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Abstract. Vegetation optical depth (VOD) from microwave
satellite observations has received much attention in global
vegetation studies in recent years due to its relationship to
vegetation water content and biomass. We recently have
shown that VOD is related to plant productivity, i.e., gross
primary production (GPP). Based on this relationship be-
tween VOD and GPP, we developed a theory-based machine
learning model to estimate global patterns of GPP from pas-
sive microwave VOD retrievals. The VOD-GPP model gen-
erally showed good agreement with site observations and
other global data sets in temporal dynamic but tended to
overestimate annual GPP across all latitudes. We hypothe-
sized that the reason for the overestimation is the missing ef-
fect of temperature on autotrophic respiration in the theory-
based machine learning model. Here we aim to further as-
sess and enhance the robustness of the VOD-GPP model by
including the effect of temperature on autotrophic respira-
tion within the machine learning approach and by assessing
the interannual variability of the model results with respect
to water availability. We used X-band VOD from the VOD
Climate Archive (VODCA) data set for estimating GPP and
used global state-of-the-art GPP data sets from FLUXCOM
and MODIS to assess residuals of the VOD-GPP model with
respect to drought conditions as quantified by the Standard-
ized Precipitation and Evaporation Index (SPEI).

Our results reveal an improvement in model performance
for correlation when including the temperature dependency
of autotrophic respiration (average correlation increase of
0.18). This improvement in temporal dynamic is larger for
temperate and cold regions than for the tropics. For unbi-

ased root-mean-square error (ubRMSE) and bias, the results
are regionally diverse and are compensated in the global av-
erage. Improvements are observed in temperate and cold re-
gions, while decreases in performance are obtained mainly in
the tropics. The overall improvement when adding tempera-
ture was less than expected and thus may only partly explain
previously observed differences between the global GPP data
sets. On interannual timescales, estimates of the VOD-GPP
model agree well with GPP from FLUXCOM and MODIS.
We further find that the residuals between VOD-based GPP
estimates and the other data sets do not significantly correlate
with SPEI, which demonstrates that the VOD-GPP model
can capture responses of GPP to water availability even with-
out including additional information on precipitation, soil
moisture or evapotranspiration. Exceptions from this rule
were found in some regions: significant negative correlations
between VOD-GPP residuals and SPEI were observed in the
US corn belt, Argentina, eastern Europe, Russia and China,
while significant positive correlations were obtained in South
America, Africa and Australia. In these regions, the signifi-
cant correlations may indicate different plant strategies for
dealing with variations in water availability.

Overall, our findings support the robustness of global
microwave-derived estimates of gross primary production for
large-scale studies on climate–vegetation interactions.
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1 Introduction

Vegetation optical depth (VOD) from microwave satellite ob-
servations provides the opportunity for studying large-scale
vegetation dynamics due to its sensitivity to the vegetation
water content and aboveground biomass. Different studies
have employed VOD for deriving various plant properties or
vegetation characteristics that can be related to the plant’s
water content, including biomass estimation (Liu et al., 2015;
Brandt et al., 2018; Rodríguez-Fernández et al., 2018; Cha-
parro et al., 2019; Fan et al., 2019; Frappart et al., 2020;
Wigneron et al., 2020; Li et al., 2021), crop yield (Cha-
parro et al., 2018), tree mortality (Rao et al., 2019; Sapes
et al., 2019), analysis of burned area (Forkel et al., 2019),
ecosystem-scale isohydricity (Konings and Gentine, 2017),
plant water uptake during dry downs (Feldman et al., 2018)
and plant water storage (Tian et al., 2018). VOD, or mi-
crowave satellite observations in general, is also analyzed for
its potential in detecting the impact of drought (Song et al.,
2019; Crocetti et al., 2020). Despite the sensitivity of VOD to
vegetation water content, the relationship between VOD and
gross primary production (GPP) has not yet been analyzed
with regard to how the relationship responds to varying con-
ditions of dryness or wetness.

Recently, we have shown that VOD is related to plant pro-
ductivity, i.e., GPP (Teubner et al., 2018). Based on these
findings, we developed a theory-guided machine learning
model to estimate GPP from VOD (VOD-GPP model) and
trained the model using eddy covariance estimates of GPP
from the FLUXNET network (Teubner et al., 2019). The
VOD-GPP model relies on estimating carbon sink terms,
i.e., net primary production (NPP) and autotrophic respi-
ration (Ra), based on VOD as a proxy for aboveground
living biomass. The VOD-GPP model thus represents a
carbon-sink-driven approach. Since the VOD-GPP model
uses biomass as its main input, the estimation of GPP does
not rely on input variables that are commonly used in source-
driven approaches, e.g., absorption of photosynthetically ac-
tive radiation as primary input term or vapor pressure deficit
as controlling factor for stomatal conductance (Running
et al., 2000; Turner et al., 2005; Goodrich et al., 2015; Zhang
et al., 2016, 2017). Although different studies are tackling
the question of how much information on biomass is actually
contained in the VOD signal (Momen et al., 2017; Vreug-
denhil et al., 2018; Zhang et al., 2019), it might be worth
noting that the water content can be seen as an important as-
pect in our model approach since it presents the living part of
the vegetation and only living cells, which contain water, are
able to respire. We have shown that the VOD-GPP model can
represent temporal dynamics of GPP well but that it overesti-
mates GPP, especially in temperate and boreal regions (Teub-
ner et al., 2019). We hypothesize that this overestimation may
be caused by a missing representation of temperature depen-
dency of autotrophic respiration in the VOD-GPP model.

Ra is the process through which chemical energy that was
stored by building up carbohydrates during photosynthesis is
gained by converting carbohydrates back into carbon diox-
ide. It is generally known that Ra is a temperature-dependent
process (e.g., Atkin and Tjoelker, 2003). Modeling the re-
sponse of Ra to temperature, however, is complex due to the
existence of thermal acclimation (Atkin and Tjoelker, 2003).
Ra is commonly represented through an exponential function
with Q10as the base, which is multiplied with a basal respira-
tion rate (e.g., Smith and Dukes, 2013). The base value Q10
describes how much Ra changes when temperature changes
by 10◦ C (e.g., Atkin et al., 2008). Although global models
often use constant values for either one parameter or both
parameters (Gifford, 2003; Smith and Dukes, 2013), studies
have shown that both basal respiration rate and Q10 may vary
with temperature (Tjoelker et al., 2001; Wythers et al., 2013).
The implementation of such temperature acclimation yields a
functional representation that decreases again at higher tem-
peratures and thus takes into account that respiration may
decrease outside an optimum temperature range (Smith and
Dukes, 2013).

Here we aim to assess the impact of the temperature de-
pendency of Ra in the VOD-GPP model and if it can improve
model performance. Furthermore, we will test the plausibil-
ity of the model by comparing the estimated interannual vari-
ability of GPP with independent state-of-the art global data
sets of GPP and by assessing model residuals with respect
to variations in climatological water availability as repre-
sented by the Standardized Precipitation and Evaporation In-
dex (SPEI). Since source (GPP) and sink terms (NPP+Ra)
should theoretically be in balance, any differences between
the two approaches that are related to variations in water
availability may give insight into different plant strategies for
dealing with dry or wet conditions and thus may be of interest
for ecological or plant-physiological studies at a large scale.

2 Data and methods

2.1 Choice of microwave frequency

The VOD-GPP model relies on biomass as input. Neverthe-
less, the choice of microwave frequency for estimating GPP
may look counterintuitive. On the one hand, VOD from low
microwave frequencies like L band has been demonstrated
to be better suited as proxy for mapping total aboveground
biomass than high-frequency VOD, i.e., X-band VOD, as
L-band VOD saturates less at high biomass values (Cha-
parro et al., 2019; Frappart et al., 2020; Li et al., 2021). On
the other hand, previous analyses demonstrated that X-band
VOD shows a closer agreement with GPP (Teubner et al.,
2018, 2019; Kumar et al., 2020). In Fig. A1, we further cor-
roborated this observation by a correlation analysis between
in situ GPP and VOD from L and X band, respectively (for
details about the single sensor VOD data sets, see Teubner
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et al., 2018). Despite the high fraction (38 %) of forest pixels
used for this computation, higher correlations were obtained
for X band than for L band. An explanation could be that
whole plant biomass was found to be less suited for estimat-
ing GPP as opposed to biomass of metabolically active plant
parts like leaves and fine roots (Litton et al., 2007). Based
on these findings, we concluded that higher-frequency VOD
appears to be better suited for estimating GPP, and therefore
we used X-band VOD in our analysis.

2.2 Data sets

We analyzed different GPP data sets derived from microwave
and optical sensors as well as SPEI. As input to the VOD-
GPP model, we used X-band VOD data from the VOD Cli-
mate Archive (VODCA). Since global coverage for VODCA
X-band data starts in 2003 (Moesinger et al., 2020) and SPEI
data are available through 2015, we used the common period
from 2003 to 2015 for our analysis. Temporal median maps
for the global GPP data sets are displayed in the Supplement
(Fig. A2).

2.2.1 VODCA

VOD retrievals from single sensors often span only a certain
period in time, which may hamper the analysis of longer pe-
riods. To overcome this problem, we used a merged single-
frequency VOD from the VOD Climate Archive (VODCA;
Moesinger et al., 2020) as input to our model. VODCA
(Moesinger et al., 2020) X band (VODCAX) contains
nighttime observations of passive VOD derived from TMI
(10.7 GHz; variable overpass time), AMSR-E (10.7 GHz;
descending 01:30 LECT, local equatorial crossing time),
WindSat (10.7 GHz; descending 06:00 LECT) and AMSR2
(10.7 GHz; descending 1:30 LECT). The VOD input data are
obtained from the Land Parameter Retrieval Model (LPRM;
van der Schalie et al., 2017). The use of nighttime observa-
tions on the one hand meets the LPRM assumption of homo-
geneous temperature conditions (Owe et al., 2001) and on
the other hand is better suited as proxy for plant water sta-
tus than daytime observations. Due to diurnal differences in
plant water status and the refilling during the night (El Hajj
et al., 2019; Konings and Gentine, 2017), nighttime observa-
tions are closer to the predawn water potential, which is com-
monly used as estimator for the daily vegetation water status
(Konings and Gentine, 2017; Konings et al., 2019). During
the processing of VODCAX, data are masked for radio fre-
quency interference (RFI) (Moesinger et al., 2020) since RFI
can introduce spurious retrievals (Li et al., 2004; Njoku et al.,
2005). Data are available at daily resolution and 0.25◦ grid
spacing.

2.2.2 Independent global GPP data sets

The MOD17A2H v006 product provides global estimates
of GPP that are derived from surface reflectances (Running

et al., 2004, 2015). The algorithm is based on the light use ef-
ficiency concept by Monteith (1972) and uses the fraction of
photosynthetically absorbed radiation for deriving plant pro-
ductivity (Running et al., 1999, 2000). Data are produced as
8 d GPP estimates at 500 m resolution.

FLUXCOM presents an upscaling of GPP from eddy co-
variance measurements using an ensemble of machine learn-
ing approaches (Jung et al., 2020). The data set is available
at 8 d resolution and 10 km grid spacing. FLUXCOM esti-
mates are produced in two setups: the FLUXCOM remote
sensing (RS) is based on remote sensing data as input to the
machine learning models and the FLUXCOM RS+METEO
uses meteorological data and only the mean seasonal cycle of
remote sensing data (Jung et al., 2020). Since our approach is
mainly based on remote sensing data, i.e., VOD observations,
we used FLUXCOM RS in our analysis. The FLUXCOM al-
gorithm uses the following MODIS variables as input: En-
hanced vegetation index, leaf area index, MODIS band 7 –
middle infrared reflectance, normalized difference vegetation
index and normalized difference water index.

2.2.3 In situ GPP estimation from FLUXNET

The Fluxnet2015 data set (Pastorello et al., 2020) provides
daily in situ estimates of carbon, water and heat fluxes, which
are determined using the eddy covariance technique. GPP
estimates are available for two flux partitioning methods,
i.e., daytime and nighttime partitioning method. We used the
mean of both partitioning methods, as suggested in (Pas-
torello et al., 2020), with variable friction velocity thresh-
old (GPP_DT_VUT_REF, GPP_NT_VUT_REF) from the
freely available station data set (Tier1 v1). Since data are
available until 2014, we used data for the period from 2003
to 2014 as training data for estimating GPP based on VOD.
An overview of the FLUXNET sites is given in Fig. A3 and
Table A1.

2.2.4 SPEI

For analyzing the impact of variations in water availabil-
ity, we used SPEI from the SPEIbase (Beguería et al., 2017;
Vicente-Serrano et al., 2010). The climatological water bal-
ance is calculated on different timescales ranging from 1 up
to 48 months. Since drought can act on different timescales,
we used SPEI at two different aggregations, 3 and 12 months,
for investigating the response to dry and wet conditions. The
3-month SPEI (SPEI03) represents short-term effects, while
the 12-month SPEI (SPEI12) relates to dry or wet conditions
at an annual timescale. Although SPEI cannot be used to ex-
press actual water shortage for plants, it allows for the indi-
cation of relative deviations from mean conditions. Because
of the use of both precipitation and temperature, SPEI further
enables the comparison between different biomes (Vicente-
Serrano et al., 2010). The SPEI data have a monthly resolu-
tion and a grid spacing of 0.5◦.
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2.2.5 ERA5-Land

ERA5-Land, produced by the European Centre for Medium-
Range Weather Forecasts (ECMWF) (C3S, 2019; Muñoz-
Sabater, 2019), provides a reanalysis data set of meteorolog-
ical parameters. ERA5 uses a 4D variational data assimila-
tion scheme and a simplified extended Kalman filter (Hers-
bach et al., 2020). We used skin temperature and snow data
for masking VOD. In the VOD-GPP model, we incorporated
2 m air temperature (T2M) for representing the temperature
dependency of autotrophic respiration. T2M was used in our
analysis since this parameter is most common for describ-
ing the temperature dependency of autotrophic respiration
for aboveground vegetation (e.g., Ryan et al., 1997; Running
et al., 2000; Ceschia et al., 2002; Drake et al., 2016). The
data have an hourly resolution and 9 km spatial sampling.

2.3 Data processing

VODCAX data were masked for low temperature (skin tem-
perature < 0 ◦C) and snow cover (snow depth > 0 cm) and
then aggregated to 8 d estimates by computing the mean
over 8 d to match the temporal resolution of GPPmodis and
GPPfluxcom. These 8 d values were then used as input to
the VOD-GPP model and for further analysis throughout the
study. GPPfluxcom and GPPmodis were aggregated to 0.25◦

to match the spatial sampling of VODCAX. For the compar-
ison with SPEI, 8 d GPP estimates were further resampled
to monthly resolution while SPEI was spatially resampled to
0.25◦ using the nearest-neighbor method.

2.4 GPP estimation based on VOD

The approach of estimating GPP based on microwave radi-
ation and the corresponding equations are described in de-
tail in Teubner et al. (2019). In short, the VOD-GPP model
uses VOD as a proxy of aboveground living biomass (Eq. 1).
It determines GPP by estimating sinks for carbohydrates,
i.e., the sum of NPP and Ra, which are represented through
different VOD-derived variables: (i) time series of the bulk
VOD signal (VOD; 8 d aggregated native VOD time series),
(ii) time series of the temporal change in VOD (1VOD;
1VODt =VODt −VODt−1 computed from the smoothed
8 d aggregated VOD time series) and (iii) the grid cell me-
dian of VOD (mdnVOD; calculated over the entire VOD
time series of the grid cell; used as a proxy for vegetation
cover). While NPP is related to 1VOD, Ra is related to both
VOD and 1VOD using the concept proposed by Ryan et al.
(1997) of dividing Ra into maintenance and growth respira-
tion (Eq. 2). By assuming that belowground biomass terms
are proportional to aboveground biomass (i.e., biomass B

can be expressed through above ground biomass AGB) and
adding a static term c supporting the conversion in Eq. (2),
GPP can be represented through a differential equation with

VOD as input (Eq. 3).

AGB= f (VOD)= ṼOD (1)

GPP= NPP+Ra=
(

dB

dt
+ loss terms

)
+ (a0

dB

dt

+ b0B)≈ a
dB

dt
+ bB (2)

GPP= a
dṼOD

dt
+ b ṼOD+ c (3)

The formulation in GAM for this previous model, which
uses only VOD variables as input (GPPvod; Eq. 4), then
reads as follows:

GPPvod= s(VOD)+ s(1VOD)+ s(mdnVOD), (4)

where s denotes spline terms for representing the functions
between each input variable and the response variable GPP
in the two-dimensional space.

For adding the temperature dependency of Ra, we are con-
sidering the two terms of Ra, i.e., maintenance and growth
respiration. Since the temperature sensitivity mainly applies
to the maintenance term (Ryan et al., 1997), we are only
incorporating an interaction term with temperature for the
maintenance part of the model formulation. Although all
terms potentially may be dependent on temperature due to
the general temperature dependency of enzymatic activity,
the temperature dependency for modeling growth related
sink terms (growth respiration and net primary production)
may be of less importance. For the current model formula-
tion (GPPvodtemp; Eq. 5), we now introduce an interaction
term between VOD and temperature:

GPPvodtemp= te(VOD,T2M)+ s(1VOD)

+ s(mdnVOD) (5)

where te stands for a tensor term, which represents the inter-
action between VOD and temperature and spans a surface in
the three-dimensional space.

Consistent with our previous model, we used GAM as
regression method for deriving GPP. The pyGAM (Servén
and Brummitt, 2018) version 0.8.0 provides the possibility of
adding an interaction term. An advantage of GAM is that the
relationships between input variable and response variables
are not required to be known beforehand but instead can be
estimated from the data themselves (Hastie and Tibshirani,
1987). Since the relationship between VOD and GPP as well
as its relationship with temperature is difficult to determine a
priori, this method is well suited for our approach.

In GAM, a number of basis spline functions are fitted to
the data and the resulting function is further smoothed to ob-
tain the final response function (Servén and Brummitt, 2018).
The degree of smoothing is determined by the smoothing fac-
tor, which yields strong smoothing for high values and low
smoothing for low values. For the current models we used
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a smoothing factor of 2, which is lower than for the model
in Teubner et al. (2019). This was done since the response
function for the tensor term was too smooth using the de-
fault number of 10 splines for tensor terms and resulted in
unrealistically high GPP values at high VOD. For 1VOD,
the default number of 20 splines for spline terms were used,
while for mdnVOD we reduced the number of splines to 5 in
order to obtain a smooth relationship.

2.5 Statistical analysis

For model comparison, we computed Pearson correlation,
unbiased root-mean-square error (ubRMSE) and bias. For
studying the error characteristics, ubRMSE was used instead
of RMSE to exclude the impact of bias, which was observed
during our analysis. In addition, cross-validation was com-
puted for the above metrics using the leave-site-out method,
where the model performance is evaluated at each site by
omitting the respective site data from model training and then
using the left-out data for computing the statistics. The anal-
ysis was carried out for the full signal and the anomalies from
the mean seasonal cycle.

In case of analyzing annual GPP anomalies as a measure
for interannual variability and residuals of the VOD-GPP
model, we based our analysis on standardized annual or 8 d
time series data (z scores). This was done in order to analyze
GPP data in the absence of systematic differences between
the data sets. The standardization for the 8 d or the annual
data was applied to each grid cell time series by subtracting
the mean and dividing by the standard deviation.

For generating the smoothed time series in the calculation
of 1VOD and for aiding visual comparison in time series
plots, we applied a Savitzky–Golay filter with window size
of 11 data points.

3 Results

3.1 Model representation of temperature dependency

We find that the sensitivity of VOD to GPP increases
with temperature as shown by the partial dependency plots
(Fig. 1). For low temperatures, the sensitivity of the VOD-
GPP relationship is relatively low (Fig. 1a). As temperature
increases, the sensitivity also increases and further exhibits
an optimum behavior. At high temperatures, however, the
maxima of the curves are lower than for moderate temper-
atures. The partial dependency for T2M (Fig. 1d) shows an
optimum behavior with a peak around 20 ◦C, which slightly
differs between the VOD values. The partial dependencies
for 1VOD and mdnVOD (Fig. 1b, c) are consistent with
the previous model and yield an increasing relationship with
GPP for 1VOD in the middle part of the value range and a
general decreasing relationship for mdnVOD.

In addition to identifying the underlying relationships, we
can further assess the magnitude of the contribution to GPP

for the input variables based on the data range in the par-
tial dependency plots. The main contribution to GPP in the
model comes from the interaction term between VOD and
T2M with a range of about 12 gC m−2 d−1, which is fol-
lowed by 1VOD with a range of about 6 gC m−2 d−1 and
mdnVOD with a range of about 4 gC m−2 d−1. The contri-
bution of the maintenance part, as represented through the
interaction term, is thus higher than for 1VOD, which repre-
sents the sum of NPP and the growth term in Ra.

3.2 Evaluation at site level

At FLUXNET in situ stations, global GPP data sets overall
show similar results (Fig. 2). GPPvod exhibits a slight accu-
mulation of GPP values at around 4 g C m−2 d−1, while the
density for GPPvodtemp is relatively smooth and compara-
ble to GPPfluxcom and GPPmodis. Both GPPvod and GP-
Pvodtemp show a relatively high number of non-zero GPP at
around zero GPPfluxnet, which is less pronounced for GP-
Pvodtemp than for GPPvod. Cross-validation results in Ta-
ble A2 further confirm a higher performance of GPPvodtemp
compared to GPPvod. For the full signal as well as for the
anomalies from the mean cycle, correlation, ubRMSE and
bias generally yield higher performance for GPPvodtemp.
The increase in performance is more pronounced for the full
signal than for the anomalies. Despite an overall agreement
of GPPvodtemp, GPPfluxcom and GPPmodis with in situ
GPP, all three data sets exhibit an underestimation of GPP
at high values of GPP compared with in situ GPPfluxnet. At
annual time scale, the difference with GPPfluxnet at high
GPP becomes much lower for GPPvodtemp compared to
GPPfluxcom and GPPmodis (Fig. A4), which indicates on
the one hand that GPPvodtemp is able to match the in situ
training data and on the other hand suggests that differences
in GPP already exist between the training data set used in
our study and the independent global GPP data sets, which
may contribute to differences at global scale. The observed
overestimation of GPP for GPPvodtemp at low in situ GPP
can also be observed at annual time scale. This may be an
explanation for the general tendency for overestimation of
microwave-derived GPP estimates and appears not to be en-
tirely related to the temperature sensitivity of Ra, since it is
still present for GPPvodtemp.

3.3 Impact of adding temperature dependency at the
global scale

Performance metrics for GPPvod and GPPvodtemp were as-
sessed with respect to both GPPfluxcom and GPPmodis.
Since the results for GPPfluxcom and GPPmodis are simi-
lar, we are only showing results for GPPfluxcom.

Correlations with GPPfluxcom (Fig. 3a) reveal widespread
strongly positive values with a global mean of 0.63. Some
areas in the tropics and in the Australian desert exhibit an in-
verse temporal dynamic with GPPfluxcom. Compared with
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Figure 1. Partial dependency plot for GPPvodtemp for each input variable: (a) VOD, (b) 1VOD, (c) mdnVOD and (d) T2M. The model
was trained with data from the period 2003–2014. Dashed lines in (b) and (c) denote the 95 % confidence interval. The interaction between
VOD and T2M (a, d), which represents a surface in the three-dimensional space, is displayed as projection on the 2D plane for each of the
two input variables. For this, the parameter space was divided into 10 equally spaced bins between minimum and maximum of the respective
variable. The bin edges are displayed as colored lines as indicated in the legend.

Figure 2. Scatterplots of 8 d in situ GPPfluxnet versus global GPP data sets (a) GPPvodtemp, (b) GPPvod, (c) GPPfluxcom and (d) GPPmodis
for the period 2003–2014.

GPPvod, correlations increase in large parts of the world
(Fig. 3b) with a global average difference of 0.18. Regions
that benefit most from adding temperature as input are tem-
perate and cold regions, which could be expected since these
regions per definition are strongly controlled by temperature.
Tropics and subtropics, however, mainly show only minor
changes in correlation coefficient with a few exceptions of
decreasing correlations. Since the annual temperature ampli-
tude in these regions is low, the model’s sensitivity to tem-
perature is also low, which makes the interaction term mainly
controlled by VOD.

The global average for ubRMSE between GPPvodtemp
and GPPfluxcom (Fig. 3c) yields a value of 1.20. Consistent
with the increase in performance for the correlation, areas in
the temperate and cold region show an improvement in error,
i.e., a decrease of ubRMSE compared to GPPvod (Fig. 3d).
Other regions, however, exhibit an increase in ubRMSE. The
global average of the difference between results for GP-
Pvodtemp and GPPvod is−0.05. Therefore, gains and losses
in error are largely compensated at the global scale.

The bias between GPPvodtemp and GPPfluxcom (Fig. 3c)
is generally positive everywhere with a global average of
1.64. This finding is also evident from the higher range in the
median maps for GPPvodtemp compared with GPPfluxcom

and GPPmodis (Fig. A2). Comparing the results for GPPvod
and GPPvodtemp, the addition of temperature shows an in-
crease in bias mainly in the tropics (Fig. 3d), which is also
evident for the difference of the median maps (Fig. A2e). De-
spite this increase in the tropics, regions with a reduction in
bias also exist, which are mainly found in temperate and cold
regions. On the global scale, decreases and increases in bias
compensate and yield an average difference of −0.05.

The latitudinal distribution of annual GPP (Fig. 4a) further
demonstrates that the addition of temperature yields a reduc-
tion of GPP mainly for regions outside−35 and+60◦ N. The
reduction in the zonal mean, however, is smaller than may
have been expected, probably due to compensating effects.
For the region between+30 and+60◦ N, where reductions in
bias were observed on the global map, positive and negative
values for the bias appear to compensate yielding no net re-
duction in the zonal mean. In the tropical region, the increase
in bias for GPPvodtemp compared with GPPvod is again ev-
ident. When considering the latitudinal distribution of annual
GPP relative to the latitudinal maximum, however, the distri-
bution for GPPvodtemp is actually closer to the independent
data sets than GPPvod (Fig. 4b). This suggests that although
the bias largely increases in the tropics, the relative distribu-

Biogeosciences, 18, 3285–3308, 2021 https://doi.org/10.5194/bg-18-3285-2021



I. E. Teubner et al.: Impact of temperature and water availability 3291

Figure 3. (a) Pearson correlation between GPPvodtemp and GPPfluxcom. (b) Difference between GPPvodtemp and GPPvod for Pearson
correlation with GPPfluxcom. (c) The ubRMSE between GPPvodtemp and GPPfluxcom. (d) Difference between GPPvodtemp and GPPvod
for ubRMSE with GPPfluxcom. (e) Bias between GPPvodtemp and GPPfluxcom. (f) Difference between GPPvodtemp and GPPvod for the
bias with GPPfluxcom. The unit for ubRMSE and bias is g C m−2 d−1. Areas with non-significant correlations in (a) and (b) are marked in
grey. The analysis is computed over the whole study period (2003–2015).

tion between tropics and temperate to boreal regions is better
represented by the setup that includes temperature.

For a region in Europe (5 to 15◦ E and 46 to 51◦ N),
where we generally did observe an increase in all three per-
formance metrics, we find that for GPPvod mainly winter-
time estimates of GPP are too high compared to GPPfluxcom
and GPPmodis (Fig. 5). By adding temperature as input to
the model, winter observations are markedly dampened and
summer observations are only slightly increased. Neverthe-
less, even when including the temperature dependency, win-
ter GPP estimates are still slightly higher for GPPvodtemp
than for GPPfluxcom or GPPmodis. A similar behavior is
observed for other temperate regions (Fig. A5).

In the remaining study, due to the observed bias (both at
site level and global scale), we are analyzing relative rather
than absolute values for comparing interannual variability
and the impact of water availability. In addition, we are fo-
cusing our further analysis on GPPvodtemp since this setup
overall showed higher performance than GPPvod. Results
for GPPvod are displayed in the Supplement for comparison
with GPPvodtemp.

3.4 Interannual variability and varying conditions of
water availability

The latitudinal distribution of annual GPP anomalies reveals
a general agreement between the GPP data sets (Figs. 6 and
A6). Although differences exist between all data sets, key

features are observed among all data sets, such as the pos-
itive anomalies at −55◦ N in 2003, at −30◦ N in 2011, or
at +75◦ N in 2012 and the negative anomalies at +75◦ N in
2003 and 2015 and at around −40 ◦ in 2009 and 2011. De-
spite the fact that these key features are found in all data sets,
we also observe that the magnitude of the anomalies often
differs between the data sets, which thus yields a generally
relatively high variability between all data sets. In terms of
the overall latitudinal pattern, it appears that GPPvodtemp is
more similar to GPPmodis than to GPPfluxcom.

For the correlation of the residuals between stan-
dardized GPP (GPPvodtemp−GPPfluxcom or GP-
Pvodtemp−GPPmodis) and SPEI, we find that large areas
show no significant correlation with SPEI03 (Fig. 7a, b).
For the long-term climatological water balance, i.e., SPEI12
(Fig. 7c, d), these areas with non-significant correlations
further increase. In terms of model applicability, the non-
significant correlations are the desired result. Given that
correlations between GPPvodtemp and GPPfluxcom or
GPPmodis are high in these regions, this demonstrates that
GPPvodtemp shows a similar behavior to GPPfluxcom or
GPPmodis in response to variations in dry or wet conditions.
This finding thus provides a strong indication that the
VOD-GPP relationship generally remains similar under
varying conditions of water availability.

Apart from the widespread areas with non-significant cor-
relation, some significant correlations, both positive and neg-
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Figure 4. Zonal mean of annual GPP for GPPfluxcom, GPPmodis, GPPvodtemp and GPPvod for the study period 2003–2015. (a) Absolute
latitudinal distribution. (b) Scaled latitudinal distribution. To obtain zonal means, data were averaged over all grid points of the same latitude.
Scaled data were computed by dividing the latitudinal distribution by the maximum of the latitudinal distribution for each data set.

Figure 5. Time series plot of spatially aggregated GPP estimates for GPPfluxcom, GPPmodis and (a) GPPvod or (b) GPPvodtemp over the
whole study period (2003–2015). Shaded areas indicate the standard deviation over the aggregated grid cells. The region is located in Europe,
46 to 51◦ N and 5 to 15◦ E, and was selected as an example where the correlation analysis between GPP residuals and SPEI largely yield no
significant correlations. The 8 d data were smoothed to aid visual comparison.

ative, occur at both timescales. Negative correlations indi-
cate that during dry conditions GPPvodtemp is higher rela-
tive to the reference GPP than during wet conditions, while
positive correlations mean that during dry conditions GP-
Pvodtemp is lower relative to the reference GPP than dur-
ing wet conditions. The spatial distribution of these signifi-
cant correlations is largely consistent between GPPfluxcom
and GPPmodis. For the short-term response to SPEI (Fig. 7a,
b), negative correlations are more frequent than positive cor-
relations, indicating that the response to short-term drought
events is often a reduction of source-driven GPP relative to
sink-driven GPP. Negative correlations are mainly observed
in the US corn belt, Argentina, eastern Europe, Russia and
China, with the strongest negative correlations being in the
US, Argentina and Russia. Positive correlations are obtained
mainly over South America, Africa and Australia. For the
long-term response to SPEI (Fig. 7c, d), the number of posi-
tive correlations increase. Similar to the short-term response,
positive correlations are mainly found over South America,
Africa and Australia.

The analysis of GPPvod residuals reveals a similar re-
sult as for GPPvodtemp (Fig. A7). For GPPvod, however,
the number of grid cells with non-significant correlations
in the four analyses is lower by about 2 % to 4 % than for
GPPvodtemp, while the global average correlation is nearly
identical. The higher number of non-significant correlations
for GPPvodtemp than for GPPvod is expected because the
addition of temperature accounts for some variation in the
VOD-based GPP estimation.

For specific regions indicated in Fig. 7, we analyzed the
time series of the standardized GPP (Fig. 8) and the response
to SPEI categories (Fig. A8) in order to inspect under which
situations negative or positive correlations with SPEI occur.

For the region in the US corn belt (Fig. 8a), where we
found moderately negative correlations with SPEI, all three
GPP data sets show a reduction in summer GPP in 2006
and 2012. Compared with other years, however, the reduc-
tion of GPPvodtemp tends to be less than for GPPfluxcom
and GPPmodis. This behavior can be verified by considering
the residuals along the SPEI12 gradient (Fig. A8a). During
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Figure 6. Hovmöller diagram for zonal means of annual GPP anomalies (z scores) for (a) GPPvodtemp, (b) GPPfluxcom and (c) GPPmodis
over the study period. Zonal means were calculated by averaging data over all grid points of the same latitude.

Figure 7. Correlation between residuals of standardized GPP (GPPvodtemp-GPPfluxcom and GPPvodtemp-GPPmodis) and SPEI. Non-
significant correlations are indicated in grey. (a, c) GPPvodtemp-GPPfluxcom, (b, d) GPPvodtemp-GPPmodis, (a, b) SPEI03 (short-term
response), (c, d) SPEI12 (long-term response). Regions A–D are defined as follows: US corn belt (A), Argentina (B), eastern Africa (C) and
eastern Australia (D). The analysis is based on the whole study period (2003–2015).

dry conditions, the residuals are higher than during wet con-
ditions. Since higher residuals indicate that GPPvodtemp is
higher relative to the reference data sets, this result confirms
the findings for the time series.

In Argentina (Fig. 8b), we observed strongly negative cor-
relations for the analysis with SPEI. For this region, a pro-
nounced dry condition is observed at the end of 2008 and be-
ginning of 2009. In this period, GPPfluxcom and GPPmodis
are reduced more strongly than GPPvodtemp. In the first fol-
lowing year, the GPPvodtemp peak is slightly lower than for
GPPfluxcom and GPPmodis at the end of 2009. In the second
following year (the end of 2011), GPPvodtemp is similar to
that of GPPfluxcom and GPPmodis again. This result is fur-
ther supported by the pronounced decrease of the residuals
with SPEI12 in Fig. 8b. In addition to the interannual vari-
ability, we also find that the spring peak is more pronounced
in GPPfluxcom and GPPmodis than in GPPvodtemp, which
might point towards a surplus of carbohydrates in spring that

are incorporated for building up biomass later in the year or
may be related to differences in land cover.

For the example in Africa (Fig. 8c), where correlations
with SPEI12 were positive, GPPvodtemp generally appears
to be a bit higher relative to GPPfluxcom and GPPmodis
at the end of each growing period. In the face of dry con-
ditions, however, GPPvodtemp shows a stronger reduction
in GPP than GPPfluxcom and GPPmodis at the end of the
growing season, as observed in 2006 and 2009. Despite some
differences in the time series between GPPvodtemp and the
reference data sets, the temporal dynamic is generally simi-
lar between the data sets. This indicates that the sink-driven
GPP shows a slightly different response to changes in envi-
ronmental conditions for this region, which then results in
the observed positive correlations with SPEI. Considering
the residuals along the SPEI12 gradient for this region, we
find that the residuals increase with SPEI12 for all categories
except for very wet conditions (Fig. A8c).
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The time series for Australia (Fig. 8d) shows that GP-
Pvodtemp is generally reduced during dry conditions and in-
creases relative to GPPfluxcom and GPPmodis during wet
conditions. The increase in GPPvodtemp relative to the ref-
erence data sets appears to be strongest for the period follow-
ing a year after long-term dry conditions, i.e., in 2009, 2011
and 2012. The residuals consistently show a clear increase
along the SPEI12 categories (Fig. A8d).

4 Discussion

4.1 Impact of adding temperature as model input

The performance of the VOD-GPP model was shown to im-
prove with the addition of an interaction term between VOD
and temperature mainly in terms of temporal dynamic. Our
results showed that the improvement in temporal dynamic
was mainly observed for temperate and cold regions. Since
the growing season in these regions is largely controlled by
temperature, this indicates that the improvement may largely
be a seasonal effect. When analyzing the temperature re-
sponse of respiration across biomes, both spatial and tem-
poral differences resulting from thermal acclimation need to
be taken into account (Vanderwel et al., 2015). On the spatial
scale, temperature sensitivity largely varies with mean an-
nual temperature across biomes (Piao et al., 2010; Vanderwel
et al., 2015). On the temporal scale, temperature-corrected
respiration rates, as observed for stem respiration of decid-
uous trees or for needle-leaved evergreen trees, exhibit a
seasonal variation, leading to higher respiration rates dur-
ing summer than during winter (Maier et al., 1998; Ceschia
et al., 2002; Vose and Ryan, 2002; Zha et al., 2004). Con-
sistently, we observed a dampening of GPPvodtemp during
winter compared to GPPvod. The addition of temperature
thus seems to enable the model to reflect differences in basal
respiration rates between growing and dormant periods in
these regions. Although the temporal component of thermal
acclimation of respiration appears to be the dominant contri-
bution, the resulting dependency on temperature represents
the cumulative effect of spatial and temporal thermal accli-
mation of respiration as the relationship for the temperature
dependency was estimated from the data without a priori as-
sumptions.

In addition to the temperature dependency, Ra also varies
with tissue nitrogen content (Maier et al., 1998; Ceschia
et al., 2002; Vose and Ryan, 2002; Tjoelker et al., 2008),
which may thus contribute to uncertainties in the GPP esti-
mation derived from VOD. Ra is also known to vary between
plant tissues (Vose and Ryan, 2002; Gifford, 2003). The res-
piration of woody tissue is generally lower than for leaves
(Vose and Ryan, 2002). Since VOD generally increases with
the fraction of woody vegetation (Chaparro et al., 2019), us-
ing the median of VOD as model input may potentially com-

pensate at least partly for differences in respiration rates of
stems and branches versus leaves within a grid cell.

4.2 Bias between GPP data sets

The addition of temperature dependency revealed contrast-
ing results for the bias. While reductions in bias were ob-
served for temperate and cold regions, a strong increase in
bias was found for the tropics. Since the interaction term be-
tween VOD and T2M represents a relationship in the three-
dimensional space, certain combinations of VOD and T2M
intervals in the parameter space may not be well represented
by the training data. FLUXNET stations are not evenly dis-
tributed around the globe, as the majority of stations are
located in the temperate region. This may have caused the
model to be not well constrained in certain regions, e.g.,
where temperature and VOD are very high, and thus might
have contributed to the increase in bias in the tropics. There-
fore, additional FLUXNET stations might help to better con-
strain the VOD-GPP model. Nevertheless, differences be-
tween the data set were already evident at the site level,
which suggests that the observed difference at global scale
may at least partly be caused by differences in the training
data set. In general, the agreement in annual GPP estimates
is lowest in the tropics (Anav et al., 2015). Estimates for the
FLUXCOM RS setup, which was used in our study, were re-
ported to yield lower global estimates than the FLUXCOM
RS+METEO setup or GPP estimates from vegetation models
(Jung et al., 2020). Similarly, MODIS was found to underes-
timate GPP in the tropics (Turner et al., 2006). The need for
better constraints for GPP estimates especially in the tropics
is well recognized (MacBean et al., 2018) and tackled in dif-
ferent studies (e.g., MacBean et al., 2018; Sun et al., 2018;
Wu et al., 2020) but is usually hampered by the availability
of in situ estimates.

4.3 Implications of possible saturation of VOD at high
biomass

The choice of microwave frequency for the estimation of
GPP may have certain implications. Different studies have
demonstrated that L-band VOD yields more robust estimates
of total aboveground biomass than X-band VOD, as low-
frequency VOD does not saturate at high biomass values
(Chaparro et al., 2019; Frappart et al., 2020; Li et al., 2021).
Nonetheless, the impact of such potential saturation with
biomass on the estimation of GPP is less trivial, especially
with regard to densely vegetated areas like the tropics. Non-
linearity in the conversion between VOD and AGB should
ideally be reflected in the partial dependency plot of GAM,
which was also the reason for choosing this type of model-
ing approach. Scatterplots of the resulting GPPvodtemp es-
timates did not show clear signs of saturation at high in situ
GPP. The FLUXNET training data set, however, only has few
stations in the tropics, and thus the robustness of the model
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Figure 8. Regional mean of standardized GPP values for regions as indicated in Fig. 7 over the study period. Shaded areas denote the
standard deviation for the regional aggregated time series. Vertical grey areas indicate periods with different levels of dryness conditions for
regional aggregated SPEI12: SPEI12<−1 (dark grey), −1 <=SPEI12<0 (light grey) and SPEI12>=0 (white areas). Data were smoothed
to aid visual comparison.

may be limited by the availability of in situ stations. Apart
from this, the relationship between VOD and GPP has been
found to be in closer agreement for X-band VOD than for L-
band (Teubner et al., 2018, 2019; Kumar et al., 2020), which
was also observed for the correlation with in situ FLUXNET
GPP (Fig. A1). At first glance, this might appear contradic-
tory to the above-mentioned better performance of L-band
VOD for biomass estimation. A comparison of biomass es-
timates from different plant components with GPP, however,
demonstrated that large structural components, which make
up a large fraction of the total biomass, may contribute less
to GPP than metabolically active plant parts (Litton et al.,
2007). Since high-frequency VOD is more sensitive to small
plant parts like leaves and twigs (Woodhouse, 2017), this
could be an explanation why X-band VOD might be better
suited for the estimation of GPP and why saturation at high
total aboveground biomass may be less of an issue here.

4.4 Independence of global GPP data sets

For the comparison with VOD-based GPP estimates, we
used independent global data set from FLUXCOM and
MODIS. Both data sets include to some extent information
from FLUXNET data. FLUXCOM has been trained against
FLUXNET data (Tramontana et al., 2016; Jung et al., 2020)
but with a larger number of stations than in the freely avail-
able Tier1 data set that was used for our model. In addition,
MODIS has been partly calibrated to some FLUXNET sta-
tions (Running et al., 1999). Therefore, the FLUXCOM and

MODIS may not be fully independent of our VOD-based
GPP estimates. Nevertheless, there is no alternative to con-
strain absolute GPP estimates at a global scale than by using
FLUXNET data. In addition, the agreement between GPP
and VOD-based GPP estimates was also confirmed at site
level using leave-site-out cross-validation. Since this analy-
sis is independent of the comparison with global data sets, it
supports the use of VOD for deriving GPP.

4.5 The “zero-GPP problem” and non-structural
carbohydrates

For GPPvodtemp, we observed that winter GPP values for
an example over Europe were slightly higher compared to
GPPfluxcom and GPPmodis. This issue of estimating GPP
values close to zero was also observed in the scatterplots be-
tween GPPvodtemp and in situ GPPfluxnet. The reason for
the overestimation at low GPP may be on the one hand an
artifact related to the rehydration of plant residues after rain
events and on the other hand may be explained by the sink-
driven nature of our approach. In the latter case, the non-
zero GPPvodtemp values may be caused by perennial vege-
tation. Both evergreen and deciduous vegetation are respiring
throughout the dormant period (Maier et al., 1998; Vose and
Ryan, 2002) and are concurrently containing water. In turn,
this presence of vegetation water content is detected through
microwave sensors, leading to non-zero GPPvodtemp esti-
mates. It thus may point towards the existence of a storage
term. In plants, photosynthetic assimilates can be stored in
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the form of non-structural carbohydrates (NSCs), which can
be converted back to plant usable sugars to support respira-
tion during the dormant period and growth at the start of the
growing season (e.g., Martínez-Vilalta et al., 2016). For trop-
ical forest plots, the balancing of plot-level measurements of
source and sink terms showed a decoupling between the two
in response to drought, which the authors attributed to the
existence of NSC (Doughty et al., 2015). Therefore, such
a storage term can thus support a temporary imbalance be-
tween sources and sinks of carbon, which may translate into
differences between source- and sink-driven GPP.

4.6 Magnitude of input terms

Based on the partial dependency plots, we found that for the
maintenance-related term, i.e., the interaction term between
VOD and T2M, the value range is higher than for 1VOD.
Although our model represents the sum of NPP and growth
Ra and not just growth Ra, the magnitude of the two input
terms is consistent with studies that analyzed the contribution
of maintenance and growth to Ra. For whole plants and for
stem respiration of boreal needle-leaved trees, maintenance
respiration was shown to play the dominant role for Ra, with
a contribution of 70 % (Chambers et al., 2004) and 80 % (Zha
et al., 2004), respectively.

4.7 Response to water availability

The analysis of VOD-GPP residuals with respect to FLUX-
COM and MODIS revealed that GPPvodtemp largely
showed a similar behavior to the independent GPP data sets
as demonstrated by the widespread non-significant correla-
tions with SPEI. This result is further supported by the gen-
eral agreement in interannual variability. In addition to the
possible impact of NSC, occurrences of significant correla-
tions between VOD-GPP residuals and SPEI may indicate
different plant strategies for dealing with changes in dry
or wet conditions. For negative correlations, this could be
mainly related to differences in plant hydraulics, while for
positive correlations, it might indicate shifts between above-
ground and belowground carbon allocation.

Different plant strategies with regard to hydraulics can be
expressed with the concept of isohydricity, which describes
the regulation of stomatal control (Konings and Gentine,
2017; Giardina et al., 2018; Martínez-Vilalta and Garcia-
Forner, 2017). At an ecosystem level, this parameter can
be obtained using the difference in twice-daily overpasses
of microwave observations (Konings and Gentine, 2017).
Although Martínez-Vilalta and Garcia-Forner (2017) argue
that the regulation of water potential may not necessarily be
strongly coupled with the assimilation during drought, the
degree of isohydricity may still be an explanation for the ob-
served variation in GPPvodtemp relative to GPPfluxcom and
GPPmodis. Pronounced negative correlation for the analysis
of GPP residuals were found in Argentina and the US corn

belt, which are regions where Konings and Gentine (2017)
observed high values of isohydricity. Corn, which exhibits
isohydric behavior (Lambers and Oliveira, 2019; Martínez-
Vilalta and Garcia-Forner, 2017), i.e., it maintains water po-
tential through strong regulation of stomata, additionally has
the ability, like other grasses, to roll up leaves in response
to drought to reduce the loss of water from the plant’s cutic-
ular (e.g., Ribaut et al., 2009). In conjunction with the iso-
hydric behavior, this might be an explanation for the strong
signal reduction of GPPfluxcom and GPPmodis relative to
GPPvodtemp observed over Argentina. Although our anal-
ysis is based on 8 d time steps, characteristics of plant hy-
draulics which are retrieved from sub-daily data show similar
features to those of our analysis of residuals between source-
and sink-driven GPP in response to changes in water avail-
ability.

In contrast to the isohydric behavior, anisohydric behav-
ior should not lead to pronounced differences between GP-
Pvodtemp and GPPfluxcom or GPPmodis as stomatal con-
ductance and leaf water potential are both reduced in re-
sponse to dry conditions (Lambers and Oliveira, 2019). The
anisohydric behavior thus potentially relates to the non-
significant correlations. Nevertheless, the degree of isohy-
dricity may also vary between wet and dry seasons (Kon-
ings and Gentine, 2017), which also needs to be taken into
account for the interpretation of the residuals.

The observed positive correlations, i.e., reductions of GP-
Pvodtemp relative to GPPfluxcom or GPPmodis, could be
associated with a stronger shift of assimilates to below-
ground plant organs. Different studies have shown that root
growth may increase in face of drought to maintain wa-
ter access (Sanaullah et al., 2012; Burri et al., 2014) and
consequently also nutrient supply (Lambers and Oliveira,
2019). Since VOD observations only detect aboveground liv-
ing vegetation, a shift towards belowground plant organs may
lead to apparently lower GPPvodtemp. Nevertheless, the in-
verse, i.e., an increase of allocation to shoots, was also ob-
served in the presence of legume species during drought
(Sanaullah et al., 2012) and for tropical forest plots after
drought (Doughty et al., 2015).

Comparisons of GPPvodtemp with in situ observations
of vegetation properties during such extreme events like
drought, however, may be needed to improve the understand-
ing of the plant’s response to changes in environmental con-
ditions at the ecosystem to global scale.

5 Conclusions

The VOD-GPP model was analyzed with regard to the im-
pact of adding temperature as model input in order to ac-
count for the temperature dependency of autotrophic respi-
ration. The resulting GPP estimates, GPPvodtemp, showed
a high consistency with GPPfluxcom and GPPmodis for the
temporal dynamic both at intra- and interannual timescales.
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For bias and error, the addition of temperature resulted in a
regionally diverse response with a general improvement for
temperate and cold regions and a decrease in performance
mainly in the tropics. The improvement upon adding tem-
perature, however, was less than might have been expected,
which indicates that the previous lack of temperature depen-
dency in the model formulation can only partly account for
the observed differences between the global GPP data sets.
Nevertheless, this result demonstrates that an improvement
by adding temperature is possible but might require further
model constraints for a more robust estimation of GPP.

The analysis of the VOD-GPP residuals revealed that GP-
Pvodtemp largely yields a similar behavior as GPPfluxcom
and GPPmodis with respect to SPEI. This highlights that the
relationship between VOD and GPP generally may be valid
even under varying conditions of water availability. For some
regions, where significant correlations were observed, the ob-
served differences between GPPvodtemp and GPPfluxcom
or GPPmodis may indicate different plant strategies for deal-
ing with drought conditions.

Overall, our results showed that GPPvodtemp potentially
contains information on plant characteristics that may be rel-
evant for large-scale ecological studies that are addressing
the response to varying environmental conditions.
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Appendix A

Figure A1. Pre-analysis of correlation between in situ FLUXNET GPP and single-sensor VOD from L and X band. (a) Pearson corre-
lation between FLUXNET GPP (mean of GPP_DT_VUT_REF and GPP_NT_VUT_REF) and L-band VOD (SMOS VOD-L, July 2010–
December 2014) and X-band VOD (AMSR-E VOD-X, January 2007–September 2011). Data were resampled to 8 d or monthly values. The
analysis was conducted only for stations where both of the VOD data sets are available (47 stations). For details about the VOD data sets and
their data processing, see Teubner et al. (2018). (b) The same as in (a) but for the subset of forest land cover classes (ENF, DBF, EBF and
MF). (c) Composition of IGBP land cover classes for the stations used in this pre-analysis. Abbreviations for these classes are as follows:
GRA (Grasslands), CRO (Croplands), ENF (Evergreen Needleleaf Forests), DBF (Deciduous Broadleaf Forests), EBF (Evergreen Broadleaf
Forests), SAV (Savannas), MF (Mixed Forests), WET (Permanent Wetlands), WSA (Woody Savannas) and OSH (Open Shrublands).

Figure A2. Temporal median maps for (a) GPPvodtemp, (b) GPPfluxcom, (c) GPPvod, (d) GPPmodis and (e) the difference between the
median maps of GPPvodtemp and GPPvod. For GPPvodtemp and GPPvod, areas where both GPPfluxcom and GPPmodis are missing were
masked, since these data were not used during the analysis. Data were computed over the whole study period (2003–2015).
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Figure A3. Location of FLUXNET Tier1 v1 stations within the pe-
riod 2003–2014. The size of the circles represents the number of
available years for each station. The blue rectangle denotes the lo-
cation of the region in Europe used in Fig. 5.

Figure A4. Scatterplot of annual GPP for GPPfluxnet versus (a) GPPvodtemp, (b) GPPvod, (c) GPPfluxcom and (d) GPPmodis. Annual
values were calculated from 8 d GPP for each data set and cover the FLUXNET period 2003–2014.

Figure A5. Time series plot of spatially aggregated GPP estimates for GPPfluxcom, GPPmodis and (a, c) GPPvod or (b, d) GPPvodtemp for
the two regions of the US corn belt (a, b; region A) and Argentina (c, d; region B) from Figs. 7, 8 and A7. The analysis is based on the study
period 2003–2015. Shaded areas represent the standard deviation over the aggregated grid cells. The 8 d data were smoothed to aid visual
comparison.
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Figure A6. Hovmöller diagram for zonal means of annual GPP
anomalies (z scores) for GPPvod over the study period 2003–2015.

Figure A7. Correlation between residuals of standardized GPP (GPPvod−GPPfluxcom and GPPvod−GPPmodis) and SPEI. Non-
significant correlations are indicated in grey. (a, c) GPPvod-GPPfluxcom, (b, d) GPPvod−GPPmodis, (a, b) SPEI03 (short-term response),
(c, d) SPEI12 (long-term response). Regions A–D are defined as follows: US corn belt (A), Argentina (B), eastern Africa (C) and eastern
Australia (D). Results are computed based on the study period 2003–2015.
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Figure A8. Boxplot of residuals between standardized GPP values of GPPvodtemp and GPPfluxcom or GPPmodis along SPEI12 categories
for the data in Fig. 8. The intervals for the different SPEI12 categories are given in the legend. Box whiskers indicate 1.5 times the interquartile
range. The analysis is based on the whole study period (2003–2015).
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Table A1. Overview of FLUXNET Tier1 v1 stations within the period 2003 to 2014. Land cover from IGBP (International Geosphere–
Biosphere Programme) is obtained from the FLUXNET station metadata. Land cover abbreviations and number of stations per land cover
class sorted by station number are as follows: ENF (Evergreen Needleleaf Forests; 23), GRA (Grasslands; 22), DBF (Deciduous Broadleaf
Forests; 14), CRO (Croplands; 11), EBF (Evergreen Broadleaf Forests; 9), WET (Permanent Wetlands; 9), OSH (Open Shrublands; 7), MF
(Mixed Forests; 6), SAV (Savannas; 6), WSA (Woody Savannas; 4) and CSH (Closed Shrublands; 1).

FLUXNET-ID Name Long [◦ E] Lat [◦ N] Years used Land cover

AR-SLu San Luis −66.46 −33.46 2009–2011 MF
AR-Vir Virasoro −56.19 −28.24 2010–2012 ENF
AT-Neu Neustift 11.32 47.12 2003–2012 GRA
AU-ASM Alice Springs 133.25 −22.28 2010–2013 ENF
AU-Ade Adelaide River 131.12 −13.08 2007–2009 WSA
AU-Cpr Calperum 140.59 −34.00 2010–2013 SAV
AU-Cum Cumberland Plains 150.72 −33.61 2012–2013 EBF
AU-DaP Daly River Savanna 131.32 −14.06 2008–2013 GRA
AU-DaS Daly River Cleared 131.39 −14.16 2008–2013 SAV
AU-Dry Dry River 132.37 −15.26 2008–2013 SAV
AU-Emr Emerald, Queensland, Australia 148.47 −23.86 2011–2013 GRA
AU-Fog Fogg Dam 131.31 −12.55 2006–2008 WET
AU-GWW Great Western Woodlands, Western Australia, Australia 120.65 −30.19 2013–2014 SAV
AU-RDF Red Dirt Melon Farm, Northern Territory 132.48 −14.56 2011–2013 WSA
AU-Rig Riggs Creek 145.58 −36.65 2011–2013 GRA
AU-Rob Robson Creek, Queensland, Australia 145.63 −17.12 2014–2014 EBF
AU-Tum Tumbarumba 148.15 −35.66 2003–2013 EBF
AU-Whr Whroo 145.03 −36.67 2011–2013 EBF
BE-Bra Brasschaat 4.52 51.31 2004–2013 MF
BE-Lon Lonzee 4.75 50.55 2004–2014 CRO
BE-Vie Vielsalm 6.00 50.31 2003–2014 MF
BR-Sa3 Santarem-Km83-Logged Forest −54.97 −3.02 2003–2004 EBF
CA-NS1 UCI-1850 burn site −98.48 55.88 2003–2005 ENF
CA-NS3 UCI-1964 burn site −98.38 55.91 2003–2005 ENF
CA-NS4 UCI-1964 burn site wet −98.38 55.91 2003–2005 ENF
CA-NS5 UCI-1981 burn site −98.49 55.86 2003–2005 ENF
CA-NS6 UCI-1989 burn site −98.96 55.92 2003–2005 OSH
CA-NS7 UCI-1998 burn site −99.95 56.64 2003–2005 OSH
CA-Qfo Quebec – Eastern Boreal, Mature Black Spruce −74.34 49.69 2003–2010 ENF
CA-SF1 Saskatchewan – Western Boreal, forest burned in 1977 −105.82 54.49 2003–2006 ENF
CA-SF2 Saskatchewan – Western Boreal, forest burned in 1989 −105.88 54.25 2003–2005 ENF
CA-SF3 Saskatchewan – Western Boreal, forest burned in 1998 −106.01 54.09 2003–2006 OSH
CH-Cha Chamau 8.41 47.21 2006–2012 GRA
CH-Fru Früebüel 8.54 47.12 2006–2012 GRA
CH-Oe1 Oensingen grassland 7.73 47.29 2003–2008 GRA
CN-Cha Changbaishan 128.10 42.40 2003–2005 MF
CN-Cng Changling 123.51 44.59 2007–2010 GRA
CN-Dan Dangxiong 91.07 30.50 2004–2005 GRA
CN-Din Dinghushan 112.54 23.17 2003–2005 EBF
CN-Du2 Duolun_grassland (D01) 116.28 42.05 2006–2008 GRA
CN-Ha2 Haibei Shrubland 101.33 37.61 2003–2005 WET
CN-HaM Haibei Alpine Tibet site 101.18 37.37 2003–2004 GRA
CN-Qia Qianyanzhou 115.06 26.74 2003–2005 ENF
CN-Sw2 Siziwang Grazed (SZWG) 111.90 41.79 2010–2012 GRA
CZ-BK1 Bily Kriz forest 18.54 49.50 2003–2008 ENF
CZ-BK2 Bily Kriz grassland 18.54 49.49 2004–2006 GRA
DE-Akm Anklam 13.68 53.87 2009–2014 WET
DE-Gri Grillenburg 13.51 50.95 2004–2014 GRA
DE-Hai Hainich 10.45 51.08 2003–2012 DBF
DE-Kli Klingenberg 13.52 50.89 2004–2014 CRO
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Table A1. Continued.

FLUXNET-ID Name Long [◦ E] Lat [◦ N] Years used Land cover

DE-Lkb Lackenberg 13.30 49.10 2009–2013 ENF
DE-Obe Oberbärenburg 13.72 50.78 2008–2014 ENF
DE-RuS Selhausen Juelich 6.45 50.87 2011–2014 CRO
DE-Spw Spreewald 14.03 51.89 2010–2014 WET
DE-Tha Tharandt 13.57 50.96 2003–2014 ENF
DK-NuF Nuuk Fen −51.39 64.13 2008–2014 WET
DK-Sor Soroe 11.64 55.49 2003–2012 DBF
DK-ZaH Zackenberg Heath −20.55 74.47 2003–2008 GRA
ES-LgS Laguna Seca −2.97 37.10 2007–2009 OSH
ES-Ln2 Lanjaron-Salvage logging −3.48 36.97 2009–2009 OSH
FI-Hyy Hyytiala 24.30 61.85 2003–2014 ENF
FI-Jok Jokioinen 23.51 60.90 2003–2003 CRO
FR-Gri Grignon 1.95 48.84 2004-2013 CRO
FR-Pue Puechabon 3.60 43.74 2003–2013 EBF
GF-Guy Guyaflux (French Guiana) −52.92 5.28 2004–2012 EBF
IT-CA1 Castel d’Asso 1 12.03 42.38 2011–2013 DBF
IT-CA2 Castel d’Asso 2 12.03 42.38 2011–2013 CRO
IT-CA3 Castel d’Asso 3 12.02 42.38 2011–2013 DBF
IT-Cp2 Castelporziano 2 12.36 41.70 2012–2013 EBF
IT-Isp Ispra ABC-IS 8.63 45.81 2013–2014 DBF
IT-Lav Lavarone 11.28 45.96 2003–2012 ENF
IT-Noe Arca di Noé – Le Prigionette 8.15 40.61 2004–2012 CSH
IT-PT1 Parco Ticino forest 9.06 45.20 2003–2004 DBF
IT-Ren Renon 11.43 46.59 2003–2013 ENF
IT-Ro1 Roccarespampani 1 11.93 42.41 2003–2008 DBF
IT-Ro2 Roccarespampani 2 11.92 42.39 2003–2012 DBF
IT-SR2 San Rossore 2 10.29 43.73 2013–2014 ENF
IT-SRo San Rossore 10.28 43.73 2003–2012 ENF
IT-Tor Torgnon 7.58 45.84 2008–2013 GRA
JP-MBF Moshiri Birch Forest Site 142.32 44.39 2003–2005 DBF
JP-SMF Seto Mixed Forest Site 137.08 35.26 2003–2006 MF
NL-Hor Horstermeer 5.07 52.24 2004–2011 GRA
NL-Loo Loobos 5.74 52.17 2003–2013 ENF
NO-Adv Adventdalen 15.92 78.19 2012–2014 WET
RU-Che Cherski 161.34 68.61 2003–2005 WET
RU-Cok Chokurdakh 147.49 70.83 2003–2013 OSH
RU-Fyo Fyodorovskoye 32.92 56.46 2003–2013 ENF
RU-Ha1 Hakasia steppe 90.00 54.73 2003–2004 GRA
SD-Dem Demokeya 30.48 13.28 2005-2009 SAV
US-AR1 ARM USDA UNL OSU Woodward Switchgrass 1 −99.42 36.43 2009–2012 GRA
US-AR2 ARM USDA UNL OSU Woodward Switchgrass 2 −99.60 36.64 2009–2012 GRA
US-ARM ARM Southern Great Plains site- Lamont −97.49 36.61 2003–2012 CRO
US-Blo Blodgett Forest −120.63 38.90 2003–2007 ENF
US-Ha1 Harvard Forest EMS Tower (HFR1) −72.17 42.54 2003–2012 DBF
US-Los Lost Creek −89.98 46.08 2003–2014 WET
US-MMS Morgan Monroe State Forest −86.41 39.32 2003–2014 DBF
US-Me6 Metolius Young Pine Burn −121.61 44.32 2010–2012 ENF
US-Myb Mayberry Wetland −121.77 38.05 2011–2014 WET
US-Ne1 Mead – irrigated continuous maize site −96.48 41.17 2003–2013 CRO
US-Ne2 Mead – irrigated maize-soybean rotation site −96.47 41.16 2003–2013 CRO
US-Ne3 Mead – rainfed maize-soybean rotation site −96.44 41.18 2003–2013 CRO
US-SRM Santa Rita Mesquite −110.87 31.82 2004–2014 WSA
US-Syv Sylvania Wilderness Area −89.35 46.24 2003–2014 MF
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Table A1. Continued.

FLUXNET-ID Name Long Lat Years Land
[◦ E] [◦ N] used cover

US-Ton Tonzi Ranch −120.97 38.43 2003–2014 WSA
US-Tw3 Twitchell Alfalfa −121.65 38.12 2013–2014 CRO
US-UMd UMBS Disturbance −84.70 45.56 2007–2014 DBF
US-Var Vaira Ranch–Ione −120.95 38.41 2003–2014 GRA
US-WCr Willow Creek −90.08 45.81 2003–2014 DBF
US-Whs Walnut Gulch Lucky Hills Shrub −110.05 31.74 2007–2014 OSH
US-Wkg Walnut Gulch Kendall Grasslands −109.94 31.74 2004–2014 GRA
ZA-Kru Skukuza 31.50 −25.02 2003–2010 SAV
ZM-Mon Mongu 23.25 −15.44 2007–2009 DBF

Table A2. Leave-site-out cross-validation for GPPvodtemp and GPPvod. The analysis was conducted for the full signal and for the anomalies
from the mean seasonal cycle. Anomalies were calculated after model application. Values represent mean and standard deviation of the
metrics over the cross-validation results for each site.

Pearson r UbRMSE Bias
[–] [gC m−2 d−1] [gC m−2 d−1]

GPPvod 0.40± 0.32 2.57± 1.14 −0.04± 2.01
GPPvodtemp 0.54± 0.31 2.30± 1.01 −0.08± 2.01
GPPvod anomalies 0.18± 0.22 1.57± 0.78 −0.00± 0.00
GPPvodtemp anomalies 0.22± 0.19 1.53± 0.76 0.00± 0.00
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Data availability. VODCA products are available at
https://doi.org/10.5281/zenodo.2575599 (Moesinger et al.,
2019). FLUXCOM (Jung et al., 2020; http://www.fluxcom.org,
FluxCom, 2017) 8 d products are available upon request to Mar-
tin Jung (mjung@bgc-jena.mpg.de). MODIS GPP estimates can
be accessed at https://doi.org/10.5067/MODIS/MOD17A2H.006
(Running et al., 2015). Data from the FLUXNET network are
available at https://fluxnet.org/data/fluxnet2015-dataset/ (Pastorello
et al., 2020).
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