Sons, 605 pp., 2013.

7

95

100



Bürkner,  P.-C.:  brms:  An  R  Package  for  Bayesian  Multilevel  Models  Using  Stan,  J.  Stat.  Soft.,  80,  1–28,
https://doi.org/10.18637/jss.v080.i01, 2017.

Dodds, W. K.,  López,  A. J.,  Bowden,  W. B.,  Gregory,  S.,  Grimm, N. B.,  Hamilton, S.  K.,  Hershey,  A. E.,  Martí,  E.,
McDowell, W. H., Meyer, J. L., Morrall, D., Mulholland, P. J., Peterson, B. J., Tank, J. L., Valett, H. M., Webster, J. R., and
Wollheim,  W.:  N  uptake  as  a  function  of  concentration  in  streams,  J.  N.  Am.  Benthol.  Soc.,  21,  206–220,
https://doi.org/10.2307/1468410, 2002.

Haefner, J. W.: Modeling Biological Systems: Principles and Applications, Springer Science & Business Media, 486 pp.,
2012.

Mineau, M. M., Wollheim, W. M., Buffam, I., Findlay, S. E. G., Hall, R. O., Hotchkiss, E. R., Koenig, L. E., McDowell, W.
H., and Parr, T. B.: Dissolved organic carbon uptake in streams: A review and assessment of reach-scale measurements, J.
Geophys Res.-Biogeo., 121, 2019–2029, https://doi.org/10.1002/2015JG003204, 2016.

O’Brien, J. M., Dodds, W. K., Wilson, K. C., Murdock, J. N., and Eichmiller, J.: The saturation of N cycling in Central
Plains  streams:  15N  experiments  across  a  broad  gradient  of  nitrate  concentrations,  Biogeochemistry,  84,  31–49,
https://doi.org/10.1007/s10533-007-9073-7, 2007.

Stedmon, C. A., Markager, S., and Kaas, H.: Optical Properties and Signatures of Chromophoric Dissolved Organic Matter
(CDOM) in Danish Coastal Waters, Estuar. Coast. Shelf S., 51, 267–278, https://doi.org/10.1006/ecss.2000.0645, 2000.

Stream Solute Workshop: Concepts and Methods for Assessing Solute Dynamics in Stream Ecosystems, J. N. Am. Benthol.
Soc., 9, 95–119, https://doi.org/10.2307/1467445, 1990.

8


	S1 Mathematical details on the INSBIRE approach
	S2 Additional resources
	​ References

