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Table S1: Global standing stock of organic carbon in living biomass and contribution from anaplerotic CO:
fixation (only anaplerosis is considered here; other mechanisms of heterotrophic CO: fixation were neglected).
In heterotrophs, a conservative estimate of 1-5% of the cell carbon is assumed to originate from inorganic
carbon fixation (see references in text).

Continental habitats Carbon Carbon in biomass References for carbon

biomass derived from anaplerotic | biomass

[Pg C] CO: fixation [Pg C]

Terrestrial animals 0.6 0.006 - 0.03 (Bar-On et al. 2018)
Soil fungi 12 0.12-0.6 (Bar-On et al. 2018)
Terrestrial protists 1.6 0.016-0.8 (Bar-On et al. 2018)
SO.I| prokaryotes (upper 100 cm of 53,9 0.23-1.16 (Xu, Thornton and Post
soil) 2013)
Continental subsurface 9 4-12.6% 0.024—0.63 (Magnabosco et al.
prokaryotes 2018)

Heterotrophic prokaryotes in
freshwater and saline inland 0.013** 0.00013 — 0.00065 (Whitman et al. 1998)
surface waters

Marine and oceanic habitats

Marine Animals 2 0.02-0.1 (Bar-On et al. 2018)
Marine protists 2 0.02-0.1 (Bar-On et al. 2018)
Marine fungi 0.3 0.003 -0.015 (Bar-On et al. 2018)

Marine planktonic heterotrophic

1.4 —3.5%** 0.014-0.175 (Whitman et al. 1998)
prokaryotes

Subseafloor sedimentary (Kallmeyer et al. 2012,

1.5-22 0.015-1.1

prokaryotes Schippers et al. 2005)
Prokaryotes of the oceanic crust 0.5-5 0.005-0.25 (Bar-On et al. 2018)
Total heterotrophic carbon 47 -85 0.47 — 4.96

biomass

* Cell abundances (2 — 6 x 10?° cells) from Magnabosco et al. (2018) were converted into cell carbon using the
carbon conversion factors 12 fg C cell’* and 21 fg C cell’* (Wilhartitz et al. 2009, Griebler et al. 2002) for the
minimum and maximum values of the range, respectively. In favor of a conservative estimate, quite low carbon
conversion factors were used (at the lower end of the carbon content values for freshwater prokaryotic cells
reported in literature).

** Cell abundance (2.3 x 10%¢ cells) from Whitman et al. (1998) were converted into cell carbon using a carbon
conversion factor of 57 fg C cell}, which is the arithmetic mean of the minimum and maximum of a range of
values (6 to 107 fg C cell) reported for freshwater lakes and rivers of different trophic states in literature
(Pedrds-Alié and Brock 1982, Bjgrnsen 1986, Simon 1987, Lever et al. 2015).

*** Cell abundances were converted into cell carbon using the carbon conversion factors 12 fg C cell* and
30 fg C cell* (Fukuda et al. 1998) for the minimum and maximum values, respectively.
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Table S2: Annual global heterotrophic carbon biomass production and contribution from heterotrophic CO2
fixation (via anaplerosis).

Annual heterotrophic Anaplerotically
C-biomass production fixed carbon

[PgCyrl] [PgCyr?]®

Marine and oceanic habitats

(Cole, Findlay and Pace

Marine and 24-76" 0.024-3.8 1988, del Giorgio and
freshwater Duarte 2002)
Oceanic subseafloor 0.1-9.8" 0.001-0.49 (Schippers et al. 2005)
Continental habitats
Aquifers and P Cal 2018

+ agnabosco et al. ,
unsaturated 0.12-26.3 0.0012 -1.315 Griebler et al, 2014)
subsurface

(Prentice et al. 2001,

Soils 31.3-133.2 " 0.313-6.66 Manzoni et al. 2012,

Hashimoto et al. 2015,
Potter and Klooster 1998)

Total heterotrophic
C-biomass 34 - 245 0.34-12.3
production

* Bacterial carbon production (BCP) rates from 54 marine and freshwater studies (Cole et al. 1988) were
converted from [mg C m2d™] into [Pg C yr] and extrapolated to global scale using a world water surface area
of 361,419,000 km? (http://www.worldatlas.com/aatlas/infopage/oceans.htm).

" The total number of living cells [1.3 x 10%°] was divided by the turnover time of subseafloor bacteria [0.25-22
yrs], multiplied by the mean carbon content per cell [19 fg C], and converted from [fg C] to [Pg C]. All data as
given in Schippers et al. (2005).

" The range of bacterial carbon production rates [fg C L' yr!] from 14 groundwater wells (sampled in spring and
autumn) located in an oligotrophic porous aquifer in the Bavarian Alps (close to Mittenwald in Southern
Germany) was divided by the corresponding bacterial abundance [cells L] to obtain BCP rates per cell (data
from Griebler et al. 2014). The minimum and the maximum values of these cell-specific BCP rates were then
multiplied by the minimum and the maximum estimated total number of prokaryotes in the continental
subsurface [2-6 x 10%° cells] from Magnabosco et al. (2018), respectively, and carbon mass units were
converted from [fg] to [Pg]. Note: since comprehensive, global data on microbial carbon production in aquifers
are currently still missing, the level of uncertainty of this estimate is high. Therefore, in order to avoid
overestimation, and in favor of obtaining a most conservative estimate, we selected out of the available data
only those production rates, which were determined in pristine, highly oligotrophic environments. If all other
data from the dataset in Griebler et al. (2014), in total 88 wells throughout Germany, sampled twice, as well
as the data from four other available studies with sites in the USA, Austria and Denmark (Thorn and Ventullo
1988, Kazumi and Capone 1994, Albrechtsen and Winding 1992, Wilhartitz et al. 2009) were to be included, a
much higher estimate of the global annual heterotrophic carbon biomass production in aquifers would be
obtained, ranging from 0.06 to 4,829 Pg C yr?, and corresponding to 0.001 — 386 Pg C yr! of anaplerotically
fixed carbon each year.

™" Global terrestrial heterotrophic respiration in soils [55 Pg C yr''] from Prentice et al. (2001) was extrapolated
to carbon biomass production assuming that respiration accounts for 30-62% of the total carbon consumed
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(corresponding to a carbon use efficiency (CUE) of 38-70%) in the course of organic matter decomposition in
different types of soils (Manzoni et al. 2012).

§ It was assumed that 1-5% of the annually produced carbon biomass of heterotrophs originate from anaplerotic
CO: fixation (see ref. in the text of the main MS). A fraction of 1% was applied to the minimum, and 5% to the
maximum value of the C-biomass production ranges in this table, respectively.
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