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Abstract. Arid and semiarid ecosystems contain relatively
high species diversity and are subject to intense use, in par-
ticular extensive cattle grazing, which has favored the expan-
sion and encroachment of perennial thorny shrubs into the
grasslands, thus decreasing the value of the rangeland. How-
ever, these environments have been shown to positively im-
pact global carbon dynamics. Machine learning and remote
sensing have enhanced our knowledge about carbon dynam-
ics, but they need to be further developed and adapted to par-
ticular analysis. We measured the net ecosystem exchange
(NEE) of C with the eddy covariance (EC) method and es-
timated gross primary production (GPP) in a thorny scrub
at Bernal in Mexico. We tested the agreement between EC
estimates and remotely sensed GPP estimates from the Mod-
erate Resolution Imaging Spectroradiometer (MODIS), and
also with two alternative modeling methods: ordinary-least-
squares (OLS) regression and ensembles of machine learning
algorithms (EMLs). The variables used as predictors were
MODIS spectral bands, vegetation indices and products, and
gridded environmental variables. The Bernal site was a car-
bon sink even though it was overgrazed, the average NEE
during 15 months of 2017 and 2018 was −0.78 gCm−2 d−1,
and the flux was negative or neutral during the measured
months. The probability of agreement (θs) represented the
agreement between observed and estimated values of GPP
across the range of measurement. According to the mean
value of θs, agreement was higher for the EML (0.6) fol-
lowed by OLS (0.5) and then MODIS (0.24). This graphic
metric was more informative than r2 (0.98, 0.67, 0.58, re-

spectively) to evaluate the model performance. This was par-
ticularly true for MODIS because the maximum θs of 4.3
was for measurements of 0.8 gCm−2 d−1 and then decreased
steadily below 1 θs for measurements above 6.5 gCm−2 d−1

for this scrub vegetation. In the case of EML and OLS, the
θs was stable across the range of measurement. We used an
EML for the Ameriflux site US-SRM, which is similar in
vegetation and climate, to predict GPP at Bernal, but θs was
low (0.16), indicating the local specificity of this model. Al-
though cacti were an important component of the vegetation,
the nighttime flux was characterized by positive NEE, sug-
gesting that the photosynthetic dark-cycle flux of cacti was
lower than ecosystem respiration. The discrepancy between
MODIS and EC GPP estimates stresses the need to under-
stand the limitations of both methods.

1 Introduction

Deserts and semideserts occupy more than 30 % of terres-
trial ecosystems. In Mexico, almost 2× 106 km2 (50 %) cor-
respond to arid and semiarid ecosystems, mainly the Sono-
ran and the Chihuahuan deserts (Verbist et al., 2010). The
Spanish-Criollo intrusion (1540–1640) brought new land use
methods, but there is no evidence of additional landscape
degradation from the central highlands to the northeastern
frontier of New Spain until well into the 18th century (Butzer
and Butzer, 1997). At the country scale, the extent of grass-
lands in Mexico declined, and the area of croplands and
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woody areas increased, rural–urban migration being an im-
portant driver of that transition (Bonilla-Moheno and Aide,
2020). The transition from grasslands to shrublands or scrub
is linked to the extremely heavy grazing by domestic live-
stock (Wilcox et al., 2018).

Vegetation in the arid and semiarid ecosystems are mostly
classified as rangelands. These are one of the most widely
distributed landscapes on earth, incorporating a wide range
of communities including grasslands, shrublands and savan-
nah. Scrub is a xeric category of shrublands characterized by
plants with small leaves; it is very thorny, and its biomass is
distributed mainly to roots and leaves rather than the stems
(Rzedowski, 1978; Wheeler et al., 2007; Zhang et al., 2017).
Studies need to consider multiple sources of evidence and
the driving processes of land use change in Mexico to aid
in policy formulation and to identify regions that may pro-
vide important ecosystem services (Murray-Tortarolo et al.,
2016).

On the other hand, photosynthesis contributes to carbon
sequestration by moving carbon stock from the atmosphere
to other pools or sinks, such as aboveground biomass, roots
and soil organic matter (Booker et al., 2013). The role of veg-
etation in carbon sequestration on arid and semiarid ecosys-
tems is less evident because the growth rate is low, and
biomass partition above and below ground is different from
that of temperate and tropical forests. Competitive interac-
tions of arid plants at the community level are strongly influ-
enced by rooting architecture and phenological growth (Zeng
et al., 2008). Many plants in semiarid systems support a deep
and wide root system as a drought adaptation but also for
nutrient uptake (McCulley et al., 2004).

Recent time trends indicate that semiarid ecosystems reg-
ulate the terrestrial carbon sink and dominate its interan-
nual variability (Piao et al., 2019; Scott et al., 2015; Zhang
et al., 2020). This variability mainly results from the imbal-
ance between two larger biogenic fluxes that constitute the
net ecosystem exchange (NEE): the photosynthetic uptake of
CO2 (gross primary production, GPP) and the respiratory re-
lease of CO2 (total ecosystem respiration, Reco). Radiation
and water availability are important environmental drivers of
NEE and thus GPP and Reco (Marcolla et al., 2017). How-
ever, other carbon fluxes contribute to the imbalance, such
as fire and anthropogenic CO2 emissions (Järvi et al., 2019;
Piao et al., 2019). Another atmospheric CO2 flux is that from
soil inorganic carbon in arid and semiarid ecosystems (Soper
et al., 2017). Calcium carbonates form in the soil at a rel-
atively low rate of 5 to 150 kgCha−1 yr−1; this carbon can
return to the atmosphere, but it forms a carbon sink when car-
bonates are leached into the groundwater (Lal et al., 2004).

The methods used to explore the ecosystems and the un-
derstanding of their functioning are changing rapidly, par-
ticularly for arid and semiarid ecosystems (Goldstein et al.,
2020; Ma et al., 2020; Xiao et al., 2019; Yao et al., 2020).
There are many instruments and techniques for estimating
carbon and water fluxes, but two stand out in the literature:

eddy covariance (EC) and remote-sensing techniques. EC
is a micrometeorological method that measures the ecosys-
tem community NEE at short time intervals, representing
a land surface smaller than 1 km2. The orbital remote sen-
sors measure radiation emitted or reflected by the earth’s sur-
face using different algorithms, representing different traits
of vegetation activity from large-scale areas. Both techniques
are complementary, but an agreement between their esti-
mates is important for regional, countrywide and global spa-
tiotemporal monitoring of greenhouse gas inventories (Yona
et al., 2020); ecological modeling; quantifying the interaction
among the vegetation component and the hydrological com-
ponent; energy and nutrient cycles; and others applications
(Pasetto et al., 2018). Particularly, products from the Mod-
erate Resolution Imaging Spectroradiometer (MODIS) have
ample availability and have been extensively used to study
land surface since 2000.

Gross primary production can be represented by a wide
range of models, ranging in complexity from simple regres-
sion based on climatic forcing variables to complex mod-
els that simulate biophysical and ecophysiological processes
(Anav et al., 2015). The MODIS MOD17 product uses a
photosynthetic radiation conversion efficiency model (Run-
ning and Zhao, 2015), but a better relationship is reported
with EC-derived GPP when the model uses vegetation in-
dices calculated from the same MODIS platform (Ma et al.,
2014; Wu et al., 2010). Although they are black box models
in principle, recent modeling efforts report good agreement
of GPP estimates obtained from machine learning (ML) algo-
rithms or ensembles of models (Eshel et al., 2019; Joiner and
Yoshida, 2020; Jung et al., 2020). Different machine learning
algorithms are powerful because they can identify trends and
patterns in big datasets and solve regression or classification
problems.

To generate models of GPP, we measured EC fluxes dur-
ing 2017–2018 in a thorny scrub with semiarid climate in
the highlands of Mexico (Bernal site). Competing mod-
els were data-driven machine learning regression ensembles
(EMLs) and ordinary-least-squares (OLS) regression, both
using Daymet (Thornton et al., 2017) and MODIS datasets as
explanatory variables. The MODIS GPP product was used as
a baseline comparison. The second step was to use an EML
model based on local data (Daymet and MODIS) from a site
with EC instrumentation and similar vegetation to that of the
Bernal’s site and then use that model to predict GPP at the
Bernal site. The site we used was Santa Rita from the Ameri-
flux network. While Santa Rita is in the Sonoran Desert, and
Bernal is on the southern border of the Chihuahuan Desert,
both have a similar climate and vegetation (Fig. 1). A good
agreement between Bernal EC data and the predictions from
the Santa Rita model would support the use of machine learn-
ing algorithms as a scale-up mechanism. This would be use-
ful to the understanding of semiarid ecosystems and also im-
prove current earth system models (Piao et al., 2019).
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We measured the carbon flux for the vegetation in a semi-
arid site located at Bernal, Mexico. The phenology patterns
in the region suggested that this site could be a carbon sink
during the wet season or a carbon source during the dry
season since some predominant species reproduce during
winter and spring, particularly cacti, Acacia and Prosopis
(mesquite). Furthermore, the Bernal site had a history of dis-
turbance by overgrazing; this could decrease the GPP and
even result in a positive carbon balance, thus being a car-
bon source. If the shrub vegetation in this site predomi-
nantly absorbed carbon during the measuring period, then
this evidence would contribute to reinforce the reported im-
portance of semiarid environments in the global carbon bal-
ance (Zhang et al., 2020). However, land ownership patterns
and the balance between agricultural investments and land
conservation will determine the absolute amount of carbon
sequestered. Hopefully, the results of the present investiga-
tion would promote the idea that carbon sequestration is pos-
sible in scrubland and be incorporated in informed decisions
and new policy.

2 Materials and methods

2.1 Site description

The study site (Bernal) is located at 20.717◦ N, 99.941◦W
and 2050 ma.s.l. in the municipality of Ezequiel Montes in
Querétaro, where real-estate development, feedlot beef pro-
duction, cheese and wine production associated with tourism,
and automotive-industry development are very attractive op-
tions for landowners in the region. Bernal is located in a shal-
low valley oriented from north to south, approximately 15 to
20 km wide and opening to the south to the Río Lerma basin
and then draining into the Pacific Ocean. The northern limit
of the valley is surrounded by hill country and its characteris-
tic dacitic dome 433 m in height (Aguirre-Díaz et al., 2013).
Moisture-laden winds blow westward from the Gulf of Mex-
ico, but the Sierra Gorda, located 60 km east of Bernal, casts
a rain shadow over the area (Segerstrom, 1961).

The Bernal site is private property, with grazing dairy cat-
tle receiving additional concentrated feedstuffs under stall-
feeding. Grazing was continuous, and water for livestock was
only available in the feeding and milking area; there were no
pasture divisions, and the perimeter fence was made of stone.
These characteristics of the animal production model and the
state of vegetation are representative of land management
practices and the scrub vegetation of the region. However,
the Bernal site suffered important changes in land use during
2019, and the scrub was suddenly cleared and converted into
rainfed cropping.

The climate is arid with summer rains (BSk), with a mean
annual rainfall of 476 mm and a mean annual temperature of
17.1 ◦C (CICESE, 2015). Prevailing wind is from the east
and northeast. The terrain is mostly flat; most grades are

below 2 %. The soil has a clay loam texture, the class is a
Vertisol with abundant subrounded basaltic stones without
rocky outcrops, and the depth is greater than 0.6 m. Vegeta-
tion was less than 3 m in height with an overgrazed herba-
ceous stratum. Vegetation corresponds to secondary scrub
with the dominant genera Acacia, Prosopis and different
Cacti (Fig. 3). This site was classified as grassland by the
MODIS land cover product.

For the scrub and tree species, the importance vegetation
index (IVI) was determined following Curtis and McIntosh
(1950) to assess the vegetation homogeneity. The IVI is the
sum of relative dominance, relative density and relative fre-
quency of the species present. Vegetation sample points were
chosen according to the flux footprint of the eddy covari-
ance tower (Fig. 2). For each plant in the vegetation sample
points, two stem diameters, the number of individuals (abun-
dance) and identity of each species were measured as well as
the coverage, which is the horizontal projection of the aerial
parts of the individuals on the ground, expressed as a per-
centage of the total area (Wilson, 2011).

2.2 Eddy covariance measurements

The micrometeorological EC technique measures at the plant
community level NEE in a nondestructive way and con-
tinuously over time (Baldocchi, 2014). The negative CO2
fluxes corresponded to NEE, which is equivalent to NEP (net
ecosystem production) but with opposite sign. The EC has
advantages compared to other techniques that need to scale
up measurements from the leaf, plant or soil levels up to
ecosystems, especially when the vegetation is heterogeneous
(Yepez et al., 2003). However, EC is an expensive technique,
and data analysis and processing are complicated; also spe-
cific assumptions must be met regarding the terrain, vege-
tation and micrometeorological conditions, among other as-
pects (Richardson et al., 2019).

The fluxes were measured with the EC technique at a
height of 6 m with the following instruments: a Biomet sys-
tem (LI-COR Biosciences, USA) to measure H2O and CO2
fluxes using an IRGASON-EC-150 open-circuit analyzer, a
CSAT3 sonic anemometer and a KH20 krypton hygrome-
ter; these were connected to a CR3000 data logger (Camp-
bell Scientific Inc., Logan, UT, USA). The relative humid-
ity and air temperature were measured with an HMP155A
probe (Vaisala Corporation, Helsinki, Finland), net radiation
was measured with an NR-Lite2 radiometer (Kipp and Zo-
nen BV Delft, the Netherlands), and the photosynthetic ac-
tive radiation (PAR) was measured with a quantum sensor
(SKP215; Skye Instruments, Llandrindod Wells, UK). Mea-
surements of the soil heat flux was implemented with four
self-calibrating HFP01SC plates at 80 mm depth and in four
representative positions of the landscape (Hukseflux Ther-
mal Sensors BV, Delft, The Netherlands). Three time do-
main reflectometry (TDR) probes (CS616) measured volu-
metric water content in the ground installed vertically, and
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Figure 1. Localization and land use maps for the study site: (a) biogeographic arid and semiarid zones of southern North America relevant
for the Bernal and Santa Rita sites; the black outline represents the state limit for Querétaro. (b) Heterogeneity of the normalized difference
vegetation index (NDVI) surrounding the EC tower at Bernal during the peak of the growing season 2017 (DOY 257). (c) Land cover in the
region of the Bernal site, according to the annual University of Maryland (UMD) classification (MCD12 MODIS product).

two sets of TCAV (averaging soil thermocouple) probes mea-
sured the temperature at 60 and 40 mm depths and above
the HFP01SC plates (Campbell Scientific Inc., Logan, UT,
USA). The TE525 (Texas Electronics, Dallas, TX, USA)
tipping-bucket rain gauge was installed at 1.2 m height and
3 m away from the tower. All these meteorological variables
were measured every 5 s, and average values were stored ev-
ery 30 min; rainfall was accumulated for the same time inter-
val. Sensible (H ) and latent (λE) heat fluxes were calculated
by the EddyPro package (LI-COR Biosciences, USA).

2.3 Flux data processing

All EC data were collected at 10 MHz in the data logger
and reported as micromoles of CO2 per square meter per
second and processed with the EddyPro package to con-
vert values into average fluxes of 30 min intervals. Only

quality-flagged records were used to account for the CO2
flux (qc_co2_flux= 0) according to the Mauder and Foken
(2011) policy in the EddyPro program (LI-COR, 2019).

However, this quality-checking is not sufficient, especially
in the case of CO2; therefore, data were postprocessed using
the REddyProc package of R (R Development Core Team,
2009) to estimate the friction speed thresholds (u∗), gap-fill
data, and partition the NEE flux into its GPP and Reco com-
ponents (Wutzler et al., 2018). The filled-in estimates of NEE
(NEE_uStar_f), GPP (GPP_uStar_f) and Reco (Reco_uStar)
were used when the u∗ was lower than a u∗ annual threshold,
above which nighttime fluxes are considered valid. The an-
nual u∗ threshold was 0.193 and 0.194 for 2017 and 2018.
The difference between these thresholds and the 95 % u∗

threshold was small (0.033 ms−1). Appendix A presents the
threshold means and confidence intervals calculated in the
REddyProc package. Only 1050 half-hour records (9.3 %)
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Figure 2. Source strength-weighted function at the Bernal site during 2017 and 2018 (gray points). Horizontally, plots show the peak of
the function and increasing percentages of the flux footprint. The radial scale is along-wind distance from the sensor (m). The measurement
height was 6 m. The blue points represent the vegetation sample plots used to calculate the importance vegetation index (IVI).

Figure 3. Thorny scrub at Bernal, Querétaro, during the rainy season 2017. In the foreground is Cylindropuntia imbricata, a very thorny
cactus; shrubs in the background are Prosopis laevigata mesquites.

had a u∗ below the annual mean u∗ threshold. The data with a
flag equal to 0 were used for the variable NEE_uStar_fqc, as
defined by REddyProc. Carbon dioxide flux data were time-
integrated and converted to grams of C per square meter per
day using the molar ratio of C. We only reported the contin-
uous measurements of the exchange of CO2 for the period
of April 2017 (DOY 89) to August 2018 (DOY 234) using
the EC technique. Due to equipment malfunction and incom-
plete datasets, some periods of time were not considered. The
measurement campaign presented here was not biased by wet

winters since both years were characterized by a less-than-
weak Niño–Niña.

2.4 Remotely sensed data

Data were requested to the National Aeronautics and
Space Administration (NASA) via the Land Processes Dis-
tributed Active Archive Center (DAAC) using the Ap-
plication for Extracting and Exploring Analysis Ready
Samples (AppEEARS) to obtain spatial and temporal
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subsets for the Bernal and Santa Rita sites includ-
ing daily surface reflectance (MOD09GA.006 and MOD-
OCGA.006), daily daytime and nighttime land surface tem-
perature (LST) (MOD11A2.006 and MYD11A2.006), 8 d
leaf area index (LAI) and fraction of photosynthetically ac-
tive radiation (FPAR) (MOD15A2H.006, MYD15A2H.006,
MCD15A2H.006), 16 d enhanced vegetation index (EVI)
(MYD13A1.006), 16 d gross primary production (GPP),
and net photosynthesis (PsnNet) (MOD17A2H.006). The
AppEEARS also unpacks and interprets the quality layers.
Appendix B presents the details of each spectral band of
MODIS. Data with less-than-good quality flags were deleted.
Missing data were filled with splines, and a database with
a 1 d time step was generated. This would smooth lin-
ear temporal–phenological evolution between any two suc-
cessive remotely sensed data points (Eshel et al., 2019).
Daily accumulated rainfall was requested using the Giovanni
platform from the Goddard Space Flight Center (GSFC)
DAAC; two products were used: the 3IMERGDF.006 from
the Global Precipitation Measurement mission (GPM) and
the 3B42.007 from the Tropical Rainfall Measuring mis-
sion (TRMM). Gridded weather parameters from the ORNL
DAAC Daymet dataset were precipitation, shortwave radia-
tion, maximum and minimum air temperature, and water va-
por pressure. Daymet is a data product derived from a collec-
tion of algorithms interpolating and extrapolating daily me-
teorological observations (Thornton et al., 2017). Following
Henrich et al. (2012) and Hill et al. (2006), daily reflectance
bands of MODIS were used to compute several vegetation in-
dices: red–green ratio index (RGRI), simple ratio (SimpleR),
moisture stress (MoistS), disease stress index (DSI), green
atmospherically resistant vegetation index (GARI), normal-
ized difference vegetation index (NDVI), normalized differ-
ence water index (NDVI_w) and enhanced vegetation in-
dex (EVI); the corresponding equations are presented in Ap-
pendix B.

2.5 MODIS algorithm for GPP

Estimates of GPP are derived from data recorded by the
MODIS sensor aboard the Terra and Aqua satellites. The ef-
ficiency (ε; gCMJ−1) with which vegetation produces dry
matter is defined as the amount of solar energy stored by pho-
tosynthesis in a given period divided by the solar constant in-
tegrated over the same period (Monteith, 1972). Not all inci-
dent solar radiation is available for biomass conversion; only
about 48 % is photosynthetically active (PAR; MJm−2), and
not all PAR is absorbed (Zhu et al., 2008). Thus, carbon ex-
change is mainly controlled by the amount of PAR absorbed
by green vegetation (APAR) and modified by ε (Gitelson et
al., 2015). The fraction of absorbed PAR (FPAR) is equal
to APAR/PAR but can be represented by the NDVI spectral
vegetation index produced by MODIS (Running 2004). The
efficiency term ε is described as the product of different fac-
tors as a whole or as a part of the system (Monteith, 1972) but

mostly those related to the efficiencies with which the vegeta-
tion intercepts the radiation and the efficiency of converting
the intercepted radiation into biomass (Long et al., 2015).
The MODIS algorithm that estimates GPP in the MOD17
product is (Running et al., 2004)

GPP= ε×FPAR×PAR (1)
GPP= ε×NDVI×PAR (2)

The ε term in the MODIS algorithm is represented by a
maximum radiation conversion efficiency (εmax; kgCMJ−1)
that is attenuated by suboptimal climatic conditions, mainly
minimum air temperature (Tmin) and vapor pressure deficit
(VPD). Two parameters for each, Tmin and VPD, are used
to define attenuation scalars for general biome types. These
parameters form linear functions between the scalars (Run-
ning and Zhao, 2015; Wang et al., 2013): daily minimum
temperature at which ε = εmax and at which ε = 0 and the
daylight average VPD at which ε = εmax and at which ε =
0. GPP is truncated on days when air temperature is be-
low 0 ◦C, or VPD is higher than 2000 Pa (Running and
Zhao, 2015). Stress and nutrient constraints on vegetation
growth are quantified by the limiting relation of leaf area
in NDVI×PAR rather than constrained through ε (Running
et al., 2004). However, the MODIS algorithm does not con-
sider stomatal sensitivity to leaf-to-air vapor pressure across
and within species and particularly between isohydric and
anisohydric plant species (Grossiord et al., 2020).

ε = εmax× Tmin scalar×VPD_scalar (3)

The MOD17 user’s guide presents a biome-property look-
up table (BPLUT) with the parameters for each biome type
and assumes that they do not vary with space or time (Run-
ning and Zhao, 2015). This aspect is important because εmax
has the strongest impact on the predicted GPP of the MOD17
algorithm (Wang et al., 2013). The assumption is also impor-
tant because the overstory and understory could be decou-
pled from each other and would intercept different amounts
of light and have different water sources during the grow-
ing season (Scott et al., 2003). Light quantity and quality as
diffuse light or sunflecks determine differences among un-
derstory species in their temporal response to gaps, involving
acclimation and avoidance of photoinhibition (Pearcy, 2007).
Another shortcoming is that few land cover classifications are
incorporated into the MOD17 algorithm.

2.6 Santa Rita site dataset

The Santa Rita Experimental Range (SRER) is located in
the western range of the Santa Rita Mountains in Arizona,
USA (lat 31.8214, long−110.8661; 1120 ma.s.l.). Climate is
BSk, with mean annual precipitation of 380 mm, temperature
of 17.9 ◦C and Ustic Torrifluvent soils. Established in 1903,
SRER has a long history of experimental manipulations to
enhance grazing potential for cattle (Glenn et al., 2015). Two
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Figure 4. Semidesert grassland encroached by mesquite (Prosopis
velutina) at Santa Rita, Arizona (US-SRM). Image credit: Russell
Scott, 9 December 2016.

Ameriflux sites are located in the SRER: Santa Rita Grass-
land (US-SRG) and Santa Rita Mezquite (US-SRM). We
used EC data for the years 2013–2019 from US-SRM, which
is a mesquite grass savanna (35 % mesquite canopy cover
and mean canopy height above 2 m, 22 % grasses, and 43 %
bare soil), although MODIS describes this site as open shrub-
lands (Glenn et al., 2015; Scott et al., 2004). The US-SRM
site is dominated by velvet mesquite (Prosopis velutina) and
has a diversity of shrubs, cacti, succulents and bunch grasses
(McClaran, 2003). This site was chosen because the vegeta-
tion and climate are similar to the Bernal site, and it was the
closest EC instrumentation with data availability (Fig. 4).

2.7 Modeling

Gross primary production estimated by EC at the Bernal site
was modeled using OLS and EML. The explanatory vari-
ables were the remotely sensed data, the weather parame-
ters and the vegetation indices (Appendix B). The OLS is
a particular case of the generalized linear model, where the
variation of a single response variable is explained by several
independent variables. The OLS was fitted with the stepwise
procedure; the final model included variables with a variance

inflation factor (VIF) lower than 10 and a significance level
of 0.05. Predictions of the EC GPP were obtained with the fi-
nal model. Analysis and diagnostics were made with Minitab
v 17 (Minitab LLC). Analysis of the OLS model can be used
to determine agreement between methods of measurement,
but it is sensitive to the range of values in the dataset, and
its metrics – r , r2 and root mean square – do not provide
information on the type of association (Bland and Altman,
2010). In this paper, we used another metric, the probabil-
ity of agreement, to determine bias and agreement between
model estimates and observed data (see below).

While OLS is a well-known algorithm, machine learning
algorithms are emerging techniques that focus on the data
structure and match that data onto models. The EML ap-
proach considers the different realizations of machine learn-
ing models and constructs an ensemble of models com-
ing with the advantage of being more accurate than the
predictions from the individual ensemble members. How-
ever, EML is computationally intensive, requiring nodes
with purpose-built hardware such as multiple processors or
reduced-precision accelerators. The nodes could be aggre-
gated in computing clusters, which require storage, power
and cooling redundancy.

A stack of EMLs was obtained with the H2O package
of R (Hall et al., 2019). This package provides several al-
gorithms that can contribute to a stack of ensembles using
the AutoML (automatic machine learning) function: feedfor-
ward artificial neural network (DL), general linear models
(GLMs), gradient-boosting machine (GBM), extreme gra-
dient boosting (XGBoost), default distributed random for-
est (DRF) and extremely randomized trees (XRT). AutoML
trains two stacked-ensemble models: one ensemble contains
all the models, and the second ensemble contains just the
best-performing model from each algorithm class or fam-
ily; both ensembles should produce better models than any
individual model from the AutoML run. The term AutoML
implies data preprocessing, normalization, feature engineer-
ing, model selection, hyperparameter optimization and pre-
diction analysis, including procedures to identify and deal
with nonindependent and identically distributed observations
and overfitting (Michailidis, 2018; Truong et al., 2019).

Machine learning has two elements for supervised learn-
ing: training loss and regularization. The task of training tries
to find the best parameters for the model while minimizing
the training loss function, the mean squared error for exam-
ple. The regularization term controls the complexity of the
model, helping to reduce overfitting. Overfitting becomes ap-
parent when the model performs accurately during the train-
ing, but the accuracy is low during the testing. A good model
needs extensive parameter tuning by running the algorithm
many times to explore the effect on regularization and cross-
validation accuracy (Mitchell and Frank, 2017). In this inves-
tigation, the function of training loss was the deviance, which
is a generalization of the residual sum of squares driven by
the likelihood. Deviance is a measure of model fit, and lower
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or negative values indicate better model performance (McEl-
reath, 2020).

A stack of EML solutions was based on a random sam-
ple of the dataset for training the model. For the Bernal site,
85 % was used for training; for US-SRM 80 % was used.
The AutoML function was run 20 times; each run added ap-
proximately 48 models to the leader board and ranked the
best-performing models by their deviance. Each run splits
the training data 10 times for k-fold cross-validation. The
seed for an EML that is dependent on randomization was
changed in every run. The stopping rule for each run was
set at 100 s, and the maximum memory allocation pool for
H2O was 100 GB in a single workstation with dual Xeon
2680 v4 processors and 128 GB of RAM. The H2O package
was installed in a rocker/geospatial docker container (image
available at https://hub.docker.com/r/rocker/geospatial, last
access: 9 January 2021), which is a portable, scalable and re-
producible environment (Boettiger and Eddelbuettel, 2017).

Two sets of predictions for the GPP at the Bernal site were
obtained from the stacked ensemble. The first set of predic-
tions was based on the 15 % of the Bernal site data reserved
for testing. The second set of predictions was obtained by
refeeding the US-SRM site model with the Bernal site ex-
planatory variables. The first set of predictions would show
the importance of local data to predict EC-based GPP. The
second set of predictions would represent the suitability of
off-site data to predict EC-based GPP. If the second scenario
has good agreement, then an EML model could be used to
represent wider areas of the ecosystem.

2.8 Variable importance

The variable importance within individual models was used
to answer the question of which environmental variables
were important for GPP prediction. For the “all-models en-
semble” and “best-of-family ensemble” generated by Au-
toML, it is not possible to examine the variable importance or
the contribution of the individual models to the stack (H2O.ai
2017). Therefore, a weight (wi)was calculated using Eq. (4),
which is adequate for other information criteria besides the
Akaike weights; this weight is an estimate of the conditional
probability that the model will make the best predictions on
new data, considering the set of models (McElreath, 2020).
Then, the importance of each variable (%) was multiplied
by the model’s weight (wi) and then added by variable to
build the variable importance index. This index would mea-
sure how often a given variable was used on the leader board.

wi =
exp

(
−

1
2 dWAICi

)
∑m
j=1 exp

(
−

1
2 dWAICi

) (4)

dWAIC= deviancei − deviance of top-performing model
(5)

2.9 Model agreement

Calibration and agreement between methods of measure-
ment are different procedures. Calibration compares known
quantities of the true value or measurements made by
a highly accurate method (a gold standard) against the
measurements of a new or a contending method. When two
methods of measurement are compared, neither provides
an unequivocally correct measurement because both have
a measurement error, and the true value remains unknown
(Bland and Altman, 2010). Stevens et al. (2015) proposes the
probability of agreement (θs) as a plot metric to represent
the agreement between two measurement systems across
a range of plausible values. The θs method addresses
some of the challenges of the accepted “limits agreement
method” presented by Bland and Altman (2010). Besides the
agreement plot, agreement is based on maximum likelihood
bias parameters: α and β, quantifying the fixed bias and
the proportional bias. If α = 0, β = 1 and σ1= σ2, then
the two measurements are identical; σj is the measurement
variation. The probability-of-agreement analysis was per-
formed using the ProbAgreeAnalysis (https://uwaterloo.ca/
business-and-industrial-statistics-research-group/software,
last access: 28 November 2020) in MATLAB 9.4 (Math-
Works, Inc.). An arbitrary 1 gCm−2 d−1 was considered to
be a tolerable magnitude to conclude that agreement is suf-
ficient enough to use either estimated GPP interchangeably.
The reference measurement was the GPP obtained from
EC data at the Bernal site and tested against the MODIS
MOD17 model, the OLS predictions or each of the two sets
of EML predictions. If the probability-of-agreement plot
suggested disagreement between two measurement systems,
then the predictions can be adjusted using

Adjusted predictor= (predictor−α)/β (6)

3 Results

3.1 Eddy covariance fluxes at Bernal

Dominant flow at the Bernal site was from the northeast
(Fig. 2). Energy balance closure for this site had a slope
of 0.72 and r2

= 0.92 (Fig. 5). Homogeneous sites of the
Fluxnet network obtain closure percentages higher than
72 %, and for the Bernal site, the vegetation heterogeneity
was important (see below). Average H was always nega-
tive during nighttime, but during some months of the dry
and rainy season, λE was positive, particularly after dawn
(Fig. 6), so as to allow nighttime evaporation from the soil or
vegetation. However, during some months of the dry season,
rainfall was low (Fig. 7); then the positive λE suggested that
cacti could have an active gas exchange at that time.

Carbon dioxide absorptions had a diurnal behavior begin-
ning at dawn and ending before sunset (Fig. 8). Nighttime
flux was positive, indicating respiration, notwithstanding the
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Figure 5. Closure of the surface energy balance from eddy covari-
ance measurements averaged at 30 min between the turbulent fluxes
(H + λE) and available fluxes (Rn-G). Data are from 30 March
2017 to 22 August 2018 at the Bernal site. The regression was
y = 23.02+0.72×, with adjusted r2

= 0.92. The diagonal line rep-
resents the 1 : 1 relation.

presence of cacti. Although summer rains are characteristic
of the climate at the Bernal site (Fig. 7), a negative NEE flux
occurred in all measured months. The lowest CO2 flux was
recorded in January and February 2017 and in May 2018 (Ta-
ble 1). This behavior resulted from the phenology of the veg-
etation since most species lost their leaves in the dry season
and was also due to the effect of low temperature. Within
the rainy season, the flux of CO2 increased compared to the
months of January to June. The correlation between NEE and
precipitation was −0.45. When the sum of the precipitation
of the current month and that of the previous month was con-
sidered, the correlation with NEE was −0.7, suggesting that
continuous availability of soil moisture is important for the
absorption of CO2 in this environment.

The scrub at Bernal was heterogeneous in botanical com-
position. A total of 24 species of cacti and shrub were
identified; on average, each sampling plot had 10.3 species.
The IVI was similar between all cacti (0.36± 0.04), shrub
legumes (0.38±0.04) and other shrubs (0.23±0.06) sampled.
Most sampling plots were in areas of high flux frequency
(Fig. 2). Cylindropuntia imbricata had the largest IVI, fol-
lowed by Acacia farnesiana, Acacia schaffneri and Prosopis
laevigata. The IVI of the herbaceous stratum represented
by grasses was not characterized due to the state of over-
grazing and the absence of reproductive structures in plants,
which made measurement of their abundances, frequencies
and dominance difficult. The grass genera present were Meli-
nis, Chloris, Cynodon and Cenchrus, all corresponding to in-

Table 1. Daily average values of the net ecosystem exchange
(NEE), gross primary productivity (GPP) and ecosystem respira-
tion (Reco) in a scrub at the Bernal site. Negative values of NEE
indicate photosynthetic absorption.

NEE GPP Reco
µmolCO2 m−2 s−1

2017

JAN
FEB
MAR
APR −0.54 2.48 1.94
MAY 0.05 2.86 2.91
JUN 0.38 4.21 4.59
JUL −1.00 1.78 0.77
AUG
SEP
OCT −1.26 5.25 3.99
NOV −0.13 2.65 2.52
DEC 0.04 1.80 1.84

2018

JAN −0.05 1.29 1.24
FEB 0.06 1.88 1.94
MAR −0.94 2.45 1.51
APR −0.58 2.87 2.29
MAY −0.29 3.77 3.48
JUN −2.52 4.33 1.81
JUL −2.83 8.23 5.41
AUG −1.93 9.21 7.28

vasive C4 tropical grasses. Scrub species of higher IVI had
a similar LAI (1.2), although the magnitude of the LAI of P.
laevigata stood out (Table 2).

3.2 Machine learning ensembles as predictors of eddy
covariance GPP

In this section we describe the modeling with EML using lo-
cal remotely sensed data from the Bernal site to predict GPP
at the same site and then the agreement between EML GPP
predictions and EC-derived GPP. The AutoML function gen-
erated 1031 models with an average deviance of 1.35, while
the deviance of the leader model was 0.63 in the training
dataset (Table 3). A total of 11 models of type GBM and
five XGBoost models were in the top 30 models, along with
the nine best-of-family ensembles and five all-models ensem-
bles. The weighted variable importance on the leader board
was higher for the LAI from the MOD15 and MCD15 prod-
ucts (17 % and 14 %). The PsnNet, EVI (MOD17), FPAR
(MCD15), green atmospherically resistant vegetation index
(GARI) and MODIS reflectance band 13 had an importance
higher than 3 % (5.9 %, 5.4 %, 4.2 %, 3.6 % and 3.0 %). LAI
(MCD13 and MOD13), PsnNet and the FPAR (MOD15)
were the more important variables (20 %, 17 %, 13 % and
10 %) in the top nonstacked model, a GBM model that was
ranked in fourth place.
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Figure 6. Latent heat flux daily trend at Bernal during different months, emphasizing nighttime λE. Panel (a) shows months with low rainfall
in the previous month and predominantly negative λE during nighttime (these months had low rainfall: 0.17, 11.3 and 0.33 mm rainfall for
January, March and December). Panel (b) shows months with low rainfall in the previous month and positive λE after sunset (6.7, 7.3 and
20.7 mm rainfall for February, April and May). Panel (c) shows months during the rainy season with positive λE mainly due to soil wetness
and antecedent rainfall of 43, 202, 9, 190 and 34 mm for June, July, August, October and November. Plot (c) is out of scale on the y axis for
compatibility with the other plots.

Table 2. Importance value index (IVI) and leaf area index (LAI) of the main species present at the Bernal, Querétaro, study site.

Species Plant type IVI SEMa LAI SEM

Coryphantha cornifera Cactus 0.07 0.27
Bouvardia ternifolia Herb 0.07 0.27
Karwinskia humboldtiana Shrub 0.07 0.27
Forestiera phillyreoides Shrub 0.09 0.27
Ferocactus latispinus Cactus 0.09 0.27
Cylindropuntia leptocaulis Cactus 0.09 0.27
Asphodelus fistulosus Shrub 0.09 0.19
Brickellia veronicifolia Shrub 0.10 0.27
Dalea lutea Shrub 0.11 0.15
Eysenhardtia polystachya Legume 0.13 0.15
Myrtillocactus geometrizans Cactus 0.14 0.27
Schinus molle Shrub 0.14 0.19
Jatropha dioica Herb 0.15 0.19
Mammillaria uncinata Cactus 0.16 0.12
Opuntia tomentosa Cactus 0.17 0.11
Opuntia robusta Cactus 0.23 0.07
Opuntia hyptiacantha Cactus 0.26 0.07
Mimosa monancistra Legume 0.28 0.12
Mimosa depauperata Legume 0.31 0.12
Zaluzania augusta Shrub 0.33 0.10
Viguiera linearis Herb 0.36 0.11
Acacia schaffneri Legume 0.41 0.07 1.13 0.15
Prosopis laevigata Legume 0.41 0.07 1.48 0.12
Acacia farnesiana Legume 0.56 0.09 1.12 0.37
Cylindropuntia imbricata Cactus 0.74 0.07 1.13 0.11

a SEM: standard error of the mean.
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Figure 7. Monthly rainfall and land surface temperature (LST) dur-
ing years (a) 2017 and (b) 2018 at the Bernal site. The LST values
correspond to the 13:30 (LST day) and 01:30 (LST night) MODIS
Aqua satellite overpasses.

Predictions of GPP in the testing dataset showed disper-
sion in the lower range of the scale of measurement, and
the correlation was 0.94 (Fig. 9a). The final prediction of
GPP for the whole dataset had a probability of agreement
(θs) of 0.58± 0.01 (parameter estimate and standard error),
α =−0.0616± 0.11 and β = 1.0133± 0.02, suggesting a
good fit with low fixed and proportional bias (Fig. 9b). The
probability of agreement decreased slightly at the lower and
upper range of the scale of measurement (Fig. 9c), indicating
that the EML model would predict GPP without increasing
the bias, particularly in the range from 0 to 4 gCm−2 d−1.
However, the value of θs should be higher than 0.95 so as to
consider EC measurements and EML to be interchangeable.
The correlation of 0.99 (r2

= 0.98) for the data in Fig. 9b
could be misleading as it would suggest a very good fit.

Using only the five of the more important variables named
above to generate an EML resulted in an XBoost leader
model with 2.73 deviance and a total of 1094 models. The
top 30 models were 16 XBoost and GBM models, and the

best-of-family ensembles started to show up in 12th place.
Although the number of runs was the same (20), the AutoML
function increased the number of produced models, but the
smaller set of explanatory variables constrained the ability to
identify features contributing to better models. Using another
set of five randomly selected explanatory variables (one veg-
etation index and four MODIS bands) resulted in a leader
model with 2.52 deviance out of 1024 models, but this time
the leader was the best-of-the-family ensemble. Using only a
few variables was considered to increase the deviance com-
pared to the average deviance of 1.35 obtained during the
training phase and using all available variables.

An important question for modeling upscaling is the ca-
pacity to extrapolate results temporally and spatially; here
we explored the latter, posing the following question: would
predictions of GPP from EML for an EC site agree with
EC observations from another site with “similar” environ-
mental conditions? First, an EML solution was found, train-
ing 80 % of the Santa Rita dataset and obtaining a best-
of-family ensemble with 0.23 deviance out of 634 trained
models (hereafter this model is referred to as the Santa Rita
model). Then, the environmental and remotely sensed data
from the Bernal site were fed into the Santa Rita model; this
would be an external validation dataset. However, agreement
was not good; the mean value of θs was 0.15± 0.01, with
α =−1.0822± 0.09 and β = 0.58127± 0.02. The value of
θs was not constant across the range of measurement and de-
creased rapidly after 2 gCm−2 d−1 (Fig. 10b). Because the
bias was important, predictions were adjusted using Eq. (6),
showing some improvement with r = 0.78 (Fig. 10a). Com-
paring Figs. 5b and 6a, it is evident that an EML model
extrapolation to other conditions is noisier, i.e., Santa Rita
model trying to represent the ecosystem function at Bernal.
Notwithstanding, some of the most important variables were
shared by both EML ensembles: Bernal and Santa Rita; in the
case of Santa Rita, LAI from MOD15, MYD15 and MCD15
had 35.0 %, 4.8 % and 3.1 % of variable importance, and the
FPAR from MOD15 was 12 %.

3.3 MODIS as predictor of eddy covariance GPP

MODIS is important because it overpasses every point of
the earth every 1 or 2 d, and it implements a GPP prod-
uct (MOD17) that has helped track the response of the bio-
sphere to the environment since 2000. The product MOD17
has been validated against many EC sites, but few validation
sites correspond to deserts and semideserts (Running et al.,
2004). The GPP MOD17 underestimated the GPP derived
from EC data at Bernal (Fig. 11a). In a similar bell-shaped
distribution of θs, as in the case of the extrapolation of the
Santa Rita site (Fig. 10b), here the θs was not constant across
the range of measurement; mean θs was 0.24± 0.13, with
α = 0.00047±0.087 and β = 0.48749±0.02 (Fig. 11c). Ad-
justing MOD17 estimates with Eq. (6) improved the relation-
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Figure 8. Net ecosystem exchange (NEE) and photosynthetic active radiation (PAR) at the Bernal site in (a) 2017 and (b) 2018. Negative
values in the CO2 flux indicate photosynthesis. The gray shadow is the standard error of the mean for each month at any given hour.

Table 3. Leader board of EML models for the Bernal site, using 85 % of day observations as training dataset. NA denotes the outcome where
the type of model was not present in the 30 top-performing models according to deviance.

Type of model Number of models Average deviance

All models Top models Leader model

Stacked ensemble
All models 20 0.852 0.834
Best of family 20 0.812 0.703 0.633
GBM 453 1.366 0.796
DRF 20 1.108 NA
XGBoost 277 1.385 0.778
XRT 20 1.077 NA
Deep learning 201 2.072 NA
GLM 20 1.474 NA
Total 1031 1.356

ship, but note that the value of r (0.76) was the same for the
original MOD17 and the adjusted MOD17 (Fig. 11b).

3.4 Prediction eddy covariance GPP with
ordinary-least-squares multiple regression

OLS is a common estimation method for linear models, and
here this model appeared as adequate, judging by the gen-
eral distribution of predictions (Fig. 12a) and the probability-
of-agreement plot (Fig. 12b). A total of 14 variables were
included in the model, all of them with VIF values lower
than 7.0 (Appendix C); the VIF statistic quantifies the sever-
ity of multicollinearity, and an acceptable threshold is 10.
The most significant variables were the EVI from MYD13
and Daymet variables precipitation, shortwave radiation, and

minimum and maximum temperatures (see Appendix B for
variable details). Variables with high coefficient values were
MODIS reflectance band 14 (9.17), the EVI from MYD13
(8.53) and the NDVI (3.9), while Daymet temperatures had
small coefficients:−0.23 for maximum temperature and 0.17
for minimum temperature. The θs decreased slightly at the
end of the measurement range; mean θs was 0.5±0.014, with
α = 0.18845±0.137 and β = 0.94966±0.031.No correction
for this model was calculated since α was close to 0, β was
close to 1, and the EML model had a higher θs.

3.5 Agreement

The probability of agreement (θs) was the statistic to deter-
mine if the mean responses were in agreement. Comparing
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Figure 9. Agreement between predictions of GPP obtained with machine learning algorithms or derived from eddy covariance measurements
at the Bernal site. (a) Example of one run of predictions of GPP in the test dataset from the Bernal site using the leader model of an ensemble
of machine learning algorithms (EML); the test dataset was 15 % of data, with r = 0.94. (b) Predictions for the complete dataset, with
r = 0.99; the diagonal line is the 1 : 1 agreement. (c) Function of probability of agreement using 1 gCm−2 d−1 as a tolerable agreement
between methods of estimation of GPP corresponding to plot (b). The horizontal axis (s) represents the magnitude of the measurement, the
vertical axis is the probability of agreement for the measurement, and the red line is the confidence interval p < 0.05.

Figure 10. (a) Adjusted predictions of GPP for the complete dataset from the Bernal site using the leader model of the final ensemble
of machine learning algorithms (EML) derived from the Santa Rita site compared to estimates of GPP from EC data, with r = 0.78. (b)
Respective function of probability of agreement using 1 gCm−2 d−1 as a tolerable agreement between methods of estimation of GPP: EC
data from the Bernal site and EML model for the Santa Rita site. The horizontal axis (s) represents the magnitude of the measurement, the
vertical axis is the probability of agreement for the measurement, and the red line is the confidence interval p < 0.05.

the confidence intervals (CIs) for θs, the best modeling ap-
proach was the EML because its CI (0.56–0.59) was different
from that of the OLS model (0.47–0.52). More importantly,
for the EML and OLS models, the values of θs had little vari-
ation across the range of GPP estimates. However, the CIs
of the EML and OLS models were similar in their bias es-
timates α and β, and both models had no bias (p < 0.05).
Altogether, the best result was the EML ensemble using en-
vironmental and remotely sensed data corresponding to the
same site, i.e., Bernal (Fig. 10c). This kind of EML would
be useful for gap filling or the evaluation of GPP time se-
ries of the site that generated the model. Machine learning
algorithms can fill gaps longer than 30 d (Kang et al., 2019).

The second option to estimate GPP, using the same
datasets, was the multiple-regression OLS model (Fig. 12a).
The multiple regression is straightforward, and here multi-
collinearity was not a problem. The EML ensemble and the
OLS regression have the highest values of θs (0.58 and 0.5,
respectively; Fig. 12b). Higher values for θs are desirable
(> 0.95), and this could be achieved by increasing the sample
size, relaxing the tolerable magnitude for agreement (here it
was set at 1 gCm−2 d−1) or perhaps using different forcing
variables.

The MODIS estimates were a third-best alternative since
the mean θs was 0.24. In the present study, we used a spline
to fill the data to a daily time step since the MCD17 is an
8 d composite product, but a similar result was obtained if
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Figure 11. (a) MOD17 GPP daily time step from the Bernal site versus estimates of GPP from EC data using the complete dataset at a
daily time step derived from spline for MOD17 GPP (©), with r = 0.76, or 8 d composite estimates obtained by 8 d averages of EC GPP
(◦), with r = 0.76. (b) Adjusted predictions of GPP from MODIS. (c) Corresponding function of probability of agreement for Fig. 7a using
1 g Cm−2 d−1 as a tolerable agreement between methods of estimation of GPP: EC data from the Bernal site and MODIS MOD17. The
horizontal axis (s) represents the magnitude of the measurement. The vertical axis is the probability of agreement for the measurement.

Figure 12. (a) Ordinary-least-squares multiple-regression estimates of GPP for the complete dataset from the Bernal site versus estimates of
GPP from EC data, with r = 0.82. (b) Respective function of probability of agreement using 1 gCm−2 d−1 as a tolerable agreement between
methods of estimation of GPP: EC data from the Bernal site and OLS multiple regression. The horizontal axis (s) represents the magnitude
of the measurement. The vertical axis is the probability of agreement for the measurement.

the EC GPP was rescaled and compared to the original 8 d
MCD17 data (Fig. 11a). The GPP from MODIS was an un-
derestimate of EC GPP, and when the estimates were ad-
justed (Eq. 6, Fig. 11b) the performance was not better than
the OLS (model not shown). The MODIS land cover classi-
fication represented this site as grassland (MCD12), and this
could be another reason for the poor agreement besides the
assumptions made in the MODIS algorithm regarding the ε
and εmax parameters and the response of vegetation to VPD.
Agreement of MODIS GPP is crucial because MODIS prod-
ucts are frequently used in country-wide assessments of the
carbon cycle and can influence public policies.

The model with least agreement resulted when the EML
ensemble generated from the Santa Rita site was used to pre-
dict GPP at Bernal. Machine learning models can make pre-
dictions, but their usefulness decreases when they are used
outside the context of where they were built, while process-

based mechanistic models have this ability. Although the Au-
toML function in H2O is designed to protect against over-
fitting using cross-validation runs (Michailidis, 2018), in our
study, the Santa Rita model could not be generalized to repre-
sent the Bernal site GPP process, probably because the vari-
ables and features selected for Bernal or Santa Rita were dif-
ferent during the AutoML workflow.

The Santa Rita model was good at predicting GPP at that
site, with a deviance of the leader model of 0.23, while at
Bernal the deviance of the leader model was 0.63 (Table 3),
indicating that the Santa Rita EML ensemble was at least
as good a model as the EML at Bernal (not shown). The
GPP time series for Santa Rita was about 4 times the size
of the Bernal dataset, and therefore the deviance was lower.
However, when the Santa Rita model was used with Bernal
data, the mean θs was 0.16, indicating that the agreement was
insufficient. Eyeballing the predictions in Figs. 9a, 10b and
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11a and their corresponding correlation values (0.78, 0.76
and 0.82 for adjusted EML Santa Rita, adjusted MODIS and
multiple-regression OLS), it could be argued that these mod-
els were comparable. However, their θs plots present a dif-
ferent perspective.

4 Discussion

4.1 Model agreement

The Santa Rita model had higher θs when it extrapolated
for low GPP values for the Bernal site, suggesting that the
Santa Rita model had a better skill when predicting GPP
close to 0 and even negative GPP values (Fig. 10b). Al-
though the Bernal and Santa Rita sites had similar vegeta-
tion and climate classifications, they are more than 1600 km
apart, and rainfall monthly distribution is different. The GPP
seasonal cycle at Bernal started in February and steadily in-
creased to a maximum during July and August (Table 1).
At Santa Rita, the GPP was low from January until mid-
July (< 0.5 gCO2 m−2 d−1) and then increased sharply to a
maximum level in mid-August (Joiner and Yoshida, 2020).
What matters eventually for machine learning methods is
how well the predictor space rather than geographic space
is sampled (Jung et al., 2020). Incorporating data from more
humid (semiarid) sites could improve the GPP predictions by
a machine learning method. Not only more EC sites, but also
sites representing a water availability gradient would be im-
portant for semiarid ecosystems, representing long spells and
the influence of oceanic oscillations and monsoon rains.

All the models presented here used transient data to rep-
resent GPP, specifically at the 1 d time step. Besides the
radiation-related variables, two sources of rainfall were used
as forcing variables, but evapotranspiration (ET) was not
used. The MOD16A2 version 6 is available as an 8 d gap-
filled product and could be included in EML or OLS mod-
els. However, a more general representation of the carbon
cycling could be achieved when including variables that rep-
resent annual or seasonal timescales of soil water, evapo-
ration or precipitation (Scott and Biederman, 2019). Scott
et al. (2015) suggest that real lags between precipitation and
productivity that may impart legacy effects may also be par-
tially masked by using ET as ET more carefully tracks pro-
ductivity when soil moisture storage is accessed. The occur-
rence of off-season rainfall, dry spells and carryover effects
could be parameterized as windowed events of a given dura-
tion. A window would be a period with distinct time bound-
aries; the window allows the grouping of records with similar
features. The effect of the window at a given time could be
represented as moving weights as the point in time in ques-
tion is closer or farther from the window.

In our study, the metric to assess model agreement was
the probability of agreement (θs) and their bias parame-
ters. Many other metrics can be used to evaluate model per-

formance such as the root mean square error, r , r2 or the
model efficiency factor (MEF) presented by Nash and Sut-
cliffe (1970). In particular, the MEF is a step in the Fluxnet
data processing pipeline (Pastorello et al., 2020). A MEF
value close to 1 represents a high correlation and lower bi-
ases (Joiner and Yoshida, 2020). Therefore, the calculated
MEF for the Bernal site EML (0.98) would suggest very good
predictive performance, while the θs of 0.6 for this model in-
dicates a more modest performance. The θs for a particular
value of the measurand is the probability that the difference
between two measurements made by different systems falls
within an interval that is deemed to be acceptable (Stevens
et al., 2015). In the present study we used 1 gCm−2 d−1 as a
critical value defining an acceptable difference. If this value
is smaller, then the probability of agreement would decrease
for this same model. In such a case, it would be less likely
that the predictors agree considering that the θs takes into
account both the difference in the function means at a given
value of the measurand and the uncertainty in its estimation.

4.2 MODIS discrepancies

Different authors have reported discrepancies between
MCD17 and EC estimates of GPP in semiarid regions. Ex-
amining MODIS discrepancies in these ecosystems is im-
portant because the errors induced by cloud cover are ex-
pected to be minimal, and other effects can be identified
(Gebremichael and Barros, 2006). The GPP of MOD17 did
not relate well (EC= 0.11+ 0.17MODIS, r2

= 0.67) with
estimates of EC GPP in semidesert vegetation of the Sahel
(Tagesson et al., 2017). With data from different types of veg-
etation in the Heihe basin in China, MODIS17 overestimated
the GPP from EC (EC= 1.15+0.24MODIS, r2

= 0.68; Cui
et al., 2016). For scrub sites in Mexico, the relation be-
tween GPP calculated from EC and MOD17 was not good
(MODIS= 383.82+ 0.467EC, r2

= 0.6; Delgado-Balbuena
et al., 2018). In arid and semiarid ecosystems in China, op-
timizing parameters of the MODIS GPP model with site-
specific data improved the estimate to explain 91 % of the
variation in the GPP of the data observed by EC (Wang et al.,
2019). These same authors propose improving the land use
classification used by the MOD17 algorithm and recalibrat-
ing light use efficiency parameters to solve the GPP estima-
tion problem. Gebremichael and Barros (2006) examined an
open shrubland site in a semiarid region of Sonora, Mexico,
and their analysis of the temporal evolution of the discrep-
ancies with MODIS GPP suggested revisiting the light use
efficiency parameterization, especially the functional depen-
dence on VPD and PAR, and water stress or soil moisture
availability.

The relationship between the GPP MODIS and the GPP
EC presented in Sect. 3.3 is an approximation because the
uncertainty in the respiration component must be consid-
ered. The empirical relationship between nocturnal NEE and
soil temperature has been used to represent ecosystem res-
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piration (Reco) in order to separate the processes that con-
tribute to daytime NEE (Richardson and Hollinger, 2005;
Wofsy et al., 1993). Nighttime NEE should be equal to the
rates of autotrophic and heterotrophic respiration, while dur-
ing daytime, NEE should be equal to the combined rates of
carboxylation and oxidation of Rubisco, autotrophic respi-
ration and heterotrophic respiration. Then, the GPP can be
calculated as the difference between daytime NEE and Reco,
estimated through its relationship with temperature (Goulden
et al., 1996). In the present study, Reco was calculated based
on soil and air temperature following the procedure of Reich-
stein et al. (2005) implemented in REddyProc (Wutzler et al.,
2018). Although it is possible to measure or model the parti-
tion of respiration (Running et al., 2004; Wang et al., 2018),
the presence of cacti complicates the calculation, assum-
ing that all nighttime flux represents ecosystem respiration
(Owen et al., 2016; Richardson and Hollinger, 2005). While
soil respiration tends to be temperature-limited when soil
moisture is nonlimiting in temperate ecosystems, in range-
land ecosystems the controls of soil CO2 efflux were photo-
synthesis, soil temperature and moisture (Roby et al., 2019).
In our study, the instrumentation did not include measure-
ments of plant or soil respiration partition to validate theReco
estimates.

A problem regarding data comparison from remote orbital
sensors and terrestrial observations is that different quanti-
ties are fundamentally measured. MODIS measures the radi-
ation reflected by the earth’s surface in two spectral bands at
250 m spatial resolution per pixel, five bands at 500 m and
29 bands at 1000 m. The EC technique has a footprint to
measure CO2 that varies dynamically in shape and size but
is generally considered to be 1 km2; in this study the foot-
print radius was 600 m. To solve the scaling, MODIS prod-
ucts related to the carbon cycle have been validated with the
EC technique and biometric measurements on several spa-
tial scales using process-based ecosystem models and char-
acterizing areas up to 47 km2 around the EC measuring tower
(Cohen et al., 2003).

At Bernal, the vegetation was heterogeneous. This situa-
tion was represented by the heterogeneity in vegetation ac-
tivity in the 4 pixels used, spanning about 0.2 units of NDVI
at the peak of the season activity (Fig. 1). The standard error
of the IVI differed by 1 order of magnitude among species.
Although more important species had a lower standard error,
their means were similar, indicating that they were equally
abundant at all sampling plots. The higher importance of
some species (Table 2) was explained by selective grazing–
browsing behavior and the dispersion caused by cattle by ei-
ther ingesting or transporting seeds or plant parts (Belayneh
and Tessema, 2017). Regarding landscape heterogeneity, the
tower fetch was predominantly from the northeast, capturing
the less heterogeneous area of the site but also the more ac-
tive, according to the NDVI (Fig. 1).

The thorny scrub examined had two vegetation layers:
the overstory layer mainly consisting of mesquite, acacia

and cacti and the understory layer that included grasses and
herbs. Cattle preferentially graze the understory, and because
they eat using their tongue, they will avoid browsing thorny
species, unlike goats or deer, which use their lips. Without
grazing management, overtime, the competition balance will
favor bush species, resulting in encroaching, and the under-
story will be stressed; only unpalatable species or those with
their growing meristems very close to the ground would sur-
vive. Representing the structure and functioning of these two
layers using MODIS is possible (Liu et al., 2017). Recently,
Hill and Guerschman (2020) presented a MODIS product de-
rived from MCD43A4 to estimate the fractions of photosyn-
thetic and nonphotosynthetic vegetation and the remaining
fraction of bare soil. These developments could improve the
MOD17 GPP estimates since its model represents a homoge-
neous single vegetation layer. All these considerations help
to understand the low θs between MOD17 estimates of GPP
and EC-derived GPP.

4.3 Forcing variables and machine learning

Forcing variables in this study were gridded meteorologi-
cal data and MODIS spectral bands and products, but the
variables mostly included in the ML algorithms were LAI
and FPAR, accounting for 36.4 % and 54.9 % of the vari-
able importance index at Bernal and Santa Rita, respectively,
in their leader board. This result supported the view that
CO2 fluxes can be represented by ML algorithms exclu-
sively using remotely sensed data (Tramontana et al., 2016;
Joiner and Yoshida, 2020). Using neural networks, Joiner and
Yoshida (2020) showed that with only satellite reflectance
from MODIS and top-of-atmosphere PAR, it is possible to
capture a large fraction of GPP variability. They argue that
vegetation indices may reduce the information content of
the underlying reflectance when compressing the informa-
tion from two or more bands into a single index. In our study,
reflectance bands were not often included in the ML models.
This was most likely because MOD09GA and MODOCGA
provide estimates of surface reflectance uncorrected for the
illumination and viewing geometry, while the MCD43 used
in Joiner and Yoshida (2020) uses a surface bidirectional re-
flectance distribution function (BRDF) model that improves
the quality of surface albedo retrievals. By propagating the
BRDF correction in the MODIS processing pipeline, the veg-
etation indices would more likely relate better to the GPP.
Future modeling efforts should use benchmark scenarios ac-
cording to sets of forcing variables already identified as use-
ful.

4.4 Carbon flux

Although the carbon balance in ecosystems is influenced by
different factors such as soil type and amount of nutrients,
the relationship with soil temperature and humidity is partic-
ularly strong (Anderson-Teixeira et al., 2011; Hastings et al.,
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2005). How much of the rainwater the system can retain or
lose has been described as the leakiness of the system (Guer-
schman et al., 2009). More than immediate incident rainfall,
the available soil moisture and its redistribution are impor-
tant in semiarid ecosystems, including steam flow, prefer-
ential flow paths, hydraulic lift and others (Barron-Gafford
et al., 2017). At Bernal, when the sum of the precipitation of
the current month and that of the previous month was con-
sidered, the correlation with NEE was −0.7, suggesting that
continuous availability of soil moisture is important for the
absorption of CO2 in this environment. This result is con-
sistent with other studies in which the relationship between
the net productivity of the ecosystem (NEP) and precipita-
tion is initially positive but is leveled from 1000 to 1500 mm
annually (Xu et al., 2014). The hydraulic redistribution of
water from moist (deeper) to drier soils through plant roots
tended to increase modeled annual ecosystem uptake of CO2;
this process was identified at US-SMR (Fu et al., 2018; Scott
et al., 2003).

The leakiness is highly dependent upon vegetation frac-
tional cover, the proportion of the surface occupied by bare
soil and vegetation: photosynthetically active vegetation and
nonphotosynthetically active vegetation such as litter, wood
and dead biomass (Guerschman et al., 2009). All these vege-
tation fractions have a water storage capacity and can reduce
the amount of effective rainfall available to plant roots. It is
possible that the canopy of the bushes completely intercepted
the rainfall in some months because the scrub can intercept
up to 20 % of the precipitation, and its canopy storage ca-
pacity is 0.97 mm (Mastachi-Loza et al., 2010). Considering
only the daily rain events greater than 5 mm, the correlation
between precipitation and NEE rose to −0.72. In the present
study, the interception of rain by vegetation surfaces was not
calculated, but the results suggest that it would be impor-
tant to explore the relationship between net precipitation and
NEE.

The average NEE at a global level is −156±
284 gCm−2 yr−1 (Baldocchi, 2014). The highest frequency
among sites that measured NEE with EC occurs from −200
to −300 gCm−2 yr−1, but in sites with biometric measure-
ments, the peak occurs at −100 gCm−2 yr−1 (Xu et al.,
2014). Using the daily averages of Table 2, the average
NEE during the measurement period was −0.78 gCm−2 d−1

and annually would be −283.5 gCm−2 yr−1. This result
was higher than the annual values of the induced grass-
land and scrubland vegetation characterizing the Sonoran
Desert plains (138 and 130 gCm−2 yr−1; Hinojo-Hinojo
et al., 2019). In New Mexico, NEE values measured with
EC are between 35–50 gCm−2 yr−1 in desert grassland and
344–355 gCm−2 yr−1 in mixed coniferous forest (Anderson-
Teixeira et al., 2011). In a dryer region, the sarcocaulescent
scrubland of Baja California in Mexico, the NEE was −39
and −52 gCm−2 yr−1 in 2002 and 2003, respectively (Hast-
ings et al., 2005). The NEE measured here was within the
range of NEE, 0.3± 0.2 kgCm−2 yr−1, for grasslands and

shrublands in Mexico (Murray-Tortarolo et al., 2016). Al-
though the measurements of the present study had gaps and
were compared with annual studies, we considered that the
reported value of C was representative of the main season of
growth of this type of scrub.

4.5 Ecosystem management

Overgrazing is an appreciation relative to the grazing produc-
tive system where the forage resource is overused; in a mixed
shrub–grass ecosystem, such as Bernal, it usually refers to
the understory. Overgrazing means that the plant regrowth is
readily grazed, tillers and root reserves are lost, and eventu-
ally the plant may die. Although the Bernal site was over-
grazed, the carbon fluxes indicated that the plant community
was photosynthetically active in both dry and rainy seasons.
It is fair to assume that water in the soil was not limiting for
the deep-rooted bush species, and that was the reason why
it was possible to maintain the photosynthetic function dur-
ing rainless months. However, this primary production would
not have tangible benefits for ranchers’ production system
since no edible biomass would be produced for the cattle.
From the point of view of carbon capture, the system accu-
mulated nonlabile biomass that would remain in the system
for a longer time compared to a grassland ecosystem (al-
though it would be necessary to determine the partition of
said shrub biomass). However, the overgrazing condition af-
fects the biomass of the understory roots and consequently
the carbon pool in the soil.

In the short term, it can be thought that the estimated neg-
ative carbon flows had a favorable effect on the environmen-
tal agenda. As time passes, it is possible that the gaps be-
tween the individual shrubs of the overstory expand, and this
would have had an effect on soil erosion. It is also possible
that the water stored in the soil profile used by the bushes
gradually decreases to the point of causing drought, changes
in phenology and advancements of the desertification pro-
cess. There are many opportunities for ecology conservation
and livestock-oriented management; these may include con-
trolled grazing or propagating native thornless shrub species.
If ranchers do not identify a benefit in the vegetation, then
they will be tempted to remove it as it occurred at the
study site. Because of its wide coverage and availability, the
MODIS GPP product accuracy is important in representing
the carbon cycle, raising awareness and monitoring advance-
ment of environmental decisions.

Although we found that EML was a good option for mod-
eling the GPP of a site, what is really needed to evaluate the
performance of semiarid ecosystems is a spatial representa-
tion of the carbon flux. This is a problem for an underrepre-
sented area regarding instrumented EC towers. However, the
EML could be designed to take into account the explanatory
variables in a spatiotemporal continuity.
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5 Conclusions

The best modeling approach was the ensemble of ma-
chine learning. The second option to estimate GPP was the
multiple-regression OLS, and the third alternative were the
MODIS estimates. Machine learning was a good option to
predict GPP in the local context where it was generated; oth-
erwise its performance was not good. This was demonstrated
when using the EML from Santa Rita and trying to predict
fluxes at Bernal. Nevertheless, a machine learning model
would be useful for gap filling or the evaluation of GPP at
the same site. The GPP estimates of a given model can be ad-
justed using the bias parameters of the probability of agree-
ment to improve the relationship. Further research explor-
ing the usefulness of EML to predict GPP in other contexts
could use EML to calibrate mechanistic model parameters,
hybrid approaches integrating EML and biologically mean-
ingful mechanistic models, or EML representing the spatial
variability of the landscape.
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Appendix A:

Table A1. Threshold of velocity friction (u∗) above which nighttime fluxes were considered valid. Estimates were obtained using the R
package REddyProc. We used only the flux records with u∗ equal to or higher than the corresponding mean u∗ threshold for each year.
Bound values are a 95 % confidence interval. NA: not applicable.

Aggregation method Year Season Mean Lower bound 5 % Upper bound 95 %

u∗ (ms−1)

Single NA NA 0.193 0.140 0.209
Year 2017 NA 0.194 0.128 0.227
Year 2018 NA 0.193 0.132 0.225
Season 2017 2016012 0.194 0.128 0.227
Season 2017 2017003 0.215 0.141 0.297
Season 2017 2017006 0.194 0.128 0.227
Season 2017 2017009 0.181 0.144 0.208
Season 2018 2017012 0.149 0.116 0.232
Season 2018 2018003 0.271 0.134 0.297
Season 2018 2018006 0.193 0.132 0.221
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Appendix B:

Table B1. MODIS reflectance bands and products database.

Product name Satellite layer Spatial Temporal Spectral
resolution resolution coverage

(d) (nm)

MOD09GA Band 1 500 m 1 620–670
Band 2 841–876
Band 3 459–479
Band 4 545–565
Band 5 1230–1250
Band 6 1628–1652
Band 7 2105–2155

MODOCGA Band 8 1 km 405–420
Band 9 438–448
Band 10 483–493
Band 11 526–536
Band 12 546–556
Band 13 662–672
Band 14 673–683

MOD17A2H Gross primary production (GPP) 8

Net photosynthesis (PsnNet)

MOD15A2H Fraction of photosynthetically active radiation (Fpar) n/a

Leaf area index (LAI)

MOD11A2 Land surface temperature and emissivity of day (LST day) 1 km

Land surface temperature and emissivity of night (LST night)

MYD13A1 Enhanced vegetation index (EVI) 500 m 16

MYD15A2H Fraction of photosynthetically active radiation (Fpar) 8

Leaf area index (LAI)

MYD11A2 Land surface temperature and emissivity of day (LST day) 1 km n/a

Land surface temperature and emissivity of night (LST night)

MCD15A2H Fraction of photosynthetically active radiation (Fpar) 500 m

Leaf area index (LAI)

n/a: not applicable.

Table B2. Daily vegetation indexes computed using the MODIS reflectance bands described in Table 1.

Index Formula Reference

Simple ratio (SimpleR) SimpleR= Band 2
Band 1

(Hill et al., 2006)
Moisture stress (MoistS) MoistS= Band 6

Band 2

Disease stress index (DSI) DSI= Band 2+Band 4
Band 6+Band 1

Red–green ratio index (RGRI) RGRI= Band 1
Band 4

Normalized difference vegetation index (NDVI) NDVI= Band 2−Band 1
Band 2+Band 1

Normalized difference water index (NDVI_w) NDVI_w =
Band 2−Band 5
Band 2+Band 5

Green leaf index (GLI) GLI= 2∗Band 11−Band 14−Band 9
2∗Band 11+Band 14+Band

(Henrich et al., 2012)
Green atmospherically resistant vegetation (GARI) GARI= Band 5−(Band 11−(Band 9−Band 14))

Band 5−(Band 11+(Band 9−Band 14))

Enhanced vegetation index (EVI) EVI= 2.5∗ Band 2−Band 1
Band 2+(6∗Band 1)−(7.5∗Band 9)+1
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Table B3. Daymet meteorological database.

Variable Spatial resolution Temporal resolution Reference

Precipitation (Dayprc)

1 km Daily (Thornton et al., 2017)
Shortwave radiation (Daysrad)
Maximum air temperature (DayTmax)
Minimum air temperature (DayTmin)
Water vapor pressure (Dayvp)

Table B4. Precipitation data.

Satellite Product name Spatial resolution Temporal resolution

Global Precipitation Measurement (GPM) 3IMERGDF v006 0.10◦
Daily

Tropical Rainfall Measuring Mission (TRMM) 3B42 v007 0.25◦
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Appendix C:

Table C1. Analysis of variance for GGP derived from EC data at
the Bernal site. Variable details are described in Appendix B.

Model term Coefficient SEa DFb SSc F p VIFd

Regression 14 1780.48
Constant −13.18 6.48 −2.03 0.04
R_08_405.42e

−2.12 0.60 1 26.80 −3.52 0 2.20
R_13_662.67e

−2.86 1.23 1 11.61 −2.32 0.02 1.55
R_14_673.68e 9.17 2.59 1 27.06 3.53 0 1.22
RGRI6

−0.83 0.37 1 11.00 −2.25 0.03 1.43
GARIf 2.01 1.08 1 7.55 1.87 0.06 2.37
EVIMYDg 8.53 2.01 1 39.03 4.25 0 2.94
NDVI_wf 3.90 1.55 1 13.67 2.51 0.01 2.71
PsnNetg 0.013 0 1 75.30 5.90 0 3.83
LstNgtMYDg 0.05 0.02 1 8.18 1.94 0.05 2.01
Dayprch 0.14 0.03 1 35.90 4.07 0 1.92
Daysradh 0.01 0 1 51.21 4.86 0 5.01
DayTmaxh

−0.24 0.06 1 36.58 −4.11 0 6.89
DayTminh 0.18 0.05 1 32.22 3.86 0 4.96
TRMMi −0.04 0.02 1 10.87 −2.24 0.03 1.41
Error 403 872.97
Total 417 2653.45

a Standard error of coefficient. b Degrees of freedom. c Adjusted sum of squares. d Variance inflation factor.
e Variable name denotes the band number and spectral bandwidth of MODIS (Moderate Resolution Imaging
Spectroradiometer). f Vegetation indices: RGRI is red–green ratio index, and GARI is green atmospherically
resistant vegetation index; details of formula are described in Appendix B. g Layers from MODIS products.
EVIMYD is enhanced vegetation index from MYD13; PsnNet is photosynthesis product form MOD17;
LstNgtMYD is nighttime land surface temperature emissivity from MYD11. h Variables obtained from
Daymet daily dataset: DayTmin is minimum temperature; DayTmax is maximum temperature; Daysrad is
shortwave radiation; Dayprc is precipitation. i Daily rainfall rate from 3B42 TRMM (Tropical Rainfall
Measuring Mission).
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Code and data availability. Database and programming code are
available at https://doi.org/10.5281/zenodo.3598595 (Guevara-
Escobar et al., 2020).
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