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Abstract. For decades, predominant soil biogeochemical
models have used conceptual soil organic matter (SOM)
pools and only simulated them to a shallow depth in soil.
Efforts to overcome these limitations have prompted the de-
velopment of the new generation SOM models, including
MEMS 1.0, which represents measurable biophysical SOM
fractions, over the entire root zone, and embodies recent un-
derstanding of the processes that govern SOM dynamics.
Here we present the result of continued development of the
MEMS model, version 2.0. MEMS 2.0 is a full ecosystem
model with modules simulating plant growth with above-
and belowground inputs, soil water and temperature by layer,
decomposition of plant inputs and SOM, and mineraliza-
tion and immobilization of nitrogen (N). The model simu-
lates two commonly measured SOM pools – particulate and
mineral-associated organic matter (POM and MAOM, re-
spectively). We present results of calibration and validation
of the model with several grassland sites in the US. MEMS
2.0 generally captured the soil carbon (C) stocks (R2 of 0.89
and 0.6 for calibration and validation, respectively) and their
distributions between POM and MAOM throughout the en-
tire soil profile. The simulated soil N matches measurements
but with lower accuracy (R2 of 0.73 and 0.31 for calibra-
tion and validation of total N in SOM, respectively) than
for soil C. Simulated soil water and temperature were com-
pared with measurements, and the accuracy is comparable
to the other commonly used models. The seasonal variation
in gross primary production (GPP; R2

= 0.83), ecosystem

respiration (ER; R2
= 0.89), net ecosystem exchange (NEE;

R2
= 0.67), and evapotranspiration (ET; R2

= 0.71) was well
captured by the model. We will further develop the model to
represent forest and agricultural systems and improve it to
incorporate new understanding of SOM decomposition.

1 Introduction

One of the biggest challenges facing humanity is the need
to halt the rise in atmospheric CO2 concentrations, which
requires a combined set of actions including management
of terrestrial ecosystems to not only protect existing car-
bon (C) stocks but also increase net sequestration to actively
remove CO2 from the atmosphere (Griscom et al., 2017;
NASEM, 2019). Such management strategies can only be
reliably identified and implemented when guided by deci-
sion support tools and ecosystem models that can accurately
predict C dynamics between plants, microbes, and soils, and
their responses to environmental and management drivers
using current scientific understanding (e.g., Cotrufo et al.,
2015; Lehmann and Kleber, 2015; Liang et al., 2017; Sokol
et al., 2019). While these models should ideally be verifiable
using measurements of their constituent pools and fluxes,
the soil components of most historical ecosystem models
were built around conceptual, rather than physically defined,
pools (e.g., RothC, Coleman and Jenkinson, 1996; CEN-
TURY, Parton et al., 1987). However, recent paradigm shifts
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in understanding of soil organic matter (SOM) formation
and persistence have led to these belowground components
of ecosystem models being redesigned (e.g., Ahrens et al.,
2015; Robertson et al., 2019) (a full list of current mod-
els and their model structure comparison is in Table S1 in
the Supplement). Ensuring that the soil pools and fluxes are
measurable is particularly important if these models are to
be used for estimating tradable C credits or outcome-based
C sequestration incentives. These models must also simulate
the entire soil profile, to account for C stocks and dynamics
in deep (i.e., > 30 cm) soil layers.

Ultimately, these contemporary models that represent ob-
served mechanisms of C and nitrogen (N) dynamics will
go beyond supporting management decisions, serving also
as tools for scientific enquiry, enabling testing of new hy-
potheses and identification of knowledge gaps. While many
models currently exist and are used for these purposes (e.g.,
DayCent, Parton et al., 1998; DNDC, Li et al., 1992; RothC,
Coleman and Jenkinson, 1996), and new ones are being de-
veloped (e.g., MEND, Wang et al., 2013; CORPSE, Sulman
et al., 2014; MIMICS, Wieder et al., 2014; COMISSION,
Ahrens et al., 2015), arguably none fully address all of the
needs. As a result, terrestrial C storage remains the largest
source of uncertainty in future C cycle projections (Ciais
et al., 2014). Despite its critical role in global biogeochem-
ical cycling, soil organic C is not well constrained in Earth
system models (Todd-Brown et al., 2013), highlighting the
need for improved simulation of plant–microbe–soil C feed-
backs.

Few soil biogeochemical models have made measurable
SOM pools a focal point (Abramoff et al., 2018; Fatichi et al.,
2019; Robertson et al., 2019; Wang et al., 2013), despite
their importance for guiding model development and judg-
ing model performance. To our knowledge, only MEMS 1.0
(Robertson et al., 2019) used measured SOM fraction data
for model calibration and verification (Table S1), while other
models continue to calibrate and validate them against total
soil C. Many conventional SOM models, such as RothC and
DayCent, do not model measurable SOM pools, and there-
fore attempts to validate their size have required abstrac-
tion based on measurable fractions (e.g., Zimmermann et al.,
2007). Instead, these models partition total SOM into discrete
pools based on turnover times but differ in their approaches
to simplify the complex mechanisms that govern SOM dy-
namics. This is one reason why simulations of SOM pools
and resulting total soil C stocks can vary greatly between
models, sometimes predicting contrasting responses to the
same driving inputs and environmental change (Smith et al.,
1997; Todd-Brown et al., 2014), though there are many other
potential contributors (Sulman et al., 2018). The use of phys-
ically defined, measurable pools allows for detailed data–
model comparison during parameterization and validation,
with the potential to produce more accurate models that bet-
ter reflect real-world processes. Many methods for separating
SOM into fractions with different biogeochemical properties

and turnover rates currently exist, but simple physical sep-
arations yielding two to four SOM fractions and including
some form of particulate (POM) and mineral-associated or-
ganic matter (MAOM) are widely used (Christensen, 2001;
Cotrufo et al., 2019; Poeplau et al., 2018). These fraction-
ation methods are relatively inexpensive and simple to per-
form, while yielding fractions with contrasting formation
and decomposition processes (Lavallee et al., 2020), making
them ideal candidates for representation in biogeochemical
models.

Carbon dynamics and stock distribution between POM
and MAOM are linked to N (Cotrufo et al., 2019). Moving
beyond C-only models to coupled C and N dynamics enables
representation of mechanistic feedbacks, such as N limita-
tion of litter decomposition (Craine et al., 2007; Knorr et al.,
2005; Zhang et al., 2008) and microbial C use efficiency
(CUE) (Liu et al., 2018; Sinsabaugh et al., 2016; Soares
and Rousk, 2019). Additionally, it provides constraints on
C and N flows according to well-known stoichiometric rela-
tionships (Buchkowski et al., 2019; Kyker-Snowman et al.,
2020). Many models that include both C and N calculate
N fluxes based on donor pool sizes and are constrained by
the C : N ratios of receiving pools, with little or no repre-
sentation of the microbial processes that control N dynam-
ics. While this method is relatively simple and parsimonious,
it fails to capture plant–microbe feedbacks that regulate N
flows. For example, microbiota may alter exoenzyme pro-
duction or mine SOM (Mooshammer et al., 2014) to access N
to meet their needs, and plants may increase exudate produc-
tion to stimulate these processes (Tian et al., 2019). Failing
to represent N dynamics resulting from plant–microbe feed-
backs may lead to inaccuracies in model predictions. Emerg-
ing models such as the MIMICS-CN have begun to repre-
sent these processes in greater detail (Kyker-Snowman et al.,
2020), but most ecosystem models continue to use more sim-
plified, microbially implicit structures to simulate N dynam-
ics.

Physicochemical and biological properties differ markedly
between subsoils (e.g., > 30 cm deep) and topsoils, and there
is increasing evidence that models of soil C and N storage
and cycling should consider topsoils and subsoils separately.
Subsoils hold more than half of the total soil C (Batjes, 2014;
Harper and Tibbett, 2013), and SOM formation and stabi-
lization processes differ from topsoils because key proper-
ties including soil texture and primary inputs to SOM – i.e.,
plant inputs vs. vertical transport of dissolved organic matter
(DOM) – vary with soil depth (Rumpel and Kögel-Knabner,
2011). Despite their importance for C storage, sensitivity to
perturbation, and the remarkable differences from topsoils,
only a few recent ecosystem models explicitly represent sub-
soil C dynamics (e.g., Ahrens et al., 2015; Camino-Serrano
et al., 2018; Fatichi et al., 2019). Most commonly, subsoil is
modeled as an extension of topsoil with very limited if any
validation (Braakhekke et al., 2013; Ota et al., 2013; Wieder
et al., 2014), largely because of a paucity of subsoil data.
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Incorporating emerging understanding of soil biogeo-
chemical processes into models has the potential to improve
model performance and increase their utility for hypothesis
testing and predictions. Microbial processing of plant inputs
is a key process by which SOM is formed and mechanis-
tically links SOM pools and plant litter quality, microbial
CUE, and C : N stoichiometry. For example, labile, water-
soluble litter components are more likely to be processed
by microbes with relatively high efficiency, forming pro-
portionally more MAOM than structural litter components
(Cotrufo et al., 2013; Haddix et al., 2016; Lavallee et al.,
2018). This has been termed the in vivo pathway, but MAOM
may also form directly from plant inputs by an ex vivo path-
way that bypasses microbial processing (Liang et al., 2017).
The relative importance of these pathways is thought to vary
greatly between the rhizosphere and the bulk soil, with ex
vivo MAOM production playing a larger role in the bulk
soil, where the density of microbial cells is lower and DOM
has less chance of being intercepted prior to mineral associ-
ation (Sokol et al., 2019). Inputs to SOM also differ between
the rhizosphere and bulk soil, with aboveground plant inputs
only contributing appreciably to SOM in the bulk soil due to
its spatial separation from roots and their exudates, which are
the predominant inputs to SOM formation in the rhizosphere
(Sokol and Bradford, 2019). Though these ideas have gained
recognition with the scientific community and have spurred
significant experimental work and hypothesis testing, to our
knowledge no soil biogeochemical models yet represent all
of these recent advances simultaneously.

The MEMS 1.0 model (Robertson et al., 2019) is a soil
carbon model with physically defined pools that was devel-
oped in accordance with recent advances in SOM dynam-
ics. including the microbial efficiency–matrix stabilization
(MEMS) hypothesis (Cotrufo et al., 2013) and interactions
between litter chemistry and MAOM saturation behavior
(Castellano et al., 2015). Here we present MEMS 2.0, which
builds on MEMS 1.0 to form a complete ecosystem model
including N cycling, soil vertical water flows, DOM trans-
port, plant growth, root input, and soil temperature dynam-
ics. MEMS 2.0 represents distinct plant inputs and micro-
bial processes in the litter layer and rhizosphere, and DOM,
POM, and MAOM dynamics in the bulk soil to a user-defined
depth above the bedrock. We describe the model structure,
parametrization, and verification against measured ecosys-
tem fluxes as well as soil C and N fractions along the full
soil profile at multiple US grassland sites from the National
Ecological Observatory Network (NEON). We focused on
grasslands for this first full ecosystem version of the MEMS
model because grasslands are among the largest terrestrial
biomes in the world, and temperate grassland soil contains
15 % of the global soil organic C stocks (Watson et al., 2000).
Grasslands have been the focus of major long-term biogeo-
chemical research, which makes them an ideal “model sys-
tem” to address questions related to soil C dynamics.

2 Methods

2.1 Model description

Starting from the MEMS 1.0 version (Robertson et al., 2019),
we developed a one-dimension ecosystem model, MEMS 2.0
(Fig. 1), which simulates litter layer, rhizosphere, and bulk
soil C, N, water, and temperature, as well as plant growth.
The main required inputs are daily weather (maximum tem-
perature, minimum temperature, and precipitation; solar ra-
diation is optional), soil properties, plant characteristics, and
management practices. The model produces outputs on a
daily time step. The soil water, soil temperature, plant and
microbial N uptake, and bioturbation processes run on a sub-
daily time step (hours) for higher prediction accuracy. A one-
dimension soil profile is divided into continuous soil hori-
zons in the model input file, with user-defined depths for
each horizon (the user-defined horizons need to be multiples
of 5 cm for the top 50 cm and multiples of 10 cm for below
50 cm). While executing a model simulation, the user-defined
soil horizons are further divided into thinner layers to effec-
tively solve partial differential equations (the model has fixed
depths for the layers 0–2 and 2–5 cm, then 5 cm increments
for 5–50 cm, and 10 cm increments for layers below 50 cm).
The basic structure of each soil layer is the same. The model
simulates a surface litter layer which interacts with the first
soil layer (Fig. 1). In each soil layer, the space is conceptually
divided into rhizosphere (rhizosphere goes as deep as the root
system) and bulk soil, though there is no explicit spatial di-
vision due to the one-dimensional structure. Each simulated
pool, including plant organs and soil organic pools, have both
C and N components. MEMS 2.0 is coded in Java with an
object-oriented structure (Fig. S1 in the Supplement). A full
list of all model equations and the corresponding variables
and parameters can be found in Tables S2–S4.

2.1.1 Litter layer and rhizosphere organic matter
dynamics

MEMS 1.0 incorporated the Litter Decomposition and
Leaching (LIDEL) model (Campbell et al., 2016). In MEMS
2.0, we modified this submodel to explicitly represent the
depolymerization of hydrolyzable and unhydrolyzable litter
pools and the microbial uptake of DOM, turnover, and con-
tribution to litter pools. Both aboveground and belowground
plant litter is divided into three pools based on its physico-
chemical structure (Fig. 1.). The water-soluble pool is deter-
mined as the hot-water extractable fraction of the initial litter,
which is continuously replenished during litter decomposi-
tion by the depolymerization of the structural litter compo-
nents (Soong et al., 2015) and is contributed by the water-
soluble components of microbial biomass turnover, as de-
scribed below. The litter structural component is separated
into a hydrolyzable pool, representing polymers, such as pro-
teins and cellulose, and an unhydrolyzable pool representing
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Figure 1. Schematic representation of the MEMS 2.0 ecosystem model, showing detailed pools and fluxes for the litter and soil components.
The full model represents carbon (C) and nitrogen (N) fluxes among atmosphere, plants, and soil in multiple soil layers down to a user-defined
depth. Inputs and recycling of N cause feedbacks to net primary productivity (NPP), which is allocated above (ANPP) or below ground
(BNPP) and at different depths, depending on vegetation and soil traits. Plant C and N litter inputs (simulated in the plant growth submodel;
not shown in detail here) are allocated to three different measurable detritus pools that differ in their solubility and chemical structure.
Root exudates contribute to the rhizosphere dissolved organic matter (DOM) pool. These plant input pools lose mass through leaching,
microbial catabolism/anabolism, and fragmentation, with different rates depending on the pool C : N chemistry, temperature sensitivity, and
mineral N and water demand/availability. Microbial and plant debris contribute to three physically defined and measurable soil organic matter
(SOM) pools, according to current understanding (e.g., the dual-pathway model of SOM formation (Cotrufo et al., 2015), in vivo vs. ex vivo
microbial processing (Liang et al., 2017), and point of entry (Sokol et al., 2019)): soil DOM, particulate organic matter (POM), and mineral-
associated organic matter (MAOM). The MAOM consists of exchangeable and stable component pools (eMAOM and sMAOM, respectively).
Microbial pools immobilize and mineralize N, which feeds back to plant production and soil biogeochemical processes. Multiple soil layers
are represented by the same belowground model structure, with DOM and mineral N moving through the soil profile and roots contributing
fresh inputs at depth.

lignin, suberin, cutin, and microbial polysaccharide–lignin
complexes (McKee et al., 2016). These litter fractions are
commonly measured in decomposing litter or forage anal-
yses (Rowland and Roberts, 1994; Soest et al., 1991). Both
structural litter components in the litter layer and rhizosphere
produce DOM through their depolymerization and are con-
tributed by structural microbial components as microbes turn
over in the litter layer and rhizosphere, respectively (Fig. 1).

Similarly to MEMS 1.0, the depolymerization and decom-
position processes follow a first-order decay, with rate modi-
fiers as multipliers:

−
dCi

dt
= k ·mi() ·Ci, (1)

where Ci is a carbon pool in the ith layer, k is the decay rate,
and mi() is a function of the multiplication of the individual
modifiers for the ith layer. For the aboveground soluble and
hydrolyzable pools, the modifiers are normalized functions
of temperature, moisture, lignocellulose index (LCI; it is de-
fined as the ratio between acid-insoluble and acid-soluble

+ acid-insoluble, following Soong et al., 2015), and micro-
bial C : N ratio (Table S2). The unhydrolyzable pool does
not include the LCI modifier. The belowground soluble pool
contributes together with the root exudate to the rhizosphere
DOM which decomposes as described above for the above-
ground soluble litter pool.

Both the litter layer and the rhizosphere have a microbial
biomass pool. Microbes assimilate C from the soluble and
DOM pools in the litter layer and the rhizosphere, respec-
tively. Microbial assimilation of C uses the concept of CUE,
which is calculated dynamically as a function of the substrate
C : N ratio.

CUE=micCNmax/(CNsubstrate+CNCUE_km), (2)

where micCNmax is the maximum C : N ratio of microbes,
CNsubstrate is the substrate C : N ratio, and CNCUE_km is a
curve-adjusting parameter. The substrate C : N ratio calcula-
tion includes the organic N in the pool as well as the available
mineral N. Any C taken up by microbes from the soluble and
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DOM pool that is not assimilated (based on CUE) is respired
as CO2. If the N from the substrate is more than the poten-
tial N demand of microbes, net mineralization occurs. Other-
wise, there is immobilization that consumes mineral N. The
uptake of inorganic N (ammonium and nitrate) is modeled
explicitly, and we assumed no preferential uptake between
ammonium and nitrate. The model first estimates a CUE
(Eq. 2); then it calculates the potential demand for inorganic
N based on the amount of carbon assimilated and the min-
imum C : N ratio of microbes (Eq. S23 in the Supplement).
The actual uptake is a result of competition with the plants
(hourly time step calculation based on their demand). The
C : N ratio of microbes is dynamic as a result of CUE and the
N availability from organic and mineral sources. When there
is insufficient mineral N for immobilization, C : N of the
microbial biomass increases. The increased microbial C : N
leads to a reduced decomposition rate. Microbial death also
follows a first-order equation, and the necromass splits be-
tween soluble, hydrolyzable, and unhydrolyzable litter pools.
The litter decomposition model was created first as a stand-
alone model and was incorporated into MEMS 2.0 after ver-
ification with measured data from Soong et al. (2015).

2.1.2 Bulk soil organic matter dynamics

The model has five organic matter pools in the bulk soil
(Fig. 1). The POM is defined either by density as < 1.85–
1.6 gcm−3 or by size as > 50–60 µm after aggregate disper-
sion (Lavallee et al., 2020). Inputs to the POM pool are from
the fragmentation and incorporation of the structural plant
and microbial litter components into the bulk soil (Cotrufo
et al., 2015), from the aboveground litter layer for the topsoil
layer, and from the rhizosphere for all soil layers. Bioturba-
tion (soil mixing) is simulated as POM moves downward in
the soil profile using an equation with the same form as the
diffusion equation (Elzein and Balesdent, 1995) (Eq. S12 in
Table S2).

The bulk soil DOM pool receives inputs from the above-
ground litter soluble pool (for the top layer only), from the
rhizosphere DOM, from depolymerization of POM, and from
desorption of MAOM. In subsurface soil layers, DOM can
also leach from layers above as an input to the bulk soil DOM
pool. In the rhizosphere, a greater fraction of the DOM pool
is taken up by microbes (in vivo pathway) vs. being exported
to bulk soil DOM without microbial processing (DOM trans-
port from rhizosphere to bulk soil is simulated as a diffusion
process controlled by soil water content and a diffusion co-
efficient; Eq. S9). In the bulk soil, a greater proportion of
the DOM pool can directly enter the MAOM pool via the ex
vivo pathway, in accordance with the point-of-entry hypoth-
esis (Sokol et al., 2019).

The MAOM pool is modeled as two pools: exchangeable
MAOM (eMAOM) and stable MAOM (sMAOM) (Schrumpf
et al., 2020). Both eMAOM and sMAOM have an upper limit
of saturation, which is calculated based on soil clay and silt
content (Hassink, 1997; Six et al., 2002). Inputs to eMAOM
are from DOM, assuming it can adsorb to mineral surfaces
or existing organo-mineral associations with weak reversible
bonding (Kleber et al., 2007). This process is modeled using
the Langmuir isotherm, which assumes instantaneous equi-
librium between adsorption and desorption (Mayes et al.,
2012). The DOM can also associate with mineral surfaces
through strong bonding, forming sMAOM. This adsorption
rate is modeled as a function of water-filled pore space, sand
content, and the saturation level of sMAOM (Eq. S15). The
sMAOM primarily receives inputs from microbial external
polymeric substances (Kleber et al., 2015), which are thought
to be strongly protected by mineral association but which can
be slowly consumed by microbes through direct access (i.e.,
no DOM intermediary; Eq. S15). Bulk soil microbes assimi-
late DOM, and their turnover contributes to POM, sMAOM,
and DOM, with CO2 as a byproduct based on microbial CUE
(Eq. S14). The depolymerization of POM, decomposition of
MAOM, and decomposition of DOM follow Eq. (1).

2.1.3 Soil temperature, water, and solutes

Soil surface temperature in MEMS 2.0 is calculated follow-
ing Parton et al. (1998). It is a function of air temperature,
litter biomass, plant biomass, and snow depth. The soil sur-
face temperature serves as the upper boundary condition for
the soil temperature calculation. To calculate soil tempera-
ture, we adopted the method by Bittelli et al. (2015) to nu-
merically solve the heat transport equation.

Water and solute transport are calculated simultaneously
using the model described in Ross (2003). This fast and sim-
plified method numerically solves the Richards equation for
water transport and the advection–dispersion equation for so-
lute transport (Bittelli et al., 2015). The Brooks and Corey
(1964) method is used to describe the soil hydraulic prop-
erties. If the soil hydraulic parameters are not provided by
the user, the model estimates the parameters based on soil
texture, bulk density, and SOM content using a pedotransfer
method (Saxton and Rawls, 2006). The litter layer is assumed
to hold water based on a concept similar to field capacity and
residual soil water content (SWC) (Ogée and Brunet, 2002).
In MEMS 2.0, solutes simulated are DOM, ammonium, and
nitrate. Mineral N can be taken up by plant root and mi-
crobes. We modeled the competition between plants and mi-
crobes based on their demand (the amount of N required to
reach maximum N content) using an hourly time step and as-
suming equal opportunity at each time step (Kuzyakov and
Xu, 2013).

MEMS 2.0 calculates potential evapotranspiration (ET)
using calculated reference ET from a grass reference sur-
face, combined with a dynamic crop coefficient for specific
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plant types (Allen et al., 1998). The reference ET is estimated
with the Hargreaves method, which uses daily maximum and
minimum temperature data as inputs (Hargreaves and Allen,
2003). The calculation of potential evaporation and transpi-
ration is adapted from Zhang et al. (2018) and Raes et al.
(2009), which use estimated canopy cover from leaf area in-
dex and crop coefficients. Actual evaporation and transpi-
ration are outputs of the soil water submodel as described
above.

2.1.4 Plant growth

The plant growth submodel is modified from the Light
INTerception and UtilLisation Version 5 (LINTUL5) crop
model (Wolf, 2012) and works on a daily time step. In the
MEMS 2.0 plant growth submodel, both annual and peren-
nial herbaceous plants can be simulated. Dry matter accu-
mulation or net primary production (NPP) is simulated using
radiation use efficiency. The model can also directly use daily
NPP as an input driving variable. Estimation of plant respi-
ration uses the method from Yin and Laar (2005).

Aboveground plant components include leaves, stems, and
seeds. Belowground components are coarse roots, fine roots,
and exudates. Partitioning between roots and shoots is based
on species- or variety-specific parameters defining dry mat-
ter allocation from emergence to maturity. The partitioning
of aboveground dry matter to leaves, stems, and seeds adopts
the method in Zhang et al. (2018). Plant phenology is calcu-
lated based on heat accumulation and photoperiod (Soltani
and Sinclair, 2012; Yin and Laar, 2005). Root distribution is
modeled using the simple curve from MEMS 1.0 (Robertson
et al., 2019). Rooting depth increases from plant emergence
to the end of the plant growth phase as a function of pheno-
logical development. Root exudation is a species- or variety-
specific fixed fraction of C allocated below ground. A full list
of the parameters is in Table S4.

2.1.5 Fire events

Fire has a significant impact on C and N cycling in grasslands
(Ojima et al., 1994; Soong and Cotrufo, 2015), and we in-
cluded a simple fire module in MEMS 2.0. We acknowledge
that fire deserves a more detailed representation, including
the production of pyrogenic organic matter (PyOM) and its
cycling in soil (Bird et al., 2015; Knicker, 2011). However, a
more detailed representation of fire impacts on C was beyond
the scope of this model version, and we intend to develop a
PyOM module in a future version. In MEMS 2.0, natural and
prescribed fire events can be scheduled in the management
schedule input file of the model. We used an approach mod-
ified from the DayCent model (Hartman et al., 2020; Ojima
et al., 1994). A fire event removes aboveground live and dead
biomass and surface litter, according to user-defined percent-
ages of each pool (default values of 60 %, 80 %, and 80 % re-
moval for aboveground live biomass, standing dead, and lit-

ter, respectively). Pyrogenic C is returned to the soil surface
and added to the unhydrolyzable pool of the aboveground
litter layer. A user-defined fraction of the N in burned plant
biomass can also be returned to the soil surface (Hobbs et al.,
1991).

2.2 Observation data sets used for model calibration
and validation

We calibrated the litter decomposition model using a data set
from a laboratory incubation of a range of litter types (Soong
et al., 2015). Leaf litters covering a wide range of C : N ratios
(10.8, 52.8, 92.3, 36.1, and 126.6 for alfalfa, ash, bluestem,
oak, and pine, respectively) and LCI values (4.7, 9.8, 8.42,
18.8, and 24.4 for alfalfa, ash, bluestem, oak, and pine, re-
spectively) were collected and incubated for 1 year. During
this time, DOM was leached and measured periodically, and
the total dry matter remaining was recorded twice on day of
year 95 and 365.

Soil samples extracted from megapits at the NEON sites
(Hinckley et al., 2016) were used to calibrate and validate the
model for this study (Fig. 2, Table 1). A soil core was taken at
each megapit, divided by horizon, homogenized, and charac-
terized. The NEON sent archived 2 mm sieved and air-dried
soils to Colorado State University, where each sample was
heat-treated to 116 ◦C for 18 h and then fractionated to quan-
tify C and N in DOM, POM, and MAOM. Soil subsamples
(5.5–6.0 g) were first shaken in 35 mL of deionized water for
15 min and then centrifuged at 1874 g. DOM was decanted
off over a 20 µm nylon filter, weighted, and place in a−20 ◦C
freezer for later analysis. Any particulate material caught on
the filter was set aside as light POM. Sodium polytungstate
(SPT) at a density of 1.85 gcm−3 was then added to the
soil residue with 12 glass beads and shaken for 18 h to dis-
perse soil aggregates. After dispersion, the tubes were cen-
trifuged at 1874 g for 30 min. The remaining suspended light
POM was aspirated onto a 20 µm filter using a vacuum filtra-
tion system. The pellet was then rinsed multiple times with
deionized water to remove any residual SPT through a se-
ries of pellet disruption and centrifugation.Once thoroughly
rinsed, the remaining heavy fraction was wet-sieved at 53 µm
to separate the course (> 53 µm) from the fine (< 53 µm)
heavy fraction. All solid fractions were oven-dried at 60 ◦C.
Once dry, solid soil fractions were weighed and finely ground
to ensure homogenization before being analyzed for C and
N content on an elemental analyzer (Costech ECS 4010;
Costech Analytical Technologies; Valencia, CA, USA). This
fractionation scheme produced four distinct soil fractions:
DOM (water soluble, < 20 µm), light POM (< 1.85 gcm−3),
a heavy coarse fraction (> 53 µm and > 1.85 gcm−3), and a
heavy fine fraction (< 53 µm and > 1.85 gcm−3). We added
the two heavy fractions into one MAOM fraction because
of the relatively low C : N ratio of the heavy coarse fraction
(first quantile: 7.9; third quantile: 15.0), which was more sim-
ilar to the heavy fine fraction (first quantile: 7.3; third quan-
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Figure 2. Locations of the sites used for model calibration and validation. The sites are part of the National Ecological Observatory Network
(NEON), Soil Climate Analysis Network (SCAN), or AmeriFlux Network.

Table 1. Characteristics of the six sites used to calibrate and validate MEMS 2.0. Soil properties (average of top 20 cm) are from the megapit
soil samples of the National Ecological Observatory Network (NEON). Site IDs are from the NEON database.

Site ID Grass type MAT1

(◦)
MAP2

(mm)
NPP3

(gCm−2)
Soil family Sand

(%)
Clay
(%)

pH
(CaCl2)

Historical fire
interval4 (years)

CPER Shortgrass 8 370 216 Fine, loamy, mixed, superactive,
mesic. Aridic Argiustolls.

71.5 11.9 7.3 13

DCFS Mixed 5 490 501 Fine, loamy, mixed, superactive,
frigid. Typic Haplustolls.

31.5 34.5 6.2 13

KONZ Tallgrass 12 860 381 Fine, smectitic, mesic. Pachic Uder-
tic Argiustolls.

5.3 36.5 5.9 7

NOGP Mixed 5 400 394 Fine, loamy, mixed, superactive,
frigid. Typic Argiustolls.

17.5 25.1 6.1 13

OAES Mixed 15 670 260 Loamy, mixed, active, thermic.
Lithic Haplustepts.

12.7 17.0 7.6 4

WOOD Mixed 5 490 450 Coarse, loamy, over-sandy or sandy,
skeletal, mixed, superactive, frigid.
Typic Haplustolls.

57.3 18.1 6.8 13

1 Mean annual temperature. 2 Mean annual precipitation. 3 Mean annual MODIS NPP (Running et al., 2015). 4 Historical fire interval data are from Guyette et al. (2012). Frequency of
prescribed fire in the experimental period was different and obtained from the experimental records of individual sites.

tile: 12.7) than to the light POM (first quantile: 18.6; third
quantile: 42.44). We still lack a complete understanding of
the heavy coarse SOM fraction, and mechanistic research is
required to clarify its role and function in soil (Lavallee et al.,
2020). In the model, the MAOM was further divided into
exchangeable and stable MAOM pools, though we did not

measure these two fractions. Thus, we compared the mea-
sured MAOM with the simulated MAOM (sum of eMAOM
and sMAOM).

Five-year SWC and soil temperature data at four depths
from the Soil Climate Analysis Network (SCAN) (Schae-
fer et al., 2007) were used to verify the model representa-
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tion of moisture and temperature dynamics. For this evalua-
tion, we used four SCAN sites in the Great Plains represent-
ing wet, dry, hot, and cold climate with various soil textures
(Fig. 2). In addition, the model was tested with multiple years
of eddy covariance (EC) flux data (2007–2010), including
net ecosystem exchange (NEE), gross primary production
(GPP), ecosystem respiration (ER), and actual ET from an
EC tower at the Konza Prairie Biological Station (AmeriFlux
ID US-Kon; Fig. 2) (Brunsell et al., 2014). Although NEON
collects eddy covariance flux data (NEON, 2020a), the data
were not used for model testing in this study because avail-
able data are incomplete and from short monitoring periods.

2.3 Model setup, calibration, and validation

The six NEON grassland sites (Fig. 2) were used for testing
model performance of C and N dynamics. These grassland
sites were assumed to be at a steady state in terms of soil
C and N stocks, and a long-term simulation was conducted
to reach steady state for comparing the model output to the
measurement data (Robertson et al., 2019). In our testing,
300 years was determined to be the minimum time needed
for the system to reach steady state. The model input data
were collected from several different sources (Table S5). Our
measured MAOM C data from all NEON sites were used for
deriving the parameters for the saturation function (Hassink,
1997; Robertson et al., 2019) by fitting a boundary line to
the data (Fig. S2) (Feng et al., 2013). The daily NPP derived
from a MODIS product was used as input data in these simu-
lations (Table S5) (Running et al., 2015). Other plant-growth-
related parameters were set based on measurements and the
literature (Table S5). Although some of the NEON sites are
under livestock grazing, this version of the model does not
simulate grazing and its effect on plant growth and organic
matter decomposition (in the future development plan). The
input data of MODIS NPP could reflect some the effect of
grazing on plant production. Fire events were scheduled ac-
cording to the frequency reported in Guyette et al. (2012)
for the historical periods, and each event was assumed to be
in the spring. The frequency of prescribed fire in the experi-
mental period was obtained from the experimental records of
individual sites.

The SCAN sites were set up using their site-specific
weather and soil data (Table S6). The specific soil texture of
the EC site at Konza was not available. The nearby NEON
KONZ site soil has the same soil texture class (silty clay
loam), so soil parameters from NEON KONZ were used for
the EC site. The plant-related parameters were based on the
nearest NEON grassland site. The plant production parame-
ters for modeling the EC site were adjusted using the GPP
data of the first measurement year (2007) to reflect the pro-
ductivity at this specific location (NPP was simulated by the
model).

To test the litter decomposition module using the lab ex-
periment of litter decomposition for five types of plants in
Soong et al. (2015), we created a stand-alone litter decom-
position model written in R. Automated calibrations were
conducted to calibrate the stand-alone litter decomposition
model. In a second calibration, the MEMS 2.0 model was
calibrated with NEON grassland site data. The calibration
method used was a Markov chain Monte Carlo Bayesian
approach, specifically the DifferRential Evolution Adaptive
Metropolis (DREAM) (Vrugt and Ter Braak, 2011), using
the DREAM package in R (Vrugt, 2016).

Prior to the calibration, a global sensitivity analysis on
KONZ and CPER sites (wet and dry sites) was first con-
ducted to select the most sensitive parameters used in cali-
bration (Zhang et al., 2020a) based on the Sobol–Martinez
method (Baudin et al., 2016) in the R package “sensitivity”
(Iooss et al., 2020). The total sensitivity indices (Zhang et al.,
2020a) account for interactions between parameters, but only
SOM-related parameters were investigated. The parameter
ranges were estimated based on the values reported in the
literature and/or with estimates from manual calibration (Ta-
ble 2). The response variables used in the sensitivity analysis
were MAOM C and POM C in top 30 cm of the soil profile.

The six NEON sites were divided into calibration (KONZ,
CPER, WOOD, and DCFS) and validation (NOGP and
OAES) data sets. Our analysis follows the ecosystem model
calibration and uncertainty analysis using DREAM de-
scribed in Zhang et al. (2020a). The top 15 most sensitive
parameters were selected for calibration for the NEON grass-
land sites (Table 2). The measured MAOM C and POM C in
all horizons within the top 1 m of the calibration sites were
used in the objective function. Although NPP can be input
data in the model, it may still be modified by the model based
on soil N. The plant growth submodel calculates plant N de-
mand each day based on NPP, and when soil N cannot meet
the plant requirement to maintain the minimum C : N ratio in
biomass, the actual NPP is reduced accordingly. To prevent
the reduction in NPP below the yearly total NPP, this was
added in the objective function of the calibration.

All of the analyses were done in R (V3.5.1, R Core
Team, 2017). Model results were evaluated using the coef-
ficient of determination (R2), bias, and root mean square er-
ror (RMSE), which are commonly used in modeling studies
(Zhang et al., 2020b).

3 Results

3.1 Evaluating the stand-alone litter decomposition
model

The litter decomposition experiment (Soong et al., 2015)
showed that plant litter with a high C : N ratio and high LCI
value decomposes more slowly. The stand-alone litter de-
composition model represented this effect of litter chemical
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Table 2. Parameter names, definitions, ranges for sensitivity analysis, and calibrated optimal values. Listed in alphabetical order by parameter
name. Parameters in bold were the top 15 most sensitive parameters. The list of acronyms is CUE (carbon use efficiency), DOM (dissolved
organic matter), LCI (lignocellulose index), MAOM (mineral-associated organic matter), eMAOM (exchangeable MAOM), sMAOM (stable
MAOM), and POM (particulate organic matter).

Parameter name Symbol used
in equations

Definition Unit Optimal value
(range)

CN_Microbe_max micCNmax Maximum C : N of microbial biomass gC g−1 N 11.3 (10, 14)

CN_Microbe_min micCNmin Minimum C : N of microbial biomass gC g−1 N 6.7 (4, 8)

Coeff_LitterCNOnCUE CNCUE_km Coefficient used to calculate CUE as a function
of substrate C : N (Eq. S18)

gC g−1 N 5.1 (5, 15)

Coeff_MoistureEffOnDecomp_1 coeffw1 Coefficient used for the moisture effect on de-
composition for all pools (Eq. S27)

– 95.4 (10, 150)

Coeff_MoistureEffOnDecomp_2 coeffw2 Coefficient used for the moisture effect on de-
composition for all pools (Eq. S27)

– 11.3 (9, 13)

Coeff_Sorp_K coefflk Scaling coefficient used to estimate the bind-
ing affinity for the sorption of eMAOM pool
(Eq. S21)

– 4.5 (0.01, 5)

Coeff_TemperatureEffOnDecomp_1 coefft1 Coefficient used for the temperature effect on
decomposition for all pools (Eq. S26)

– 18.4 (15, 30)

Coeff_TemperatureEffOnDecomp_2 coeffsat2 Coefficient used for the temperature effect on
decomposition for all pools (Eq. S26)

– 0.21 (0.2, 0.4)

Conductivity_bioturbation Dbioturb Conductivity used for estimating bioturbation
(Eq. S12)

cm2 d−1 0.15 (0.001, 1)

CUE_max CUEmax Maximum CUE of microbes – 0.46 (0.45, 0.6)

Eff_LCIOnDecay_min LCIeff_min Minimum effect on litter decomposition corre-
sponding to LCI_min

– 0.35 (0.1, 0.5)

Frac_MAOMExchangeable fracEMAOMSat Fraction of the whole MAOM pool that is
eMAOM at saturation

– 0.078 (0.01, 0.2)

Frac_MicrobeToHydrol fractoHydro Fraction of the microbial necromass allocated
to the hydrolyzable litter pool

– 0.13 (0.1, 0.3)

Frac_MicrobeToPOM fractoPOM Fraction of the microbial necromass allocated
to the POM pool

– 0.052 (0.01, 0.1)

Frac_MicrobeToSoluble fractoSoluble Fraction of the microbial necromass allocated
to the soluble litter pool

– 0.65 (0.5, 0.7)

k_DOMDecay kDOM Maximum decay rate of DOM at optimal tem-
perature and moisture

d−1 0.95 (0.1, 1)

k_DOMSorp kadsorpSMAOM Maximum sorption rate of bulk soil DOM to
become sMAOM at optimal temperature and
moisture

d−1 0.013 (0.01, 0.5)

k_HydrolDecay khydro Maximum decay rate of hydrolyzable litter at
optimal temperature and moisture

d−1 0.014
(0.01, 0.05)

k_MAOMDecay kSMAOM Maximum decay rate of sMAOM at optimal
temperature and moisture

d−1 0.00034
(0.0001, 0.005)

k_MicrobeDeath kmicDeath Microbial death rate d−1 0.57 (0.1, 0.8)

k_POMDepolymer kPOM Maximum depolymerization rate of POM at op-
timal temperature and moisture

d−1 0.0033
(0.001, 0.01)
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Table 2. Continued.

Parameter name Symbol used
in equations

Definition Unit Optimal value
(range)

k_SolubleDecay ksoluble Maximum decay rate of soluble litter at optimal
temperature and moisture

d−1 0.37 (0.01, 1)

k_SolubleLeach_max ksolubleLeach Maximum leaching rate of soluble litter to
DOM pool with water

d−1 0.20 (0.1, 0.5)

k_StructToPOM kfragment Maximum litter fragmentation rate to produce
POM

d−1 0.11 (0.01, 0.2)

k_UnhydrolDecay kunhydro Maximum decay rate of unhydrolyzable litter at
optimal temperature and moisture

d−1 0.007
(0.001, 0.02)

LCI_max LCImax Maximum LCI used in the calculation of LCI
effect on litter decomposition

– 0.25 (0.2, 0.4)

LCI_min LCImin Minimum LCI used in the calculation of LCI
effect on litter decomposition

– 0.064 (0, 0.2)

Figure 3. Comparison between simulated and measured total litter layer carbon stocks and cumulative leached dissolved organic carbon
(DOC) for a variety of litter types over 1 year from a one-time litter addition event using the stand-alone litter decomposition model in
calibration. Measured data are from Soong et al. (2015).

composition on C loss rates. The predicted litter layer C stock
and cumulative dissolved organic carbon (DOC) leached dur-
ing the year matched the measured values accurately in the
calibration (Fig. 3). The R2, bias, and RMSE were 0.96, 2.93,
and 65.65 gm−2, respectively, for the total litter C stocks
across all pools and 0.9, −1.17, and 18.91 gm−2, respec-
tively, for cumulative DOC leached.

3.2 Evaluating soil organic matter predictions from
MEMS 2.0

The six NEON grassland sites cover diverse climates and soil
textures (Fig. 2 and Table 1), along with a wide range of soil
C concentration and fractional distributions between POM

and MAOM. The highest soil C content was found at the
DCFS site, likely a result of relatively high NPP (Table 1)
and relatively low decomposition rates (cold and relatively
dry climate). The WOOD site is only 11 km away from the
DCFS site, but the soil texture was different between the two
sites, and the WOOD site was not grazed by livestock, while
the DCFS was grazed. We expect the large difference in soil
texture (Table 1) may explain the difference in fractional dis-
tribution in the topsoil layers at these two sites, with WOOD
having a sandier texture and a larger proportion of total C and
N in POM. The CPER site is located in a semi-arid climate
with a soil texture of more than 70 % sand, though it still has
a relatively high proportion of total C and N in the MAOM
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Figure 4. Simulated and measured soil carbon (kgCm−3) in mineral-associated (MAOM) and particulate organic matter (POM) pools by
soil horizon for calibration and validation sites from NEON. Sites are described in Table 1.

Table 3. Statistics for the simulations of carbon and nitrogen
concentrations (kgm−3) by layers in total, mineral-associated
(MAOM), and particulate organic matter (POM) pools across the
NEON grassland sites used for calibration and validation of the
MEMS 2.0 model.

Carbon Nitrogen

MAOM POM Total MAOM POM Total

Calibration

R2 0.78 0.87 0.89 0.67 0.81 0.73
Bias −0.24 −0.62 −1.71 0.12 −0.14 −0.02
RMSE 3.64 2.14 4.37 0.62 0.29 0.6

Validation

R2 0.48 0.59 0.6 0.16 0.84 0.31
Bias 1.81 −1.09 0.01 0.33 −0.1 0.23
RMSE 4.75 2.82 6.17 0.86 0.13 0.84

fraction. The CPER site has the lowest soil C content as a
result of the low plant production and relatively high decom-
position rates. KONZ, OAES, and NOGP all have similar C
contents and approximately equal proportions of POM and
MAOM, though NOGP has slightly more C in POM in the
topsoil layer. At all sites, total soil C and N concentrations
decreased, and the proportion of soil C and N in MAOM in-
creased with depth (Fig. 4).

The calibrated model captured the distribution of C in
MAOM and POM along the soil profile well for the four cal-
ibration sites (Fig. 4, Table 3). The model also captured the

distribution of the soil C for the two validation sites well, but
with slightly lower accuracy compared with the calibration
data set (Table 3). The largest difference was found for the
first soil horizon of the NOGP site, where the model overes-
timated MAOM C by 68.7 %. The model underpredicted C
in the second and third horizon of the OAES site.

Our predictions of the soil N pools were slightly less ac-
curate compared to those of the soil C pools (Fig. 5 and
Table 3). Both the field measurements and model results
showed that most (> 50 % on average, especially in deeper
soil layers) of the C and N in grassland soils are stored in the
MAOM fraction, which is more resistant to decomposition.
As expected, the relative contribution of MAOM increases
with depth, as structural aboveground plant inputs only con-
tribute to POM in the top layer (Fig. 1), and structural root
inputs to POM decrease with depth.

All measured data come from a single sample (NEON
megapit) per site and soil depth, and they do not capture the
natural site variability. Thus we cannot exclude that some
of the discrepancy between measured and modeled values
may be attributed to lack of spatial repetition of the measured
samples.

3.3 Parameter sensitivity for soil organic matter
module in MEMS

A total of 27 parameters in the SOM module were tested
in the sensitivity analysis. The model sensitivity analysis
showed that C in MAOM at steady state was sensitive to dif-
ferent parameters than was POM, but the parameter rank-
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Figure 5. Simulated and measured soil nitrogen (kgNm−3) in mineral-associated (MAOM) and particulate organic matter (POM) pools by
soil horizon for calibration and validation sites from NEON. Sites are described in Table 1.

ings were similar between sites for the same pool of C
(Fig. 6). The decay rate of sMAOM (k_MAOMDecay) had
the largest effect on MAOM C, as expected. Similarly, the
POM depolymerization parameter (k_POMDepolymer) had
the largest effect on POM C. The second-most-sensitive
parameter for both MAOM and POM was the coefficient
used to define the temperature effect curve on decom-
position (Coeff_TemperatureEffOnDecomp_1). Decomposi-
tion is well known to be largely affected by temperature
(Conant et al., 2011). The MAOM C is also sensitive to
the fraction of total sorption capacity that is exchangeable
(Frac_MAOMExchangeable) and the sorption rate of DOM
to sMAOM (k_DOMSorp), while all other parameters had
relatively low sensitivity index values. All the other parame-
ters tested had relatively low impact on POM C. Almost all
the litter-decomposition-related parameters have low sensi-
tivity indices; these parameters may substantially affect C in
MAOM and POM within a short time after litter is produced,
but the effect is low when the system reaches steady state.
The parameters defining the soil water effect on decompo-
sition appeared to have a higher impact on both POM and
MAOM at the dry site CPER than at the wet site KONZ.

3.4 Evaluating the predictions of soil water, soil
temperature, and ecosystem fluxes

Soil temperature and moisture are the two major abiotic en-
vironmental factors controlling decomposition. Overall, the
model prediction for soil temperature is relatively accurate
(Table 4 and Fig. S3). The Nunn site in Colorado had lower
accuracy than the other sites. Regarding soil moisture, the
overall accuracy was lower than that of soil temperature. The
accuracy of model predictions of SWC decreases down the
soil profile (Table 4 and Fig. S3). Changes in SWC further
from the surface (100 cm) were small as most rainfall events
at these sites did not reach deeper soil depths.

The model predicted measured weekly cumula-
tive GPP with relatively high accuracy (R2

= 0.83,
bias= 2.98 gCm−2, and RMSE= 15.46 gCm−2). However,
it slightly overpredicted the peaks of GPP in summer
(Fig. 7). The model also captured the changes of ER with
R2
= 0.89, bias= 6.43 gCm−2, and RMSE= 9.02 gCm−2.

The difference between GPP and ER is NEE. As GPP
was overpredicted and ER was underpredicted, the NEE
prediction was biased in summer periods (R2

= 0.67,
bias= 3.45 gCm−2, and RMSE= 12.22 gCm−2). The mod-
eled actual ET matched the measurements with R2

= 0.71,
bias= 0.07 cm, and RMSE= 0.73 cm. The measurements
from the EC tower at the Konza Prairie used in this study
showed lower GPP, ER, and ET in 2009 compared with the
other 2 years (Fig. 7). However, the model predictions did
not show the same pattern. Due to the biases in predicted
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Figure 6. Total sensitivity indices from the global sensitivity analysis for steady-state C in mineral-associated (MAOM) and particulate
(POM) organic matter for the 0–30 cm depth at two sites. Site characteristics are presented in Table 1. Definitions of parameters are presented
in Table 2.

Table 4. The statistics of simulated soil temperature and water content of four SCAN sites for model testing. Daily values in the growing
season (between day of year 100 and 300) of 5 years (2014–2018) were used. Winter period is excluded because the moisture sensor measures
liquid water and the model predicts total water.

Fort Assiniboine, MT Rogers Farm, NE Nunn, CO Bushland, TX

Depth (cm) R2 RMSE Bias R2 RMSE Bias R2 RMSE Bias R2 RMSE Bias

Soil temperature (◦)

10 0.86 2.67 −1.19 0.67 3.25 −0.14 0.77 3.75 0.12 0.82 2.65 −1.39
20 0.90 2.08 −1.12 0.63 3.04 0.25 0.74 3.55 −0.31 0.86 2.19 −1.33
50 0.89 1.85 −1.12 0.43 3.91 1.80 0.69 3.42 −0.93 0.84 1.79 −0.97
100 0.87 2.23 −1.70 0.65 2.57 −0.24 0.54 5.65 −4.77 0.82 1.85 −1.22

Soil water content (mm−1)

10 0.48 0.08 −0.06 0.53 0.07 −0.02 0.49 0.05 0.03 0.69 0.04 0.01
20 0.40 0.06 −0.05 0.54 0.07 −0.04 0.42 0.05 0.04 0.74 0.06 −0.04
50 0.34 0.11 −0.10 0.23 0.13 −0.12 0.16 0.07 0.05 0.59 0.11 0.01
100 0.01 0.11 −0.11 0.25 0.17 −0.17 0.07 0.06 0.05 0.31 0.1 −0.07
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Figure 7. Comparison between weekly gross primary production (GPP), ecosystem respiration (ER), net ecosystem exchange (NEE), and
evapotranspiration (ET) from eddy covariance measurements at the KONZ prairie (Table 1) and simulated (validation data only). Data from
the year 2007 were used for GPP calibration.

GPP and ER, the model underestimated NEE in the summer
growing seasons of the 3 years.

4 Discussion

We built the MEMS 2.0 ecosystem model to represent state-
of-the-art understanding of plant–microbe–soil C and N dy-
namics, using biophysically defined and measurable pools
and fluxes. MEMS 2.0 included our new understandings of
microbe–mineral relationships (Cotrufo et al., 2013), dy-
namic CUE (Soares and Rousk, 2019), point of entry (Sokol
et al., 2019), saturation (Castellano et al., 2015; Feng et al.,
2013), and in vivo/ex vivo pathway (Liang et al., 2017). Our

goal was to have a tool that can be improved over time to rep-
resent different ecosystems and drivers (e.g., fire, fauna, and
management) as new understanding emerges and can be use-
ful for scientific research inquiry as well as decision support.
Here we discuss the novel capabilities of the MEMS 2.0.

4.1 Measurable pools

To our knowledge, there are no other models that were
calibrated and validated using measured soil C fractions
from multiple sites, except for MEMS 1.0 (Robertson et al.,
2019), although measurable pools are present in many new-
generation models (Table S1). However, as MEMS 1.0 lacks
soil water and separation of belowground and aboveground
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plant inputs, it was only able to capture overall patterns and
could not simulate individual sites with high accuracy. An-
other model, CORPSE, only compared two values of MAOM
data from two sites with simulated results (Sulman et al.,
2014), and it is hard to judge the model performance with
two data points. The MEMS 2.0 model simulated C and N
distribution in MAOM and POM in all soil horizons which
matched the measurements relatively well (Table 3, Figs. 4
and 5). This suggests that the theories of MAOM and POM
formation and persistence used in our model may be robust;
however, further testing is certainly needed.

Our Bayesian optimization showed there is a large differ-
ence between the POM and sMAOM pools in terms of their
decomposition rates, further confirming the need to consider
these two pools separately when predicting soil C stocks
(Cotrufo et al., 2019). The calibrated values for these two
parameters – the maximum depolymerization rate of POM
and maximum decay rate of stable MAOM – were 0.0033
and 0.00034 d−1, respectively, which indicated the average
turnover time for sMAOM was an order of magnitude slower
than POM. This generally aligns with a wealth of experi-
mental data quantifying average turnover times of these two
SOM fractions (von Lützow et al., 2007; Tiessen and Stew-
art, 1983).

4.2 Topsoil vs. subsoil

The formation and dynamics of SOM in topsoil and subsoils
are believed to be very different (Ota et al., 2013; Johnson
et al., 2014), but many current models do not represent these
differences explicitly. There have been some efforts to mod-
ify traditional models to better represent subsoil processes;
however the underlying assumptions in these models do not
reflect our current understanding of SOM formation in sub-
soil. For example, the modified RothC model for subsoil
SOM in Jenkinson and Coleman (2008) assumed that all the
SOM pools move downward in the soil profile at the same
rate and that the decomposition rate constant (k in our Eq. 1)
decreases exponentially along the depth. Yet it is the verti-
cal movement of DOM which is known to be a key driver of
SOM distribution in subsoils (Ota et al., 2013); thus MEMS
2.0 simulates this transport. Also, the bioturbation that moves
POM down through the soil profile has been found to be a
key input of SOM to subsoils (Johnson et al., 2014), so we
included it in MEMS 2.0.

Our measurements showed that the fraction of POM in
the topsoil is substantially higher than that in the subsoil.
This can be explained as the topsoil directly receives above-
ground litter and a large proportion of the root litter, which
are primary inputs to POM, while the subsoil receives pro-
portionally less litter and more DOM and microbially derived
compounds, which are primary inputs to MAOM. MEMS
2.0 captured this pattern (Fig. 4). Regarding our modeled
MAOM and POM C stocks in the topsoil, they were con-
sistent with the measurements for the calibration sites and

the OAES site used for validation. However, the model over-
estimated MAOM C in the topsoil at the NOGP site. The
NOGP site has lower sand content in the topsoil relative to
the other sites, which results in a higher predicted MAOM
saturation limit according to the linear equation used in the
model (Eq. S24 and Fig. S2; the saturation limits for NOGP,
DCFS, and WOOD were 45.0, 34.8, and 21.35 kgCm−3, re-
spectively) (Feng et al., 2013). The high MAOM saturation
limit may explain the overprediction of MAOM C in the top-
soil of NOGP. Although sand content (or the sum of clay
and silt content) has been used for estimating MAOM satura-
tion deficit in many studies, other studies have suggested that
soil texture alone may not be the best indicator (Beare et al.,
2014; Curtin, 2002; Rasmussen et al., 2018). The MEMS 2.0
simulations of C distribution and C fractions in MAOM and
POM in deeper soil layers matched the measurements rela-
tively well. With advancements in understanding of C and
N in deep soils built into MEMS, we were able to represent
the distribution of C of these grassland sites across the range
of climates and soil properties. The largest discrepancy be-
tween predicted and measured MAOM C in deeper layers is
at 25 cm (third soil layer in Fig. 4) at the WOOD site. The
reason might again be related to the simulated MAOM satu-
ration. The sand content of the top two layers of this site is
55 % and 59 %, but it increases to 74 % in the third layer. The
low simulated MAOM saturation limit in this layer may have
constrained the accumulation of C in the MAOM pool in our
simulation. Overall, the model tended to underestimate POM
C in the deeper layers across all sites, and there are several
possible reasons for this. We use a simple representation of
bioturbation by soil fauna that moves POM downward in the
soil (Eq. S12). We used a constant coefficient for all sites
(decreases along the soil profile as a function of root distri-
bution) without considering differences in climate, soil prop-
erties, and fauna community composition. The uncertainty in
root depth and distribution (Jackson et al., 1996) and the as-
sumption that the bioturbation rate is a function of root dis-
tribution are other possible reasons for the underestimation
of POM C in deeper layers in the model. It is also possible
that the maximum POM decomposition rate in deep soil is
reduced compared with the topsoil (Gill et al., 1999), but be-
cause these dynamics are not well understood we chose to
use the same maximum specific decomposition rate for all
soil layers. There are very limited data on soil bioturbation
and decomposition in subsoil, and we believe models includ-
ing MEMS 2.0 can be substantially improved as more data
on these processes become available.

4.3 First-order vs. microbially explicit

While MEMS 2.0 uses first-order decay, it also represents
microbial moderators of decomposition rates. The decay
equation used in MEMS 2.0 (Eq. 1) is different from the first-
order method used in traditional SOM models (e.g., CEN-
TURY model). The decomposition rate in MEMS 2.0 is me-
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diated by the dynamic microbial C : N ratio, and a dynamic
CUE is used for microbial assimilation. This microbially me-
diated decay is also different from the commonly called “mi-
crobially explicit” approach, in which microbial biomass di-
rectly interacts with the decomposition rate (e.g., CORPSE
model). Luo et al. (2016) stated that – although the micro-
bially explicit models might better explain priming effects,
microbial acclimation, and pulse responses to some environ-
mental changes – they tend to produce unrealistic oscillatory
responses to perturbations, and their simulated C storage is
not sensitive to C input. Georgiou et al. (2017) proposed
a way to reduce the oscillation and correct the insensitiv-
ity to C input by introducing a density-dependent formula-
tion of microbial turnover. Decomposition is a complex pro-
cess involving a community of microbes and various extra-
cellular enzymes, and, while recent models with microbial
groups and/or extracellular enzymes explicitly represented
have been developed (e.g., MEND model), there is lack of
evidence that these models can be widely applied to differ-
ent environmental conditions, and the parameters required
are not readily available for large regional applications. For
instance, the lack of data for parametrization may lead to
treating a variable enzyme pool as a constant, resulting in a
decomposition equation equivalent to a first-order equation,
as in the case of the FoBAAR ecosystem model (Sihi et al.,
2018). To avoid too complex a model structure and to enable
wide applicability of the model, we chose to use a micro-
bially moderated first-order approach in MEMS 2.0.

The simulation of the litter decomposition experiment
with the stand-alone MEMS litter model and the simulated
EC flux data showed that the modified first-order approach
in the MEMS model captured the temporal dynamics of de-
composition. The simulated C fluxes matched the EC ob-
servations, and the accuracy was comparable to or better
than other published modeling studies (Chang et al., 2013;
Schaefer et al., 2012; Yan et al., 2015). Measurements at the
KONZA site show less plant C assimilation and lower ER
during the 2009 growing season compared with the other 2
years (Fig. 7). However, the air temperature, precipitation,
and solar radiation in 2009, especially over the growing sea-
son, were similar to conditions in the other 2 years. Since
these weather variables are the main drivers of interannual
variability in the model (assuming that management is con-
stant over time), the model does not explain the observed dif-
ference in growing season C fluxes in 2009. It is possible that
a factor not accounted for in the model (e.g., differential pest
pressure) may have caused lower plant C assimilation and
respiration in 2009.

We acknowledge that MEMS 2.0 may not simulate the
priming effect on SOM decomposition well. However, the
mechanisms behind the priming effect are still not clear (Li
et al., 2018). Contrary to the assumption used in microbially
explicit models, some studies find no robust correlation be-
tween soil microbial biomass and priming (Liu et al., 2017).
Studies also show the quality of substrate and N availabil-

ity might mediate the priming effect (Stewart et al., 2015;
Kuzyakov, 2010; Chen et al., 2014). We will continue to fol-
low advancements in the understating of the priming effect
and will modify the model to represent it when there is more
consensus around mechanisms.

4.4 Microbial control on N

Our model explicitly represents the N mineralization and im-
mobilization processes and uses a dynamic microbial C : N
ratio to control the N concentration in SOM pools instead of
fixing the C : N ratios or setting ratio limits for SOM pools
(e.g., DayCent model). MEMS 2.0 calculates the demand of
mineral N from microbes and plants, and then the actual up-
take of mineral N is a competition between them. The FUN-
CORPSE model (Sulman et al., 2017) calculated N uptake
using the FUN hypothesis (Brzostek et al., 2014), and the
calculation relies on fixed C : N ratios in plant components.
While the assumption of constant C : N ratios in plant com-
ponents (e.g., of wood tissue) is common for trees, herba-
ceous plants are known to have a wide range of C : N ratios
depending on the availability of mineral N in the soil (e.g.,
Schepers et al., 1992). In MEMS 2.0, the C : N ratios in plant
components are dynamic and depend on mineral N availabil-
ity and uptake.

MEMS 2.0 predicted soil organic N stocks reasonably but
with lower overall accuracy than soil C (Fig. 4, Table 3), pos-
sibly because soil N cycling is more complex. One of the
possible causes is the uncertainty in our input data of the at-
mospheric N deposition and biological N fixation, which are
the two main external inputs of N to these grassland sites.
Another possible cause is that N consumed and excreted by
grazers is not accounted for in our simulations. The simula-
tion of N and use of measured pools make MEMS 2.0 rela-
tively unique with regard to new-generation models, most of
which either do not model N or have not been validated with
measured soil N (Table S1).

4.5 Point of entry and in vivo/ex vivo pathway

Soil is conceptually divided into rhizosphere and bulk soil
compartments in MEMS 2.0, allowing for representation of
differences in inputs and SOM formation processes between
the two (i.e., “point of entry” sensu Sokol et al. 2019).

The leaching of DOM from the rhizosphere to bulk soil is
modeled as a diffusion process that is a function of the water-
filled pore space (Eq. S9). This leaching process is in most
cases much slower than the leaching of soluble fraction of
litter from the soil surface (Eqs. S9 and S1). As a result, the
soluble fraction of root litter is more likely to be processed by
microbes in the rhizosphere before entering bulk soil than is
surface litter. The microbially processed (in vivo) and unpro-
cessed (ex vivo) DOM is combined into one DOM pool in the
model. However, the ratio of these two DOM sources affects
the C : N ratio of the DOM pool, and once combined they
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can be absorbed to the mineral surface, implicitly represent-
ing the in vivo and ex vivo pathways of MAOM formation
(Fig. 1).

4.6 Separation of eMAOM and sMAOM

MEMS 2.0 includes two pools of MAOM, characterized as
“exchangeable” and “stable”, with the underlying assump-
tion that a certain fraction of the MAOM pool is associ-
ated with the mineral surface with weak binding and thus
exchangeable (Kleber et al., 2007). The MEND model uses
a similar structure, where a Q pool is defined as the ad-
sorbed phase of DOM, which is separate from the stable
MOC (mineral-associated carbon) pool.

In MEMS 2.0, we defined separate saturation limits for
eMAOM and sMAOM. The sum of the limits is the total sat-
uration limit for a soil defined by the linear equation (Eq. S24
and Fig. S2). A parameter (Frac_MAOMExchangeable) was
used to define the limit for eMAOM relative to the total sat-
uration limit. The value of this parameter was not based on
measurements but optimized in our Bayesian optimization
algorithm. A wide prior range was used because there are
currently few data upon which to base this partitioning. The
actual amounts of eMAOM and sMAOM as well as their pro-
portions in MAOM are dynamic in the model depending on
soil texture, litter quality, water flow, and microbial activ-
ity. Our result showed the proportion of eMAOM in MAOM
ranged between 14 % and 27 % in the topsoil layers of the
NEON sites in our simulations, with a trend of increasing at
deeper depths. Experimental data are needed to verify these
findings. One hurdle to producing these data is reaching sci-
entific consensus around a reliable method for measuring ex-
changeable MAOM (Schrumpf et al., 2020). We plan to ver-
ify and re-parameterize the partitioning of MAOM between
exchangeable and stable pools in the future as these data be-
come available.

4.7 Environmental variables

4.7.1 Simulated soil temperature

The method used for soil surface temperature estimation was
adopted from the empirical method used in the DayCent
model, which has been tested in various systems (Parton
et al., 1998; Zhang et al., 2013). Our validation also showed
the predicted soil temperature at 10 cm matched the measure-
ments. The model tended to underestimate soil temperature
at 10 cm at Nunn, Colorado, in 2014 (Fig. S3), though the
bias was much smaller in other years. This may be due to
an underestimation of the amount of surface litter and live
biomass in that year as the litter and biomass quantities are
the two independent variables in the empirical equation. The
lower accuracy at 100 cm at Nunn (Table 4) is likely caused
by a biased estimation of the thermal conductivity for soils
with high sand content and low soil moisture. According to

the classical heat transfer equation, the main factor influenc-
ing soil temperature is the thermal conductivity when the two
boundary conditions (soil surface and soil bottom) are well
estimated (Bittelli et al., 2015). This underestimation of soil
temperature at deep depth could lead to an underestimation
of decomposition rate and overprediction of soil organic car-
bon (SOC) stock. However, at the NEON CPER site (close to
the Nunn site in distance and similar in soil texture), SOC at
deeper depths was slightly underestimated. This may again
be related to the saturation limit of soils with high sand con-
tent discussed previously.

4.7.2 Simulated soil moisture

Our simulation accuracy of soil water is similar to other mod-
els (e.g., Shelia et al., 2018). It is common to see lower pre-
diction accuracy for SWC in deep soil layers in modeling
studies (e.g., Zhang et al., 2018). A model like MEMS 2.0
that receives only daily precipitation input without rainfall
intensity data cannot very accurately estimate the amount
of infiltration and surface runoff, especially for large rainfall
events. The SWC at deeper depths is impacted by this inac-
curacy to a greater extent than the upper soil layers. For ex-
ample, when infiltration was underestimated, the topsoil was
filled with water regardless of the rainfall intensity, but the
deep soil may not receive any water as the downward flow
did not reach deeper depths. Additionally, for a 1D model,
it is not possible to capture the slope and hill position ef-
fects on lateral flow of water. The use of pedotransfer equa-
tions, which carry significant uncertainty in estimating soil
hydraulic properties (Saxton and Rawls, 2006), added un-
certainty and contributed to the bias. The SWC at 100 cm
at the Rogers Farm site was constantly close to saturation
(Fig. S4), while the model predictions were at field capac-
ity. It is likely that there was a relatively high water table at
that site (no measurements available) because otherwise the
SWC at 100 cm would be at field capacity for a free drained
soil. However, for a 1D model, water table depth is needed
to be provided as an input to simulate a high water table, and
this information was not available for the Rogers Farm site.
As none of the NEON sites used in this study has a shallow
water table, it is not possible to test the model accuracy on
SOM dynamics in such situations.

4.7.3 Effect of temperature and moisture on
decomposition

Parameters related to soil temperature and moisture effects
on decomposition were found to be relatively sensitive in
our sensitivity analysis. We used a temperature effect curve
(which served as a modifier in Eq. 1) similar in shape to that
in MEMS 1.0 but used a different equation with fewer pa-
rameters (Eq. S26 and Fig. S4). Both curves assume the slope
of the decomposition rate curve (reflecting the sensitivity of
decomposition to temperature) decrease at very high temper-
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atures, which is different from a Q10 curve with a consistent
increase in the slope of reaction rate with temperature. This
decrease in the sensitivity of decomposition rates to temper-
ature at high temperature is supported by field observations
(e.g., Del Grosso et al., 2005), and our calibrated temperature
effect curve was very similar to the recently calibrated curve
used in the DayCent model (Gurung et al., 2020) (Fig. S5).
Our calibrated soil moisture effect curve was also similar to
the curve used in DayCent (Fig. S5).

In a sensitivity analysis of the DayCent model, Gurung
et al. (2020) found that the top four most sensitive parame-
ters for soil C are the maximum decomposition rate of the
passive pool, the maximum decomposition rate of the slow
pool, and the two parameters controlling the curve of tem-
perature effect on decomposition. The passive and slow pools
are the two largest soil C pools in the DayCent model. This
is similar to our results for the MEMS 2.0 model, where the
most sensitive parameters were the decay rates of the POM
and MAOM pools and the temperature effect on decomposi-
tion. The role of temperature in controlling decomposition is
much higher than the other abiotic factors in both models. By
studying several SOM models, Sierra et al. (2015) found that
temperature has a stronger control than moisture on the sen-
sitivity of decomposition rates, which is also supported by
experimental evidence (Reichstein et al., 2005; Yuste et al.,
2007).

4.8 Model limitations and future work

Following the same design concept of MEMS 1.0, we aimed
to keep the model as parsimonious as possible while repre-
senting new understanding of SOM dynamics and litter de-
composition. Here we describe what we consider to be the
main limitations of the model, which we will address during
future model development and improvement.

4.8.1 Grazing

In the current model version, large ungulate grazing is not
explicitly modeled, but we plan to incorporate representation
of grazing management in the future. In a global review of
grassland, McSherry and Ritchie (2013) found that moderate
grazing may increase or decrease total soil C depending on
grass type, and the mean effect was generally within± 10 %.
Even for heavy grazing, the mean effect is around ± 15 %.
Grazing impacts ecosystem C and N dynamics in many ways,
including by removing aboveground plant biomass and re-
ducing plant litter (Piñeiro et al., 2010), modifying plant
growth rates and biomass allocation (Matches, 1992; Wei
et al., 2011), changing root exudation (Hamilton et al., 2008;
Sun et al., 2017), and adding C and N inputs from feces and
urine (Matches, 1992; McSherry and Ritchie, 2013). Man-
agement practices such as adaptive multi-paddock grazing,
which may alter soil C and N stocks compared with con-

tinuous grazing (Byrnes et al., 2018), need to be accurately
modeled to fully understand C dynamics in grassland.

4.8.2 Temperature responses of SOM fractions

We used the same temperature responses for all SOM frac-
tions in MEMS 2.0. The differential temperature responses
of SOM fractions have been suggested (Conant et al., 2011;
Davidson et al., 2000; Davidson and Janssens, 2006) and
demonstrated in past studies (Benbi et al., 2014). Results
are not consistent, however, especially between lab and field
studies, and more data are needed to accurately quantify the
differences and provide measurements for model calibration.
Specifically, measurements of temperature effects on pro-
cesses involved in POM and MAOM formation and decom-
position – such as CUE, enzyme activities, and microbial res-
piration rates – would enable more accurate representation of
temperature effects on soil C and N dynamics in future ver-
sions of the MEMS model.

4.8.3 Microbiota

Currently, microbiota is modeled as a single entity in each
model compartment, despite the significant differences be-
tween microbial groups in growth forms, life strategies,
biomass stoichiometry, substrate preferences, and many traits
that influence C and N cycling. We plan to increase the com-
plexity of the microbial aspects of the model in future model
versions, beginning with separation of bacteria and fungi,
which will include representing arbuscular and ectomycor-
rhizal systems separately because of their highly contrasting
traits (Graaff et al., 2010; Hodge et al., 2001). In future model
versions, bacterial and fungal pools will have different N de-
mands, CUEs, growth rates, substrate preferences, pH prefer-
ences, responses to disturbance, and necromass contributions
to plant litter and SOM pools.

4.8.4 Soil pH effects

Soil pH is a static soil property in MEMS 2.0, but pH is dy-
namic in nature and has important effects on plant growth
(Islam et al., 1980), microbial activity (Walse et al., 1998),
and SOM dynamics (Averill and Waring, 2018). The grass-
land sites in our simulation have close to neutral pH, and it is
thought to be relatively stable through time. However, repre-
senting other sites, especially those where shifts in pH may
be a major driver of C and N dynamics (e.g., fertilized sys-
tems), will require dynamic modeling of pH and its effect
on decomposition. This is a major goal of future model de-
velopment efforts. Furthermore, soil mineralogy and redox
conditions play important roles in mediating MAOM forma-
tion and persistence (Hall et al., 2015; Huang and Hall, 2017;
Kögel-Knabner et al., 2008), but they are currently not in-
cluded in MEMS 2.0.

Finally, MEMS 2.0 has been developed, calibrated, and
tested using temperate grassland sites, and further develop-
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ment and testing for different ecosystem types and climatic
regions are needed to increase the utility of the model.

5 Conclusions

MEMS 2.0 is an ecosystem model built on the same foun-
dational principles as MEMS 1.0: (1) the use of measurable
pools that can be directly validated, (2) the MEMS hypoth-
esis linking litter chemistry to microbial substrate use effi-
ciency and SOM formation, and (3) saturation behavior of
the MAOM pool. In developing MEMS 2.0, we created a
full ecosystem model and expanded upon the foundational
principles to incorporate updated understanding of SOM dy-
namics, such as the point-of-entry framework (Sokol et al.,
2019) and in vivo and ex vivo pathways of SOM formation
(Liang et al., 2017), through the entire soil profile. The result-
ing model represents ecosystem C and N pools in grassland
systems across a wide range of climates and soils. In addi-
tion to calibrating and verifying the model in diverse sys-
tems beyond grasslands, future development will also aim to
incorporate additional controls on SOM dynamics such as
management impacts and additional environmental factors,
including variable pH and redox conditions, mineralogy, soil
microbial community structure, and temperature sensitivi-
ties. Much of the planned development hinges upon the avail-
ability of data quantifying these relationships across ecosys-
tems, soil types, and soil depths, and we encourage experi-
mentalists to continue this important work and disseminate
their results to bolster modeling efforts such as this one. Us-
ing mechanistic models with measurable pools allows for de-
tailed hypothesis testing to improve understanding of SOM
dynamics and will ultimately provide more reliable predic-
tions of land–climate feedbacks for use in land management
and global change mitigation.
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line repository (https://doi.org/10.5281/zenodo.4404685, Zhang et
al., 2020). The source code of the MEMS 2.0 model is available
upon request.

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/bg-18-3147-2021-supplement.

Author contributions. MFC, YZ, JML, ADR, KP, and SMO con-
tributed to the conceptualization of the model structure and wrote
the manuscript. YZ formulated the equations and coded the model.
YZ and JML collected the data used in the simulations. RE con-
ducted the soil organic matter fractionation work. MFC, JML, and
RE interpreted the lab data. MFC, KP, and SMO contributed sub-
stantial interpretation and discussion, and they supervised the study.

Competing interests. The authors declare that they have no conflict
of interest.

Acknowledgements. The project was supported with funding from
the US DOE Advanced Research Projects Agency – Energy pro-
gram (ROOTS project; DE-AR0000826), from the National Sci-
ence Foundation (NSF) Division of Environmental Biology (award
nos. 1743237 and 2016003), and from Shell Inc. (contract no.
4550183252). The authors would like to thank William J. Parton
for model development discussions. The authors also thank Pe-
ter J. Ross for providing his Fortran source code of the soil water
and solute transport model. Soil samples were provided from the
National Ecological Observatory Network (NEON) Megapit Soil
Archive. NEON is a program sponsored by the NSF and operated
under cooperative agreement by Battelle Memorial Institute. This
material is based in part upon work supported by the NSF through
the NEON program.

Financial support. This research has been supported by the US De-
partment of Energy (grant no. DE-AR0000826), the National Sci-
ence Foundation (grant no. 1743237), and Shell United States (con-
tract no. 4550183252).

Review statement. This paper was edited by Ben Bond-Lamberty
and reviewed by Jianqiu Zheng and one anonymous referee.

References

Abramoff, R., Xu, X., Hartman, M., O’Brien, S., Feng, W.,
Davidson, E., Finzi, A., Moorhead, D., Schimel, J., Torn,
M., and Mayes, M. A.: The Millennial model: in search
of measurable pools and transformations for modeling soil
carbon in the new century, Biogeochemistry, 137, 51–71,
https://doi.org/10.1007/s10533-017-0409-7, 2018.

Ahrens, B., Braakhekke, M. C., Guggenberger, G., Schrumpf,
M., and Reichstein, M.: Contribution of sorption, DOC
transport and microbial interactions to the 14C age
of a soil organic carbon profile: Insights from a cali-
brated process model, Soil Biol. Biochem., 88, 390–402,
https://doi.org/10.1016/j.soilbio.2015.06.008, 2015.

Allen, R. G., Pereira, L. S., Raes, D., and Smith, M.: Crop
evapotranspiration-Guidelines for computing crop water require-
ments – FAO Irrigation and drainage paper 56, Food and Agri-
culture Organization, Rome, Italy, 1998.

https://doi.org/10.5194/bg-18-3147-2021 Biogeosciences, 18, 3147–3171, 2021

https://data.neonscience.org/
https://www.wcc.nrcs.usda.gov/scan/
https://ameriflux.lbl.gov/
https://modis.ornl.gov/
https://doi.org/10.5281/zenodo.4404685
https://doi.org/10.5194/bg-18-3147-2021-supplement
https://doi.org/10.1007/s10533-017-0409-7
https://doi.org/10.1016/j.soilbio.2015.06.008


3166 Y. Zhang et al.: MEMS 2.0 model

AmeriFlux: Measuring ecosystem CO2, water, and energy fluxes in
North, Central and South America, available at: https://ameriflux.
lbl.gov/, last access: 18 May 2020.

Averill, C. and Waring, B.: Nitrogen limitation of decomposition
and decay: How can it occur?, Glob. Change Biol., 24, 1417–
1427, https://doi.org/10.1111/gcb.13980, 2018.

Batjes, N. H.: Total carbon and nitrogen in the
soils of the world, Eur. J. Soil. Sci., 65, 10–21,
https://doi.org/10.1111/ejss.12114_2, 2014.

Baudin, M., Boumhaout, K., Delage, T., Iooss, B., and Martinez, J.-
M.: Numerical stability of Sobol’indices estimation formula, in:
Proceedings of the 8th International Conference on Sensitivity
Analysis of Model Output (SAMO 2016), 30 November–3 De-
cember 2016, Le Tampon, Réunion Island, France, 50–51, 2016.

Beare, M. H., McNeill, S. J., Curtin, D., Parfitt, R. L., Jones,
H. S., Dodd, M. B., and Sharp, J.: Estimating the organic
carbon stabilisation capacity and saturation deficit of soils:
a New Zealand case study, Biogeochemistry, 120, 71–87,
https://doi.org/10.1007/s10533-014-9982-1, 2014.

Benbi, D. K., Boparai, A. K., and Brar, K.: Decomposition of par-
ticulate organic matter is more sensitive to temperature than the
mineral associated organic matter, Soil Biol. Biochem., 70, 183–
192, https://doi.org/10.1016/j.soilbio.2013.12.032, 2014.

Bird, M. I., Wynn, J. G., Saiz, G., Wurster, C. M., and McBeath, A.:
The Pyrogenic Carbon Cycle, Annu. Rev. Earth, 43, 273–298,
https://doi.org/10.1146/annurev-earth-060614-105038, 2015.

Bittelli, M., Campbell, G. S., and Tomei, F.: Soil physics with
Python: transport in the soil-plant-atmosphere system, Oxford
University Press, Oxford, 2015.

Braakhekke, M. C., Wutzler, T., Beer, C., Kattge, J., Schrumpf, M.,
Ahrens, B., Schöning, I., Hoosbeek, M. R., Kruijt, B., Kabat,
P., and Reichstein, M.: Modeling the vertical soil organic matter
profile using Bayesian parameter estimation, Biogeosciences, 10,
399–420, https://doi.org/10.5194/bg-10-399-2013, 2013.

Brooks, R. H. and Corey, A. T.: Hydraulic properties of porous
media, Hydrology papers, no. 3, Colorado State University, Fort
Collins, Colorado, USA, 1964.

Brunsell, N. A., Nippert, J. B., and Buck, T. L.: Impacts
of seasonality and surface heterogeneity on water-use ef-
ficiency in mesic grasslands, Ecohydrol., 7, 1223–1233,
https://doi.org/10.1002/eco.1455, 2014.

Brzostek, E. R., Fisher, J. B., and Phillips, R. P.: Modeling the
carbon cost of plant nitrogen acquisition: Mycorrhizal trade-
offs and multipath resistance uptake improve predictions of
retranslocation, J. Geophys. Res.-Biogeo., 119, 1684–1697,
https://doi.org/10.1002/2014JG002660, 2014.

Buchkowski, R. W., Shaw, A. N., Sihi, D., Smith, G. R., and
Keiser, A. D.: Constraining Carbon and Nutrient Flows in
Soil With Ecological Stoichiometry, Front. Ecol. Evol., 7, 382,
https://doi.org/10.3389/fevo.2019.00382, 2019.

Byrnes, R. C., Eastburn, D. J., Tate, K. W., and Roche,
L. M.: A Global Meta-Analysis of Grazing Impacts on
Soil Health Indicators, J. Environ. Qual., 47, 758–765,
https://doi.org/10.2134/jeq2017.08.0313, 2018.

Camino-Serrano, M., Guenet, B., Luyssaert, S., Ciais, P., Bas-
trikov, V., De Vos, B., Gielen, B., Gleixner, G., Jornet-Puig,
A., Kaiser, K., Kothawala, D., Lauerwald, R., Peñuelas, J.,
Schrumpf, M., Vicca, S., Vuichard, N., Walmsley, D., and
Janssens, I. A.: ORCHIDEE-SOM: modeling soil organic carbon

(SOC) and dissolved organic carbon (DOC) dynamics along ver-
tical soil profiles in Europe, Geosci. Model Dev., 11, 937–957,
https://doi.org/10.5194/gmd-11-937-2018, 2018.

Campbell, E. E., Parton, W. J., Soong, J. L., Paustian, K.,
Hobbs, N. T., and Cotrufo, M. F.: Using litter chem-
istry controls on microbial processes to partition litter
carbon fluxes with the Litter Decomposition and Leach-
ing (LIDEL) model, Soil Biol. Biochem., 100, 160–174,
https://doi.org/10.1016/j.soilbio.2016.06.007, 2016.

Castellano, M. J., Mueller, K. E., Olk, D. C., Sawyer, J. E., and Six,
J.: Integrating plant litter quality, soil organic matter stabiliza-
tion, and the carbon saturation concept, Glob. Change Biol., 21,
3200–3209, https://doi.org/10.1111/gcb.12982, 2015.

Chang, J. F., Viovy, N., Vuichard, N., Ciais, P., Wang, T., Co-
zic, A., Lardy, R., Graux, A.-I., Klumpp, K., Martin, R.,
and Soussana, J.-F.: Incorporating grassland management in
ORCHIDEE: model description and evaluation at 11 eddy-
covariance sites in Europe, Geosci. Model Dev., 6, 2165–2181,
https://doi.org/10.5194/gmd-6-2165-2013, 2013.

Chen, R., Senbayram, M., Blagodatsky, S., Myachina, O., Dittert,
K., Lin, X., Blagodatskaya, E., and Kuzyakov, Y.: Soil C and
N availability determine the priming effect: microbial N mining
and stoichiometric decomposition theories, Glob. Change Biol.,
20, 2356–2367, https://doi.org/10.1111/gcb.12475, 2014.

Christensen, B. T.: Physical fractionation of soil and struc-
tural and functional complexity in organic matter turnover,
Eur. J. Soil Sci., 52, 345–353, https://doi.org/10.1046/j.1365-
2389.2001.00417.x, 2001.

Ciais, P., Sabine, C., Bala, G., Bopp, L., Brovkin, V., Canadell, J.,
Chhabra, A., DeFries, R., Galloway, J., and Heimann, M.: Car-
bon and other biogeochemical cycles, in: Climate change 2013:
the physical science basis. Contribution of Working Group I to
the Fifth Assessment Report of the Intergovernmental Panel on
Climate Change, edited by: Stocker, T. F., Qin, D., Plattner, G.-
K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y.,
Bex, V., and Midgley, P. M., Cambridge University Press, Cam-
bridge, United Kingdom and New York, NY, USA, 465–570,
2014.

Coleman, K. and Jenkinson, D. S.: RothC-26.3 – A Model for the
turnover of carbon in soil, in: Evaluation of Soil Organic Matter
Models, edited by: Powlson, D. S., Smith, P., and Smith, J. U.,
237–246, Springer, Berlin, Heidelberg, 1996.

Conant, R. T., Ryan, M. G., Ågren, G. I., Birge, H. E., Davidson,
E. A., Eliasson, P. E., Evans, S. E., Frey, S. D., Giardina, C. P.,
Hopkins, F. M., Hyvönen, R., Kirschbaum, M. U. F., Lavallee,
J. M., Leifeld, J., Parton, W. J., Steinweg, J. M., Wallenstein, M.
D., Wetterstedt, J. Å. M., and Bradford, M. A.: Temperature and
soil organic matter decomposition rates – synthesis of current
knowledge and a way forward, Glob. Change Biol., 17, 3392–
3404, https://doi.org/10.1111/j.1365-2486.2011.02496.x, 2011.

Cotrufo, M. F., Wallenstein, M. D., Boot, C. M., Denef, K.,
and Paul, E. A.: The Microbial Efficiency-Matrix Stabilization
(MEMS) framework integrates plant litter decomposition with
soil organic matter stabilization: do labile plant inputs form sta-
ble soil organic matter?, Glob. Change Biol., 19, 988–995, 2013.

Cotrufo, M. F., Soong, J. L., Horton, A. J., Campbell, E. E., Haddix,
M. L., Wall, D. H., and Parton, W. J.: Formation of soil organic
matter via biochemical and physical pathways of litter mass loss,

Biogeosciences, 18, 3147–3171, 2021 https://doi.org/10.5194/bg-18-3147-2021

https://ameriflux.lbl.gov/
https://ameriflux.lbl.gov/
https://doi.org/10.1111/gcb.13980
https://doi.org/10.1111/ejss.12114_2
https://doi.org/10.1007/s10533-014-9982-1
https://doi.org/10.1016/j.soilbio.2013.12.032
https://doi.org/10.1146/annurev-earth-060614-105038
https://doi.org/10.5194/bg-10-399-2013
https://doi.org/10.1002/eco.1455
https://doi.org/10.1002/2014JG002660
https://doi.org/10.3389/fevo.2019.00382
https://doi.org/10.2134/jeq2017.08.0313
https://doi.org/10.5194/gmd-11-937-2018
https://doi.org/10.1016/j.soilbio.2016.06.007
https://doi.org/10.1111/gcb.12982
https://doi.org/10.5194/gmd-6-2165-2013
https://doi.org/10.1111/gcb.12475
https://doi.org/10.1046/j.1365-2389.2001.00417.x
https://doi.org/10.1046/j.1365-2389.2001.00417.x
https://doi.org/10.1111/j.1365-2486.2011.02496.x


Y. Zhang et al.: MEMS 2.0 model 3167

Nat. Geosci., 8, 776–779, https://doi.org/10.1038/ngeo2520,
2015.

Cotrufo, M. F., Ranalli, M. G., Haddix, M. L., Six, J., and
Lugato, E.: Soil carbon storage informed by particulate and
mineral-associated organic matter, Nat. Geosci., 12, 989–994,
https://doi.org/10.1038/s41561-019-0484-6, 2019.

Craine, J. M., Morrow, C., and Fierer, N.: Microbial Nitrogen
Limitation Increases Decomposition, Ecology, 88, 2105–2113,
https://doi.org/10.1890/06-1847.1, 2007.

Curtin, D.: Possible role of aluminum in stabilizing organic matter
in particle size fractions of Chernozemic and solonetizic soils,
Can. J. Soil. Sci., 82, 265–268, https://doi.org/10.4141/S01-035,
2002.

Davidson, E. A. and Janssens, I. A.: Temperature sensitivity of soil
carbon decomposition and feedbacks to climate change, Nature,
440, 165–173, https://doi.org/10.1038/nature04514, 2006.

Davidson, E. A., Trumbore, S. E., and Amundson, R.: Soil
warming and organic carbon content, Nature, 408, 789–790,
https://doi.org/10.1038/35048672, 2000.

de Graaff, M.-A., Classen, A. T., Castro, H. F., and Schadt,
C. W.: Labile soil carbon inputs mediate the soil microbial
community composition and plant residue decomposition rates,
New Phytol., 188, 1055–1064, https://doi.org/10.1111/j.1469-
8137.2010.03427.x, 2010.

Del Grosso, S. J., Parton, W. J., Mosier, A. R., Holland, E. A.,
Pendall, E., Schimel, D. S., and Ojima, D. S.: Modeling soil
CO2 emissions from ecosystems, Biogeochemistry, 73, 71–91,
https://doi.org/10.1007/s10533-004-0898-z, 2005.

Elzein, A. and Balesdent, J.: Mechanistic Simulation of Ver-
tical Distribution of Carbon Concentrations and Residence
Times in Soils, Soil Sci. Soc. Am. J., 59, 1328–1335,
https://doi.org/10.2136/sssaj1995.03615995005900050019x,
1995.

Fatichi, S., Manzoni, S., Or, D., and Paschalis, A.: A Mechanis-
tic Model of Microbially Mediated Soil Biogeochemical Pro-
cesses: A Reality Check, Global Biogeochem. Cy., 33, 620–648,
https://doi.org/10.1029/2018GB006077, 2019.

Feng, W., Plante, A. F., and Six, J.: Improving estimates of max-
imal organic carbon stabilization by fine soil particles, Bio-
geochemistry, 112, 81–93, https://doi.org/10.1007/s10533-011-
9679-7, 2013.

Georgiou, K., Abramoff, R. Z., Harte, J., Riley, W. J., and Torn,
M. S.: Microbial community-level regulation explains soil car-
bon responses to long-term litter manipulations, Nat. Commun.,
8, 1223, https://doi.org/10.1038/s41467-017-01116-z, 2017.

Gill, R., Burke, I. C., Milchunas, D. G., and Lauenroth, W. K.: Rela-
tionship Between Root Biomass and Soil Organic Matter Pools in
the Shortgrass Steppe of Eastern Colorado, Ecosystems, 2, 226–
236, https://doi.org/10.1007/s100219900070, 1999.

Griscom, B. W., Adams, J., Ellis, P. W., Houghton, R. A., Lomax,
G., Miteva, D. A., Schlesinger, W. H., Shoch, D., Siikamäki, J.
V., Smith, P., Woodbury, P., Zganjar, C., Blackman, A., Campari,
J., Conant, R. T., Delgado, C., Elias, P., Gopalakrishna, T., Ham-
sik, M. R., Herrero, M., Kiesecker, J., Landis, E., Laestadius, L.,
Leavitt, S. M., Minnemeyer, S., Polasky, S., Potapov, P., Putz, F.
E., Sanderman, J., Silvius, M., Wollenberg, E., and Fargione, J.:
Natural climate solutions, P. Natl. Acad. Sci. USA, 114, 11645–
11650, https://doi.org/10.1073/pnas.1710465114, 2017.

Gurung, R. B., Ogle, S. M., Breidt, F. J., Williams, S. A.,
and Parton, W. J.: Bayesian calibration of the DayCent
ecosystem model to simulate soil organic carbon dynam-
ics and reduce model uncertainty, Geoderma, 376, 114529,
https://doi.org/10.1016/j.geoderma.2020.114529, 2020.

Guyette, R. P., Stambaugh, M. C., Dey, D. C., and Muzika, R.-M.:
Predicting Fire Frequency with Chemistry and Climate, Ecosys-
tems, 15, 322–335, https://doi.org/10.1007/s10021-011-9512-0,
2012.

Haddix, M. L., Paul, E. A., and Cotrufo, M. F.: Dual, dif-
ferential isotope labeling shows the preferential move-
ment of labile plant constituents into mineral-bonded
soil organic matter, Glob. Change Biol., 22, 2301–2312,
https://doi.org/10.1111/gcb.13237, 2016.

Hall, S. J., McNicol, G., Natake, T., and Silver, W. L.: Large
fluxes and rapid turnover of mineral-associated carbon across
topographic gradients in a humid tropical forest: insights
from paired 14C analysis, Biogeosciences, 12, 2471–2487,
https://doi.org/10.5194/bg-12-2471-2015, 2015.

Hamilton, E. W., Frank, D. A., Hinchey, P. M., and Murray, T. R.:
Defoliation induces root exudation and triggers positive rhizo-
spheric feedbacks in a temperate grassland, Soil Biol. Biochem.,
40, 2865–2873, https://doi.org/10.1016/j.soilbio.2008.08.007,
2008.

Hargreaves, G. H. and Allen, R. G.: History and Evalu-
ation of Hargreaves Evapotranspiration Equation, J. Irrig.
Drain. Eng., 129, 53–63, https://doi.org/10.1061/(ASCE)0733-
9437(2003)129:1(53), 2003.

Harper, R. J. and Tibbett, M.: The hidden organic car-
bon in deep mineral soils, Plant Soil, 368, 641–648,
https://doi.org/10.1007/s11104-013-1600-9, 2013.

Hartman, M., Parton, W., Del Grosso, S., Easter, M., Hendryx, J.,
Hilinski, T., Kelly, R., Keough, C., Killian, K., Lutz, S., Marx,
E., McKeown, R., Ogle, S., Ojima, D., Paustian, K., Swan, A.,
and Williams, S.: DayCent Ecosystem Model – The Daily Cen-
tury Ecosystem, Soil Organic Matter, Nutrient Cycling, Nitro-
gen Trace Gas, and Methane Model: User Manual, Scientific Ba-
sis, and Technical Documentation, Colorado Sate University Fort
Collins, Colorado, USA, 2020.

Hassink, J.: The capacity of soils to preserve organic C and N by
their association with clay and silt particles, Plant Soil, 191, 77–
87, https://doi.org/10.1023/A:1004213929699, 1997.

Hinckley, E.-L. S., Bonan, G. B., Bowen, G. J., Colman, B. P.,
Duffy, P. A., Goodale, C. L., Houlton, B. Z., Marín-Spiotta, E.,
Ogle, K., Ollinger, S. V., Paul, E. A., Vitousek, P. M., Weathers,
K. C., and Williams, D. G.: The soil and plant biogeochemistry
sampling design for The National Ecological Observatory Net-
work, Ecosphere, 7, e01234, https://doi.org/10.1002/ecs2.1234,
2016.

Hobbs, N. T., Schimel, D. S., Owensby, C. E., and Ojima,
D. S.: Fire and Grazing in the Tallgrass Prairie: Contin-
gent Effects on Nitrogen Budgets, Ecology, 72, 1374–1382,
https://doi.org/10.2307/1941109, 1991.

Hodge, A., Campbell, C. D., and Fitter, A. H.: An arbuscular
mycorrhizal fungus accelerates decomposition and acquires ni-
trogen directly from organic material, Nature, 413, 297–299,
https://doi.org/10.1038/35095041, 2001.

Huang, W. and Hall, S. J.: Elevated moisture stimulates carbon loss
from mineral soils by releasing protected organic matter, Nat.

https://doi.org/10.5194/bg-18-3147-2021 Biogeosciences, 18, 3147–3171, 2021

https://doi.org/10.1038/ngeo2520
https://doi.org/10.1038/s41561-019-0484-6
https://doi.org/10.1890/06-1847.1
https://doi.org/10.4141/S01-035
https://doi.org/10.1038/nature04514
https://doi.org/10.1038/35048672
https://doi.org/10.1111/j.1469-8137.2010.03427.x
https://doi.org/10.1111/j.1469-8137.2010.03427.x
https://doi.org/10.1007/s10533-004-0898-z
https://doi.org/10.2136/sssaj1995.03615995005900050019x
https://doi.org/10.1029/2018GB006077
https://doi.org/10.1007/s10533-011-9679-7
https://doi.org/10.1007/s10533-011-9679-7
https://doi.org/10.1038/s41467-017-01116-z
https://doi.org/10.1007/s100219900070
https://doi.org/10.1073/pnas.1710465114
https://doi.org/10.1016/j.geoderma.2020.114529
https://doi.org/10.1007/s10021-011-9512-0
https://doi.org/10.1111/gcb.13237
https://doi.org/10.5194/bg-12-2471-2015
https://doi.org/10.1016/j.soilbio.2008.08.007
https://doi.org/10.1061/(ASCE)0733-9437(2003)129:1(53)
https://doi.org/10.1061/(ASCE)0733-9437(2003)129:1(53)
https://doi.org/10.1007/s11104-013-1600-9
https://doi.org/10.1023/A:1004213929699
https://doi.org/10.1002/ecs2.1234
https://doi.org/10.2307/1941109
https://doi.org/10.1038/35095041


3168 Y. Zhang et al.: MEMS 2.0 model

Commun., 8, 1774, https://doi.org/10.1038/s41467-017-01998-
z, 2017.

Iooss, B., Da Veiga, S., Janon, A., and Pujol, G.: Global Sensi-
tivity Analysis of Model Outputs, available at: https://CRAN.
R-project.org/package=sensitivity, last access: 18 May 2020.

Islam, A. K. M. S., Edwards, D. G., and Asher, C. J.:
pH optima for crop growth, Plant Soil, 54, 339–357,
https://doi.org/10.1007/BF02181830, 1980.

Jackson, R. B., Canadell, J., Ehleringer, J. R., Mooney, H. A.,
Sala, O. E., and Schulze, E. D.: A global analysis of root
distributions for terrestrial biomes, Oecologia, 108, 389–411,
https://doi.org/10.1007/BF00333714, 1996.

Jenkinson, D. S. and Coleman, K.: The turnover of organic carbon
in subsoils. Part 2. Modelling carbon turnover, Eur. J. Soil Sci.,
59, 400–413, https://doi.org/10.1111/j.1365-2389.2008.01026.x,
2008.

Johnson, M. O., Mudd, S. M., Pillans, B., Spooner, N. A., Fifield,
L. K., Kirkby, M. J., and Gloor, M.: Quantifying the rate and
depth dependence of bioturbation based on optically-stimulated
luminescence (OSL) dates and meteoric 10Be, Earth Surf. Proc.
Land., 39, 1188–1196, https://doi.org/10.1002/esp.3520, 2014.

Kleber, M., Sollins, P., and Sutton, R.: A conceptual model of
organo-mineral interactions in soils: self-assembly of organic
molecular fragments into zonal structures on mineral surfaces,
Biogeochemistry, 85, 9–24, https://doi.org/10.1007/s10533-007-
9103-5, 2007.

Kleber, M., Eusterhues, K., Keiluweit, M., Mikutta, C.,
Mikutta, R., and Nico, P. S.: Chapter One – Mineral–
Organic Associations: Formation, Properties, and Rele-
vance in Soil Environments, in: Advances in Agronomy,
vol. 130, edited by: Sparks, D. L., Academic Press, 1–140,
https://doi.org/10.1016/bs.agron.2014.10.005, 2015.

Knicker, H.: Pyrogenic organic matter in soil: Its origin and occur-
rence, its chemistry and survival in soil environments, Quatern.
Int., 243, 251–263, https://doi.org/10.1016/j.quaint.2011.02.037,
2011.

Knorr, M., Frey, S. D., and Curtis, P. S.: Nitrogen Additions and Lit-
ter Decomposition: A Meta-Analysis, Ecology, 86, 3252–3257,
https://doi.org/10.1890/05-0150, 2005.

Kögel-Knabner, I., Guggenberger, G., Kleber, M., Kandeler, E.,
Kalbitz, K., Scheu, S., Eusterhues, K., and Leinweber, P.:
Organo-mineral associations in temperate soils: Integrating biol-
ogy, mineralogy, and organic matter chemistry, J. Plant Nutr. Soil
Sci., 171, 61–82, https://doi.org/10.1002/jpln.200700048, 2008.

Kuzyakov, Y.: Priming effects: Interactions between living and
dead organic matter, Soil Biol. Biochem., 42, 1363–1371,
https://doi.org/10.1016/j.soilbio.2010.04.003, 2010.

Kuzyakov, Y. and Xu, X.: Competition between roots and microor-
ganisms for nitrogen: mechanisms and ecological relevance,
New Phytol., 198, 656–669, https://doi.org/10.1111/nph.12235,
2013.

Kyker-Snowman, E., Wieder, W. R., Frey, S. D., and Grandy,
A. S.: Stoichiometrically coupled carbon and nitrogen cycling
in the MIcrobial-MIneral Carbon Stabilization model version
1.0 (MIMICS-CN v1.0), Geosci. Model Dev., 13, 4413–4434,
https://doi.org/10.5194/gmd-13-4413-2020, 2020.

Lavallee, J. M., Conant, R. T., Paul, E. A., and Cotrufo, M. F.: Incor-
poration of shoot versus root-derived 13C and 15N into mineral-
associated organic matter fractions: results of a soil slurry incu-

bation with dual-labelled plant material, Biogeochemistry, 137,
379–393, 2018.

Lavallee, J. M., Soong, J. L., and Cotrufo, M. F.: Conceptualizing
soil organic matter into particulate and mineral-associated forms
to address global change in the 21st century, Glob. Change Biol.,
26, 261–273, https://doi.org/10.1111/gcb.14859, 2020.

Lehmann, J. and Kleber, M.: The contentious nature of soil organic
matter, Nature, 528, 60–68, https://doi.org/10.1038/nature16069,
2015.

Li, C., Frolking, S., and Frolking, T. A.: A model of nitrous ox-
ide evolution from soil driven by rainfall events: 1. Model struc-
ture and sensitivity, J. Geophys. Res.-Atmos., 97, 9759–9776,
https://doi.org/10.1029/92JD00509, 1992.

Li, L.-J., Zhu-Barker, X., Ye, R., Doane, T. A., and Hor-
wath, W. R.: Soil microbial biomass size and soil carbon
influence the priming effect from carbon inputs depending
on nitrogen availability, Soil Biol. Biochem., 119, 41–49,
https://doi.org/10.1016/j.soilbio.2018.01.003, 2018.

Liang, C., Schimel, J. P., and Jastrow, J. D.: The importance of an-
abolism in microbial control over soil carbon storage, Nat. Mi-
crobiol., 2, 17105, https://doi.org/10.1038/nmicrobiol.2017.105,
2017.

Liu, W., Qiao, C., Yang, S., Bai, W., and Liu, L.: Mi-
crobial carbon use efficiency and priming effect regulate
soil carbon storage under nitrogen deposition by slowing
soil organic matter decomposition, Geoderma, 332, 37–44,
https://doi.org/10.1016/j.geoderma.2018.07.008, 2018.

Liu, X.-J. A., Sun, J., Mau, R. L., Finley, B. K., Compson, Z. G.,
van Gestel, N., Brown, J. R., Schwartz, E., Dijkstra, P., and Hun-
gate, B. A.: Labile carbon input determines the direction and
magnitude of the priming effect, Appl. Soil Ecol., 109, 7–13,
https://doi.org/10.1016/j.apsoil.2016.10.002, 2017.

Luo, Y., Ahlström, A., Allison, S. D., Batjes, N. H., Brovkin, V.,
Carvalhais, N., Chappell, A., Ciais, P., Davidson, E. A., Finzi,
A., Georgiou, K., Guenet, B., Hararuk, O., Harden, J. W., He,
Y., Hopkins, F., Jiang, L., Koven, C., Jackson, R. B., Jones, C.
D., Lara, M. J., Liang, J., McGuire, A. D., Parton, W., Peng, C.,
Randerson, J. T., Salazar, A., Sierra, C. A., Smith, M. J., Tian, H.,
Todd-Brown, K. E. O., Torn, M., van Groenigen, K. J., Wang, Y.
P., West, T. O., Wei, Y., Wieder, W. R., Xia, J., Xu, X., Xu, X.,
and Zhou, T.: Toward more realistic projections of soil carbon
dynamics by Earth system models, Global Biogeochem. Cy., 30,
40–56, https://doi.org/10.1002/2015GB005239, 2016.

Matches, A. G.: Plant Response to Grazing: A Review, J. Prod.
Agric., 5, 1–7, https://doi.org/10.2134/jpa1992.0001, 1992.

Mayes, M. A., Heal, K. R., Brandt, C. C., Phillips, J. R., and Jardine,
P. M.: Relation between Soil Order and Sorption of Dissolved
Organic Carbon in Temperate Subsoils, Soil Sci. Soc. Am. J., 76,
1027–1037, https://doi.org/10.2136/sssaj2011.0340, 2012.

McKee, G. A., Soong, J. L., Caldéron, F., Borch, T., and Cotrufo,
M. F.: An integrated spectroscopic and wet chemical approach
to investigate grass litter decomposition chemistry, Biogeochem-
istry, 128, 107–123, https://doi.org/10.1007/s10533-016-0197-5,
2016.

McSherry, M. E. and Ritchie, M. E.: Effects of grazing on grassland
soil carbon: a global review, Glob. Change Biol., 19, 1347–1357,
https://doi.org/10.1111/gcb.12144, 2013.

Mooshammer, M., Wanek, W., Zechmeister-Boltenstern, S., and
Richter, A. A.: Stoichiometric imbalances between terrestrial de-

Biogeosciences, 18, 3147–3171, 2021 https://doi.org/10.5194/bg-18-3147-2021

https://doi.org/10.1038/s41467-017-01998-z
https://doi.org/10.1038/s41467-017-01998-z
https://CRAN.R-project.org/package=sensitivity
https://CRAN.R-project.org/package=sensitivity
https://doi.org/10.1007/BF02181830
https://doi.org/10.1007/BF00333714
https://doi.org/10.1111/j.1365-2389.2008.01026.x
https://doi.org/10.1002/esp.3520
https://doi.org/10.1007/s10533-007-9103-5
https://doi.org/10.1007/s10533-007-9103-5
https://doi.org/10.1016/bs.agron.2014.10.005
https://doi.org/10.1016/j.quaint.2011.02.037
https://doi.org/10.1890/05-0150
https://doi.org/10.1002/jpln.200700048
https://doi.org/10.1016/j.soilbio.2010.04.003
https://doi.org/10.1111/nph.12235
https://doi.org/10.5194/gmd-13-4413-2020
https://doi.org/10.1111/gcb.14859
https://doi.org/10.1038/nature16069
https://doi.org/10.1029/92JD00509
https://doi.org/10.1016/j.soilbio.2018.01.003
https://doi.org/10.1038/nmicrobiol.2017.105
https://doi.org/10.1016/j.geoderma.2018.07.008
https://doi.org/10.1016/j.apsoil.2016.10.002
https://doi.org/10.1002/2015GB005239
https://doi.org/10.2134/jpa1992.0001
https://doi.org/10.2136/sssaj2011.0340
https://doi.org/10.1007/s10533-016-0197-5
https://doi.org/10.1111/gcb.12144


Y. Zhang et al.: MEMS 2.0 model 3169

composer communities and their resources: mechanisms and im-
plications of microbial adaptations to their resources, Front. Mi-
crobiol., 5, 22, https://doi.org/10.3389/fmicb.2014.00022, 2014.

NASEM (National Academies of Sciences, Engineering, and
Medicine): Negative Emissions Technologies and Reliable Se-
questration: A Research Agenda, The National Academies Press,
Washington, DC, 2019.

NEON: Data Product DP4.00200.001, Bundled data products –
eddy covariance, National Ecological Observatory Network, Bat-
telle, Boulder, CO, USA, 2020a.

NEON: NEON data, available at: https://data.neonscience.org/, last
access: 18 May 2020b.

Oak Ridge National Laboratory: MODIS/VIIRS Land Product Sub-
sets, available at: https://modis.ornl.gov/, last access: 18 May
2020.

Ogée, J. and Brunet, Y.: A forest floor model for heat and
moisture including a litter layer, J. Hydrol., 255, 212–233,
https://doi.org/10.1016/S0022-1694(01)00515-7, 2002.

Ojima, D. S., Schimel, D. S., Parton, W. J., and Owensby,
C. E.: Long- and short-term effects of fire on nitrogen
cycling in tallgrass prairie, Biogeochemistry, 24, 67–84,
https://doi.org/10.1007/BF02390180, 1994.

Ota, M., Nagai, H., and Koarashi, J.: Root and dissolved or-
ganic carbon controls on subsurface soil carbon dynamics: A
model approach, J. Geophys. Res.-Biogeo., 118, 1646–1659,
https://doi.org/10.1002/2013JG002379, 2013.

Parton, W. J., Schimel, D. S., Cole, C. V., and Ojima, D. S.:
Analysis of Factors Controlling Soil Organic Matter Levels in
Great Plains Grasslands, Soil Sci. Soc. Am. J., 51, 1173–1179,
https://doi.org/10.2136/sssaj1987.03615995005100050015x,
1987.

Parton, W. J., Hartman, M., Ojima, D., and Schimel, D.: DAYCENT
and its land surface submodel: description and testing, Global
Planet. Change, 19, 35–48, https://doi.org/10.1016/S0921-
8181(98)00040-X, 1998.

Piñeiro, G., Paruelo, J. M., Oesterheld, M., and Jobbágy,
E. G.: Pathways of Grazing Effects on Soil Organic Car-
bon and Nitrogen, Rangeland Ecol. Manag., 63, 109–119,
https://doi.org/10.2111/08-255.1, 2010.

Poeplau, C., Don, A., Six, J., Kaiser, M., Benbi, D., Chenu, C.,
Cotrufo, M. F., Derrien, D., Gioacchini, P., Grand, S., Gregorich,
E., Griepentrog, M., Gunina, A., Haddix, M., Kuzyakov, Y., Küh-
nel, A., Macdonald, L. M., Soong, J., Trigalet, S., Vermeire, M.-
L., Rovira, P., van Wesemael, B., Wiesmeier, M., Yeasmin, S.,
Yevdokimov, I., and Nieder, R.: Isolating organic carbon frac-
tions with varying turnover rates in temperate agricultural soils –
A comprehensive method comparison, Soil Biol. Biochem., 125,
10–26, https://doi.org/10.1016/j.soilbio.2018.06.025, 2018.

Raes, D., Steduto, P., Hsiao, T. C., and Fereres, E.: AquaCrop —
The FAO Crop Model to Simulate Yield Response to Water:
II. Main Algorithms and Software Description, Agron. J., 101,
438–447, https://doi.org/10.2134/agronj2008.0140s, 2009.

Rasmussen, C., Heckman, K., Wieder, W. R., Keiluweit, M.,
Lawrence, C. R., Berhe, A. A., Blankinship, J. C., Crow, S. E.,
Druhan, J. L., Hicks Pries, C. E., Marin-Spiotta, E., Plante, A.
F., Schädel, C., Schimel, J. P., Sierra, C. A., Thompson, A., and
Wagai, R.: Beyond clay: towards an improved set of variables
for predicting soil organic matter content, Biogeochemistry, 137,
297–306, https://doi.org/10.1007/s10533-018-0424-3, 2018.

R Core Team: R: A Language and Environment for Statistical Com-
puting, R Foundation for Statistical Computing, Vienna, Austria,
2017.

Reichstein, M., Subke, J.-A., Angeli, A. C., and Tenhunen,
J. D.: Does the temperature sensitivity of decomposition of
soil organic matter depend upon water content, soil hori-
zon, or incubation time?, Glob. Change Biol., 11, 1754–1767,
https://doi.org/10.1111/j.1365-2486.2005.001010.x, 2005.

Robertson, A. D., Paustian, K., Ogle, S., Wallenstein, M. D.,
Lugato, E., and Cotrufo, M. F.: Unifying soil organic mat-
ter formation and persistence frameworks: the MEMS model,
Biogeosciences, 16, 1225–1248, https://doi.org/10.5194/bg-16-
1225-2019, 2019.

Ross, P. J.: Modeling Soil Water and Solute Transport—Fast,
Simplified Numerical Solutions, Agron. J., 95, 1352–1361,
https://doi.org/10.2134/agronj2003.1352, 2003.

Rowland, A. P. and Roberts, J. D.: Lignin and cellulose
fractionation in decomposition studies using acid-detergent
fibre methods, Commun. Soil Sci. Plan., 25, 269–277,
https://doi.org/10.1080/00103629409369035, 1994.

Rumpel, C. and Kögel-Knabner, I.: Deep soil organic matter – a
key but poorly understood component of terrestrial C cycle, Plant
Soil, 338, 143–158, https://doi.org/10.1007/s11104-010-0391-5,
2011.

Running, S., Mu, Q., and Zhao, M.: MOD17A3H MODIS/Terra
Net Primary Production Yearly L4 Global 500m SIN Grid
V006, NASA EOSDIS Land Processes DAAC, NASA EOS-
DIS Land Processes DAAC, Sioux Falls, South Dakota,
https://doi.org/10.5067/MODIS/MOD17A3H.006, 2015.

Saxton, K. E. and Rawls, W. J.: Soil Water Characteris-
tic Estimates by Texture and Organic Matter for Hydro-
logic Solutions, Soil Sci. Soc. Am. J., 70, 1569–1578,
https://doi.org/10.2136/sssaj2005.0117, 2006.

Schaefer, G. L., Cosh, M. H., and Jackson, T. J.: The USDA
Natural Resources Conservation Service Soil Climate Analy-
sis Network (SCAN), J. Atmos. Ocean. Tech., 24, 2073–2077,
https://doi.org/10.1175/2007JTECHA930.1, 2007.

Schaefer, K., Schwalm, C. R., Williams, C., Arain, M. A., Barr, A.,
Chen, J. M., Davis, K. J., Dimitrov, D., Hilton, T. W., Hollinger,
D. Y., Humphreys, E., Poulter, B., Raczka, B. M., Richardson,
A. D., Sahoo, A., Thornton, P., Vargas, R., Verbeeck, H., An-
derson, R., Baker, I., Black, T. A., Bolstad, P., Chen, J., Curtis,
P. S., Desai, A. R., Dietze, M., Dragoni, D., Gough, C., Grant,
R. F., Gu, L., Jain, A., Kucharik, C., Law, B., Liu, S., Lokipi-
tiya, E., Margolis, H. A., Matamala, R., McCaughey, J. H., Mon-
son, R., Munger, J. W., Oechel, W., Peng, C., Price, D. T., Ric-
ciuto, D., Riley, W. J., Roulet, N., Tian, H., Tonitto, C., Torn,
M., Weng, E., and Zhou, X.: A model-data comparison of gross
primary productivity: Results from the North American Carbon
Program site synthesis, J. Geophys. Res.-Biogeo., 117, G03010,
https://doi.org/10.1029/2012JG001960, 2012.

Schepers, J. S., Francis, D. D., Vigil, M., and Below, F. E.:
Comparison of corn leaf nitrogen concentration and chloro-
phyll meter readings, Commun. Soil Sci. Plan., 23, 2173–2187,
https://doi.org/10.1080/00103629209368733, 1992.

Schrumpf, M., Kaiser, K., Mayer, A., Hempel, G., and Trumbore,
S.: Age distribution, extractability, and stability of mineral-bound
organic carbon in central European soils, Biogeosciences, 18,
1241–1257, https://doi.org/10.5194/bg-18-1241-2021, 2021.

https://doi.org/10.5194/bg-18-3147-2021 Biogeosciences, 18, 3147–3171, 2021

https://doi.org/10.3389/fmicb.2014.00022
https://data.neonscience.org/
https://modis.ornl.gov/
https://doi.org/10.1016/S0022-1694(01)00515-7
https://doi.org/10.1007/BF02390180
https://doi.org/10.1002/2013JG002379
https://doi.org/10.2136/sssaj1987.03615995005100050015x
https://doi.org/10.1016/S0921-8181(98)00040-X
https://doi.org/10.1016/S0921-8181(98)00040-X
https://doi.org/10.2111/08-255.1
https://doi.org/10.1016/j.soilbio.2018.06.025
https://doi.org/10.2134/agronj2008.0140s
https://doi.org/10.1007/s10533-018-0424-3
https://doi.org/10.1111/j.1365-2486.2005.001010.x
https://doi.org/10.5194/bg-16-1225-2019
https://doi.org/10.5194/bg-16-1225-2019
https://doi.org/10.2134/agronj2003.1352
https://doi.org/10.1080/00103629409369035
https://doi.org/10.1007/s11104-010-0391-5
https://doi.org/10.5067/MODIS/MOD17A3H.006
https://doi.org/10.2136/sssaj2005.0117
https://doi.org/10.1175/2007JTECHA930.1
https://doi.org/10.1029/2012JG001960
https://doi.org/10.1080/00103629209368733
https://doi.org/10.5194/bg-18-1241-2021


3170 Y. Zhang et al.: MEMS 2.0 model
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